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Subject-matter theory often advises that relationships between 
variables may not be linear. For instance, inverted U-shaped 
relationships have been found between personality traits and 
job performance (Le et al., 2011), between positive affect and 
proactive behaviours (Lam, Spreitzer, & Frtiz, 2014), and between 
a wide range of psychological phenomena to do with well-being 
and performance (for an overview, see: Grant & Schwartz, 2011). 
These examples show that the relationship between two variables 
may form a parabola instead of a straight line, and such relationships 
are typically modelled as quadratic effects. 

Even though quadratic effects are important both from a 
theoretical and practical point of view, interaction or moderation 
effects are the type of nonlinearity most commonly tested in 
applied research. For instance, interactions have been used to test 
the moderating effects of friendship on the relationship between 

victimisation and emotional maladjustment in victims of bullying 
(Barcaccia et al., 2018), and the moderating role of empathy in 
the relationship between guilt and antisocial behaviour (Barón, 
Bilbao, Urquijo, López, & Jimeno, 2018).  

Interactions and quadratic effects are closely related concepts. 
While interactions reveal that the effect of one predictor depends 
on a second predictor, also known as a moderator variable, 
quadratic effects indicate that the effect of a predictor depends 
on the values of the predictor itself. Thus, quadratic effects may 
also be understood as an interaction between a variable and 
itself.

The majority of variables that are of theoretical interest in social 
and behavioural sciences are latent, and in recent years, nonlinear 
structural equation models (SEM) have grown in popularity among 
researchers seeking to estimate interaction or moderation effects 
between latent variables. However, given the similarities between 
interactions and quadratic effects, some authors have warned that 
during analysis of interactions, attention should also be paid to 
quadratic effects (Lubinski & Humphreys, 1990; MacCallum & 
Mar, 1995; Marsh, Wen, & Hau, 2006), as the two may become 
confounded if the predictors are correlated, leading to incorrect 
conclusions about the relationship between variables.
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Abstract Resumen

Background: Analysis of interaction or moderation effects between 
latent variables is a common requirement in the social sciences. However, 
when predictors are correlated, interaction and quadratic effects become 
more alike, making them diffi cult to distinguish. As a result, when data 
are drawn from a quadratic population model and the analysis model 
specifi es interactions only, misleading results may be obtained. Method: 
This article addresses the consequences of different types of specifi cation 
error in nonlinear structural equation models using a Monte Carlo 
study. Results: Results show that fi tting a model with interactions when 
quadratic effects are present in the population will almost certainly lead to 
erroneous detection of moderation effects, and that the same is true in the 
opposite scenario. Simultaneous estimation of interactions and quadratic 
effects yields correct results. Conclusions: Simultaneous estimation 
of interaction and quadratic effects prevents detection of spurious or 
misleading nonlinear effects. Results are discussed and recommendations 
are offered to applied researchers.
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quadratic effects, model specifi cation.

Problemas de especifi cación en SEM no lineal: la moderación que no lo 
era. Antecedentes: el análisis de efectos de interacción o moderación entre 
variables latentes es común en ciencias sociales. Sin embargo, cuando los 
predictores están correlacionados, los efectos de interacción y cuadráticos 
se vuelven parecidos, haciendo difícil su distinción. Así, cuando los datos 
provienen de un modelo de cuadrático a nivel poblacional y el modelo 
de análisis solo especifi ca interacciones, se pueden obtener resultados 
engañosos. Método: este artículo aborda las consecuencias de diferentes 
tipos de errores de especifi cación en modelos de ecuaciones estructurales 
no lineales utilizando un estudio de Monte Carlo. Resultados: los 
resultados muestran que estimar un modelo con interacciones cuando en 
la población hay efectos cuadráticos conducirá a una detección equivocada 
de efectos de moderación con casi plena seguridad, y lo mismo ocurrirá en 
el escenario opuesto. La estimación simultánea de interacciones y efectos 
cuadráticos en el modelo conduce a resultados correctos. Conclusiones: 
la estimación simultánea de efectos de interacción y cuadráticos permite 
evitar detectar efectos no lineales espurios o engañosos. Los resultados se 
discuten para ofrecer recomendaciones a los investigadores aplicados.

Palabras clave: ecuaciones estructurales no lineales, moderación, efectos 
de interacción, efectos cuadráticos, especifi cación del modelo.
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One proposed—albeit controversial—solution is to fi t models 
that estimate interaction and quadratic effects simultaneously. 
Some authors (Aiken & West, 1991; Shepperd, 1991) propose that 
nonlinear effects of any kind should only be included in the model 
on strong theoretical grounds. Others (Ganzach, 1997; Lubinski 
& Humphreys, 1990; Klein, Schermelleh-Engel, Moosbrugger, & 
Kelava, 2009) recommend simultaneous estimation of interaction 
and quadratic effects to avoid detection of spurious, misleading 
or overestimated interactions caused by incorrect model 
specifi cation. 

Harring, Weiss, and Li (2015) showed that simultaneous 
estimation of interaction and quadratic effects in latent variable 
models may indeed reduce the probability of detecting spurious 
interactions; however, this generates a major cost in terms of power 
for which the reduction in Type I errors would not compensate. 
The study stresses the consequences in terms of power of over-
specifi ed nonlinear models for populations in which either a single 
nonzero interaction effect or no nonlinear effect exists. It is unclear 
whether these results could be generalised to situations where, for 
example, quadratic effects exist within the population, but the 
analysis model only includes interaction effects. 

