
Ann Oper Res (2020) 286:55–86
https://doi.org/10.1007/s10479-017-2712-z

S.I . :CLAIO 2016

Neighborhood covering and independence on P4-tidy
graphs and tree-cographs

Guillermo Durán1,2,3 · Martín Safe4 ·
Xavier Warnes1,5

Published online: 28 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract Given a simple graph G, a set C ⊆ V (G) is a neighborhood cover set if every
edge and vertex of G belongs to some G[v] with v ∈ C , where G[v] denotes the subgraph
of G induced by the closed neighborhood of the vertex v. Two elements of E(G) ∪ V (G)

are neighborhood-independent if there is no vertex v ∈ V (G) such that both elements are in
G[v]. A set S ⊆ V (G)∪ E(G) is neighborhood-independent if every pair of elements of S is
neighborhood-independent. Let ρn(G) be the size of a minimum neighborhood cover set and
αn(G) of a maximum neighborhood-independent set. Lehel and Tuza defined neighborhood-
perfect graphs G as those where the equality ρn(G ′) = αn(G ′) holds for every induced
subgraph G ′ of G. In this work we prove forbidden induced subgraph characterizations
of the class of neighborhood-perfect graphs, restricted to two superclasses of cographs:
P4-tidy graphs and tree-cographs. We give as well linear-time algorithms for solving the
recognition problem of neighborhood-perfect graphs and the problem of finding a minimum
neighborhood cover set and amaximum neighborhood-independent set in these same classes.
Finally we prove that although for complements of trees finding these optimal sets can be
achieved in linear-time, for complements of bipartite graphs it is NP-hard.

B Xavier Warnes
xwarnes@stanford.edu

Guillermo Durán
gduran@dm.uba.ar

Martín Safe
msafe@uns.edu.ar

1 Instituto de Cálculo and Departamento de Matemática, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Buenos Aires, Argentina

2 Departamento de Ingeniería Industrial, Facultad de Ciencias Físicas y Matemáticas, Universidad de
Chile, Santiago, Chile

3 CONICET, Buenos Aires, Argentina

4 Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina

5 Graduate School of Business, Stanford University, Stanford, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-017-2712-z&domain=pdf
http://orcid.org/0000-0002-8901-3734
http://orcid.org/0000-0001-5436-9362

56 Ann Oper Res (2020) 286:55–86

Keywords Forbidden induced subgraphs · Neighborhood-perfect graphs · P4-tidy graphs ·
Tree-cographs · Recognition algorithms · Co-bipartite graphs

Mathematics Subject Classification 05C17 · 05C69 · 05C75

1 Introduction

A graph is perfect if, for every induced subgraph, the maximum size of a clique equals the
minimumnumber of colors needed to color its vertices such that no two adjacent vertices have
the same color. One of the most celebrated results in the last fifteen years in Graph Theory is
without a doubt the characterization by forbidden induced subgraphs of the class of perfect
graphs. This characterization was proved by Chudnovsky, Robertson, Seymour and Thomas
in 2002 (Chudnovsky et al. 2006), settling affirmatively a conjecture posed more than 40
years before by Berge (1961). The minimal forbidden induced subgraphs of perfect graphs
are the chordless cycles of odd length having at least 5 vertices, called odd holes C2k+1, and
their complements, the odd antiholes C2k+1.

During the nearly half a century inwhich this characterization remained a conjecture,many
graph classes were defined analogously to perfect graphs by the equality of two parameters
[e.g. clique perfect graphs byGuruswami andRangan (2000), coordinated graphs byBonomo
et al. (2007), neighborhood-perfect graphs by Lehel and Tuza (1986)].

Neighborhood-perfect graphs were defined by Lehel and Tuza (1986), by the equality of
two parameters for all induced subgraphs. Given a simple graph G, a set C ⊆ V (G) is a
neighborhood-covering set (or neighborhood set) if each edge and each vertex of G belongs
to some G[v] with v ∈ C , where G[v] denotes the subgraph of G induced by the closed
neighborhood of the vertex v. Two elements of E(G)∪V (G) are neighborhood-independent
if there is no vertex v ∈ V (G) such that both elements are in G[v]. A set S ⊆ V (G) ∪ E(G)

is said to be a neighborhood-independent set if every pair of elements of S is neighborhood-
independent. Let ρn(G) be the size of a minimum neighborhood-covering set and αn(G) of a
maximum neighborhood-independent set. Clearly, ρn(G) ≥ αn(G) for every graphG. When
ρn(G ′) = αn(G ′) for every induced subgraph G ′ of G, G is called a neighborhood-perfect
graph. Since odd holes and odd antiholes are not neighborhood-perfect (Lehel and Tuza
1986), the Strong Perfect Graph Theorem implies that all neighborhood-perfect graphs are
also perfect.

Neighborhood-perfect graphs have been characterized by forbidden induced subgraphs,
when restricted to the classes of chordal graphs (Lehel and Tuza 1986), line graphs (Lehel
1994) and cographs (Gyárfás et al. 1996). The characterizations presented here are an exten-
sion of this last result. Furthermore, Lehel and Tuza proved that finding αn(G) and ρn(G)

can be done in polynomial time ifG is a chordal neighborhood-perfect graph. IfG is strongly
chordal, interval or a cograph (i.e., P4-free), then linear-time algorithms that find the above
mentioned parameters have been given (Brandstädt et al. 1997; Gyárfás et al. 1996; Lehel and
Tuza 1986). On the other hand it was proven that the problems of finding these parameters
are NP-complete over a class of split graphs with degree constraints (Chang et al. 1993).
Although it follows from previous works (e.g. Gyárfás et al. 1996; Lehel 1994; Lehel and
Tuza 1986) that deciding whether a graph is neighborhood-perfect can be accomplished in
polynomial-time if the input graph belongs to several different graph classes, the computa-
tional complexity of recognizing neighborhood-perfect graphs in general is unknown.

