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In highly non-linear datasets, attributes or features do not allow readily finding visual

patterns for identifying common underlying behaviors. Therefore, it is not possible

to achieve classification or regression using linear or mildly non-linear hyperspace

partition functions. Hence, supervised learning models based on the application of

most existing algorithms are limited, and their performance metrics are low. Linear

transformations of variables, such as principal components analysis, cannot avoid the

problem, and even models based on artificial neural networks and deep learning are

unable to improve the metrics. Sometimes, even when features allow classification or

regression in reported cases, performance metrics of supervised learning algorithms

remain unsatisfyingly low. This problem is recurrent in many areas of study as, per

example, the clinical, biotechnological, and protein engineering areas, where many of

the attributes are correlated in an unknown and very non-linear fashion or are categorical

and difficult to relate to a target response variable. In such areas, being able to create

predictive models would dramatically impact the quality of their outcomes, generating

an immediate added value for both the scientific and general public. In this manuscript,

we present RV-Clustering, a library of unsupervised learning algorithms, and a new

methodology designed to find optimum partitions within highly non-linear datasets

that allow deconvoluting variables and notoriously improving performance metrics in

supervised learning classification or regression models. The partitions obtained are

statistically cross-validated, ensuring correct representativity and no over-fitting. We have

successfully tested RV-Clustering in several highly non-linear datasets with different

origins. The approach herein proposed has generated classification and regression

models with high-performance metrics, which further supports its ability to generate

predictive models for highly non-linear datasets. Advantageously, the method does not

require significant human input, which guarantees a higher usability in the biological,

biomedical, and protein engineering community with no specific knowledge in the

machine learning area.

Keywords: highly non-linear datasets, supervised learning algorithms, clustering, statistical techniques, recursive

binary methods
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INTRODUCTION

In the so-called era of Data, Big Data seems to be a common
term. As the name suggests, its determining characteristic is
the amount of information, a quantity so large that it has
required the development of new technologies and algorithms
to obtain useful information from them (Katal et al., 2013;
Sagiroglu and Sinanc, 2013; Gandomi and Haider, 2015). The
above has attracted the interest of various actors, and among
them, the field finds enthusiasts, detractors, and skeptics. In
recent times, academic interest in Big Data revealed by the
number of journals, conferences, and initiatives dedicated to the
subject, has shown a consistently growing trend (Ekbia et al.,
2015; Gandomi and Haider, 2015). From this increase, we can
infer that, in addition to introducing new study directions and
fields, Big Data has changed how research is carried out (Abbasi
et al., 2016). The proliferation of information generators has
created gigantic volumes and great diversity of data, and the
evolution of the methods to analyze, store, transmit, and use
them are radically reforming the scientific computing scenario
(Hu et al., 2014; Asch et al., 2018; Oussous et al., 2018).
Machine Learning (ML) techniques are an example of such
methods (Al-Jarrah et al., 2015; Qiu et al., 2016; Zhou et al.,
2017).

ML operates under the premise that it is possible to learn
from the data and to generate predictions from the trends it
may exhibit. ML, and any learning process in general, first
involves a pattern discrimination stage, which is subsequently
used for conjecturing predictions for new examples. Among
the best-known ML methods, two separate groups can be
drawn: supervised learning (Singh et al., 2016) and unsupervised
learning (Ghahramani, 2003) methods. The first group of
methods, usually associated with the classification and regression
tasks, requires knowledge about a response variable, which is
assumed to be related to and inferred from it. The second
group of methods, generally related to clustering or pattern
recognition tasks, does not require a previously known response
variable since the output is clusters of behaviors that naturally
emerge from the data (Witten et al., 2005). Examples of widely-
used ML techniques are Artificial Neural Networks (ANN),
Decision Trees (DT), Support Vector Machines (SVM), Naïve
Bayes, k-nearest neighbors (KNN), and ensemble methods such
as Boosting or Bagging, among others (Witten et al., 2005;
Kourou et al., 2015). A general weakness of ML techniques,
reported in different tenors, is an intrinsic part of their core:
as they train from limited data, their results depend on their
limited experience and, lacking a theoretical background, they
frequently fail to cast predictions over exotic examples not
present in the training set (Kourou et al., 2015; Michael et al.,
2018). Some researchers commonly classify ML-trained models
as “black boxes,” a term that results quite accurate for the ANN’s
applications (Olden and Jackson, 2002; Qiu and Jensen, 2004).
However, models as DT, SVM, and KNN, for example, actually
do rescue information about the decision-making workflow
in their architecture, giving some insights about the reasons
behind their results. In the area of biomedicine, where the
applications are wide and very promising (Costa, 2014; Greene

et al., 2014; Lee and Yoon, 2017), researchers call for a new
era in the application of ML (Camacho et al., 2018), where
the incorporation of information will be a key feature for
success (Auffray et al., 2016; Michael et al., 2018). For instance,
applications of ML may be found in studies related to cancer
diagnosis and treatment (Kourou et al., 2015; Hinkson et al.,
2017), diabetes research (Kavakiotis et al., 2017), decision support
in critical care (Johnson et al., 2016), genomic medicine (Leung
et al., 2015), among others.

Many times, the datasets do not have information about how
their features interact to generate responses or clusters, which,
added to the noise that datasets usually have, complicates its
treatment. Researchers have pointed out this fact, emphasizing
that it is difficult to bridge the gap between prediction and
reality if the mechanistic background of the phenomenon to
be predicted is not evident (Coveney et al., 2016). Depending
on how complex the underlying relationships between the
features are, classification or prediction models would be trained
more or less smoothly. However, that complexity could also
represent a prohibitive constraint, resulting in unacceptable
performances of the trained models. Consequently, we may
find natural that the success of ML techniques when training
predictive models strongly rely on the data. In this work, we
will call linear datasets those in which ML methods based
on linearity assumptions generate models with outstanding
performance measures. We will refer those datasets in which
this does not happen as non-linear datasets. Some datasets
result too complicated for linear models but may be suitable
for applying mildly non-linear algorithms, such as non-linear
Functional Data Analysis (FDA), Random Forest, AdaBoost,
Gradient Tree Boosting, among others, or after performing a
data pretreatment stage (Kourou et al., 2015). For this work,
we will focus on those datasets in which, even after attempting
to apply non-linear techniques, trained models do not reach
acceptable performance. We will refer to these sets as highly
non-linear datasets.