Careful examination of this is particularly important, as our 
review of preliminary research revealed that more than 90% of 
published studies involving nonlinear SEM models only tested for 
two-way interaction effects and gave no consideration to quadratic 
effects. This shows that despite warnings concerning possible 
spurious or misleading interaction effects, applied researchers 
apparently tend to favour testing for a single type of nonlinear 
effect. In light of the debate surrounding nonlinear SEM model 
specifi cation, further examination of the consequences of this 
practice is required.

The present study seeks to assess the effects of incorrect 
specifi cation of  nonlinear SEM models on parameter and standard 
error bias, Type I error and power in situations where interaction 
and/or quadratic effects exist in the population and the analysis 
model specifi cation is correct (i.e., analysis model matches 
population model), misspecifi ed (i.e., different type of nonlinear 
effect specifi ed to that present), under-specifi ed (i.e., fewer 
nonlinear effects specifi ed than present) or over-specifi ed (i.e., 
more nonlinear effects specifi ed than present). 

Overview of nonlinear SEM

Nonlinear SEM models were developed to estimate models with 
interaction effects (MI), quadratic effects (MQ), and interaction and 
quadratic effects simultaneously (MIQ), such as those presented in 
Equations (1), (2) and (3), where ξ
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As with most SEM models, nonlinear SEM procedures assume 
that indicators refl ect underlying factors, as shown in Equations (4) 
and (5), where x

i
 is the i-th exogenous indicator, y

i
 is the i-th 

endogenous indicator, τ
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represents the factor loadings of the indicators in their respective 
factor, and δ
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Numerous nonlinear SEM procedures haven been proposed 
(e.g., Coenders, Batista-Foguet, & Saris, 2008; Kelava, Nagengast, 
& Brandt, 2014; Klein & Moosbrugger, 2000; Klein & Muthén, 
2007; Marsh et al., 2006), although the most popular nowadays 
is the latent moderated structural equations (LMS) method (Klein 
& Moosbrugger, 2000) which is readily implemented in Mplus 
(Muthén & Muthén, 2015). In contrast to traditional linear SEM 
methods based on analysis of limited information (e.g., variance-
covariance matrices), the LMS method uses all of the information 
from a set of subject responses for model parameter estimation, 
and assumes that latent predictors and model errors (i.e., ξ

j
, δ

i
, ε

i
 

and ζ) belong to normal distributions. This allows LMS to presume 
that deviations from a normal distribution of the endogenous factor 
η are the result of the nonlinear effects of the model. Thus, LMS 
will estimate the magnitude of the nonlinear parameters ω

jj
 using 

the Cholesky decomposition and the expectation-maximisation 
algorithm to produce maximum-likelihood estimates of model 
parameters (Klein & Moosbrugger, 2000). 

Research has shown that, when distributional assumptions 
hold, the LMS method allows for unbiased and effi cient parameter 
and standard error estimates, as well as Type I errors close to the 
nominal level (Klein & Moosbrugger, 2000; Klein & Muthén, 
2007; Kelava et al., 2014; Kelava et al., 2011). However, the 
literature also warns that, regardless of the method used for model 
estimation, the accuracy of results of nonlinear SEM models will be 
affected by two related factors: the degree of collinearity between 
predictors and the specifi cation of the analysis model.

Collinearity of predictors and model specifi cation

Research evidence has revealed that nonlinear SEM models 
are strongly affected by collinearity between predictors (Kelava, 
Moosbrugger, Dimitruk, & Schermelleh-Engel, 2008; Klein et al., 
2009; MacCallum & Mar, 1995). In the simplest scenario, where 
two latent predictors ξ
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Thus, when covariance between predictors is equal to zero, 
covariance between the nonlinear terms will also be zero, making 
them perfectly distinguishable from one another. However, as 
covariance between predictors increases, so does the relation 
between the products of latent variables, making them harder 
to differentiate. This higher collinearity could cause a variety of 
issues such as increases in the magnitude of standard errors—
which reduces power (Harring et al., 2015)—or the detection of 
spurious nonlinear effects which would confound interactions 
with quadratic effects (and vice versa) when the analysis model 
is misspecifi ed (Ganzach, 1997; Lubinski & Humphreys, 1990; 
Klein et al., 2009). 

Indeed, parametric nonlinear SEM procedures require prior 
knowledge of the true structure of relations between factors in 
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order to specify the model. This facilitates the testing of theory-
driven hypotheses against the data, but also poses a challenge: 
how to anticipate the type of nonlinear effects that exist when 
specifying the model. Most social sciences studies that analyse 
nonlinear effects tend to estimate two-way interactions only (e.g., 
Bredow, 2015; Breevaart & Bakker, 2018; Masland & Lease, 
2016). However, attention must also be paid to quadratic effects, 
especially if the factors are correlated (Klein et al., 2009; Marsh et 
al., 2006), owing to problems resulting from collinearity. 