123

Ann Oper Res (2020) 286:55–86 57

The work is organized as follows. In Sect. 2, we give some preliminary definitions and
results, including an introduction to modular decomposition and the structure of the classes
of P4-tidy graphs and tree-cographs. In Sect. 3, we give formulas for αn and ρn for the join
of two or more graphs and determine all the minimally non-neighborhood-perfect graphs
whose complement is disconnected. In Sect. 4, we prove our structural results, which consist
inminimal forbidden induced subgraph characterizations of the class of neighborhood-perfect
graphs when restricted to the classes of P4-tidy graphs and tree-cographs, respectively. In
Sect. 5, we give our algorithmic results, which consist in linear-time recognition algorithms
for neighborhood-perfectness of P4-tidy graphs and tree-cographs, linear-time algorithms
for computing αn and ρn for any given P4-tidy graph or tree-cograph, and a proof that the
problems of computing αn and ρn become NP-hard for complements of bipartite graphs.

2 Preliminaries

Before we formulate the results, a few definitions that will be used later on are required.
For all undefined terminology we refer to West (2001). All graphs in this work are finite,
undirected, and have no loops or multiple edges. Let G be a graph. We shall denote by V (G)

its vertex set and E(G) its edge set, by mG the size of E(G) and by nG the size of V (G)

(omitting the subscript G when it is clear by context). The complement of G shall be denoted
byG, the neighborhood of a vertex v by NG(v), and the closed neighborhood NG(v)∪{v} by
NG [v]. We denote by G[W] the subgraph of G induced byW ⊆ V (G). A vertex of G is said
to be pendant if it is adjacent to exactly one vertex of G, universal if it is adjacent to all other
vertices, isolated if it is not adjacent to any other vertex, and simplicial if its neighborhood
is a clique. If H is a graph, then G is H -free if G contains no induced subgraphs isomorphic
to H . If H is a collection of graphs, then G is H -free if G is H -free for all H ∈ H . The
chordless path of k vertices is denoted Pk , and the chordless cycle of k verticesCk . A cycle is
odd if it has an odd number of vertices. The graph Kn is the complete graph of n vertices. If H
is a graph and t is a nonnegative integer, then t H denotes the disjoint union of t copies of H .
The join of two graphs G1 = (V1, E1) and G2 = (V2, E2) (where V1 ∩ V2 = ∅) is the graph
G1 ∨ G2 = (V1 ∪ V2, E1 ∪ E2 ∪ {uv | u ∈ V1, v ∈ V2}). The disjoint union of two graphs
G1 and G2 is denoted by G1 + G2. The size of a set S is denoted by |S|. We shall consider
a clique (resp. independent set) to be a set of pairwise adjacent (resp. nonadjacent) vertices,
and a 2-independent set to be a set of vertices such that for every pair of vertices of the set,
there is no path of length 2 or less that connects them in G. We shall use maximum to denote
of maximum size, while maximal shall denote inclusion-wise maximal (analogously with
minimum andminimal). Given a graph G, we shall denote by α(G) the size of any maximum
stable set of G and by α2(G) the size of a maximum 2-independent set of G. A set of vertices
of G is said to be a dominating set if every vertex in G belongs to the set or is adjacent to
a vertex of the set. A total dominating set of G is a set of vertices such that every vertex of
G is adjacent to at least one vertex of the set. We shall denote by γ (G), and γt(G) the sizes
of any minimum dominating set and any minimum total dominating set, respectively, of G.
A matching of a graph is a set of edges such that every node of G is incident with at most
one edge of the set. A vertex cover of a graph G is a set of vertices W such that every edge
of G is incident to at least one vertex of W . We shall note by β(G) the size of any minimum
vertex cover of G and by ν(G) the size of any maximum matching of G.

A useful string of inequalities that will be used later is that for any graph G, α2(G) ≤
γ (G) ≤ αn(G) ≤ ρn(G). The first inequality comes from the fact that different vertices in a

123

58 Ann Oper Res (2020) 286:55–86

2-independent set cannot be dominated by the same vertex of a dominating set. The second
inequality is derived by observing that, given any maximum neighborhood-independent set,
one can construct a dominating set of the same cardinality by simply taking a vertex from
every edge and all the vertices in the neighborhood-independent set.

We say that a graph is co-connected if its complement is connected. The anticomponents
of a graph are its maximal co-connected induced subgraphs (equivalently they are the com-
plements of the components of G). This means that if H1 . . . Hk are the anticomponents of
H , then H = H1 ∨ · · · ∨ Hk .

A graph G is said to be chordal if it is Ck-free, for every k ≥ 4. A k-sun (or trampoline
of order k) is a chordal graph G having 2k vertices v1, . . . , vk, w1, . . . , wk such that, for
each i ∈ {1, . . . , k}, NG(wi) = {vi , vi+1} while {vi−1, vi+1} ⊆ NG(vi) (where subindices
are taken modulo k). Notice that each vertex vi may be adjacent to some other vertices in
{v1, . . . , vk} apart from vi−1 and vi+1; for instance, it is possible for {v1, . . . , vn} to be a
clique of G. A k-sun is said to be odd if k is odd.

As stated in Sect. 1, neighborhood-perfect graphs have been characterized by forbidden
induced subgraphs restricted to the class of chordal graphs. The minimal forbidden induced
subgraphs are exactly the odd suns defined above.

Theorem 1 (Lehel and Tuza 1986) A chordal graph G is neighborhood-perfect if and only
if it contains no induced odd sun.