Previous works handling non-linear biological and
biomedical datasets have used differentMachine Learning-driven
approaches to obtain predictors. Some of them use artificial
neural networks (ANN) because of the high-performance
metrics that these methods might achieve (Almeida, 2002;
Rani, 2011; Shaikhina and Khovanova, 2017). Nevertheless,
such performances can be altered by modifying the network
hyperparameters (such as the number of layers or neuron units),
often on the cost of overfitting the data. Other works have
applied distance-based methods such as KNN (Ahmad et al.,
2017), kernel-driven spatial transforms as SVM (Shi et al., 2013;
Xiang et al., 2017), and variations of Partial Least Squares PLS
(Sun et al., 2017), all after performing a specially tailored data
pretreatment. This non-standard pretreatment results in the
loss of generality of such approaches. Examples of the used data
pretreatment techniques are classical Principal Components
Analysis (PCA) and its variants, Factor Analysis (FA), and
non-linear approaches as the t-distributed Stochastic Neighbor
Embedding (t-SNE), Laplacian Eigenmaps and Locally Linear
Embedding (LEM), and isometric mapping Isomaps (ISO),
among others (Lee et al., 2008; Pandit et al., 2016; Rydzewski
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and Nowak, 2016; Doerr et al., 2017; Tribello and Gasparotto,
2019).

Since highly non-linear datasets are usually obtained while
gathering scientific data, attempts have been performed using
them to somehow develop predictive or interpretative models.
However, these approaches lack generality as they have usually
been developed for particular applications and used bare
algorithms, which were combined with data pretreatment
techniques, as described above, to increase performance metrics.
Some of the examples we will use as study subjects in this
manuscript relate to the fields of protein engineering, specifically
stability assessment on point mutations (Capriotti et al., 2005;
Masso and Vaisman, 2008; Getov et al., 2016) and protein
localization in E. coli (Horton and Nakai, 1997; Zhang and
Ling, 2001; Deshpande and Karypis, 2002; Ratanamahatana and
Gunopulos, 2002), and clinical medicine, such as mammographic
mass evolution (Elter et al., 2007) and thoracic surgery.
Yet, the generation of a general methodology to treat these
(highly) non-linear datasets in order to get predictive models
is still an open problem, which we intend to tackle in the
present manuscript.

Aiming to solve the model training underperformance issue
over highly non-linear datasets, we present RV-Clustering, a
library programmed in Python language, optimized for the
development of predictive models for these datasets. In the
following sections, the different modules implemented in the
library and a new methodology to adequately obtain models in
a highly non-linear dataset are described in detail. Following the
workflow proposed by our methodology, the library implements
different stages of data pretreatment and linearity assessment.
In case the dataset is proven to be highly non-linear, the
recursive binary partition, which is the central point of the
algorithm, is carried out. The idea behind the method is
the following: first, using unsupervised learning methods, a
partition of the input dataset is generated. Afterward, different
predictive models are locally trained in each subset, taking
advantage of similarities among subset members to reach
better performance metrics. After the local models are trained,
they are validated and combined to form a meta-model.
Before casting predictions on new cases, a global classification
model is created to assign them to the subset where they
belong, according to their features. The predictions result
from applying the local meta-model on the new examples.
We have successfully tested the proposed methodology in
several highly non-linear datasets from a broad spectrum of
origins, such as from the biomedical, biotechnology, and protein
engineering areas. The versatility introduced by the proposed
methodology highlights its potential benefits for users from
all areas of knowledge, not only limited only to the fields
mentioned above.

METHODS

Both the source code and the executable elements of
RV-Clustering were implemented under the Python 2.7
programming language (Oliphant, 2007), mainly using the

Scikit-learn (Pedregosa et al., 2011), Python Data Analysis
(Pandas) (McKinney, 2011), and NumPy (Van Der Walt
et al., 2011) libraries. The RV-Clustering library was designed
under the Object-Oriented Programming paradigm (Wegner,
1990), aiming to provide the modularity required to perform
actions separately in the proposed workflow. We tested the
different functionalities of the library through the analysis
of diverse datasets, mainly extracted from bibliographic
reports of specific mutations in proteins and the effect
they have on their properties and stability, and from open
databases, such as BRENDA (Jeske et al., 2018), ProTherm
(Bava et al., 2004), and the UCI Machine Learning repository
(Dua and Graff, 2017).

OVERVIEW OF THE RV-CLUSTERING
METHODOLOGY

RV-Clustering is a Python library, optimized for the creation
and validation of predictive models for highly non-linear
datasets. Its functionalities range from the typical data
pretreatment techniques to the generation of predictive
models for highly non-linear datasets. Our library stands
out from others because of its ease of use, its modularity,
the robustness of the implemented algorithms, and its open-
source access. The details about the different commands
and instructions for installing RV-Clustering in a local
computer are available in the authors’ Github repository
(https://github.com/dMedinaO/nonlinearModels). Without
being specific, RV-Clustering consists of different modules
aiming to:

• Provide data pretreatment techniques.
• Assess the degree of non-linearity of the dataset.
• Create predictive models based on both supervised and

unsupervised learning algorithms.
• Build and train meta-models.
• Generate partitions of the dataset, where models reach high

performances more efficiently while being trained.
• Evaluate performance metrics of the implemented models.