Some authors advise that nonlinear effects of any kind should 
only be included in the model if absolutely justifi ed (Aiken & 
West, 1991; Shepperd, 1991), because each effect requires an 
additional signifi cance test, resulting in increased Type I error rates. 
Researchers are therefore recommended to favour parsimonious 
models. Other authors (Cortina, 1993; Ganzach, 1997; Lubinski & 
Humphreys, 1990; Klein et al., 2009) claim that quadratic effects 
of the possible interacting variables should also be estimated, as 
interaction and quadratic effects share an important proportion 
of variance when predictors are correlated, and tend to confound 
each other. This means that, for example, if an interaction effect 
alone is estimated for a population in which quadratic effects exist, 
the probability of mistaking the latter for interactions increases 
as the correlation between predictors increases. The same is true 
in the opposite scenario. This points to estimation of potentially 
over-specifi ed models as a means of compensating for the 
methodological problems caused by multicollinearity, and to the 
need to statistically check for possible confounders of the model’s 
multiplicative effects in order to make robust inferences.

Although the need for control of Type I error rates is a concern 
common to these proposals, the advice they offer to applied 
researchers differs regarding how best to estimate nonlinear relations 
between variables. This is a particularly delicate issue given that 
goodness-of-fi t statistics for nonlinear models are only recently 
being developed (e.g., Gerhard, Büchner, Klein, & Schermelleh-
Engel, 2017; Gerhard et al., 2015), meaning that applied researchers 
must base their data analysis decisions on one of these approaches. 

The debate surrounding estimation of potentially over-specifi ed 
models began in the context of regression models for manifest 
variables. Most studies (e.g., Cortina, 1993; Ganzach, 1998) 
have used situations where either zero or nonzero interaction 
effects are present in the population to examine Type I error and 
power. Studies involving populations where non-zero quadratic 
effects are present and evaluating the consequences of model 
misspecifi cation are less common. To the best of our knowledge, 
articles that have evaluated this phenomenon used regression 
models applied to variables with no measurement error (Ganzach, 
1997; Ganzach, 1998; MacCallum & Mar, 1995), and showed 
that under-specifi ed nonlinear models overestimate or incorrectly 
estimate interaction parameters, while misspecifi ed models tend 
to detect spurious or misleading nonlinear effects, particularly as 
correlation between variables increases. However, given that these 
studies were conducted in the context of linear regression models, 
we must establish whether or not their results can be generalised to 
nonlinear SEM models.

Recent studies have extended the debate to nonlinear latent 
variable SEM models. Some suggest that the use of models which 
estimate interaction and quadratic effects together reduces the 
risk of inappropriate model selection (Gerhard et al., 2015; Klein 
et al., 2009). However, Harring et al. (2015) show that although 
over-specifi cation reduces the probability of detecting spurious 

interaction effects, reductions in Type I error rates would be 
insuffi cient to compensate for greatly reduced power in detection 
of interaction effects. 

Given the above—and in light of the widespread practice in 
applied research of testing interaction effects against data without 
consideration of quadratic terms—the present work contributes 
to determining the consequences of model specifi cation errors 
under correlated predictors in nonlinear SEM models, and offers 
guidelines to researchers for correct estimation of nonlinear latent 
variable models.

Method

Procedure

A Monte Carlo study was conducted to create data for four 
types of structural model: a purely linear structural model (MLIN) 
based on Equation (6), a model with interaction effects (MI) based 
on Equation (1), a model using quadratic effects (MQ) based on 
Equation (2), and a model with interaction and quadratic effects 
(MIQ) based on Equation (3). 

 (MLIN) η = α + γ
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In each condition, the exogenous factors ξ
1
 and ξ

2
 were 

simulated using a standard normal distribution. Prediction errors 
(ζ) were simulated using a normal distribution with mean zero. 
The variance of η was set to one and its mean was set to zero by 
adjusting the value of the latent intercepts (α). The γ parameters 
representing linear effects were fi xed at .3 in order to represent a 
9% explained variance of η.

The correlation between exogenous factors was set to .3 or .6 
to represent moderately correlated and highly correlated factors, 
respectively. Given that the variance of the interaction depends 
on the degree of correlation between factors (Marsh et al., 2006), 
the interaction parameter for the MI and MIQ models was fi xed at 
.219 and .192 when correlation was equal to .3 and .6, respectively. 
In both cases, the value assigned to the parameter equalled a 5% 
explained variance of η. The ω

11
 and ω
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 parameters—representing 

quadratic effects—were fi xed at .159 for the MQ and MIQ models, 
each representing a 5% explained variance of η.

The measurement models for the exogenous factors and for the 
endogenous factor were created based on Equations (4) and (5), 
respectively. Four indicators were simulated for each factor. The 
factor loadings of indicators of each factor (i.e., x
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) were fi xed at .8, .7, .6 and .5 to represent factors measured with 

a composite reliability of .75, and at .9, .85, .8 and .75 to represent 
factors with a composite reliability of .9. Sample sizes were set 
to 500 and 1,000 cases, representing medium and large samples. 
Thus, the present study worked with a total of 32 conditions in a 4 
(population structural models) × 2 (correlation between predictors) 
× 2 (measurement reliability) × 2 (sample sizes) design. We 
generated 500 replicates for each condition. 

