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A B S T R A C T

In this paper, a numerical model to evaluate the impact of the presence of fractured rope components on the
static response of ropes is presented. Specifically, the proposed model couples the effects of two phenomena that
rule damaged rope response: strain localization and asymmetry in damage distribution. The proposed model
relies on the nonlinear finite element method in which the damaged rope is discretized along its length into 3D
uniaxial two-noded nonlinear cable-beam elements with Bernoulli’s kinematic hypothesis. These elements ac-
count for the helical structure of a rope (cable) as well as the axial-bending, axial-torsional, and bending-tor-
sional interactions. Experimental static tensile test data reported in the literature of homogeneous polyester
ropes with overall diameters that range from 32 mm to 166 mm are used to validate the proposed model. Tested
ropes are asymmetrically damaged on the surface of the rope cross-sections in which initial damage levels
(percentage of the broken components of the damaged cross-section with respect to the intact rope) vary from
5% to 15%. Comparison results indicate that the proposed model accurate predicts the static response of da-
maged ropes, considering a wide range of rope diameter and damage level values, achieving numerical ro-
bustness and computational efficiency.

1. Introduction

Ropes are characterized by having a high axial strength and stiffness
in relation to their weight, combined with a low flexural stiffness. This
combination is achieved by using a large number of components, each
of which is continuous throughout a rope’s length. To facilitate hand-
ling, it is necessary to ensure that a rope has some integrity as a
structure, rather than being merely a set of parallel components. This
characteristic is achieved by twisting the components together [1].

Over the years, ropes made from filaments drawn from ductile
metals and synthetic polymers have been widely used as structural
members in various engineering industries. Such uses include ropes for
lifting materials and equipment at construction sites, mooring systems,
electrical conductors, mine hoisting, stayed bridges, anticollision and
protective nets, cranes, and so on [2,3].

Ropes (cables) experience damage throughout their loading history
and from continued aggression of the environment (urban, industrial,
marine, etc.). Damage to ropes degrades rope components properties, a
process that may induce the partial or complete rupture of some of

them, and eventually, compromise the safety and integrity of the
structural system that the damaged ropes are part of. Hence, the un-
derstanding of the interaction of the factors that induce damage to
ropes, their dependence on the rope operational conditions, and the
effects of damage on the mechanical behavior of ropes are essential to
estimate rope service life at the design stage and to establish the ap-
propriate rope inspection methods and discard criteria [4–6].

The studies previously conducted, mainly on steel wire and syn-
thetic fiber ropes, have shown that the impact of broken rope compo-
nents on overall rope response (stiffness, residual strength, deformation
capacity, and deformed configuration) depends on the length of the
rope, number of broken rope components (degree of damage or damage
level), type of rope construction, and their distributions throughout the
rope cross-section (symmetric and asymmetric) and along the rope
length. These studies have intended experimentally ([7–13] among
others) and numerically ([13–23]) to assess the ability of particular
types of rope constructions to withstand damage (i.e., damage-toler-
ance property), according to rope application.

In particular, Beltran et al. [23] studied the effects of two
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mechanisms that govern the behavior of damaged ropes: strain locali-
zation around the failure region ([19]) and asymmetric damage dis-
tribution at a given rope cross-section ([21]). A semi-analytical proof
was given to show that, acting independently, strain localization and
asymmetry in damage distribution phenomena provide upper and lower
bounds, respectively, to the response of damaged ropes. In this study,
the experimental data reported in [10] on large-scale damaged polye-
ster ropes (diameters vary from 32 mm to 166 mm) were interpreted,
concluding that strain localization and asymmetric damage distribution
mechanisms rule the static response of the tested ropes in terms of the
rope stiffness and reductions in strength and deformation capacity re-
lative to the virgin case.

In this paper, to the best knowledge of the authors, a first attempt to
study the coupled effects of strain localization and asymmetry in da-
mage distribution on the static response of damaged ropes using a ro-
bust and computational efficient numerical model is presented. The
proposed model relies on the finite element method in which the da-
maged rope is discretized along its length into 1D two-noded nonlinear
cable-beam elements with six degrees of freedom (dof) per node and
Bernoulli’s kinematic hypothesis. These elements account for the helical
structure of a rope (cable) as well as the axial-bending, axial-torsional,
and bending-torsional interactions. The analysis conducted on experi-
mental static tensile tests data reported in [10] presented in [23] is
revised for validation purposes and also to interpret them based on the
simulations provided by the proposed model.

2. Cable-beam element formulation

As previously stated, previous researches ([8,10,13,16,21]) have
shown that two of the main mechanisms that govern the response of
damaged ropes are strain localization and asymmetry in damage dis-
tribution, in which bending deformation takes place in ropes due to the
latter mechanism; thus, ropes eventually undergo changes in curvature.
Under this condition, a flexible model (rope treated as a fiber element,
i.e., slender body of negligible bending and torsional stiffness) is in-
adequate to accurately describe the mechanical behavior of the da-
maged rope. In this kind of problem, a richer model for the rope should
be developed in which axial, torsion, and bending strains as well as
axial-bending, axial-torsion, and bending-torsion interactions need to
be accounted for (the so-called stiff cable model) ([24,25]).

In previous works, the stiff cable-based model has been adopted
with different degrees of complexity to study rope (or power line con-
ductor) response under different types of loading conditions such as
remotly operated vehicle systems, transverse vibrations, and bending
loads ([21,26–32] among others). In the particular case of the study of
damaged ropes, to capture the coupled effects of the strain localization
and asymmetry in damage distribution phenomena, the rope is assumed
to behave as a stiff rope which means that it can be subjected to biaxial
bending and axial load and moment. As such, based on the standard
finite element procedure, it is proposed to discretize the rope into 1D
two-noded nonlinear cable-beam (stiff cable) elements with six degree
of freedom per node and Bernoullís kinematic hypothesis that account
for the helical structure of a rope (cable) as well as the axial-bending,
axial-torsional, and bending-torsional interactions. The latter hypoth-
esis is coherent with previous works ([13,21,29,31,32]) and with the
facts that the rope is assumed to be a slender element, limited lateral
deflections and rope cross-section deformation are presumed, and the
results provided with satisfactory accuracy by a numerical algorithm
based on the Euler-Bernoulli beam theory in assessing the strain field of
metallic strands asymmetrically damaged on their surfaces ([13]). In
the following, a description of the formulation of the proposed cable-
beam element is presented.

2.1. Incremental virtual work equation

It is first provided a concise summary of the traditional and well

accepted procedure for the nonlinear analysis of structures based on the
principle of virtual work (i.e., nonlinear finite element method), con-
sidering the updated Lagrangian formulation. Assuming that rope
components mainly behave as thin curved fiber elements (i.e., they only
develop uniaxial state of stress), an incremental form of the constitutive
law of the material that comprises them can be written in the following
form:

= E( )j t j j1 (1)

where Δσj and Δεj are the increments in the normal stress and axial
strain for the j-th step of the analysis; and (Et)j-1 is the tangent modulus
at the (j-1) step of the analysis. Considering that the increment in the
axial strain Δεj can be decomposed in its linear (Δej) and nonlinear (Δηj)
terms of the updated Green strain increment tensor for the j-th step of
the analysis ([33]) and the fact that he j-th step of the analysis is an
equilibrium configuration, the linearized version of the increment in
the internal virtual work for a generic rope element is given by

= + +W E e edV edV dV( ) ( )int j Vj
t j j j j Vj

j j j Vj
j j j

1
1 1 1

1
1 1 1

1
1 1 1

(2)

where Vj-1 is the volume of the element over which energy is computed
in the j-1 step of the analysis and the operator ẟj-1 refers to a virtual
variation of the variable operated upon based on the (j-1) configuration.
The usual tensor notation has been simplified considering that rope
components are assumed to behave mainly as fiber elements, σ = σtt,
ε = εtt, e = ett, and η = ηtt, in which t corresponds to the longitudinal
local axis of the rope component.