To highlight the motivation behind the proposed library and
methodology, we will explain its different modules as they appear
in the proposed workflow. Briefly, RV-Clustering modules for
the treatment of highly non-linear datasets are based on a
recursive binary partition of the initial dataset and subsequent
training of the predictive models for assigning new examples
to the constitutive subsets. Afterward, RV-Clustering generates
different predictive models within the resulting partition,
generating a battery of local models that predicts examples
inside the subset. When the user wants to evaluate a new
example, RV-Clustering assigns it to one of the subsets within
the partition, and then the local models cast the predictions to
form the output. RV-Clustering also reports the performance
metrics and statistical analyses of the resulting classification
model, the within-the-partition local models, and the
general meta-model.
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Algorithm 1: RV-Clustering methodology

Result: Predictive meta-model for a (highly) non-linear
dataset

xuser : User defined linearity threshold for a performance
metric x;
xmod : Model/meta-model performance metric x;
Assess linearity of the dataset, xlinear;
if xlinear ≤ xuser then

Explore linear and mildly non-linear models within the
dataset, xmod;
if xmod ≤ xuser then

Generate a partition of the dataset and a classification
model within it;
Generate local meta-models in subsets of the
partition;
Couple the classification model with the local
meta-models to create a general model;

Validate the general model, x
gen
mod;

if x
gen

mod
≤ xuser then

Suggest corrections and restart the algorithm;
else

Accept model;
end

else

Accept model;
end

else

Accept model;
end

RESULTS

RV-Clustering Modules Through the
Proposed Methodology
This section comprises the description of the different modules
implemented in the RV-Clustering command library and the
proposed methodology. Figure 1 represents the workflow of our
method. As an input, RV-Clustering receives the dataset and
configuration parameters for the evaluation of different criteria
such as the minimum percentage of elements in each group, the
kind of model to be trained, and the minimum ratio accepted
for the detection of class imbalance, in the case of classification
models. At this stage, the user also must declare thresholds to
evaluate whether the dataset is considered as linear or non-linear,
and minimum expected performance metrics in the exploratory
stage of predictive models.

Data Preprocessing
RV-Clustering incorporates a dataset preprocessing stage that
allows encoding categorical variables using OneHot Encoder and
assessing the class imbalance, if applicable. Finally, RV-Clustering
standardizes the dataset and divides it into two groups: a training
subset (80% of the original dataset) and a validation subset (the
remaining 20%).

Evaluation of Dataset Linearity
In the first instance, RV-Clustering evaluates whether the dataset
is non-linear according to our definition. To do this, the user
must indicate if the desired model is for or classification. If the
models to be trained are regression models, the tool applies a
linear regression on the dataset based on ordinal least squares and
obtains the coefficient of determination value of the result (R2).
Otherwise, it applies a variation of the Ho-Kashyap algorithm
(Serpico andMoser, 2006), in which different linear classification
methods, based on Support Vector Machines (SVM) and its
variants, are implemented. Finally, we compare the accuracy of
the obtained models with the minimum acceptance threshold
defined by the user. Thus, any dataset that does not meet this
criterion is classified as non-linear and is a candidate to undergo
the process of recursive binary partitions.

Initial Exploration of Predictive Models
RV-Clustering allows the user to perform an exploratory stage
for testing the performance metrics of predictive models based
on supervised learning algorithms. This evaluation receives
as input: (i) the dataset, (ii) the performance measure of
interest, (iii) the minimum performance threshold, (iv) the type
of response (categorical or numerical), and (v) the response
column identifier.

To perform the exploration, the model training module of
our tool applies different supervised learning algorithms to the
dataset, depending on the type of response. After training the
models, we obtain distributions of performancemetrics, selecting
the model with the highest performance according to the user-
input metric. If the performance is higher than the threshold
declared by the user, the tool reports as output the respective
model and all its performance metrics. Otherwise, a message
informing that no model meets the desired requirements will
appear. If that were the case, there are two different actions
to take that may help to reverse the result: (i) reducing the
dimensionality of the dataset by selecting the most informative
attributes or, on the contrary, (ii) adding further information
to the dataset. The first requires knowledge about the available
techniques for dimensionality reduction, while the addition of
information may not be favorable if it is not informative enough
and only serves to increase the noise in the dataset. Finally,
if none of the options works, it is recommended to submit
the dataset to the recursive binary partition stage proposed in
this work.

It is essential to mention that this stage is complementary
to the evaluation of the linearity of the datasets since the
contemplated algorithms are not linear regressions or hyperplane
generation-based. Alternatively, we instead employ probability
distributions (Naïve Bayes and derivatives), evaluation of
characteristics (Decision Trees), or boosting methods (Random
Forest, Adaboost, Bagging, Gradient Tree Boosting) for
model training.

Recursive Binary Partitions
The main objective of the recursive binary partition process is
the generation of subsets from the initial dataset, wherein we
could increase the performance metrics previously obtained in
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FIGURE 1 | Representative scheme of the workflow associated with the methodology proposed to develop predictive models for highly non-linear datasets, based on

the use of the RV-Clustering library.

the exploratory stage of supervised learning models. A binary
search trees-inspired algorithm (Bentley, 1975), where the search
is optimized in the tree path, generate the partitions. In each
iteration, the initial dataset is subjected to an exploration of
different unsupervised learning clustering methods, such as
the Birch, k-Means, and Agglomerative algorithms, conditioned
to the generation of two elements. In the cases of k-
Means and Birch, our algorithm automatically tests different
distance metrics, while for Agglomerative Clustering, the affinity
parameter and linkage methods are automatically varied. Each
proposed partition is evaluated using the silhouette coefficient
and the Calinski-Harabasz index. Subsequently, we evaluate the
number of subset elements of those partitions that have the
highest clustering performance indexes. The number of elements
in each subset should be equal or higher than the minimum
threshold previously selected by the user. Class imbalance
generated by the partition is assessed according to a user-
determined threshold for classification models. Finally, if the
partition in a given iteration meets all the mentioned criteria, it
is accepted, and the recursive division continues for each tree
branch. At the end of the execution, we will have n subsets,
which will be statistically studied to evaluate if each generated
partition is significantly different from the others, if each element
effectively belongs to its corresponding subset, and if all the
features are informative for all subsets, in order to avoid any
redundancy that could affect the model training stage.