AgraphG was defined to beminimally non-neighborhood-perfect inGyárfás et al. (1996),
if G is not neighborhood-perfect, but all proper induced subgraphs of G are. We now state
for future reference a result proven in Gyárfás et al. (1996) that determines exactly which
graphs G are minimally non-neighborhood-perfect and have αn(G) = 1.

Theorem 2 (Gyárfás et al. 1996) If G is a minimally non-neighborhood-perfect graph and
αn(G) = 1, then G is a 3-sun or 3K2.

2.1 Modular decomposition

Let G be a graph. We shall say that a vertex v of G distinguishes between two vertices x
and y of G if it is adjacent to one of them and nonadjacent to the other. A set M of vertices
shall be called a module of G if there is no vertex of V (G) \ M that distinguishes any pair
of vertices of M , or equivalently every vertex of G not in M is either adjacent to all vertices
of M or to none of them. The empty set, the singletons {v} for each v ∈ V (G) and V (G)

are the trivial modules of G. A graph is said to be prime if it has more than two vertices
and it has only trivial modules (for example P4 is a prime graph). A nonempty module is
strong if, for every other module M ′ of G, either M ′ ⊆ M , M ⊆ M ′ or M ∩ M ′ = ∅. The
modular decomposition tree T (G) of a graph G is a rooted tree having one node for each
strong module ofG and such that a node h representing a strong module M has as its children
the nodes representing the maximal strong modules of G properly contained in M . Clearly
the root of the tree represents the module V (G), and every leaf one of the singletons {v}, for
each v ∈ V (G).

For each node h of T (G), we note the module represented by h as M(h). Note that, by
construction, if we associate with each leaf the only vertex the module represents, then M(h)

corresponds to the set of leafs that have h as an ancestor in T (G).
For each node h of T (G), we denote the induced subgraph G[M(h)] by G[h] and call

it the graph represented by h. Each node of T (G) that is not a leaf is a parallel, series
or neighborhood node, and called a P-node, S-node or N-node, respectively. If G[h] is
disconnected, h is a P-node; if G[h] is disconnected, h is an S-node; and if both G[h] and

123

Ann Oper Res (2020) 286:55–86 59

G[h] are connected, then h is anN-node. Thus, if h is an internal node of T (G) and h1, . . . , hk
are the children of h in T (G), then one of the following conditions holds:

– If G[h] is disconnected, then h is a P-node and G[h1], . . . ,G[hk] are the components of
G[h].

– IfG[h] is disconnected, then h is anS-node andG[h1], . . . ,G[hk] are the anticomponents
of G[h].

– If G[h] and G[h] are both connected, then h is an N-node and M(h1), . . . , M(hk) are
the maximal strong modules of G[h] properly contained in M(h).

In all of these cases, it holds that {M(h1), . . . , M(hk)} is a disjoint partition of the nodes in
M(h) (Buer and Möhring 1983; Gallai 1967).

Let h be a node of T (G) and let h1, . . . , hk be its children. We shall denote by π(h) the
graph having vertex set {h1, . . . , hk} and such that hi is adjacent to h j if and only if there is
some edge inG joining a vertex ofM(hi) and a vertex ofM(h j). SinceM(hi) andM(h j) are
bothmodules ofG[h], then clearly there is an edge between them if and only if every vertex of
M(hi) is adjacent to every vertex of M(h j). Hence G[h] coincides with the graph that arises
from π(h) by successively substituting hi by G[hi], for each hi . Note that each π(h) must
be a prime graph, since all M(hi) are maximal strong modules, and if π(h) had a nontrivial
module of more than one vertex, the modules M[hi] corresponding to these vertices would
form amodule ofG[h].We shall denote byπ(G) the set {π(h) : h is an N-node of T(G)}. The
following result shows that every induced prime subgraph of a graph G is also an induced
subgraph of a graph in π(G).

Theorem 3 (Fouquet and Giakoumakis 1997) Let Z be a prime graph. A graph G is Z-free
if and only if each graph of π(G) is Z-free.

In the rest of this work, we shall note |V (G[h])| by n(h), for every h ∈ V (T (G)). If h
is an N-node, then we shall note |V (π(h))| by nπ (h) and |E(π(h))| by mπ (h). A fact that
will be used in what follows is that since T (G) has n nonadjacent leaves and each internal
node has at least two children, T (G) must have less than 2n nodes. An important property
that we shall use extensively is that the sum of nπ (h), over all N-nodes h of T (G), is at most
2n (Baumann 1996).

In this work we shall assume that each N-node h of the modular decomposition tree
T (G) is accompanied by a description of the prime graph π(h), by means of an adjacency
list. There are linear-time algorithms to compute the rooted tree T (G) (Cournier and Habib
1994; Dahlhaus et al. 2001; McConnell and Spinrad 1999; Tedder et al. 2008), moreover in
Baumann (1996) it is shown that the adjacency lists of each π(h), for every N-node h, can be
added also in linear-time. For a survey on the algorithmic aspects of modular decompositions,
see Habib and Paul (2010).

2.2 Structure of P4-tidy graphs and tree-cographs

We shall now introduce the two classes in which we will be studying neighborhood-
perfectness. Both of these classes are generalizations of the class of cographs.

A graph G = (V, E) is P4-tidy if for every vertex set A inducing a P4 in G there is at
most one vertex v ∈ V \ A such that G[A∪{v}] contains at least two induced P4’s. There is a
structure theorem for P4-tidy graphs that extends Seinsche’s theorem in cographs (Seinsche
1974), in terms of starfishes and urchins.

A starfish is a graph whose vertex set can be partitioned in three disjoint sets, S, C and
R, where each of the following conditions holds:

123

60 Ann Oper Res (2020) 286:55–86

– S = {s1, . . . , st } is a stable set and C = {c1, . . . , ct } is a clique, for t ≥ 2.
– The set R is allowed to be empty. If it is not, then the vertices of R can induce any graph

and every vertex of R is adjacent to all vertices of C and nonadjacent to all vertices of S.
– si is adjacent to c j if and only if i = j .