Applying the principle of virtual works yields

+ =

+

E e edV dV f u dV

t u dA edV

( ) ( )

( )

V t j j j j V j j j V k j k j

A k j k j V j j j

1 1 1 1 1 1 1

1 1 1 1

j j j

j j

1 1 1

1 1

(3)

where the first two terms of the right-hand side of the above equation
correspond to the increment in the external virtual work (ẟWext)j in the
j-th step of the analysis. In the latter, (fk)j and (tk)j are the kth compo-
nents of the body and surface forces, respectively in the j step of the
analysis; Aj-1 is the surface element in the j-1 step of the analysis, and uk
is the kth component of the displacement field.

Following the notation proposed in [33], the terms of the right hand
side of Eq. (3), can be grouped in the following manner:

= +F f u dV t u dA( ) ( )j
j

V k j k j A k j k j1 1 1
j j1 1 (4a)

=F edVj
j

V j j j1
1

1 1 1
j 1 (4b)

As such, the Eq. (3) can be recast as follows:

+ =E e edV dV F F( )
V t j j j j V j j j j

j
j
j

1 1 1 1 1 1 1 1
1

j j1 1 (4c)

2.2. Kinematic of a cable-beam element in a 3D- space

Consider a straight prismatic two-noded cable-beam element of
length L depicted in Fig. 1. The element has a total of twelve degrees of
freedom (dofs), in which x denotes the longitudinal axis and (y, z) the
two principal axes of the cross-section. The displacements of a standard
two-noded cable-beam element in a 3D-space consist of three transla-
tion u, v, and w in x, y, and z directions, and three rotations θx, θy, and
θz, around axes x, y, and z respectively, which are functions of the
position x along the element. For the generic element b with length Lb
depicted in Fig. 1, nodal displacements are collected in the displace-
ment vector {u}b:

=u u v w u v w{ } [ ]b I I I xI yI zI J J J xJ yJ zJ
T

b (5)
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2.3. Section kinematics

Previously stated, it is assumed that the generic cable-beam element
obeys the Euler-Bernoulli’s kinematic hypothesis. As such, the dis-
placements {um}(x,y,z) of a material point m with coordinates (y,z) at a
section with distance x from the origin of the reference frame, that
describe the rigid body motion of the section plane, are given by the
following expressions:

= + + +u x y z u x y x z x z y x( , , ) ( ( ) ( ) ( ))cos ( )sint
m

z y
m

x
m2 2

(6a)

=u x y z v x z x( , , ) ( ) ( )y
m

x (6b)

= +u x y z w x y x( , , ) ( ) ( )z
m

x (6c)

where utm corresponds to the displacement in the t direction of the
material point m that is part of a fiber oriented in an angle β relative to
the x axis. In this way, the orientation of the rope components, that in
their initial configurations correspond to a circular helix curve, are
accounted for (Fig. 1). The transverse displacements uym and uzm of the
material point m are assumed to be small based on previous works on
asymmetrically damaged ropes ([13,21]); thus, the same transverse
displacements of a fiber aligned along the longitudinal axis of the rope
are considered for the case of a fiber inclined relative to the latter due to
its initial helical geometry along with neglecting their contributions to
utm. In the above expressions, it is important to point out that the fol-
lowing kinematic relations hold: θz(x) = dv(x)/dx and θy(x) = dw(x)/
dx, where d(∙)/dx is the first derivative operator acting on the corre-
sponding function.

Considering that rope components are assumed to behave as fiber
elements; the only term of the updated Green strain increment tensor
accounted for the computation internal virtual work in Eq. (2) is given
by

= + + +u
t

u
t

u
t

u
t

1
2tt

m t
m

t
m

y
m

z
m2 2 2

(7)

where the first and second term correspond to the linear (ettm) and
nonlinear (ηttm) terms of εttm..

It is important to point out that the displacement and rotation
functions u(x) and θp(x) (p = x, y, and z) respectively, depend on the
variable x (longitudinal axis of the rope); thus, computation of the
derivatives with respect to t (local longitudinal axis of the rope com-
ponents) in the above equation, gives rise to the terms cosβ, cos2β,
cos3β, cos2βsinβ, and sinβcosβ in the expression for εttm due to the he-
lical nature of the rope components. Therefore, the expression for εttm in
terms of the derivatives with respect to x is given by

= + + +u
x

u
x

u
x

u
x

cos 1
2

(cos )tt
m t

m
m t

m
y
m

z
m

m
2 2 2

2

(8)

where utm, uym, and uzm are given by Eqs. (6a–c).

2.4. Cable-beam stiffness matrix

By utilizing a standard finite element procedure, the virtual work
equation (Eq. (4c)), applied to a generic cable-beam element b that is
part of the rope discretization, can be turned into an incremental al-
gebraic equation for the generic element from the step of the analysis j-
1 to j as

+ =k k du f f([ ] [ ]) { } ( )L G j b
j

j b
j

j
j

j
j

b1,
1

1, 1 1
1

(9)

where [kL]b and [kG]b are the local linear and geometric stiffness ma-
trices of element b, respectively; {du}b increment in nodal displacement
vector of element b; and (fj-1j –fj-1j-1)b is the increment in nodal forces
vector from the step of the analysis j-1 to j of element b, in which both
quantities are referred to the deformed configuration of the element b
related to j-1 step of the analysis. Expressions to derive the aforemen-
tioned stiffness matrices and nodal load vector are provided in
Appendix A.

The interpolation functions selected for the trial kinematic variables
functions v(x), w(x), θz(x), and θy(x) and their corresponding virtual
forms correspond to the well-known Hermite cubic polynomials and for
the case of u(x) and θx(x) linear interpolations functions are used for
trial and virtual ones (Appendix A). In addition, increments in trial and
virtual strains necessary to compute [kL]b and [kG]b according to Eqs.
(A.1) and (A.2) respectively, are obtained by applying the variation (Δ)
and virtual (ẟ) operators to Eq. (8) in the traditional way used in finite
element procedure ([33–35] among others). In Appendix B, the explicit
forms of [kL]b and [kG]b for a generic cable-beam element b are pro-
vided.

2.5. Nodal forces. Surface damage asymmetrically distributed case.

In this study, a particular type of polyester rope construction is
considered for illustrative purposes. Rope geometry analyzed consists of
a group of parallel sub-ropes in which each sub-rope is built by twisting
three strands together with diameters that vary from 32 mm to 166 mm.
Rope is covered by a protective braided jacket with specified un-
damaged breaking strength (SBS) rope values equal to 35 tonnes (343.2
kN) and 700 tonnes (6864.6 kN) and the initial surface damage level
values of rope cross-sections range from 5% to 15% ([10]).

Considering that damaged ropes are discretized into several cable-
beam elements, based on [21], it is proposed that each cable-beam
element b have a prismatic section and be subjected to biaxial sinu-
soidal type of loadings (qz, qy)b acting along its principal directions. The
latter loads account for the fact that the symmetry of the rope cross-
section is lost due to asymmetric damage distribution which is giving
rise to a net transverse force per unit length of rope qR,b in which broken
strands are colored black (Fig. 2a). More details on the computation of
qz and qy values (Fig. 2b) are provided in the subsequent paragraphs.
Nodal forces {P}b, and {Q}b associated to (qz, qy)b respectively, are
computed based on the interpolations functions used to approximate v
(x), w(x), θz(x), and θy(x) (Fig. 1), which is this case correspond to the
Hermite cubic polynomials functions, that are defined in Appendix A
([33–35]). The corresponding nodal forces are depicted in Fig. 1 with
their corresponding dof.

The procedure to assess (qz, qy)b values, for the particular ropes
constructions analyzed in this study, first considers the analysis of the
damaged strands in which the local (relative to reference systems as-
sociated to each strand) radial unbalanced forces q1 and q2 are com-
puted which are then added vectorially to find the net unbalanced line
force acting on the cross-section qR,b (Fig. 2a). Complete details of this

Fig. 1. Generic two-noded stiff cable-beam element b in a 3D-space.
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procedure is provided in [23]. The line force qR,b forms an angle φ
relative to an arbitrary axis y. Due to the helical nature of the strands,
this axis coincides with one of the principal axes of the damaged rope
cross-section for increasing values of φ (Fig. 2a) equal to nπ/2 (n is an
integer). Considering a damaged cross-section in which the arbitrary xy
and xz planes coincide with principal ones (Fig. 2a), the net transverse
line forces along the longitudinal axis of the ropes in both the xz and xy
(principal) planes are given by

=q q sinz b R b, , (10a)

=q q cosy b R b, , (10b)

in which the angle φ captures the dependence of the line force qR on

the helical nature of strands in the initial rope configuration. The angle
φ varies according to the following relationship: φ = (2πx /ps), where
ps is the pitch distance of the strands relative to the local longitudinal
axis of damaged subropes as described in [23].