Creation of Models to Classify New Examples in the

Generated Partition
In order to classify examples within the generated partition,
different classification models are created, using supervised

learning algorithms. For this, the training dataset, which is
already a subset of the input dataset, is divided into two
sets for training (80%) and validating (20%) the classification
models. The first subset undergoes a model exploratory
stage training with k-cross-validation, with k-values varying
depending on the size of the set. We obtain the accuracy,
recall, precision, and F1 scores for each model, and also
their statistical distributions. From these four distributions of
performance metrics, the models with the maximum values
in these distributions are selected, forming a set of at most
four independent models (one per each performance metric).
These four models are used to generate a weighted meta-
model with a classification criterion obtained by the votation
of the individual models, assigning each element to the subset
pointed by the majority of the individual models. Finally, we
compare the classifications generated by the meta-model with
the actual values of the validation set to obtain the overall
performance metrics.

Model Training
Each subset Ai within the partition generated in the binary
recursive division undergoes a predictive model exploration
stage, and the best j models are selected and combined to form
a local meta-model. The selection criterion is associated with the
maximum value of each metric of interest selected by the user,
which may be accuracy, recall, precision, or F1 for classification
models, or R2, Pearson, Kendall τ , or Spearman rank coefficients
for regression models, hence j ≤ 4. RV-Clustering estimates
an overall performance for the models over the entire dataset,
weighting the individual metrics in the generated partition.
Let xi be a metric of the models’ performance over Ai. The

Frontiers in Molecular Biosciences | www.frontiersin.org 5 February 2020 | Volume 7 | Article 13

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Medina-Ortiz et al. Predictive Models for Highly Non-linear Datasets

corresponding i-weighted performance is given by

x̂i = xi ·
|Ai|

∣

∣

∣

∣

∣

n
⋃

i=1

Ai

∣

∣

∣

∣

∣

, (1)

and the final measure is obtained from the summation of the x̂i,
which corresponds to the probabilistic expected value of x, E (x)
assigning a probability P (Ai) =

|Ai|

|
⋃n

i=1 Ai|
to the subset Ai,

x̂ =

n
∑

i=1

x̂i =

n
∑

i=1

xiP (Ai) = E (x) . (2)

We compare the obtained weighted measure with the
performance values obtained in the initial stage, reporting
them both. Finally, the tool uses the validation set to obtain
the real metrics x

gen
mod of the general model created, and report

the results associated with the classification or prediction of
new examples. To do this, RV-Clustering uses the classification
model to assign each example to the subset in the partition
where it should belong, and then, using the local meta-model
corresponding to that subset, obtain the predicted value.
We compare this value with the real value and generate the
performance metrics corresponding to the type of model.

An index for assessing over-fitting local meta-models within
the partitions IOF is presented in Equation (3), defined as the
difference between the expected (via Equation 2) and the real
performance metric.

IOF =
x̂− x

gen
mod

x
gen
mod

, IOFi =
xi − x

gen
mod

x
gen
mod

(3)

Similarly to Equation (1), it is possible to obtain a local IOF for
subset i, IOFi. If the IOF or any of the local IOFi values are >5%
or another user-customizable value, the recursive binary partition
algorithm should be repeated, conditioned to producing subsets
with more elements. Negative values of IOF do not have any
implications, as they only show that the performance of the global
model is greater than the expected value, accounting for a synergy
between individual meta-models.

Predicting New Examples
The proposed method creates a partition splitting the input
dataset into n subsets. Hence, as we work independently in each
subset, we obtain n independentmeta-models. In order to classify
new examples within the subsets of the obtained partition, we
train a classification model, which assigns every new example
to the subset where it should belong. For this, RV-Clustering
classifies the new example into a particular subset in the partition,
applying the predictions of local meta-models. We can directly
calculate the improvement of the original result I from the
linearity assessment index and the final performance metric,

I =
x
gen
mod − xlinear

xlinear
(4)

CASES OF STUDY

The proposed methodology and library modules were tested
with different highly non-linear datasets according to our
previous definition, related to clinical diagnosis, biotechnology,
and protein engineering. Each one of the proposed scenarios is
presented below in three different case studies.

Case Study I: Use of RV-Clustering in
Clinical Datasets
The prediction of the clinical risk associated with mutations
in proteins, the probability of having a disease, or the need
to carry out an invasive or dangerous exam, among others,
are activities of high interest in the biomedical area. Taking
this into consideration, the different points of the methodology
proposed in this article were applied to three highly non-linear
datasets, which represent Mammographic Mass, Heart-Disease,
and Thoracic Surgery. The datasets were extracted from the UCI-
Machine Learning (Dua and Graff, 2017) repository and, in all
cases, the requiredmodels are of the classification type, since their
response is categorical.

When performing the linearity assessment, all the datasets
turned out to be highly non-linear, considering a minimum
threshold of 0.8 for the linearity metrics. This stringent criterion
was selected to impose a high quality of the classification since
false positive and false negative errors should be as low as possible
for a clinical test. The performances obtained in the model
exploration stage using mildly non-linear methods did not reach
the minimum threshold values, so RV-Clustering proceeded
to apply the binary partition methods proposed in this work.
Figure 2 shows the partition generated for each dataset. In each
case, the cardinality of the generated subsets varies as the depth
of the resulting binary tree increases. The performance metrics
obtained for Mammographic Mass and Thoracic Surgery models
applying the proposed methodology is considerably greater
than those obtained in the exploratory stage since accuracy is
improved from 54 to 87% in the first case, and from 71 to 83%
in the second case. In the Heart-Disease Cleveland dataset, no
considerable improvement was achieved. We consider this to
be due to the large number of classes presented by this dataset.
Given this result, as RV-Clustering ensures class balance in each
subset within the partition, the recursive binary partition method
should not be used with datasets whose response categories are
>5, especially when the number of examples is limited, because
it may lead to detriments on the performance metrics initially
achieved. This limitation arises from the lack of information in
the dataset itself, as the generation of regressions or predictions of
high-dimensional responses based on few data examples remains
an open problem.