An urchin is a graph whose set can be partitioned intro three sets S, C and R satisfying
the first two conditions stated above, but instead of satisfying the third one, it must satisfy
that:

– si is adjacent to c j if and only if i �= j .

It is clear that urchins are the complement of starfish and vice versa. Given G, a starfish
or urchin, and a partition (S,C, R), we shall call S the ends of G, C the body of G, and R
the head of G. A fat urchin (resp. fat starfish) arises from an urchin (resp. starfish), with
partition (S,C, R), by substituting exactly one vertex of S∪C by a K2 or a 2K1 (where each
vertex of the K2 or 2K1 would have the same adjacencies as the vertex they substituted).

Theorem 4 (Giakoumakis et al. 1997) If G is a P4-tidy graph, then exactly one of the
following statements holds:

1. G or G is disconnected.
2. G is isomorphic to C5, P5, P5, a starfish, a fat starfish, an urchin, or a fat urchin.

Let G be a P4-tidy graph and h be an N-node of T (G), the modular decomposition tree of
G. Theorem 4 implies that π(h) must be isomorphic to C5, P5, P5, a prime starfish, or a
prime urchin. Moreover, if π(h) is isomorphic to a prime urchin or a prime starfish, each of
the children of h in T (G) is a leaf except for at most one child hR that represents the head
and/or another child representing 2K1 or K2. As was seen in Giakoumakis et al. (1997), in
O(nπ (h)) time, it can be decided whether or not π(h) is a starfish (resp. an urchin) and, if
this is the case, find its partition.

The class of tree-cographs is another superclass of the class of cographs. Tree-cographs
were introduced in Tinhofer (1988) by the following recursive definition:

Definition 1 1. Every tree is a tree-cograph.
2. If G is a tree-cograph, then G is a tree-cograph.
3. The disjoint union of tree-cographs is a tree-cograph.

This definition implies that if G is a tree-cograph, then either G or G is disconnected, or G
is a tree or the complement of a tree. Hence, Definition 1 implies that if G is a tree-cograph
and h is an N-node of T (G), then π(h) is a tree or the complement of a tree.

3 Parameters and minimal forbidden induced subgraphs

In order to effectively use the inherent structure of P4-tidy graphs and tree-cographs, we first
explore how the join operation modifies αn and ρn. As a consequence of these results, we will
determine ahead in this section all the minimally non-neighborhood-perfect graphs whose
complement is disconnected. As a byproduct, we will also characterize the class of graphs
that arises by requiring α2 = ρn for every induced subgraph, which we will call the class of
strongly neighborhood-perfect graph.

Lemma 1 If G and H are graphs, then

ρn(G ∨ H) = min{γ (H) + 1, γ (G) + 1, ρn(H), ρn(G)}.

123

Ann Oper Res (2020) 286:55–86 61

Proof It is immediate to see that

ρn(G ∨ H) ≤ min{γ (H) + 1, γ (G) + 1, ρn(H), ρn(G)},
for we can easily find neighborhood sets of G ∨ H with all four amounts considered. Simply
take a minimum dominating set of eitherG or H and any vertex in the other graph or, instead,
take a minimum neighborhood set in G or H .

Let us then prove that indeed the inequality above cannot hold strictly.
By contradiction let us say that we have a neighborhood set of S of G ∨ H , with size

strictly less than min{γ (H) + 1, γ (G) + 1, ρn(H), ρn(G)}. Hence, as S has fewer vertices
than ρn(G) and ρn(H), it must have at least one vertex in each G and H . For if not, there
would be uncovered edges in the subgraphs corresponding to G or H in the join. Thus if we
take SG = S ∩ V (G) and SH = S ∩ V (H), then |SH | ≤ |S| − 1 and |SG | ≤ |S| − 1. But
as we are assuming that |S| − 1 < γ (G) and |S| − 1 < γ (H), we have that neither SG nor
SH can be dominating sets of G and H respectively. This means that there must be at least
some v ∈ V (G) and some w ∈ V (H) such that v /∈ NG [SG] and w /∈ NH [SH]. And then
if we take the edge (v,w) in G ∨ H , it cannot be covered by S, for there is no vertex in SH
or SG adjacent to both vertices and S = SG ∪ SH . Thus, S is not a neighborhood set of the
join, reaching the contradiction that proves the theorem. �

Lemma 2 If G and H are graphs, then

αn(G ∨ H) = min{α2(G), α2(H)}.

Proof Let us first note that if a neighborhood-independent set of G ∨ H has size larger than
1, then it must have no edges belonging to E(G) or E(H). For in the join all edges between
vertices of G are in the closed neighborhood of any vertex of H and likewise between the
edges of H and the vertices of G. Similarly it cannot have any vertices, for every vertex in
G is in the closed neighborhood of every vertex of H .

Now, let us prove that αn(G ∨ H) ≥ min{α2(G), α2(H)}, by finding a neighborhood-
independent set of G ∨ H of that size. Without loss of generality, suppose α2(G) ≤ α2(H).
Let IG be an 2-independent set of G and IH be one of H , both of size α2(G). Clearly as both
IH and IG are independent sets in H and G, respectively, then they are also independent
sets in G ∨ H and so IH ∪ IG induces a complete bipartite subgraph of G ∨ H . Let M be a
perfect matching between IG and IH in G ∨ H . Clearly |M | = |IG | = |IH | = α2(G). We
will proceed to show that M is a neighborhood-independent set.