Data analysis

The data produced by the four structural models were analysed 
using the MI, MQ and MIQ models shown in Table 1. The analyses 
using misspecifi ed models were conducted to establish the Type 
I error rates resulting from model misspecifi cation. The analyses 
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using under-specifi ed models were conducted to identify possible 
bias in parameter estimation resulting from omitted nonlinear 
effects. The analyses using correctly specifi ed models were 
used to determine the power of the models. Finally, the analyses 
using over-estimated models were conducted to identify possible 
increases in Type I error rates for the linear structural model as 
a result of multicollinearity and/or an increase in the number of 
contrasts, as well as to establish the Type I error rates and the 
potential decrease in power for structural models with at least one 
type of nonlinear effect.

Each dataset was analysed using the LMS method in Mplus 
7.4 (Muthén & Muthén, 2015). For each condition we analysed 
the proportion of convergent replicates and the bias in parameter 
estimates and standard errors. In conditions with population 
parameters not equal to zero we evaluated relative bias of 
parameter estimates, and in conditions with parameters equal 
to zero we evaluated the absolute bias (difference between the 
mean of estimates and zero). Relative and/or absolute bias in 
parameter estimates equal to or greater than |0.05| and relative 
bias in standard error estimates equal to or greater than |0.1| 
were considered unacceptable (Hoogland & Boomsma, 1998). 
We examined the proportion of replicates with signifi cant results 
to a 95% confi dence level in order to analyse Type I error rates 
and power for each analysis model. Following Bradley’s liberal 
criterion (Serlin, 2000), Type I error rates of between .025 and .075 
were considered acceptable. Power equal to or greater than .8 was 
considered acceptable (Muthén & Muthén, 2002).

Results

Optimal convergence rates were observed for all conditions, as 
well as biases below |0.05| for linear structural parameter estimates, 
and below |0.1| for standard error estimates. Factor correlations 
were estimated with irrelevant levels of bias in all conditions with 
the exception of the under-specifi ed models. Parameters showing 
irrelevant levels of bias have been omitted from the results tables 
on the following pages. 

As shown in Table 2, when the population involves only linear 
effects, use of MI, MQ and MIQ analysis models results in unbiased 
nonlinear parameter estimates and acceptable Type I errors. Using 
an over-specifi ed analysis model when nonlinear effects are equal 
to zero does not seem to be advantageous in terms of control of 
Type I error rates in the detection of either interaction or quadratic 
effects. The results therefore refute the hypothesis that an increase 
in the number of contrasts and/or the multicollinearity of the model 
would lead to increases in Type I error rates.

When data were generated from a model with one interaction 
and the MI analysis model is used, unbiased results and optimal 
levels of power were achieved. When the analysis model was 
misspecifi ed as a quadratic model, two misleading quadratic effects 
were obtained and detected as signifi cant in 33%-93% of cases. 
The 5% variance represented by the interaction was detected as 
two small quadratic effects, each explaining a variance of between 
1% and 1.5% of η when the population correlation between factors 
was .3 and .6, respectively. This implies that the true interaction 
effect is split into the estimated quadratic effects with a slight 
loss of information or explained variance. Incorrect detection of 
quadratic effects resulting from model misspecifi cation increases 
with correlation between predictors or factor reliability. When the 
MI population model was analysed using an over-specifi ed model, 
unbiased results were obtained and Type I error rates remained 
acceptable, except in one condition. However, statistical power 
varied substantially according to correlation between factors. 
When correlation was moderate, power to detect interaction effects 
remained at acceptable levels. When population correlation was 
high, power to detect interaction effects was reduced, reaching 
acceptable levels only when factor reliability was .9 and sample 
size was 1,000.

In the case of the quadratic population model, the correctly 
specifi ed analysis model produced unbiased estimates with optimal 
levels of power. When the quadratic effects were misspecifi ed 
as interactions in the analysis models, 90%-100% of replicates 
yielded signifi cant results for interaction effects. Those effects 
represented an explained variance of between 4% and 5% of η 
when correlation between factors was moderate, and between 
11% and 12% when correlation was high. This suggests that when 
quadratic effects are misspecifi ed as interaction effects, not only 
will incorrect interactions be detected, but there will also be less 
information loss in the model’s original proportion of explained 
variance. This may lead researchers to consider these models as 
more ‘conclusive’ due to the greater size of the detected effect. 
When the quadratic population model was analysed using an 
over-specifi ed model, the parameters were estimated with no 
relevant bias. Interaction effects showed acceptable Type I error 
rates. Power to detect quadratic effects varied according to levels 
of factor reliability, correlation between factors, and sample size. 
Thus, when correlation between predictors is moderate, power is 
acceptable with sample sizes of 500 and factor reliabilities of .75. 
However, when correlation between predictors is high, acceptable 
power is possible at sample sizes of 500 and factor reliabilities of 
.9, or sample sizes of 1,000 and factor reliabilities of .75.