3. Damaged rope discretization

The finite element model proposed to study damaged rope response,
relies on the ability of broken rope components to carry their propor-
tionate share of axial loads over a distance measured from the failure
region, which is referred as the recovery length (rl) ([36]). Along this
length, the model accounts for the potential continuous increment of
the contribution to damaged rope response of the broken components

Fig. 2. (a) Asymmetrically damaged rope cross-section; (b) nonlinear generic cable-beam element under sinusoidal loads.

Fig. 3. (a) Damaged rope cross-section; (b) compressive line forces acting on the rope core; (c) normal forces on subrope; (d) strand equilibrium.
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along with the fact that the asymmetry of the rope cross-section is di-
minished. As long as the broken rope components do not fully develop
their recovery length values, the formulation of the proposed model
accounts for the strain localization and asymmetry in damage dis-
tribution, as well as their interaction effects on rope response.

Rope discretization depends on the recovery length values esti-
mated, because in this region the coupling between strain localization
and asymmetry in damage distribution occurs, inducing a premature
failure of the ropes relative to the virgin case according to previous
works ([10,23,37]). Recovery lengths values depend on the frictional
forces developed in a rope, contact forces between rope components
(due to their helical nature and/or jacket confinement) and the surface
characteristics (i.e., friction coefficient) of the components in contact
([37]). For the particular type of rope construction considered in this
study (helical strands assembled parallel to each other) and from the
numerical simulation point of view, strain localization around the
failure region is primarily developed by rope jacket confinement
([10,19,23]), neglecting the potential contribution of the helical strands
construction; thus, in terms of the finite element modeling, the effect of
rope jacket confinement on the recovery length value must be assessed.

3.1. Estimate of recovery length values

Consider the damaged rope cross-section depicted in Fig. 3a, in
which broken rope components (strands) are colored black. This rope is
formed by 18 parallel subropes arranged in three layers (red circles in
Fig. 3a) confined by a polyester jacket (dashed black circle in Fig. 3a).
Likewise, subropes are formed by three-strands twisted together along a
fictitious local longitudinal axis. According to the results given in [37],
if the value of the tension in a broken strand (Ts) is prescribed for a
particular rope strain value, the recovery length value (rl) of a broken
strand, considering a Coulomb friction model, can be estimated as

= +rl
µC

µC T
C

1 ln 1s

2

2

1 (11)

where μ is the friction coefficient, C1 value is the normal force per unit
length acting on the broken strand independent of the Ts value; and C2
is a constant associated to the normal force acting on the broken strand
that depends on the Ts due to its helical nature.

Assuming deformation compatibility between rope jacket and sub-
ropes and that the rope jacket develops longitudinal and circumfer-
ential stresses according to the assumptions of thin-walled tube beha-
vior, the compression forces, grj,ml, exerted by the rope jacket (rj) on the
rope components of the outermost layer (ml) of a rope (Fig. 3a) can be
estimated as ([19])

=
=

g n
dn

d t2
sin cos

(2 )rj ml
ml i i

c
L,

2

1
3

1 (12)

where d is the rope diameter; n2, nml are the number of rope compo-
nents in the second and outermost layer (third layer in this example) of
the rope; dc is the core diameter (subrope in the first layer); and the
angle γi is defined in Fig. 3b. In the latter, symmetry condition related
to the contact line forces g21 exerted by the subropes of the second layer
on the rope core is used in which three out of six line forces are de-
picted. The value of σL is the longitudinal stress in the rope and t is the
thickness of the rope jacket. Thus, assuming mainly radial contact be-
tween subropes, the total normal line force Nml exerted on a rope
component of the outermost layer of the rope that has a broken strand is
given by Nml = 2.0grj,ml (Fig. 3c). In this way, assuming continuous
transmission of the Nml line force to the strands (Fig. 3d), the total
normal line force on the broken strand Ns is assessed as

= +N
g
n

T
4.0

coss
rj ml

s
s s s

,

(13)

where ns is the number of the strand that form the subrope and βs is the

helix angle of the strands. In Fig. 3d, gs,s is the reaction line force ex-
erted on each strand by the others two strand and κsTs is the radial line
body force necessary to preserve the helical geometry of the strand
([38]). By radial equilibrium, gs,s = κsTs + 2.0grj,ml∙cosθs/ns. Hence,
based on the explanations of Eqs. (11) and (12), it is drawn that

= =C
g
n

C
4.0

cos ;rj ml

s
s s1

,
2 (14)

Values of the recovery length of the broken strands for the ropes
analyzed in this study obtained from Eq. (11), are provided in Section 4
Numerical simulations and discussion.

3.2. Numerical algorithm procedure

A standard nonlinear finite element procedure ([33,35,39] among
others) is implemented to assess static damaged ropes responses. In a
general case, damaged rope discretization strongly relies on the rl value
of the rope due to the nonuniform axial strain distribution along this
length which results in an axial strain localization around the fracture
zone. This nonlinear finite element procedure is based on an iterative
displacement control algorithm for each increment of the rope axial
displacement. The incremental-iterative equation of global equilibrium
in a nonlinear finite element procedure has the following form:

+ = +u Q RK K d d[( ) ( ) ] { } { } { }L dr G dr j
k

j
k

j
k

j
k

1
1 1 (15)

where [(KL)dr] and [(KG)dr] are the linear and geometric stiffness ma-
trices respectively whose addition is equal to [Kdr] which is the tangent
stiffness matrix of the damaged rope; {du}and {dQ} are the increment
in the displacement and in the external load vectors respectively; {R} is
the residual load vector (difference between internal and external
loads); and subscript j and superscript k represent the step of the ana-
lysis and the number of iterations in that step respectively. The entities
[Kdr], {dQ}, and {R} are referenced to a fixed global coordinate system
and they are obtained utilizing standard assembly procedures for the
damaged rope stiffness and load vectors, in which the local stiffness
matrix [k]b = [kL]b + [kG]b and nodal forces vectors {P}b and {Q}b for
each cable-beam element b are determined in global coordinate system
through the use of transformation matrices as discussed in Appendix C.
In the above discussion, bold variables refers to (vectors) entities as-
sociated to the global response of the damaged rope analyzed.

In particular, the entity [Kdr] is computed by accounting for the
partial contribution of initially broken strands according to the location
of each cable-beam element b relative to the recovery length (rl) value
given by Eq. (11), as illustrated in Appendix B. The proposed algorithm
proceeds with the following steps for the jth incremental step of the
analysis:

Step 1: Prescribe an increment in axial rope displacement duj. Based
on Eq. (15), solve the following system of equations considering the
superscript (iterations) k equal to 1:

=u QK d d[ ] { } { }dr j j j1
0 1 1 (16)

The prescribed value of duj induces an increment in the axial load of
the rope dTj1 which can be estimated as

=dT A E
du
L

( ) (cos )j
unbroken

strands

s s j s j
j

j

1
1 1

3

1
(17)

where As is the cross-sectional area of the strands; (Es)j-1 and (βs)j-1
are the tangent modulus and helix angle of the unbroken strands at the
end of the (j-1)th increment of the analysis; and Lj-1 is the updated rope
length at the end of the (j-1)th increment of the analysis. The value of
{dQ}j1 is estimated based on the dTj1 value and on the incremental form
of the expressions for nodal load vectors{P}b, and {Q}b, in which the
values of (dqy,b)j1 and (dqz,b)j1 are computed as follows:
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= +dq A E
du
L

G G G G( ) ( ) ( ) (cos ) 2 cos cosy b j s j s s j s j
j

j b
,

1
1 1 1

1
1
2

2
2

1 2

(18a)