Suppose to the contrary that there are two edges in M , e1 and e2, such that there exists a
vertex u of V (G∨H) satisfying e1, e2 ⊆ N [u]. Let us write e1 = v1w1 and e2 = v2w2, with
v1, v2 ∈ IG andw1, w2 ∈ IH .Asu is a vertex of the join thenumust belong toV (G)orV (H).
If u ∈ V (G), then v1uv2 is a path of length 2 from v1 to v2, in G. If u ∈ V (H), then w1uw2

is a path of length 2 in H that connects w1 and w2. In both cases we reach a contradiction,
because both IG and IH were 2-independent sets. Therefore, M must be a neighborhood-
independent set of size α2(G) and the inequality αn(G ∨ H) ≥ min{α2(G), α2(H)} must
hold.

Now, if αn(G ∨ H) = 1, then by the previous inequality we have the equality we were
looking for. Let us then suppose that αn(G ∨ H) > 1, which by the first observations of this
proof implies that any neighborhood-independent set of the join must be a matching between
vertices of G and H . Let M be any neighborhood-independent set of size αn(G ∨ H). We
define YH and YG as the sets of vertices of H and G respectively such that YH = {w ∈
V (H) : there exists e ∈ M such that w ∈ e} and YG = {v ∈ V (G) : there exists e ∈

123

62 Ann Oper Res (2020) 286:55–86

M such that v ∈ e}. Clearly |YH | = |YG |, for every edge in M has one vertex in G and one
in H . We shall see now that both are 2-independent sets.

Suppose again by contradiction that there are two vertices in YG , v1 and v2, such that
dG(v1, v2) ≤ 2.This implies that theremust exist a vertexu ∈ V (G) such thatv1, v2 ∈ NG [u]
which clearly also means that v1, v2 ∈ NG∨H [u]. If we now take w1 and w2 in YH such
that viwi ∈ M for each i ∈ {1, 2}, then clearly v1w1 and v2w2 cannot be neighborhood-
independent edges because if u ∈ V (G), then both w1, w2 ∈ NG∨H [u]. This contradicts the
fact that M is a neighborhood-independent set. The contradiction proves that YG must be a
2-independent set of G. By the same reasoning, YH must be a 2-independent set of H . Hence
as |YG | ≤ α2(G) and |YH | ≤ α2(H), then |M | = |YH | = |YG | ≤ min{α2(G), α2(H)} and
therefore αn(G∨H) ≤ min{α2(G), α2(H)}, proving the reverse inequality and the theorem.

�

Now we shall extend this results to the join of more than two graphs. For this purpose we

state the following lemma, which is easy to prove but still useful.

Lemma 3 If G1, . . . ,Gk are graphs and k ≥ 2, then

γ (G1 ∨ · · · ∨ Gk) = min{2, γ (G1), . . . , γ (Gk)}.
Proof Let G = G1 ∨ · · · ∨ Gk . Clearly, γ (G) ≤ min{2, γ (G1), . . . , γ (Gk)} since any
dominating set of any of the graphsG1, . . . ,Gk as well as any set {v1, v2}where v1 ∈ V (G1)

and v2 ∈ V (G2) are dominating sets of G1 ∨· · ·∨Gk . Hence, if the formula were false, then
γ (G) < min{2, γ (G1), . . . , γ (Gk)}, which means that γ (G) = 1 and γ (G1), . . . , γ (Gk)

are greater than 1 all of them. Therefore, G has a universal vertex but none of G1, . . . ,Gk

has a universal vertex, which contradiction the fact that G = G1 ∨ · · · ∨ Gk . �

We now give a formula of the neighborhood number for the join of more than two graphs.

Corollary 1 If G1, . . . ,Gk are graphs and k ≥ 3, then

ρn(G1 ∨ · · · ∨ Gk) = min{3, γ (G1) + 1, . . . , γ (Gk) + 1, ρn(G1), . . . , ρn(Gk)}.
Proof The formula is valid when k = 3 because Lemmas 1 and 3 imply

ρn(G1 ∨ G2 ∨ G3) = min{γ (G1 ∨ G2) + 1, γ (G3) + 1, ρn(G1 ∨ G2), ρn(G3)}
= min{min{2, γ (G1), γ (G2)} + 1, γ (G3) + 1,

min{γ (G1) + 1, γ (G2) + 1, ρn(G1), ρn(G2)}, ρn(G3)}
= min{3, γ (G1) + 1, γ (G2) + 1, γ (G3) + 1, ρn(G1),

ρn(G2)}, ρn(G3)}
Moreover, if the formula is valid when k = t for some t ≥ 3, then it is also valid when
k = t + 1 since Lemma 3 implies

ρn(G1 ∨ · · · ∨ Gt+1) = min{γ (G1 ∨ · · · ∨ Gt) + 1, γ (Gt+1) + 1,

ρn(G1 ∨ · · · ∨ Gt), ρn(Gt+1)}
= min{min{2, γ (G1), · · · , γ (Gt)} + 1, γ (Gt+1) + 1,

min{3, γ (G1) + 1, · · · , γ (Gt) + 1, ρn(G1), · · · , ρn(Gt)},
ρn(Gt+1)}

= min{3, γ (G1) + 1, · · · , γ (Gt+1) + 1, ρn(G1), . . . , ρn(Gt+1)}.
By induction, the formula is valid for every k ≥ 3. �

123

Ann Oper Res (2020) 286:55–86 63

And nowwe state the following immediate consequence of Lemma 2, for future reference.

Corollary 2 If G1, . . . ,Gk are graphs and k ≥ 3, then

αn(G1 ∨ · · · ∨ Gk) = 1.