Case Study II: Use of RV-Clustering in
Biotechnological Datasets
Another approach of a broad interest in the use of data mining
and ML techniques is the development of predictive models
for the optimisation of experimental plans in biotechnological
applications. Through the generated predictive models, it is
possible to reduce the use of economic and human resources
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FIGURE 2 | Representative schemes of the partitions and the flows of divisions generated for the example datasets associated with case study I: Thoracic Surgery

dataset (left), Heart Disease Cleveland dataset (center), and Mamographic Mass dataset (right). The number of final partitions, their cardinality and the performance

measures achieved by the models trained in each case are also presented.

and the duration of the experimental projects dramatically. As
an example, a dataset with information on the classification
of protein localisation sites in E. coli, extracted from the UCI
Machine Learning repository (Dua and Graff, 2017), will be
used. This dataset was subjected to the linearity assessment,
contemplating a minimum acceptance threshold of 0.7 in
linearity metrics. As the highest accuracy achieved was 56%, RV-
Clustering classified this dataset as non-linear. However, when
applying the model exploration module, satisfactory results were
obtained. The distributions presented in Figure 3 show a set of
models that have performance measures greater than those of the
threshold imposed. Hence, it is not necessary to proceed to the
binary recursive partition stage. The best models trained in the
exploration stage are selected to create a weighted meta-model,
whose accuracy and precision reached 88.1 %.

In particular, given the properties of the input dataset, it was
possible to obtain a meta-model with performance metrics above
those imposed as an experimental requirement, only by applying
the exploratory module. This fact highlights the efficiency of RV-
Clustering, always aiming to satisfy the user requirements to
obtain as-good-as-requiredmodels as fast as possible andwithout
incurring in greater trade-offs in quality-time. Using the modules
implemented in RV-Clustering, it was possible to improve the
initial accuracy of 56% to a value of 88.1%, confirming that the
proposed workflow is appropriated. It is crucial to know which
algorithms are the most suitable for a given application, and it is a
great advantage of RV-Clustering to test them in such a way that
all the possibilities are evaluated, without requiring any specific
knowledge on algorithms for getting high-quality results.

Case Study III: Use of RV-Clustering for the
Evaluation of Protein Stability Given Point
Mutations
The evaluation of the effect that point mutations have in protein
stability is one of the most visited topics in protein engineering.
Different approaches have been proposed, considering methods

based on electrostatic potentials, statistics, ML techniques,
among others. The methods mentioned above allow a mutation
to be classified as stable or non-stable or to generate stability
predictions based on the difference in free energy (11G)
caused by the replacement of the residue. Applying the
approach proposed by Capriotti et al. (2005) for describing
mutations and considering three independent descriptors,
thermodynamic, structural and residue-environmental, a dataset
comprising 11 proteins and 2,247 mutations associated was
generated (see Figure 4, left). In the created dataset, the
response column represents the 11G values, associated with
the difference between mutated residue and wild residue.
These values were obtained from the ProTherm (Bava et al.,
2004) database.

The application of the linearity assessment module classified
the dataset as non-linear, since the performance metrics obtained
by applying linear methods did not exceed the threshold of 0.6
for predictive models. Furthermore, as it was not possible to
achieve significantly higher performance measures in the model
exploration stage, the dataset was classified as highly non-linear.
By applying the proposed methodology for binary recursive
partition, nine subsets were obtained (see Figure 4, right), and
different meta-models were developed locally. Intra-partition
over-adjustment was avoided by applying a k-cross-validation,
with k = 10. Subsequently, a meta-model for the classification of
new examples to the different partitions was generated. Finally,
the general metrics of the model were obtained for the validation
set (see Figure 5, left). By comparing the resulting performance
metrics and the initial values obtained in the exploration stage
of predictive models, an average improvement of 40% was
achieved in each measure of interest. For example, the initial
Pearson’s coefficient of 0.58 was improved to 0.92 after applying
the methodology here presented. A scatter plot of the real and
predicted values for the effect of point mutations shows that
the error distribution has a random and bounded behavior
(see Figure 5, right), which corroborates the quality of the
obtained results.
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FIGURE 3 | Histograms of performance metrics obtained in the exploration stage by the RV-Clustering library for the protein location in an E. coli dataset. The highest

values were obtained by methods based on Bagging or Boosting algorithms, accounting for the non-linearity of the dataset.

FIGURE 4 | Representation of the dataset associated with case study III: Distribution of mutations for the considered proteins (left), and Resulting partition after

applying the methodology proposed in this work (right).

DISCUSSION

Improvements on Performance Metrics
The different datasets tested in the cases studies serve to illustrate
the great capacities of the proposed method since it not only
improves the performance measures, but it does so efficiently
from a computational point of view, generating as-good-as-
required models in the shortest time possible. This result is
achieved thanks to the RV-Clustering library modularity and
the structure of the presented methodology, which considers
advancing to the next complexity level only when models
generated so far do not meet user requirements.

Another advantage of this new approach is the transparency
of the results. Model performance metrics, by themselves, may
not be sufficiently informative and mislead to wrong conclusions
about the quality of the predictive outcome; they should always be
analyzed in context. In our work, the different metrics associated
with different elements (models, meta-models, global model) are
analyzed together and combined using the proposed indexes.
This combination of metrics is used both for improvement
evaluation between the initial linear assessment stage and the
final performance and for the evaluation of over-fitting in local
meta-models within the partition. Table 1 presents the results
of the considered cases of study, all of which show a significant
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FIGURE 5 | Results of the generated weighted meta-model, where the predicted values are obtained from the average of the predictions of the individual methods.