= +dq A E
du
L

G G G G( ) ( ) ( ) (cos ) 2 cos sinz b j s j s s j s j
j

j b
,

1
1 1 1

1
1
2

2
2

1 2

(18b)

where the above expressions for each cable-beam element b depend
on their positions along the rope according to its finite element dis-
cretization (captured by the angle φ) and the degree of contribution to
rope response of the broken strands based upon the rl value computed
using Eq. (11) (Fig. 4). The latter is captured by the constants Gi in Eqs.
(18a) and (b) that account for the damage level of initially broken
strands (Ds) in each cable-beam element b as explained in Appendix C.
These expressions are estimated based on the work [23] for the specific
damaged section depicted in Fig. 2a. Thus, the increment and total
values of the nodal forces are as follows:

=dQ N dq d{ } [ ] ( )b j L
T

y b j,
1

,
1

b
z (19a)
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,
1

b
y (19b)

= +Q Q dQ{ } { } { }b j b j b j,
1

, 1 ,
1 (20a)

= +P P dP{ } { } { }b j b j b j,
1

, 1 ,
1 (20b)

where [Nθz] and [Nθy] are defined in Appendix A. The parameters α
and ψs are the angles between q1 and q2 and between the contact line
force direction of unbroken strand which points to the centroid of the
equilateral triangle that forms the three-strand configuration (subrope
with one broken strand; Fig. 2a), relative to the base of this equilateral
triangle (i.e., 30° in this example) respectively.

For solution purposes, Eq. (16) can be recast in the following form:
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(21)

where the subscripts f and c refer to unknown and known variables
respectively; and B and F are the reactions and equivalent nodal loads
vectors respectively. The solution of the above system of equation gives
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0 1 (22a)
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1

1
0 1

1
0 1 1 (22b)

Step 2: Update nodal displacement values

= +u u ud{ } { } { }j j j
1

1
1 (23)

For the following steps of the analysis, expressions are valid for both
first increment (k = 1) and iterations is needed (i.e., k ≥ 2) as ex-
plained later; thus the superscript in the expressions is used as k.

Step 3: For each cable-beam element b, the following relation holds:

= uu A{ } [ ] { }b j
k

b j
k

, (24)

where [A]b is a matrix that relates the coupling between the cable-beam
element b and rope degrees of freedom. Based on the assumption that
lateral deflections are small, it is assumed that helical geometry of the
strands is preserved; thus, their updated equivalent helix angles can be
estimated as follows:

=
r

p
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where (ps) is the updated pitch distance of the strands along the rope’s
length that for this particular rope construction is given by
(ps)j = p0(1 + u0,j/Lj-1) in which p0 is the initial pitch distance value;
u0,j is the total axial displacement of the rope at the jth step of the
analysis; and rs,jk is the equivalent helix radius of the each strand as-
sessed as rs,jk = rs,j-1 + dΔb,j1 in which the latter is the increment in
lateral deflection, considering both planes, of the cable-beam element b.
The curvature of each strand can be estimated as

=
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2

, (26)

Step 4: The axial strain of each strand that forms cable-beam ele-
ment b is computed based on Eqs. (6), (7), and (A.5–10), in which only
the linear term of the Green strain tensor is retained
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where the notation (∙)′ = d(∙)/dx is used for the first derivative. Based
on the updated geometry of each cable-beam element b and Eq. (27),
their lengths are updated Lb,jk= Lb,j-1 (1+(εs,jk)b|ys=zs=βs=0) along with
the transformation matrices [Γ]b,jk based on their direction cosines
([39]).

Step 5: The normal stress for the unbroken strands that form cable-
beam element b (σs,jk)b is calculated using their constitutive law con-
sidering their centroids as the generic point (i.e, one point integration).
Based on previous works ([21,40]; among others), for the particular
case of polyester, a polynomial function up to the fifth degree is used to
express the normal stress of a generic point as a function of its axial
strain, having the following form:

=
=

( )
( )

s j
k

b smax
t

t
s j
k

b

smax

t

,
1

5
,

(28)

where the coefficients τt are constitutive parameters that are chosen to
provide a best fit to measured data for polyester strands; and σs max and
εs max are the breaking normal stress and strain of tested strands re-
spectively.

Step 6: Internal nodal forces for each cable-beam element b can be

Fig. 4. Damaged rope discretized into two-noded stiff cable-beam elements.
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approximated by

= +F F K du{ } { } [ ] { }b j
k

b j t b j b j
k

, , 1 , 1 , (29)

where {F}b, j-1 in the internal force vector for the cable-beam element at
the end of the (j-1) step of the analysis and {du}b,jk is defined in Eq. (9).
The residual load vector {R}jk is computed as

=R S F{ } { } { }j
k

j
k

j
k (30)

where {S}jk is the vector of equivalent nodal external forces applied
obtained from Eqs. (C.2) and (C.3) (Appendix C)) and {F}jk is the vector
of net internal forces obtained by summing the existing cable-beam
element end forces (based upon Eq. (29)) at each global degree of
freedom using a standard assembly procedure of structural analysis as
previously stated. If the norm of the residual load vector {R}jk (i.e.,
||{R}jk||) is less than a prescribed tolerance (tol) (1E-5 used in this
study), the damaged rope is in equilibrium and a new analysis is per-
formed for the (j+ 1)th increment in axial displacement duj+1 (Step 1).

Step 7: If ||{R}jk||> tol, iterations on unknown variables in Eq. (21)
are needed. For performing iterations (i.e., k≥ 2 in Eq. (15)), consider
the following increments of the nodal load vectors. The nodal forces for
each cable-beam element b, {Q}b,jk and {P}b,jk are updated based on its
updated geometry and axial load developed. For a generic cable-beam
element b, the following expressions hold:

= +q A G G G G( ) [( ) ( ) 2 cos ] cosy b j
k

s j s s j
k

b b, 1 , 1
2

2
2

1 2 (31a)

= +q A G G G G( ) [( ) ( ) 2 cos ] sinz b j
k

s j s s j
k

b b, 1 , 1
2

2
2

1 2 (31b)

=Q N q d{ } [ ] ( )b j
k

L
T

y b j
k

, ,
b

z (32a)

=P N q d{ } [ ] ( )b j
k

L
T

z b j
k

, ,
b

y (32b)

=dQ Q Q{ } { } { }b j
k

b j
k

b j
k

, , ,
1 (33a)

=dP P P{ } { } { }b j
k

b j
k

b j
k

, , ,
1 (33b)

and the following system of equations is solved:

= + +{ }u
B

F
F

R
R

K K
K K

d
d

d
d0

0[ ] [ ]
[ ] [ ]

( )
( )

( )
( )

ff fc

cf cc j

f

j

k

c j

k
f

c j

k
f

c j

k

1

0 1

(34)

where the δ() operator is associated with the variations of the incre-
ments of the corresponding variables. The above system of equations
accounts for the fact that δ(duc) vanishes considering that the numerical
algorithm proposed is based upon the displacement control analysis
procedure. Solving the above system of equations yields
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=B u F Rd K d d{ ( )} [ ] { ( )} { ( )} { }c j
k

cf j f j
k

c j
k

c j
k

1
0 1 (35b)

where the tangent stiffness matrix of the damaged rope [Kdr] is kept
constant during iterations, as it is seen in the submatrices [Kff], [Kfc],
[Kcf], and [Kcc] in Eq. (34), and it is updated at the end of each incre-
ment.

Step 8: Update nodal displacement values

= +u u ud{ } { } { ( )}j
k

j
k

j
k1 (36)

Repeat from Step 3 to Step 8 until the condition ||{R}jk|| ≤ tol is
achieved, in which iteration variable increases from k to k + 1.

The above numerical algorithm is quite general except for the
computation of the increment in nodal forces dQb,jk and dPb,jk in Steps 1
and 7 which depend on the type of cross-section construction analyzed.
Nevertheless, regardless the latter particularity, their values rely on the
application of the radial equilibrium equation considering the contact
line forces between rope components whose values depend on their

curvatures and tensile forces when treated as thin curved fiber ele-
ments. As such, constitutive law of rope components is needed for this
purpose (Step 5). A flowchart of the proposed algorithm is provided in
Appendix E.