Proof Since every two vertices of G1 ∨ · · · ∨ Gk−1 are at distance at most two, α2(G1 ∨
· · · ∨ Gk−1) = 1. Hence, Lemma 2 implies that αn(G1 ∨ · · · ∨ Gk) = min{α2(G1 ∨ · · · ∨
Gk−1), α2(Gk)} = 1. �

Using the previous two results, we will characterize which graphs that are formed by
the join of two non-null subgraphs are minimally non-neighborhood-perfect or equivalently
which are the only minimally non-neighborhood-perfect graphs that have a disconnected
complement (Theorem 5). For this purpose, we shall first define a subclass of neighborhood-
perfect graphs, the strongly neighborhood-perfect graphs.

Definition 2 We shall say that a graph G, is strongly neighborhood-perfect if α2(G ′) =
ρn(G ′) for every induced subgraph G ′ of G.

Definition 3 We shall say that a graph G, is minimally non-strongly neighborhood-perfect
when α2(G) < ρn(G), but α2(G ′) = ρn(G ′) for every proper induced subgraph G ′, of G.
That is, it is not strongly neighborhood-perfect, but all its proper induced subgraphs are.

Remark 1 Clearly all strongly neighborhood-perfect graphs are neighborhood-perfect. It
follows from the string of inequalities: α2(G) ≤ γ (G) ≤ αn(G) ≤ ρn(G), which was
showed in Sect. 2 to hold for every graph G, and the equality demanded by the definition
of strongly neighborhood-perfect graphs. Moreover it is also true that if G is neighborhood-
perfect, then it is strongly neighborhood-perfect if and only if α2(G ′) = αn(G ′) for every
induced subgraph G ′.

We shall see which graphs satisfy that α2(G ′) = αn(G ′) for every induced subgraph G ′.
But before giving this characterization we shall prove a useful general property of chordal
Pk-free graphs.

Lemma 4 Any k-walk W in a Pk-free chordal graph must have at least two vertices that are
2 steps from each other in W and either are adjacent or the same vertex.

Proof Let G be a Pk-free chordal graph and W be a k-walk in G. Since G is Pk-free, then
W cannot be an induced path. This means that there must exist an integer p such that p ≥ 2
and there are at least two vertices ofW which are p steps from each other inW and are either
adjacent in G or the same vertex in G. We choose p as small as possible. If we show that
p = 2, then the assertion of the lemma follows.

Let us suppose by contradiction that p is greater that 2. We take two vertices inW that are
p steps from each other and either are adjacent or the same vertex in G, and consider the sub-
walk ofW of length p joining them. As the minimality of p implies that the vertices that are
at fewer than p steps from each other inW are different and nonadjacent, this sub-walk must
induce Cp or Cp+1 in G, depending on whether the two vertices are the same or adjacent.
But as the graph was chordal and p was greater than 2, this results in a contradiction, proving
the lemma. �

Lemma 5 A graph G satisfies α2(G ′) = αn(G ′) for every induced subgraph G ′ of G if and
only if G is P6-free chordal.

123

64 Ann Oper Res (2020) 286:55–86

Proof First we observe that α2(P6) = 2, while αn(P6) = 3. Hence, G must be P6-free for
the equality of the parameters to hold for every induced subgraph.

Now, let G be P6-free chordal, and let S ⊆ V (G)∪ E(G) be a neighborhood-independent
set of size αn(G) and of minimum number of edges. We shall show that S must contain only
vertices and therefore be a 2-stable set of G, proving the lemma (for α2(G) ≤ αn(G) is true
for all graphs).

Assume to the contrary that there is an edge e = xy ∈ S. As e cannot be replaced by x
in S, maintaining the neighborhood-independence (for S had minimum number of edges),
then there must exist an s ∈ S (an edge or a vertex), such that N [x] ∩ N [s] �= ∅. Thus, there
is a vertex x ′ ∈ N [x] ∩ N [s], but as e, s ∈ S, then x ′ /∈ N [y]. Moreover x ∈ N [x] ∩ N [y],
which implies that x /∈ N [s], meaning that there must be a vertex x ′′, such that x ′′ /∈ N [x]
and either x ′′ ∈ s if s is an edge or x ′′ = s if s is a vertex. But as x ′′ ∈ s (or x ′′ = s), and
x ′ ∈ N [s], then x ′′ ∈ N [x ′] and x ′′ /∈ N [x]. By a symmetry argument, there must be vertices
y′ and y′′, such that y′ ∈ N [y]−N [x] and y′′ ∈ N [y′]−N [y]. But then x ′′ x ′ x y y′ y′′ form
a 6-walk where no two vertices that are two steps from each other are adjacent or the same.
This together with Lemma 4, results in a contradiction, proving that no edge can belong to S
and therefore S must be a 2-independent set of size αn(G). �

Using the previous characterization, we shall state the following coro, fully characterizing
strongly neighborhood-perfect graphs by forbidden induced subgraphs.

Corollary 3 If G is a graph, the following statements are equivalent:

1. G is strongly neighborhood-perfect
2. G is neighborhood-perfect ∩ {C4,C6, P6}-free
3. G is odd-sun-free ∩ P6-free chordal.

Proof Clearly, by Remark 1,G is strongly neighborhood-perfect if and only ifG is neighbor-
hood-perfect and α2(G ′) = αn(G ′) for every induced subgraph G ′, which, by Lemma 5,
holds if and only if G is neighborhood-perfect and P6-free chordal. But, as all odd holes are
forbidden induced subgraphs of neighborhood-perfect graphs (Lehel and Tuza 1986), then
G is neighborhood-perfect and P6-free chordal if and only if it is neighborhood-perfect and
{C4,C6, P6}-free, proving (1) if and only if (2). Moreover, by Theorem 1 a chordal graph is
neighborhood-perfect if and only if it is odd-sun-free, clearly implying (2) if and only if (3).

�

We shall now use the previous characterization to prove which are the only minimally

non-neighborhood-perfect graphs that have a disconnected complement.