In population models with both interaction and quadratic effects, 
use of under-specifi ed models produced the most critical over-
estimation bias of nonlinear effects. Under-specifi cation of models 
resulted in (a) over-estimation (by 6%-12%) of the correlation 
between factors only when this correlation was moderate, which 
was the case when MI and MQ (but not MIQ) models were 
estimated; and (b) over-estimation of nonlinear parameters in MI 
and MQ analysis models. In the MIQ population models simulated, 
total explained variance of nonlinear effects reached 15% (i.e., 
5% explained variance for each nonlinear effect). However, over-
estimation bias resulting from model under-specifi cation implied 
that explained variance of estimated nonlinear parameters reached 
18%-20% when correlation between factors was moderate, and 
24%-33% when correlation was high. The results therefore imply 
that when nonlinear effects are omitted from analysis models, both 

Table 1
Population and data analysis models

Population model
Analysis model

MI MQ MIQ

MLIN Over-specifi ed Over-specifi ed Over-specifi ed

MI Correctly specifi ed Misspecifi ed Over-specifi ed

MQ Misspecifi ed Correctly specifi ed Over-specifi ed

MIQ Under-specifi ed Under-specifi ed Correctly specifi ed

Note: MLIN = purely linear model. MI = model with interaction effects. MQ = model with 
quadratic effects. MIQ = model with interaction and quadratic effects
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the parameters obtained and the model’s total explained variance 
will be over-estimated. This only occurs with under-specifi ed 
models. 

When the analysis model was correctly specifi ed, none of the 
estimated parameters showed relevant bias, but power to detect 
interaction and quadratic effects was seriously affected when 

Table 2
Parameter bias and proportion of signifi cant replicates

Analysis model MI MQ MIQ

Bias Sig Bias Sig Bias Sig

� n Rel ω12 ω12 ω11 ω22 ω11 ω22 ω12 ω11 ω22 ω12 ω11 ω22

Linear population model (all nonlinear effects are zero in the population)

.3 500 .75 0.000a .060 0.004a -0.002a .052 .040 0.000a 0.004a -0.002a .048 .050 .034

.90 0.002a .050 0.004a 0.001a .068 .062 -0.001a 0.004a 0.001a .052 .048 .046

1,000 .75 -0.002a .040 0.002a 0.001a .064 .044 -0.006a 0.003a 0.003a .058 .068 .046

.90 -0.001a .056 0.000a -0.002a .058 .054 0.002a -0.001a -0.003a .054 .050 .062

.6 500 .75 -0.002a .052 -0.002a -0.004a .066 .046 0.003a -0.003a -0.002a .052 .046 .056

.90 0.000a .068 0.000a -0.002a .078 .058 0.006a -0.003a -0.004a .052 .048 .046

1,000 .75 0.001a .046 -0.001a 0.001a .050 .060 0.003a -0.002a 0.000a .064 .054 .070

.90 0.000a .039 0.002a -0.002a .072 .050 0.002a 0.001a -0.003a .054 .072 .060

Interaction population model (quadratic effects are zero in the population)

.3 500 .75 -0.005 .970 0.070a 0.071a .330 .358 0.000 0.000a 0.000a .850 .046 .060

.90 -0.014 1 0.066a 0.063a .482 .470 -0.014 0.002a -0.001a .978 .060 .060

1,000 .75 -0.023 .998 0.072a 0.071a .624 .638 -0.032 0.002a 0.002a .970 .044 .072

.90 -0.027 1 0.065a 0.063a .726 .702 -0.037 0.002a 0.000a 1 .046 .074

.6 500 .75 0.000 .982 0.091a 0.091a .474 .484 -0.036 0.004a 0.003a .312 .070 .052

.90 0.005 .998 0.087a 0.089a .682 .746 0.010 -0.003a 0.001a .588 .066 .056

1,000 .75 -0.005 1 0.088a 0.093a .760 .790 -0.021 0.000a 0.004a .492 .080 .068

.90 -0.016 1 0.086a 0.087a .934 .934 -0.026 0.001a 0.001a .824 .042 .064

Quadratic population model (interaction effects are zero in the population)

.3 500 .75 0.208a .900 -0.019 -0.013 .958 .950 0.002a -0.019 -0.019 .050 .880 .882

.90 0.187a .934 -0.013 -0.006 .998 .998 -0.001a -0.006 0.000 .058 .978 .984

1,000 .75 0.209a .994 -0.013 0.006 1 1 -0.002a -0.006 0.013 .066 .994 .992

.90 0.189a 1 -0.006 -0.006 1 1 -0.001a -0.006 0.000 .070 1 1

.6 500 .75 0.298a 1 -0.013 0.000 .920 .924 0.001a -0.013 -0.006 .058 .552 .528

.90 0.287a 1 -0.019 0.000 .994 .994 -0.002a -0.013 0.006 .054 .848 .860

1,000 .75 0.299a 1 -0.019 0.013 1 1 0.003a -0.025 0.000 .044 .820 .830

.90 0.289a 1 -0.013 0.000 1 1 0.003a -0.019 -0.013 .054 .980 .988

Full model (both interaction and quadratic effects are present in the population)