As the error seems to have a random distribution around zero, 11G values predicted by the meta-model do not present considerable biases.

TABLE 1 | Evolution of performance (accuracy) of the models generated in

different progressive steps of the proposed methodology.

Dataset xlinear x̂ x
gen
mod Improvement after

applying RV-Clustering’s

methodology (%)

IOF(%)

Mammografic

mass

0.54 0.85 0.87 61.1 −2.3

Thoracic surgery 0.71 0.78 0.87 22.5 −10.3

Protein location in

E. coli
0.56 – 0.88 57.1 –

Protein stability∗ 0.58 0.82 0.92 48.3 −4.7

The performance of the final RV-Clustering generated model is represented by xgenmod, while
xlinear and x̂ are the results of intermediate steps of the method (linear assessment step
and model exploration step, respectively). * Pearson’s coefficient.

improvement in their metrics. No over-fitting of the local meta-
models was observed in the different subgroups of the partition
since all IOF values were negative. The previous discussion also
accounts for synergistic effects between the classification model
and the different meta-models within the partition, since overall
performance metrics are higher than weighted individual ones.
All of the above translates into an average percentage increase of
47.3% in the performancemetrics of the predictive models for the
highly non-linear biological datasets considered, as presented in
Table 1. As the performance metrics increase as the methodology
proceeds, the best model will always be the latest delivered
(except in cases where IOF > 0). To stop at early stages by
imposing lower values of xuser is a decision based on a time-
quality trade-off, as our methodology was thought for delivering
as-good-as-required models.

Table 2 presents the overall improvement in the performance
metrics after applying our methodology, compared to the
values reported in the original works. As our methodology
incorporates most of the best state-of-the-art available algorithms

TABLE 2 | Comparison of reported performance metrics for the studied

experimental datasets.

Dataset Reported by Reported

performance

RV-

Clustering

performance

Protein stability (point

mutations)

Capriotti et al., 2005 0.71 0.92

Classification of protein

location in E. coli

Deshpande and Karypis,

2002

0.73

0.88
Zhang and Ling, 2001 0.84

Horton and Nakai, 1997 0.68

Ratanamahatana and

Gunopulos, 2002

0.84

Mammographic mass Elter et al., 2007 0.87 0.87

Thoracic surgery None None 0.87

and progressively applies them, the worst scenario would always
be better than the original one.

Testing on Artificial Datasets
In order to test the proposed methodology and the robustness
of our library, we generated different artificial datasets with
tailored properties, aiming to evaluate its response against (a)
noise intensity, (b) presence of outliers, (c) degree of non-
linearity of the input dataset, and (d) maximum dimension of
the input dataset, with further recommendations based on the
fitting procedure.

Given that our methodology is very intuitive to understand
when applied to regression models (as discussed in section 3), all
models trained in this section were of the regression type. We
explain each of the cases in the subsections below.

Noise Intensity
To show the influence of noise intensity or experimental errors,
we tested our methodology with two different datasets: an
artificial dataset containing a linear ground truth function,
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and the dataset of Case Study III. We introduced an additive
proportional error to the response variable, characterized by
a variable amplitude α. Adding this error to the experimental
values yexp resulted in the following expression for ynoisei :

ynoisei = yexp(xi)(1+ α(2U − 1)) (5)

where U is a random variable with uniform values in [0, 1].
Equation (5) was selected because of its statistical properties,
given that the expected value of the noisy random variable is its
corresponding experimental value:

E
(

ynoisei

)

= yexp(xi) (1+ α (2E (U) − 1))

= yexp(xi)

(

1+ α

(

�2
1

�2
− 1

))

= yexp(xi).

Aiming to test how heavily the increasing noise impacts the
performance metrics, we considered two scenarios: (a) adding α-
noise to the experimental11G data (Case of Study III), classified
as highly non-linear, with an unknown ground truth function,
and (b) adding α-noise to numerical experiments with known
ground truth y = x, which included a white Gaussian noise with
σ = 5%, in order to resemble real-worldmeasurements. For both

scenarios, we considered α ∈ [5, 10, 20, 30, 40, 50%], as shown
in Figure 6.

In the first case, as the ground truth function is linear, we
set xuser = 0.95 to force our algorithm to move forward
into the second step of our methodology. However, even when
the noise intensity was α = 20%, models generated in the
first step of our methodology (linear assessment stage) still
reached performance metrics over the threshold xlinear >

xuser. When the noise intensity was higher, linear models
did not meet the required performance, but those generated
by DTs and RF did, preventing the algorithm from entering
into the binary splitting stage. Despite the generated models
reaching high-performance measures at every α−noise scenario
(see the left plot in Figure 8), a bifurcation in the quality
of the predictive outcome appears when the nature of the
training algorithms shifts from linear regressions to DTs.
As shown in Figure 7, the scatter plot of predictions and ground
truth (original data without noise) present high dispersion when
α ≥ 40%, even though models reached high performance
metrics, which accounts for models fitting the noisy data rather
than the original trend. The above highlights the need for a
preliminary analysis of the data, as moderate to high noise can
mislead the results and affect the quality of the produced models.
However, a 40% or higher noise level is large by any measure,
and would not be usually considered as simple noise but rather
as a composition of signals. In this sense, the fitting given by our

FIGURE 6 | Simulated dataset with added white noise α. The plots represent simulated (y) vs. ground truth (x) data points (circles), the identity line (continuous line),

and the crude statistical regression of the resulting dataset (discontinuous line). Added noise followed a Gaussian distribution around the expected value y = x, not
affecting the expected value of the distribution, which translates to regression lines very similar to the identity.
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algorithms in the presence of high “noise” points into the right
direction by identifying the data points as coming from a model
different from the linear ground truth function. The outstanding
predictions of the models generated at low α can be explained by
the linear nature of the ground truth.