4. Numerical results and discussion

As previously mentioned, data on large-scale polyester asymme-
trically damaged ropes reported in [10] are used to study and evaluate
the coupled effect of strain localization and asymmetry in damage
distribution phenomena on damaged rope response including the im-
pact on rope stiffness, reduction in rope strength and deformation ca-
pacity, strain/stress field distribution, and rope deformed configura-
tion. Tested ropes have undamaged specified breaking strength (SBS)
values of 35 tonnes (343.2 kN) and 700 tonnes (6864.6 kN), with
diameters that vary from 32 mm to 166 mm, and initial damage level of
rope cross-section ranging from 5% to 15%. The reported data corre-
spond to the last step of the test procedures conducted by [10]: capacity
tests of damaged ropes. Previous steps carried out are bed-in the ropes,
inflict prescribed damage level at ropes midspan, and cycle the ropes to
simulate storm loading. As in previous works ([13,20,21]), the degree
of asymmetry of the damaged cross-section is captured by a scalar
quantity termed the index of asymmetry (IA). This parameter accounts
for the shift of the center of stiffness of the damaged cross-section re-
lative to the intact rope cross-section due to the asymmetric distribution
of damage. For computational purposes, the initial value of this para-
meter (IA)0 (computed for small rope axial strain value) is considered as
a representative measure of the degree of asymmetry of the rope cross-
section (hereafter referred to as IA) as extensively discussed in [20].

Numerical simulations consider the constitutive laws of the strands
that form the ropes (Step 5 of the Section 3.2 Numerical algorithm pro-
cedure) obtained from undamaged rope test data using the procedure
proposed in [4] and validated in [23]. The boundary conditions for
numerical simulations consider one end section of the ropes fully
clamped and at the other end an axial displacement history is specified
and the cross-section is prevented from rotating (Fig. 4). In Table 1,
damaged cross-section, geometry, breaking load, and parameters asso-
ciated to the numerical proposed model (damage level, index of
asymmetry, and recovery length among others) of the different types of
rope constructions analyzed in this study are shown in which broken
strands are colored black. According to the report given in [10], prior
performing capacity tests of damaged ropes, rope jackets were damaged
(in order to inflict damage to rope specimens) and loose around damage
area. Hence, the computation of the recovery length values, based on
the description presented in Section 3.1, assumes relative small axial
capacity and thickness values of each rope jacket that range from 0.5%
to 1% of the initial undamaged strength and 2% of the diameter value
of its corresponding rope respectively and a friction coefficient (μ) equal
to 0.1, as extensively discussed in [19]. The results presented in the
following correspond to the subsequent ropes discretizations based on
the value of the L/d parameter (L and d are the rope’s length and rope’s
diameter respectively) and the recovery length values for each rope
listed in Table 1: ten cable-beam elements along the strain localization
region and one cable-beam element for the region where all the strands
contribute to rope response (if broken strands fully develop their re-
covery length values). The estimated helix angles values (βs) for the
strands that form these ropes are 12° for ropes R1 and R2 and 10° for
rope R3 for both SBS values.

In order to illustrate the coupled effect of strain localization and
asymmetry in damage distribution on damaged rope response, the
strain distribution within rope cross-section for the types of ropes R1,
R2, and R3 with a SBS value equal to 35 tonnes is presented at three
locations along their longitudinal axes considering an initial damage of
10% of the total cross-sections and an L/d parameter equal to 1000, in
which all the locations are within the strain localization zone as de-
picted in Fig. 5. One of these corresponds to a cross-section of the cable-
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beam element where initial damage was inflicted (initially broken
strands colored black); thus, the maximum effect of asymmetry in da-
mage distribution on strain field is expected. The other two locations
correspond to cable-beam elements also in the recovery length region
whose broken strands have partially developed their recovery length
values; hence, asymmetry in damage distribution and consequently the
index of asymmetry of the cross-section along with the unbalanced
transverse sinusoidal load diminish. Based on the results presented in
this figure, common conclusions for all the rope types analyzed can be
drawn: strain localization develops around failure region, asymmetry in
damage distribution induces a gradient in strain distribution in which
maximum strains develop adjacent to damage and minimum strains
opposite to it; and gradient in strain distribution throughout damaged
cross-sections decreases as the broken strands resume carrying their
proportionate share of axial load due to frictional effects.

In particular, outside of the recovery length region, it is expected
that axial strain values of cable-beam elements converge to the axial
strain (εrope) specified for the rope (intact case) as the ratio between
recovery length (rl) and rope’s length (L) gets smaller [23]. Thus, the
axial strain of the rope strands (εs) is given by εs = εrope(cosβs)2. In
Table 2, a summary of maximum strain develop (εsmax) in the most
strained section of the rope and the ratios rl/L, between maximum and
minimum strain values within of the most strained rope cross-section
(f1), and between maximum strain and strain expected outside the re-
covery length region values (f2) for each rope analyzed is provided.
Rope types R1 and R2 have the same diameter (32 mm) and similar
number of subropes (24 and 18, respectively) and initial IA values (0.16
and 0.19 respectively) showing a comparable (around 15%) maximum
increment in axial strain value relative to the intact case in the strain
localization region. Conversely, although rope type R3 has similar in-
itial IA value than previous ropes (0.17), it has fewer number of sub-
ropes (10) and greater diameter (36 mm) inducing smaller maximum
increment in axial strain value relative to the intact case in the strain
localization region (around 8%). It is important to point out that if only
the strain localization phenomenon were accounted for, f2 values would
reduce to f2SLM values (Table 2); thus, the effect of asymmetry in da-
mage distribution and its interaction with the strain localization phe-
nomenon on the maximum strain developed is 4% for ropes R1 and R2,
and 0.9% for rope R3. This analysis corroborates previous works in
finding that the dominant phenomenon that rules static response of
these ropes is the strain localization ([10,19,23]).

In terms of the stiffness, residual strength, and deformation capacity
(i.e., capacity curves) of the damaged ropes previously analyzed, it is
important to have in mind that one of the conclusions drawn in [23]
was to prove that acting independently, using two numerical algorithms
that independently account for the strain localization (SLM) and
asymmetry in damage distribution (ADDM) mechanisms, they bound
damaged rope response (experimental curves): upper and lower bounds
associated to strain localization and asymmetry in damage distribution
phenomena, respectively which is illustrated in Fig. 6. In this figure, the
solution space of damaged rope is given by the shaded area between the
SLM (upper bound) and ADDM (lower bound) curves in the axial load-
axial strain plane. As a reference, the virgin rope response and net area
(damaged rope response obtained solely from unbroken rope compo-
nents contribution) curves are also included in the plot to show that
SLM and ADDM curves eventually converge to them respectively, with a
reduction in load carrying and axial deformation capacities of the
ropes.

In respect of the analysis of capacity curves, measured data reported
in [10] are compared with the following predicted curves: SLM and
ADDM that limit the solution space of damaged rope response and
NLCBM that couples the strain localization and asymmetry in damage
distribution considering the formulation presented in Sections 2 and 3. I
this way, NLCBM is validated and the corresponding simulations are
used to interpret and extend the measured data. For the tests of ropes
with SBS equal to 35 tonnes, different L/d ratio were considered (ran-
ging from 40 to 1000) to try to evaluate the dependency on this para-
meter of damaged rope response; thus NLCBM curves account for this
parametric variation, although as L/d increases, NLCBM simulations
converge to unique curve as discussed in [41]. In addition, measured
and predicted curves of intact ropes are shown for reference purposes.

In Fig. 7, measured and predicted capacity curves of ropes R1, R2,
and R3 with an SBS value equal to 35 tonnes and initial damage level of
10% of the cross-section asymmetrically distributed are presented. Al-
though tested ropes have different types of constructions but the same
initial damage level, IA values associated to the initial inflected damage
distribution vary in a narrow range from 0.16 to 0.19.

For the case of rope type R1 (Fig. 7a), NLCBM curves coincide with
SLM curve for small values of axial strain (less than 0.035). For greater
strain values, NLCBM curves slightly deviate from the SLM curve mainly
due to the bending effect induced by the asymmetry in damage dis-
tribution (i.e. NLCBM curve falls inside of the solution space (Fig. 6)).