.3 500 .75 0.977 1 0.478 0.434 1 1 -0.009 0.013 -0.006 .868 .908 .916

.90 0.854 1 0.403 0.377 1 1 -0.009 -0.006 -0.019 .990 .994 .992

1,000 .75 0.963 1 0.440 0.440 1 1 -0.023 -0.006 -0.006 .988 .996 .998

.90 0.858 1 0.428 0.409 1 1 -0.032 0.000 0.006 1 1 1

.6 500 .75 1.578 1 0.579 0.572 1 1 0.036 -0.006 -0.019 .414 .592 .546

.90 1.500 1 0.553 0.535 1 1 -0.026 0.019 0.006 .708 .922 .948

1,000 .75 1.573 1 0.579 0.566 1 1 0.000 0.006 0.000 .578 .850 .864

.90 1.500 1 0.535 0.547 1 1 0.000 -0.006 0.000 .940 .998 1

Note: MI = model with interaction effects. MQ = model with quadratic effects. MIQ = model with interaction and quadratic effects. Sig = proportion of signifi cant replicates. � = population 
correlation between ξ

1
 and ξ

2
. n = sample size. Rel = composite reliability of each factor. a = relative bias is not defi ned in this situation because the true population parameter is equal to zero; the 

mean deviation of estimates with respect to zero is displayed instead. Bold = over-estimated parameter. Italics = unacceptable level of Type I error rates according to Bradley’s liberal criterion. 
Underlined = power less than .8
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correlation between factors was high. Thus, in order to achieve 
adequate power in the three estimated nonlinear parameters when 
correlation between factors is moderate, reliabilities of .75 and 
sample sizes of at least 500 are required, whereas to achieve 
the same power when factors are highly correlated requires 
reliabilities of at least .9 and sample sizes of at least 1,000. This 
is similar to when MI population models are analysed using MIQ 
models.

Regardless of the population model, power (although not Type 
I error) decreases when analysis models incorporate interaction 
and quadratic effects simultaneously. This reduction in power is 
caused neither by incorrect parameter estimation nor by standard 
errors, as in all cases these were estimated with acceptable levels 
of bias. In order to explore possible causes of a reduction in power 
in these situations, we assessed the heterogeneity of estimations by 
analysing the standard deviations of parameter estimates resulting 
from the three types of analysis model. 

As shown in Table 3, the standard deviation of each nonlinear 
parameter estimate is higher in MIQ analysis models compared to 
MI and MQ. The magnitudes of the standard deviations are higher 
for interaction effects and increase as the correlation between 
predictors increases. Given that power to detect signifi cant results 
depends on the variability of estimations, this greater heterogeneity 
could explain why power is lower in such situations and why Type 
I error is unaffected in the MIQ analysis model.

Conclusions

The present study analysed the consequences of model 
specifi cation errors on the results of nonlinear SEM models. Two 
main conclusions may be drawn. Firstly, in the presence of correlated 
exogenous factors, incorrect specifi cation (i.e., misspecifi cation 
or under-specifi cation) of nonlinear SEM models may result in 
the detection of incorrect and over-estimated nonlinear effects, 
which could have serious consequences for decision-making in 
research. For example, specifi cation of an MI structural model 
when only true quadratic effects exist in the population will—in 
the majority of cases—result in over-estimated interaction effects 
being detected as statistically signifi cant. Alternatively, if both 
interaction and quadratic effects are present in the population, 

estimation of a model with a single type of nonlinear effect will 
result in over-estimation of parameters and a spurious increase in 
total explained variance of the dependent variable. 

Secondly, simultaneous estimation of interaction and quadratic 
effects would contribute to resolving these problems. Indeed, 
contrary to previous literature (Aiken & West, 1991; Shepperd, 
1991), results presented here reveal that estimation of models that 
include interaction and quadratic effects simultaneously will not 
increase Type I error rates, will improve the precision of parameter 
estimation and will substantially reduce the detection of spurious 
nonlinear effects. Therefore, in order to avoid problems resulting 
from collinearity and incorrect structural model specifi cation, it 
is advised that both interaction and quadratic effects be included 
simultaneously, even if the purpose of the study is to test for 
the existence of a single nonlinear effect. This is in line with 
other proposals concerning linear regression (Cortina, 1993; 
Ganzach, 1997; Lubinski & Humphreys, 1990) and with studies 
involving nonlinear SEM models (Gerhard et al., 2015; Klein et 
al., 2009).

That said, strong theoretical justifi cation is still required for 
the inclusion of nonlinear terms in the model. Theory plays a key 
role in defi ning the requirement to estimate nonlinear models, but 
as the present study has demonstrated, researchers also need to 
consider methodological counterfactuals when specifying their 
models. Most applied studies analyse interaction effects but not 
quadratic effects, and the results of the present work suggest that a 
considerable number of these studies may have detected spurious 
moderation effects as a result of unmodelled quadratic terms in 
situations where predictors are correlated. As our knowledge 
is naturally incomplete and population models are by defi nition 
always unknown in any study involving real data, safeguards 
must be put in place. We therefore recommend estimation of 
nonlinear models that incorporate interaction and quadratic effects 
simultaneously, even if the aim is to test a theory that suggests the 
existence of only one type of nonlinear effect. 