When the considered dataset was classified as highly non-
linear, added noise had a stronger impact on performance
metrics, as shown in the center graph of Figure 8. In this case,
the range of the y−axis is much wider than in other cases.
Noise levels over α = 20% have a more significant impact over

FIGURE 7 | Model-prediction of the simulated linear dataset with α− induced noise in 100 data points. The plots represent predicted (y) vs. real (ground truth without

noise, x) data points (circles), the identity line (continuous line), and the crude linear statistical regression of the scatter (discontinuous line). Since training datasets for

models included noise, we expect particular discordance between the dispersion of high α scenarios and the predictive outcome of noise-fitting models trained

therein, when compared to the original noise-free dataset.

FIGURE 8 | Evolution of model performance metrics against noise. (Left) Model performance on a linear ground truth function with white noise. (Center) Model

performance on experimental data (Case Study III) with white noise. (Right) Model performance on a linear ground truth function with different number of outliers. In

artificial datasets with linear ground truth functions (left and right images) xuser was set equal to 0.95 to force the algorithm to continue further in the proposed

methodology. When the linear model performance fell under the selected threshold, the algorithm swap to DT models, which rose the performance metrics again,

generating a break in the sloping trends.
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performance metrics, since the slope of the α vs. performance
curve is always decreasing. Such impact can be assessed from the
decrease in the improvement after applying the RV-Clustering
methodology (see the sixth and seventh row of Table 3). Given
that noise levels under α = 20% do not have a severe impact on
the performance metrics of the generated models, we show our
methodology to be robust against low to moderate white noise.

Presence of Outliers
To evaluate the robustness of our methodology and command
library against the presence of outliers in the dataset, we
performed the following numerical experiment. Starting with
data with a known ground truth function, y(x) = x, we added
a white Gaussian noise N1 ∼ N (0, σ1 = 0.25). Hence, our
“experimental” dataset was the collection of random variables
ynoisei ∼ N (xi, σ ). To simulate the existence of n outliers, we
superposed a flat Gaussian distribution N2 ∼ N (0, σ2 ≫ σ1),
as depicted in Figure 9, and applied the method described in
the Algorithm 2.

We simulated different datasets of N = 100 examples, and
turned n of them into “outliers,” with n = {1, 5, 10, 15, 20, 25},
as shown in Figure 10. Noticeably, the added outliers modify

TABLE 3 | Evolution of performance (accuracy) of the models generated in

different progressive steps of the proposed methodology, applied to noisy

variations of the dataset used in Case Study 3.

Induced

noise α[%]

xlinear x̂ x
gen
mod Improvement after

applying RV-Clustering’s

methodology (%)

IOF(%)

0 0.58 0.82 0.92 58.62 −10.87

5 0.57 0.79 0.86 51.86 −7.58

10 0.55 0.78 0.82 48.74 −5.22

20 0.55 0.77 0.80 47.34 −3.86

30 0.54 0.75 0.76 41.04 −1.57

40 0.53 0.69 0.71 33.96 −3.64

50 0.52 0.59 0.63 22.44 −6.32

the nature of the original Gaussian distribution, which is
demonstrated by the drift between the identity and the purely
statistical regression of the data points as more outliers
are added to the dataset. In such sense, those outliers
drift considerably from the expected values of the original
distribution. Nevertheless, the presence of less than ∼10%
outliers does not affect the performance of the final model. Even
when outliers are not symmetric (see examples with 5, 10, and 15
outliers in Figure 10).

As shown in the right plot of Figure 8, the presence of outliers
negatively affects the linearity of the dataset as perceived by
the methodology, since linear models do not meet the required
performance and the RV-clustering workflow would move
forward to DTs and non-linear algorithms. Nevertheless, and
once again because of the linearity of the ground truth function,
DTs would produce models with outstanding performance,
producing a clear break in the sloping trend of the n vs.
performance curve of Figure 8 and preventing the algorithm

Algorithm 2:Numerical experiment with simulated outliers.

Result: Simulated outliers for the numerical experiment
p0 : cumulative probability ofN ∼ (0, σ2), at x = σ1.;
while j ≤ n do

k : random integer between 1 and N;
s = U , and p = (1− p0) · U ′, where U and U ′ take
uniform values in [0, 1];
if s > 0.5 then

s = 1;
p = 1− p;

else

s = −1;
end

ynoise
k

= inverse of the cumulative probability function of
N ′ ∼ (xk + 2sσ1, σ2), at probability p.;
j = j+ 1;

end

FIGURE 9 | Scheme of the non-arbitrary and statistical methodology proposed to generate outliers, given a known dataset with random error.
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FIGURE 10 | Simulated linear dataset with n outliers in 100 data points. The added outliers modify the nature of the distribution, as they make the regression

considerably drift from the identity. In such sense, those outliers might not be “pure” in a strict statistical definition (as they depend on the distribution), they drift

considerably from the expected values of the original distribution.

to proceed to the recursive binary splitting stage. When a
high number of outliers are expected within the dataset, we
recommend to directly proceed to probability-based methods by
setting a high xuser threshold.

Degree of Non-linearity of the Input Dataset
To evaluate the robustness of our methodology and command
library against the degree of non-linearity of the ground truth
function, we simulated different points from the 2-D Rosenbrock
function (Rosenbrock, 1960), with parameters a = 5 and b = 2,
over the [0, 3]2 rectangle. Data for the numerical experiment were
randomly extracted from the [0, 3]2 rectangle, and a proportional
white Gaussian noise was added to resemble experimental
conditions. When setting a threshold xuser = 0.9 the dataset
would be classified as non-linear, and the methodology would
proceed to explore non-linear algorithms for training models.
Among the algorithms that produced models with outstanding
performance metrics, we found DTs (0.998), Bagging (0.995),
Random Forest (0.995), KNN (0.98), and Adaboost (0.95),
with an over-fitting assessment of k-cross-validation, k =

10. As expected, given the non-linear nature of the ground
truth function of the dataset, the best performing algorithms
mentioned above are based on feature analysis, bagging, or
boosting. In particular, we expected KNN to be within the
outstanding algorithms, given its distance-based generation of
predictions, although it occupies only the fourth place among the
best predictors.