Table 1
Types of rope constructions.

Rope SBS (kN) Rope 
diameter 

(mm)

Initial 
damage level 

(%)

Index of 
asymmetry 

(IA)

Recovery 
length (mm)

R1

343.2
6864.6

32
160 [5-10] [0.1-0.16] 690

3230

R2

343.2
6864.6

32
147 [5-10] [0.19-0.3] 870

2950

R3

343.2
6864.6

36
166 [10-15] [0.17-0.27] 710

3050
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According to [10], Exp. 2 (L/d= 290) failed at one end splice probably
due to a stress concentration that made that the rope response fell
outside of the solution space. These curves experience a stiffening
process that is well captured by the corresponding NLCBM curves,
especially for Exp. 1 and Exp. 3 curves. NLCM curves, however, un-
derestimate the measured residual strength and deformation capacity
values in the ranges of [4%, 12%] and [5%, 10%] respectively.

Regarding the case of rope type R2 (Fig. 7b), both tested ropes (L/
d= 290 and 1000) failed near the initially damaged region as reported
in [10]. Exp. data 2 (L/d = 1000) curve falls outside of the solution

space because additional strands failed during simulation of storm
loading increasing the cross-sectional damage from 10% to 17%.
Moreover, this rope response was mainly governed by the asymmetry in
damage distribution phenomenon associated to a damage level equal to
17% ([23]). On the other hand, the NLCBM (L/d= 290) curve accounts

Fig. 5. Effect of strain localization and asymmetry in damage distribution on strain field. Rope types with SBS = 35 tonnes: (a) R1, (b) R2, and (c) R3.

Table 2
Summary of the increment in axial strain due to the coupling of strain locali-
zation and asymmetry in damage distribution phenomena. Ropes with
SBS = 35 tonnes.

Rope [rl/L]% (εrope) (εsmax) f1 (εs) f2 f2SLM

R1 2 0.075 0.0825 1.11 0.71 1.16 1.11
R2 3 0.06 0.0655 1.07 0.057 1.15 1.10
R3 2 0.075 0.0783 1.08 0.072 1.08 1.07

Fig. 6. Solution space of damaged rope response.
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for an initial damage equal to 12% of the rope cross-section due to the
individual strand failures during the experiment (Exp. Data 1 (L/
d = 290)) as detailed in [10]. NLCBM (L/d = 290) curve falls in the
solution space approaching to its upper bound. Exp1 is somewhat stiffer
than the SLM curve (upper bound) in the axial strain range [0.025,
0.04] after which it softens converging to the NLCBM curve in the range
[0.045, 0.062], and based on the testing report, failing at cut location.
The NLCBM (L/d = 290) predicts an earlier rope failure under-
estimating the experimental residual strength and deformation capacity
values in 7% and 10% respectively.

Finally, for the case of rope type R3 (Fig. 7c), Exp. data 3 (L/
d= 590) and Exp. data 2 (L/d= 1000) curves are stiffer than the SLM

curve (upper bound) falling outside of the solution space probably due
to stress concentration near one splice and unwinding process [10,23].
For the case of Exp. data 1 (L/d = 40) curve, its behavior is well
captured by the SLM considering two damage levels: 10% and 13.3%.
The latter is due to some strands failure at strain value equal to 0.07,
according to [10,23]. The SLM (13.3%) curve underestimates the
measured residual strength and deformation capacity by less than 0.5%,
suggesting that strain localization phenomena rules rope response and
the effect of asymmetry in damage distribution is negligible. It is be-
lieved for this case, that as the rope length gets shorter (L/d = 40),
strain localization is induced by rope terminations along with rope
jacket confinement. The proposed model (NLCBM) does not capture
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Fig. 7. Capacity curves of initially damaged ropes with SBS equal to 35 tonnes: (a) type Rope R1; (b) type Rope R2 and (c) type Rope R3.
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properly the boundary condition effects on strain localization and ki-
nematics of deformation of the rope (bending deformation is restricted
by end splices) as extensively discussed in [41].

Based on the predicted and measured capacity curves presented in
Fig. 7 along with previous studies ([10,19,23]), it is not clear how the
response of a damaged rope depends on the L/d parameter; hence, no
conclusive findings can be drawn. In general, measured data and si-
mulations provided by the NLCBM indicate that the residual strength
depends on the type of rope construction: as the L/d parameter de-
creases, measured and estimated residual strength decrease as well for
rope type R1 providing minimum values smaller than the ones pre-
dicted by the net area effect (90% of the virgin value) with a maximum
deviation equal to 5%; estimated values moderately decrease for rope
type R2 and they are essentially constant for the rope type R3; and for
both rope types, estimated residual strength values are slightly smaller
than values predicted by the net area effect. If only the strain locali-
zation phenomenon were considered in the analysis, estimated residual
strength values would match with the ones provided by the net area
effect ([23]); hence, deviations observed in the analysis are due to the
presence of the asymmetry in damage distribution phenomenon and its
nonlinear coupling with the strain localization one. Measured data of
the residual strength for the R2 and R3 rope types, however, fluctuate
not showing a definite trend as the L/d value increases. For the de-
formation capacity values case, for all rope types as the L/d value in-
creases, estimated (NLCBM) values decrease. The maximum reduction
relative to the virgin case is similar to the initial damage level inflicted
to ropes (10%). Measured values, however, show different behavior
depending on the type of rope construction as the L/d value decreases:
(1) R1 values fluctuate not showing a definite trend; (2) R2 values re-
main constant for the first two L/d values for later decrease (L/
d= 1000); and (3) R3 values are primarily constant and the reduction
in deformation capacity relative to the virgin case is close the damage
level inflicted to ropes (10%) prior performing ropes capacity tests,
comparing well with the predicted one for L/d = 1000. Based on this
analysis, it seems that measured values appear to be strongly influenced
by different mechanisms that potentially stiffen rope response such as
unwinding, stress concentration near ropes ends, and jacket confine-
ment ([10,23]). More experimental data is needed to evaluate the de-
pendency of damaged rope response on the L/d parameter, considering
different types of rope constructions, damage distribution, damage level
to rope cross-section, and rope sizes.

In order to establish the robustness of NLCBM, bigger damaged
ropes are analyzed (SBS equal to 700 tonnes) with a fixed value of the
parameter L/d (L/d = 40). Based on the recovery length values pre-
sented in Table 1, broken strands of ropes R1 and R2 partially con-
tribute to rope response because ropes lengths are not long enough to
allow them to fully develop their recovery length values, although
symmetry in axial strain distribution within ropes cross-sections is ex-
pected to be reached in sections toward the ropes ends (Fig. 8a). Con-
sequently, strain localization and asymmetry in damage distribution
phenomena are present along the entire ropes. This fact is illustrated in
Fig. 8b, c, for ropes R1 and R2 respectively based on the rope dis-
cretization (the same for both ropes) depicted in Fig. 8a, considering a
10% of their cross-sections damaged. Similar to the information sum-
marized in Table 2 for smaller ropes, the analysis of the aforementioned
ropes is given in Table 3. Larger f2 value is obtained for the R1 rope
although both damaged ropes have similar IA values (around 0.17).
This is probably due to the fact that R1 rope diameter (160 mm) is
greater than the one associated to rope R2 (147 mm); thus bending
effect (associated to the corresponding lever arm) on strain distribution
is bigger.

As in the case of ropes with SBS equal to 35 tonnes, if solely the
strain localization phenomenon were considered, f2 (referred as f2SLM)
would be 1.09 and 1.08 for ropes R1 and R2 respectively (Table 3).
Hence, the effect of asymmetry in damage distribution and its inter-
action with the strain localization phenomenon on the maximum strain

developed is 3.5% and 1.8% for the aforementioned ropes respectively.
These values are of the same order as those obtained for the same type
of ropes with SBS equal to 35 tonnes. These relative marginal con-
tributions to the maximum strain developed in each cross-section, is a
strong evidence that the response of these damaged ropes is also mainly
ruled by the strain localization phenomenon.