Theorem 5 The only minimally non-neighborhood-perfect graphs with disconnected com-
plement are C6 ∨ 3K1, P6 ∨ 3K1, and C4 ∨ 2K1 = 3K2.

Proof Clearly a graphwith disconnected complement can be thought of as the join of twonon-
null graphs. Let us consider we have a minimally non-neighborhood-perfect graph G ∨ H .
By minimality G and H must be neighborhood-perfect, but as G ∨ H is minimally non-
neighborhood-perfect, ρn(G ∨ H) �= αn(G ∨ H) which, by Lemmas 1 and 2, implies that
G or H must satisfy α2 �= ρn (because α2(W) < γ (W) + 1 is true for all graphs W , as was
shown in Sect. 2).

We shall note that if a graph is neighborhood-perfect but does not satisfy α2 = ρn, then
it is neighborhood-perfect but not strongly neighborhood-perfect, which, by (1) if and only
if (2) in Corollary 3, means that the graph must contain a C4, C6 or P6 as induced subgraph.

123

Ann Oper Res (2020) 286:55–86 65

Let us then suppose that both G and H do not satisfy αn = ρn. This means that both
must contain a C4, C6 or P6 as induced subgraph. If one of them contains an induced C4,
then G ∨ H must have C4 ∨ 2K1 = 3K2 as a proper induced subgraph, contradicting the
minimality of G ∨ H . On the other hand if none contain an induced C4, then they must
contain an induced C6 or P6, meaning that both must have at least an independent set of size
3. Hence G ∨ H must contain a P6 ∨ 3K1 or C6 ∨ 3K1 as a proper induced subgraph, but
by Lemmas 1 and 2, both have ρn = 3 �= 2 = αn, meaning that they are not neighborhood-
perfect. In both cases we have found a contradiction, therefore it cannot occur that both G
and H do not satisfy αn = ρn.

We need only to consider the case where one of the graphs does not satisfy α2 = ρn.
Let us say that G does not satisfy α2(G) = ρn(G) and, consequently, G has an induced
subgraph G ′ isomorphic to C4, C6 or P6. Now, as only G does not satisfy α2(G) = ρn(G),
then α2(G) < ρn(G) and α2(H) = ρn(H). Hence α2(G) < α2(H) ≤ α(H) because, if
not G ∨ H would be neighborhood-perfect. Thus we can take H ′ = (α2(G ′) + 1)K1 as an
induced subgraph of H , for α2(G ′) ≤ α2(G) < α(H). Then once again G ′ ∨ H ′ must be
a 3K2, C6 ∨ 3K1 or P6 ∨ 3K1. But now as G ′ ∨ H ′ is an induced subgraph of G ∨ H , by
minimality G ∨ H = G ′ ∨ H ′, proving the theorem. �

4 Structural characterizations

In this section we shall characterize by minimal forbidden induced subgraphs the class of
neighborhood-perfect graphs, restricted to the classes of P4-tidy graphs (Theorem6) and tree-
cographs (Theorem7). For thiswewill strongly rely on the characterization ofminimally non-
neighborhood-perfect graphs with disconnected complement shown in the previous section.
We will use Theorem 5 together with the fact that every disjoint union of neighborhood-
perfect graphs is neighborhood-perfect and the structures of P4-tidy and tree-cographs given
by Theorem 4 and Definition 1, respectively, to prove these characterizations.

We will first show the characterization restricted to P4-tidy graphs. For this, let us begin
by determining the values of αn(G) and ρn(G) for any connected and co-connected P4-tidy
graph G.

Lemma 6 If G is a nontrivial connected and co-connected P4-tidy graph, then one of the
following statements holds:

1. G is isomorphic to C5, ρn(G) = 3 and αn(G) = 2.
2. G is isomorphic to P5 or P5 and αn(G) = ρn(G) = 2.
3. G is a starfish with t ends or a fat starfish arising from one by substituting a vertex of

S ∪ C by K2 or 2K1, and αn(G) = ρn(G) = t .
4. G is an urchin or a fat urchin with at least 3 ends, and ρn(G) = 2, αn(G) = 1.

Proof Since G is P4-tidy, connected and co-connected, it follows by Theorem 4 that G is
isomorphic to C5, P5, P5, a starfish, a fat starfish, an urchin or a fat urchin. The values of ρn
and αn for C5, P5 and P5 can be easily checked by simple inspection.

We shall then consider first the case where G is a starfish with partition (S,C, R), such
that |S| = t , or a fat starfish arising from such a starfish by the substitution of a vertex c of
C by a K2, or 2K1, or by the substitution of a vertex s from S by a K2 or 2K1. If G is a
starfish or a fat starfish with the substitution of a vertex from S then all C is a neighborhood
cover set of size t , if on the other hand it is a fat starfish where a vertex c of C has been
substituted by a K2, we take only one of the vertices by which c has been substituted and

123

66 Ann Oper Res (2020) 286:55–86

the rest of C . If G is a fat starfish arising by substituting a vertex c of C by a 2K1, then
C − {c} ∪ {s}, where s was the only neighbor of c in S, is a neighborhood cover set of size
t of G. Thus ρn(G) ≤ t . Now in all previous cases, if we take t edges that connect S to
C , we get a neighborhood-independent set of size t . In the cases where a vertex has been
substituted by a K2 or 2K1, we choose only one of the two edges from S to C involved and
all the other edges from S to C . In the case of a starfish that is not fat, we take all edges from
S to C . Thus we have found in all cases a neighborhood-independent set of size t , implying
that αn(G) ≥ t . And as αn(G) ≤ ρn(G), we have that αn(G) = ρn(G) = t .