Visually, we can corroborate that the best models were those
based in DTs, Bagging and Random Forest algorithms (see
Figure 11). All these models are able to predict extreme values of
the function, the local maximum at (0, 3), the valley of minimum
values at (x, x2) and the extreme values around (3, 0). Random
Forest and Bagging model predictions are smoother than other
models and are good to predict function values in sectors with
higher slopes and variability. Smoothness in this frame can be
interpreted as ameasure of themodel insensitivity to noise, which
points to Random Forest models as the best ones in this respect.

Maximum Problem Size, Properties of the Input

Dataset, and Further Recommendations
We tested different cases where the dimensions of the input
dataset were progressively increasing, aiming to determine a
size threshold for the datasets RV-Clustering may process in a
reasonable time. Our exploration found special cases where the
input datasets may produce errors. The maximum dataset size
that can be processed is less than 10, 000 × 1, 000, i.e., 10,000
examples with 1,000 features. In the current implementation of
RV-Clustering, when submitting a dataset with such dimensions,
more than 16 GB of RAM are used, which results in process
abortion. To prevent the situation mentioned above, we suggest
applying a dimension reduction technique prior to using our
methodology, and taking the resulting dataset with fewer features
as the input dataset for RV-Clustering. As maximum execution
time, a dataset with 10,000 examples and 500 features would take
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FIGURE 11 | Rosenbrock function predictions of each of the different models generated. Direct simulation represents the real ground truth Rosenbrock function.

6 days and 2 h to be processed by a seventh generation Intel Core
i5 processor.

As further recommendations and good practices for using the
RV-Clustering tool, we suggest:

• Standardizing numerical datasets with float size less or equal
than 64.

• Keeping in mind that categorical datasets where the number
of features is >20% the number of examples would be coded
using One Hot Encoder, hence consuming more resources and
taking much more time to be processed.

• Carefully “refining” user datasets before submitting a job
to RV-Clustering. For example, numerical datasets with
alphanumerical entrances would stop the process, and a
warning message would pop-out.

• Especially in the case of regression models (which are not
“protected” with a class balance assessment), procuring that
data is well-distributed and there are no information gaps in
the predictor variables. Not taking care of this situation may
lead to poor fitting of the un-populated zones or filling-in
with erroneous predictions if unattended, respectively. The
first point can be corrected by pre-processing the data to
collapse the populated zones into fewer data points to balance
their weights, or selecting a different performance metric as
the control variable. For the second point, unfortunately, it is
not possible to find an always-working solution: as we do not
know a priori the real values of the data in the unpopulated
zone, the errors in the predictions are unbounded. We can
avoid this fact being a problem for the algorithm by splitting
the dataset in parts, and processing each subset separately, or

forcing the algorithm to proceed to the binary splitting stage.
However, this solution will not give any model prediction for
the unpopulated gap zone in the original data.

CONCLUSIONS

We presented a new methodology for the design and
implementation of classification or regression models for
highly non-linear datasets, together with the RV-Clustering
library, which corresponds to a set of modules implemented
in Python that allow the manipulation of these datasets and
the training of predictive models through supervised learning
algorithms. This new methodology is based on a binary recursive
division of the dataset, in order to generate subsets in which
it would be possible to train predictive models with higher
final performances, taking advantage of similarities between
members. In each subset of the generated partition, models are
trained, and the best ones are combined to form a meta-model.
Separately, a model to classify new examples within the subsets
in the partition is created. Finally, we generate a global model
that assigns new examples to a particular subset using the
classification mentioned above model, and predicts their value
using the local meta-model for each case.

We successfully tested this new method in different non-
linear datasets from different origins in the clinical, biomedical,
biotechnological, and protein engineering fields. On those
datasets, predictive meta-models were created, and high
performance metrics were achieved, far above those obtained
with other methods. The use of numerical experiments helped

Frontiers in Molecular Biosciences | www.frontiersin.org 14 February 2020 | Volume 7 | Article 13

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Medina-Ortiz et al. Predictive Models for Highly Non-linear Datasets

us to test the boundaries of our methodology, controlling
the predictive outcome and the ground truth of the datasets.
A natural relationship appears regarding the metrics for the
linearity assessment: if the number of dimensions is high, the
dataset would likely be classified as non-linear, at least in one of
its dimensions. This does not necessarily imply that mildly non-
linear methods will fail, but if so, our method would recommend
directly applying the binary recursive divisionmethod to increase
the performance measures of predictive models, despite the
higher computational cost.

Our method applies state-of-the-art algorithms in a special
order and following a novel strategy to optimize the results, which
allows generating classification or regression models in general
datasets, especially those addressed in this manuscript as highly-
non linear. However, since ourmethod uses previously developed
ML methods, we are bound by their own limitations, in the sense
that many of the flaws of our method are but a legacy of the
ML algorithms used. Taking this into account, we recommend
the use of the library and the proposed methodology in datasets
with a reduced number of categories in their categorical variables
since the library encodes them using One Hot Encoder. The
recursive binary partition methodology should not be used when
the number of classes is much larger than the available examples,
as it may lead to detriments on the performance metrics because
of the class balance buffer incorporated in the algorithm.

Future work contemplates the development of a web-based
computational tool implementing our methodology, allowing
non-specific users to enjoy the advantages of RV-Clustering,
without the need to invest time gaining the knowledge that would
be required by command-line execution. As the development of

predictive models is common to different areas of application,
we expect our methodology, library, and the future web-based
service, to become a useful tool for the scientific community and
a significant contribution to state of the art.
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