An interpretation of the measured damaged rope responses for the
aforementioned bigger ropes, described in Table 1, is given in Fig. 9
based on their comparisons with predicted responses obtained from
numerical models (NLCBM, SLM, and ADDM). Conversely to the ropes
R1 and R2 previously discussed, broken strands of rope R3 completely
recover their proportionate share of axial loads concentrating the
coupled effect of asymmetry in damage distribution and strain locali-
zation phenomena around the initial fracture region (rope midspan).

For the case of rope type R1 (Fig. 9a), the initial inflected damaged
to rope cross-section was equal to 5% distributed in two subropes, in-
ducing an IA value equal to 0.1. The NLCBM curve falls in the solution
space (close to the SLM curve) suggesting that the rope response is
mainly governed by the strain localization phenomena. This curve
slightly deviates from the SLM curve as the axial strain values greater
than 0.045 due to the bending deformation induced by the asymmetry
in damage distribution. Although the Exp. data curve is a little stiffer
than the latter one in some interval of the strain range, it softens con-
verging to the NLCBM for axial strain values greater than 0.07, showing
an earlier failure than the predicted one. The NLCBM curve over-
estimates the measured residual strength and deformation capacity
values in 8% and 5% respectively. For the case of rope type R2, the
initial damage inflicted to rope cross-section was equal to 10%. Exp.
data curve shows some individual strand failures that soften its re-
sponse prior to its complete rupture, increasing its damage level to 20%
distributed to five subropes and IA value from 0.17 to 0.3 ([23]). After
the individual strand failures occurred (strain greater than 0.05), Exp.
data curve is bounded by the SLM (20%) and NLCBM (20%) in a narrow
region in which the latter lfalls in the solution space and underestimates
the measured residual strength and deformation capacity in 6% and 3%
respectively (Fig. 9b). For low strain values (less than 0.025), Exp. data
curve matches well with the ADDM (10%) curve, after which the former
experiences a stiffening process which results in a slightly stiffer re-
sponse than the upper bound curve that ends up with the individual
strand failures previously commented. According to [10], this specimen
failed at the rope midspan where initial damage was inflected.

In Fig. 9c, estimated and measured capacity curves of rope type R3
with a 15% of initial damage level is presented. An individual strand
failure occurred during the execution of the tensile test (at axial strain
value equal to 0.05) increasing the damage level to 18% and IA value
from 0.25 to 0.27 ([23]). NLCBM (18%) curve falls in the solution space
and compares quite well with Exp. data curve from low strain values
suggesting that strain localization phenomenon rules damaged rope
response as the SLM (18%), intact rope (measured and predicted), and
NLCBM (18%) curves coincide. Slight deviation between NLCBM (18%)
and Exp. data curves is seen within the axial strain range [0.04, 0.05] in
which the latter gets stiffer, but after the individual strand failure, both
curves match well again between each other. The NLCBM (18%),
however, predicts an earlier rope rupture underestimating the mea-
sured residual strength and deformation capacity in 14% and 12% re-
spectively, due to a potential unwinding process experienced by the
tested rope ([10,23]).

Lastly, the deformed configurations of two of the rope constructions
considered in this study are shown in Fig. 10. Two axial rope strains are
examined for the case of rope R1 with SBS equal to 35 and 10% of cross-
sectional damage: 0.026 and 0.078 (Fig. 10a), in which the latter cor-
responds to the rope axial strain at the onset of its failure. A value of L/d
equal to 290 is used for computations purposes; hence, broken strands
fully develop their recovery length values as previously commented
which is reflected in the straight rope configuration outside the re-
covery length region. Inside of the recovery length region of the rope
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(around rope midspan), the value of the maximum net unbalanced line
force qR ranges from 0 to 650 kN/m (upper bound value associated to a
rope axial strain equal to 0.078) inducing a slight lateral deflection of
the rope following an inclined helix curve with decreasing amplitude as
the asymmetry of rope cross-section diminishes (Fig. 10a). The max-
imum lateral deflection is captured by the closest cable-beam element
to the rope midspan which corresponds to 0.2% and 0.7% of the rope
diameter (32 mm) for both rope axial strain values (0.026 and 0.078)
respectively. On the other hand, the deformed configuration of rope R2
with SBS equal to 700 tonnes and 20% of cross-sectional damage is
depicted in Fig. 10b for the axial strain values equal to 0.021 and 0.062.
The initial L/d ratio considered is equal to 40; hence, as discussed in
Fig. 9b, broken strands partially contribute to rope response and
asymmetry of rope cross-section and rope lateral deflection along its
entire length gets smaller as approaching to rope ends. For both rope
axial strain values selected (0.021 and 0.062), in which as in the pre-
vious case the latter corresponds to the axial strain at the onset of rope
failure, the maximum lateral deflection located at rope midspan is equal
to 0.5% and 1.3% of the rope diameter (147 mm) respectively, which is
induced by the net unbalanced line force qR whose maximum values
range from 0 to 2570 kN/m. This rope deflection, which is basically an

inclined helix with decreasing amplitude, slightly perturbs the initial
rope straight configuration.

According to the analyses presented in this study that consider
particular types of rope constructions, damage levels, and damage
distributions, in most of the cases analyzed strain localization phe-
nomenon rules damaged ropes response, fact that is well captured by
the NLCBM. As such, the Bernoulli’s kinematic hypothesis is accurate
enough to capture the bending strains induced in the rope due to the
asymmetry in damage distribution and the assumptions over which the
procedure proposed to estimate recovery length values relies on are
reasonable. Experimental curves reveal, however, that this phenom-
enon takes place gradually as the ropes are stretched, being the net area
effect (captured by ADDM) the one that prevails at the early stages
(small axial strain values) of damaged ropes response. It is important to
point out that NLCBM shows to be robust and computationally efficient.
Its robustness is asserted with the fact that NLBCM is able to interpret
and simulate measured capacity curves of damaged ropes considering a
wide range of rope sizes, damage levels, asymmetry in damage dis-
tribution, and different types of rope construction. As to the computa-
tional efficiency, the NLBCM requires few iterations to converge at each
step of the analysis (Step 7 of the numerical algorithm procedure
(Section 3.2)).

5. Final remarks

In this paper, the coupled effects of strain localization and asym-
metry in damage distribution on damaged rope response were studied.
To this end, a robust and a numerical efficiency algorithm is proposed
that relies on the finite element method in which a damaged rope is
discretized along its length into 1D two-noded nonlinear cable-beam
elements with six degrees of freedom (dof) per node and Bernoulli’s

(b) 

(a) 

(c)

u 

qy 

q
z

Fig. 8. (a) Ropes discretization; (b) and (c) Strain distributions for damaged ropes R1 and R2 respectively (SBS = 700 tonnes).

Table 3
Summary of the increment in axial strain due to the coupling of strain locali-
zation and asymmetry in damage distribution phenomena. Ropes with
SBS = 700 tonnes.

Rope [rl/L]% (εrope) (εsmax) f1 (εs) f2 f2SLM

R1 50 0.075 0.0813 1.08 0.71 1.13 1.08
R2 50 0.069 0.0728 1.10 0.066 1.10 1.09
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kinematic hypothesis. The proposed generic cable-beam element ac-
counts for the helical structure of a rope (cable) as well as the axial-
bending, axial-torsional, and bending-torsional interactions. For a par-
ticular analysis, capacity curve, axial strain field along rope’s length,
and deformed configuration are obtained in less than five minutes on a
standard multi-core processor laptop (Intel Core i7-16 Gb RAM).