Spurious or misleading results are produced by incorrectly 
specifi ed nonlinear models as a result of collinearity. The results 
presented here may therefore be generalised to, for example, 
models where more than two correlated predictors are analysed. 
However, in such scenarios a larger number of nonlinear effects 
(along with linear effects) would need to be modelled in order 
to avoid misleading or spurious results. More complex models 
may pose an even greater challenge in terms of factor reliability 
and the sample size needed to detect nonlinear effects. Indeed, 
consistent with fi ndings of previous studies (e.g., Grewal, Cote, 
& Baumgartner, 2004; Kelava et al., 2014; Rdz-Navarro & 
Alvarado, 2015), results presented here reveal that large samples 
or scales with high reliabilities are needed to detect nonlinear 
effects. Future research should explore whether accurate results 
and acceptable power could also be achieved by, for example, 
increased sample sizes when factor reliabilities are lower, or 
increased factor reliabilities in smaller samples in situations where 
sizes of nonlinear effects are larger or smaller than those used 
in the present study. Researchers willing to estimate nonlinear 
effects between latent variables should carefully select highly 
reliable measurement instruments and collect the largest sample 
possible in order to ensure suffi cient power to detect even small 
nonlinear effects.

Although these recommendations may sound restrictive and the 
model requirements (in terms of sample size and factor reliability) 

Table 3
Standard deviations of parameter estimates by analysis model

Analysis model MI MQ MIQ

� n Rel ω12 ω11 ω22 ω12 ω11 ω22

.3 500 .75 0.062 0.047 0.047 0.072 0.050 0.050

.90 0.047 0.034 0.034 0.053 0.036 0.036

1,000 .75 0.043 0.032 0.033 0.052 0.035 0.036

.90 0.034 0.025 0.025 0.039 0.026 0.026

.6 500 .75 0.050 0.051 0.051 0.137 0.081 0.081

.90 0.038 0.036 0.034 0.090 0.054 0.053

1,000 .75 0.034 0.034 0.034 0.096 0.056 0.056

.90 0.026 0.024 0.024 0.062 0.036 0.037

Note: MI = model with interaction effects. MQ = model with quadratic effects. MIQ = model 
with interaction and quadratic effects. � = population correlation between ξ

1
 and ξ

2
. n = 

sample size. Rel. = composite reliability of each factor
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diffi cult to meet, it is important to be both conscious and wary of the 
fact that the usefulness of SEM models for estimation of nonlinear 
effects depends on appropriate model specifi cation. Simultaneous 
estimation of interaction and quadratic effects is therefore a useful 
means to guarantee adequate statistical inference.

Acknowledgements

This research was funded by the Chilean National Commission 
for Scientifi c and Technological Research (FONDECYT Grant 
11160256).

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and 
interpreting interactions. London, England: Sage.

Barcaccia, B., Pallini, S., Baiocco, R., Salvati, M., Saliani, A. M., & 
Schneider, B. H. (2018). Forgiveness and friendship protect adolescent 
victims of bullying from emotional maladjustment. Psicothema, 30(4), 
427-433. doi:10.7334/psicothema2018.11

Barón, M. J. O., Bilbao, I. E., Urquijo, P. A., López, S. C., & Jimeno, A. 
P. (2018). Moral emotions associated with prosocial and antisocial 
behavior in school-aged children. Psicothema, 30(1), 82-88. 
doi:10.7334/psicothema2016.143

Bredow, C. A. (2015). Chasing prince charming: Partnering consequences 
of holding unrealistic standards for a spouse. Personal Relationships, 
22(3), 476-501. doi:10.1111/pere.12091

Breevaart, K., & Bakker, A. B. (2018). Daily job demands and employee 
work engagement: The role of daily transformational leadership 
behavior. Journal of Occupational Health Psychology, 23(3), 338-349. 
doi:10.1037/ocp0000082

Coenders, G., Batista-Foguet, J. M., & Saris, W. E. (2008). Simple, 
effi cient and distribution-free approach to interaction effects in 
complex structural equation models. Quality & Quantity, 42(3), 369-
396. doi:10.1007/s11135-006-9050-6

Cortina, J. M. (1993). Interaction, nonlinearity, and multicollinearity: 
Implications for multiple regression. Journal of Management, 19(4), 
915-922. doi:10.1016/0149-2063(93)90035-L

Ganzach, Y. (1997). Misleading interaction and curvilinear terms. 
Psychological Methods, 2(3), 235-247. doi:10.1037/1082-989X.2.3.235

Ganzach, Y. (1998). Nonlinearity, multicollinearity and the probability of 
Type II error in detecting interaction. Journal of Management, 24(5), 
615-622. doi:10.1016/S0149-2063(99)80076-2

Gerhard, C., Büchner, R. D., Klein, A. G., & Schermelleh-Engel, K. (2017). 
A fi t index to assess model fi t and detect omitted terms in nonlinear 
SEM. Structural Equation Modeling: A Multidisciplinary Journal, 
24(3), 414-427. doi:10.1080/10705511.2016.1268923

Gerhard, C., Klein, A. G., Schermelleh-Engel, K., Moosbrugger, H., 
Gäde, J., & Brandt, H. (2015). On the performance of likelihood-based 
difference tests in nonlinear structural equation models. Structural 
Equation Modeling: A Multidisciplinary Journal, 22(2), 276-287. doi
:10.1080/10705511.2014.935752