The proposed numerical model (NLCBM) was validated by com-
parisons with experimental static capacity curves of large-scale da-
maged polyester ropes reported in [10]. The construction of the tested
ropes consist of a group of parallel sub-ropes which are covered by a
protective braided jacket, they have specified breaking stress values
equal to 35 tonnes and 700 tonnes, their diameter values range from
32 mm to 166 mm, and initial asymmetrically distributed cross-

sectional surface damage values vary from 5% to 15%.
In terms of the numerical results provided by the NLCBM, estimated

capacity curves of damaged ropes fall in the solution space for damaged
rope response limited by the curves associated to strain localization
(upper bound) and asymmetry in damage distribution (lower bound)
phenomena acting separately. Good comparisons between estimated
and measured static capacity curves of damaged ropes reveal that strain
concentration phenomenon, induced by rope jacket confinement and/
or ropes ends effect, and/or interactions between broken and unbroken
rope components, rule damaged ropes responses in most of the cases
analyzed. As a general conclusion, the nonlinear coupling of strain lo-
calization and asymmetry in damage distributing phenomena induces
that the predicted reduction in the rope strength values be greater than

0

2000

4000

6000

0 0,02 0,04 0,06 0,08 0,1

R
op

e 
A

xi
al

 L
oa

d 
(k

N
)

Rope Axial Strain

Exp. data
SLM (18%)
ADDM (15%)
Intact rope (Exp. data)
Intact rope (Predicted)
NLCBM (18%)

0

2000

4000

6000

8000

0 0,02 0,04 0,06 0,08 0,1

R
op

e 
A

xi
al

 L
oa

d 
(k

N
)

Rope Axial Strain

Exp. data

SLM (5%)

Intact rope (Predicted)

NLCBM (5%)

ADDM(5%)

(a) 

(c) 

0

2000

4000

6000

8000

0 0,02 0,04 0,06 0,08 0,1

R
op

e 
A

xi
al

 L
oa

d 
(k

N
)

Rope Axial Strain

Exp. data

Intact rope (Exp. data)

Intact rope (Predicted)

SLM (20%)

ADDM (10%)

NLCBM(20%)

(b) 

Fig. 9. Capacity curves of initially damaged ropes with SBS equal to 700tonnes: (a) type Rope R1; (b) type Rope R2 and (c) type Rope R3.
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the damage level (net area effect concept) with a maximum deviation
from the latter equal to 6%; and for the case of the reduction in de-
formation capacity relative to the virgin case, predicted values are quite
similar to the damage level inflicted to ropes cross-sections. Contrary,
measured values, especially the reduction in rope strength, do not show
a clear trend and they seem to be strongly influenced by different
mechanisms that potentially stiffen rope response such as unwinding,
stress concentration near ropes ends, and jacket confinement. More

experimental data is needed, considering different types of rope con-
structions, damage distribution, damage level to rope cross-section, and
rope sizes, to determine the influence of previous parameters on the
reduction of rope strength and rope deformation capacity. Although,
the static response of the tested ropes is mainly governed by the strain
localization phenomenon, asymmetry in damage distribution induces
additional local bending strains along the length over which damage
propagates in the rope: a gradient in strain distribution within damaged
rope cross section is engendered in which maximum axial strains de-
velop adjacent to damage and rope deflects laterally. Numerical simu-
lations of tested ropes suggest that maximum strain gradient values are
in the range of [7%, 11%] and the maximum increments in strain values
relative to the intact one vary from 7% to 16%. Regarding the deformed
configuration of the ropes, their initial straight alignments are slightly
perturbed laterally in which the maximum lateral deflection values are
0.7% and 1.3% of rope diameters for ropes with SBS equal to 35 tonnes
and 700 tonnes respectively.

In spite of the good performance of the proposed computational tool
(NLCBM) in interpreting experimental data and assessing damage-tol-
erance property of particular types of ropes, additional comparisons
with other well-accepted numerical technique (e.g. 3D FEM) and ex-
perimental data of ropes comprised of diverse materials and construc-
tion types are needed to establish the range of applicably of the NLCBM.
Although NLCBM formulation accounts for geometric and material
nonlinearities and the helical nature of rope components, they are
treated as tensile elements neglecting their transverse deformation and
local bending and contact and frictional forces between them. In order
to account previous effects that allow to simulate the complex inter-
action between rope components, including the potential relative slip
between them due to changes in curvatures, a richer model that con-
siders each rope component as a rod element needs to be explored.
Regardless these limitations, and based on the preliminary results
presented in this paper along with the computational efficiency and
robustness, the proposed model seems to be a promising computational
tool to interpret static experimental data and estimate rope service life
at the design stage and to establish rope inspection methods and discard
criteria according to rope usage.

Acknowledgement

This work was supported by Fondecyt (Chile) Grant N° 1150409.
The authors gratefully acknowledge this funding.

Appendix A. Approximation of kinematic variables

Expressions to compute [kL]b, [kG]b, {fj-1j}b, and {fj-1j-1}b associated to Eq. (9) based on the approximation of the kinematic variables ([33]):

=u k u E e edV{ } [ ] { } ( )b
T

L b b V t j j j j1 1 1
j 1 (A.1)

=u k u dV{ } [ ] { }b
T

G b b V j j j1 1 1
j 1 (A.2)

=u f F{ } { }b
T

j
j

b j
j

1 1 (A.3)

=u f F{ } { }b
T

j
j

b j
j

1
1

1
1

(A.4)

where {ẟu}b corresponds to the virtual nodal displacements vector of the cable-beam element, obtained by applying the operator δ() to {u}b (Eq.5).
The displacement functions of a standard two-noded cable-beam element in a 3D-space are approximated as follows in terms of the kinematic
variables {u}b (Eq. (5)):

= + =u x N u N u N u( ) [ ]{ }I J u b1 2 (A.5)

= + =x N N N u( ) [ ]{ }x xI xJ b1 2 x (A.6)

Fig. 10. (a) Deformed configurations: (a) rope type R1 with SBS = 35 tonnes
10% of damage; (b) rope type R2 with SBS = 700 tonnes 20% of damage.
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= + + + =v x N v N v N N N u( ) [ ]{ }I J zI zJ b3 4 5 6 z (A.7)

= + + + =w x N w N w N N N u( ) [ ]{ }I J yI yJ b3 4 5 6 y (A.8)

where [Nk] are row vectors of dimensions 1 × 12 with interpolation functions Ni (i = 1,.., 6) as components defined as
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where ξ refers to the local longitudinal axis of the two-noded cable-beam element.

Appendix B. Damage level of cable-beam elements

Based on the finite element discretization of a damaged rope, each cable-beam element b exhibits a damage level Ds according to the position of
this element b relative to rl. Let x be the longitudinal axis of the rope and assume that [0,rl] is the interval over which the recovery length fully
develops along the damaged rope from the rupture region. The parameter λ= λ(ρb) is a function that quantifies the stiffness recovery level of broken
strands due to frictional effects evaluated at the centroid (ρb) of the element b. As such, λb(ρ) is defined as

=
rl T

rl
( )

( ( ))
b b

s b
(B.1)

where rl (Ts(ρs)) is computed using Eqs. (11). The damage level of damaged strands in each cable-beam element b, Ds(ρb), is estimated as

=D ( ) 1 ( )s b b b (B.2)

where Ds= 1 refers to a complete rupture and Ds= 0 is the virgin state of the strand cross-section. Considering that damage level (or damage index)
Ds is a dimensionless entity defined as the ratio between the damaged and virgin cross-sectional areas of the strands, Asd/Asv, ([42]), the expressions
to compute the local linear [kL]b and geometric [kG]b stiffness matrices for each cable-beam element b for the jth increment of the analysis, con-
sidering a symmetric formulation, are given by
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in which (zcs, ycs) are the coordinates of the centroid of the strand s relative to the centroid of the rope cross-section; As si the cross-sectional area
of the strand s; Iss and Ipp are the moments of inertia of each strand relative to its local reference system; and σst is the normal stress of the strand s
along its local longitudinal axis t; and Lj − 1 is the updated length of the cable-beam element b at the end of the (j − 1) step of the analysis.

Appendix C. Global stiffness matrices and nodal load vectors
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in which the subscript g refers to global coordinates. The transformation matrices [Γ]b account for the direction cosines between the local and
global coordinate systems as discussed in [33,39] among others.

Appendix D. Increment values of unbalanced line forces

The constants Gi (i = 1,2) in Eqs. (18a,b) have the following expressions:

=G D1 2(1 ( ))sins b s1 (D.1)

=G D2sin (1 ( ))s s b2 (D.2)

where Ds(ρb) is the damage index of each strand that forms a cable-beam element b given by Eq. (B.2); and ψs is the angle between the contact line
force direction of strand which points to the centroid of the equilateral triangle that forms the three-strand configuration.
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Appendix E. Flow chart of the NLCBM numerical algorithm
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