Grant, A. M., & Schwartz, B. (2011). Too much of a good thing: 
The challenge and opportunity of the inverted U. Perspectives on 
Psychological Science, 6(1), 61-76. doi:10.1177/1745691610393523

Grewal, R., Cote, J. A., & Baumgartner, H. (2004). Multicollinearity 
and measurement error in structural equation models: Implications 
for theory testing. Marketing Science, 23(4), 519-529. doi:10.1287/
mksc.1040.0070

Harring, J. R., Weiss, B. A., & Li, M. (2015). Assessing spurious 
interaction effects in structural equation modeling: A cautionary 
note. Educational and Psychological Measurement, 75(5), 721-738. 
doi:10.1177/0013164414565007

Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in 
covariance structural modeling: An overview and a meta-
analysis. Sociological Methods & Research, 26(3), 329-367. 
doi:10.1177/0049124198026003003

Kelava, A., Nagengast, B., & Brandt, H. (2014). A nonlinear structural 
equation mixture modeling approach for nonnormally distributed latent 
predictor variables. Structural Equation Modeling: A Multidisciplinary 
Journal, 21(3), 468-481. doi:10.1080/10705511.2014.915379

Kelava, A., Moosbrugger, H., Dimitruk, P., & Schermelleh-Engel, K. 
(2008). Multicollinearity and missing constraints: A comparison of three 

approaches for the analysis of latent nonlinear effects. Methodology, 
4(2), 51-66. doi:10.1027/1614-2241.4.2.51

Kelava, A., Werner, C. S., Schermelleh-Engel, K., Moosbrugger, H., 
Zapf, D., Ma, Y., ... West, S. G. (2011). Advanced nonlinear latent 
variable modeling: Distribution analytic LMS and QML estimators 
of interaction and quadratic effects. Structural Equation Modeling: A 
Multidisciplinary Journal, 18(3), 465-491. doi:10.1080/10705511.201
1.582408

Klein, A. G., & Moosbrugger, H. (2000). Maximum likelihood estimation 
of latent interaction effects with the LMS method. Psychometrika, 
65(4), 457-474. doi:10.1007/BF02296338

Klein, A. G., & Muthén, B. O. (2007). Quasi-maximum likelihood 
estimation of structural equation models with multiple interaction and 
quadratic effects. Multivariate Behavioral Research, 42(4), 647-674. 
doi:10.1080/00273170701710205

Klein, A. G., Schermelleh-Engel, K., Moosbrugger, H., & Kelava, A. 
(2009). Assessing spurious interactions effects. In T. Teo & M. S. 
Khine (Eds.), Structural equation modeling in educational research: 
Concepts and applications (pp. 13-28). Rotterdam, The Netherlands: 
Sense Publishers. 

Lam, C. F., Spreitzer, G., & Fritz, C. (2014). Too much of a good thing: 
Curvilinear effect of positive affect on proactive behaviors. Journal of 
Organizational Behavior, 35(4), 530-546. doi:10.1002/job.1906

Le, H., Oh, I. S., Robbins, S. B., Ilies, R., Holland, E., & Westrick, P. (2011). 
Too much of a good thing: Curvilinear relationships between personality 
traits and job performance. Journal of Applied Psychology, 96(1), 113-
133. doi:10.1037/a0021016

Lubinski, D., & Humphreys, L. G. (1990). Assessing spurious “moderator 
effects”: Illustrated substantively with the hypothesized (“synergistic”) 
relation between spatial and mathematical ability. Psychological 
Bulletin, 107(3), 385-393. doi:10.1037/0033-2909.107.3.385

MacCallum, R. C., & Mar, C. M. (1995). Distinguishing between moderator 
and quadratic effects in multiple regression. Psychological Bulletin, 
118(3), 405-421. doi:10.1037/0033-2909.118.3.405

Marsh, H. W., Wen, Z., & Hau, K. T. (2006). Structural equation models 
of latent interaction and quadratic effects. In G. R. Hancock & R. O. 
Mueller (Eds.), Structural equation modeling: A second course (pp. 
225-265). Greenwich, CT: Information Age.

Masland, L. C., & Lease, A. M. (2016). Characteristics of academically-
infl uential children: Achievement, motivation and social status. Social 
Psychology of Education, 19(1), 195-215. doi:10.1007/s11218-015-
9314-x

Muthén, L. K., & Muthén, B. O. (1998-2015). Mplus user’s guide. 7th 
Edition. Los Angeles, CA: Author. 

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study 
to decide on sample size and determine power. Structural Equation 
Modeling: A Multidisciplinary Journal, 9(4), 599-620. doi:10.1207/
S15328007SEM0904_8

Rdz-Navarro, K., & Alvarado, J. M. (2015). Reexamining nonlinear 
structural equation modeling procedures: The effect of parallel and 
congeneric measures. Multivariate Behavioral Research, 50(6), 645-
661. doi:10.1080/00273171.2015.1071236

Serlin, R. C. (2000). Testing for robustness in Monte Carlo studies. 
Psychological Methods, 5(2), 230-240. doi:10.1037/1082-
989X.5.2.230

Shepperd, J. A. (1991). Cautions in assessing spurious moderator 
effects. Psychological Bulletin, 110(2), 315-317. doi:10.1037/0033-
2909.110.2.315