Let us now note that an urchin (or fat urchin) of less than 3 ends is also a starfish (or fat
starfish). Therefore if we assume without loss of generality that G is not a starfish, the only
possibility remaining is that G is an urchin with at least 3 ends.

If G is an urchin or fat urchin with partition (S,C, R), and |S| = t ≥ 3, we shall see that
αn(G) = 1 and ρn(G) = 2. As there is no universal vertex in G, then ρn(G) ≥ 2. Moreover,
if we take two vertices of C , taking care of not taking any vertex from the substituting K2 or
2K1 in caseG is a fat urchin, we clearly obtain a neighborhood set. Hence clearly ρn(G) = 2.
Now let us see that indeed we cannot have a neighborhood-independent set of size 2. This
becomes clear if we observe that in all cases, if G is an urchin or a fat urchin, all vertices and
edges are in at least the neighborhood of t − 1 vertices of C . That is, except for the vertices
in S (or, eventually, of the K2 or 2K1 substituting a vertex of S), all the rest of the vertices
are adjacent to all vertices in C , and these are adjacent to t − 1 vertices of C . Moreover all
edges between vertices of R ∪ C are in the neighborhood of t vertices of C , and all edges
between vertices of S and C are in the neighborhood of t − 1 vertices of C . Thus, if we take
any two edges or vertices of G, as t ≥ 3, then there must at least be one vertex of C that
includes them both in its neighborhood. Therefore, αn(G) = 1. �

We then state and prove the forbidden induced subgraph characterization of neighborhood-
perfect graphs restricted to the class of P4-tidy graphs.

Theorem 6 If G is a P4-tidy graph, then it is neighborhood-perfect if and only if it is
{3K2, 3−sun,C5}-free.
Proof IfG is neighborhood-perfect, then it cannot contain as induced subgraph a 3K2, 3-sun
or C5 because none of these graphs are neighborhood-perfect and the class of neighborhood-
perfect graphs is hereditary. We must then only prove that if G is not neighborhood-perfect
then it must contain 3K2, 3-sun, or C5 as an induced subgraph.

Suppose that G is a P4-tidy graph which is not neighborhood-perfect. Then it must con-
tain a minimally non-neighborhood-perfect graph as induced subgraph; let H be any such
subgraph. The minimality of H implies that it must be connected. If H is disconnected, then
H is a minimally non-neighborhood-perfect graph with disconnected complement, which by
Theorem 5 means that it must be C4 ∨ 2K1 = 3K2 , C6 ∨ 3K1 or P6 ∨ 3K1. But as the class
of P4-tidy graphs is hereditary, H must be P4-tidy, which implies that it cannot be C6 ∨ 3K1

or P6 ∨ 3K1. This is because both graphs contain four vertices with at least two companion
vertices, namely any consecutive four vertices of the C6 or the center vertices of the P6, and
therefore are not P4-tidy. Hence if H is disconnected, then H can only be 3K2.

Let us suppose now that both H and H are connected. As H is minimally non-neighbor-
hood-perfect, then αn(H) must be different from ρn(H). Which means, by Lemma 6, that
H must be a C5 or an urchin or fat urchin with at least 3 ends. Lastly, if H is an urchin or fat
urchin with at least 3 ends, then it must have αn(H) = 1 and ρn(H) = 2. But by Theorem 2,
the only minimally non-neighborhood-perfect graphs with αn(H) = 1 are the 3K2 and 3-sun
and the only one of these that is an urchin is the 3-sun. Therefore, as H is connected and
co-connected, it must be a C5 or a 3-sun.

123

Ann Oper Res (2020) 286:55–86 67

We conclude that H must be isomorphic to 3K2, C5 or 3-sun and since, by construction,
H is an induced subgraph of G, this proves the theorem. �

Having proved Theorem 6, we proceed to prove the characterization of neighborhood-
perfect graphs restricted to the class of tree-cographs. We shall work with the structural
definition of a tree-cograph and strongly rely on the characterization of minimally non-
neighborhood-perfect graphs with disconnected complement given in Theorem 5.

Lemma 7 If G is a connected and co-connected tree-cograph, then one of the following
statements holds:

1. G is a tree and ρn(G) = αn(G) = ν(G) = β(G),
2. G is a connected complement of a tree and ρn(G) = 2.

Proof By the definition of tree-cographs, if G is connected and co-connected, then G must
be a tree with connected complement or a connected complement of a tree.

If G is a tree then it is bipartite. It was already noted in Lehel and Tuza (1986) and
Sampathkumar and Neeralagi (1985) that for any bipartite graph G, αn(G) = ν(G) and
ρn(G) = β(G), which by the König-Egerváry theorem implies that αn(G) = ν(G) =
β(G) = ρn(G).

IfG is a connected complement of a tree, thenG has at least one leaf; that leaf and its only
neighbor in G clearly form a neighborhood set of G of size 2. Moreover as G has connected
complement, there cannot be a neighborhood set of size 1, for this would imply the existence
of a universal vertex inG and an isolated vertex inG. Hence ρn(G) = 2, proving the theorem.

�

Corollary 4 There are no connected and co-connected tree-cographs that are minimally
non-neighborhood-perfect.

Proof If a graph G is a connected and co-connected tree-cograph, then, by definition, G
is a tree or the complement of a tree. By Lemma 7, a tree cannot be non-neighborhood-
perfect. Moreoveer, if G is the complement of a tree, then ρn(G) = 2, which means that
if G is minimally non-neighborhood-perfect, then αn(G) must be 1. But by Theorem 2, the
onlyminimally non-neighborhood-perfect graphs with αn(G) = 1 are the 3-sun and the 3K2,
none ofwhich are complements of trees. Hence ifG is aminimally non-neighborhood-perfect
graph, G cannot be a connected and co-connected tree-cograph. �

We are then ready to state and prove the characterization of neighborhood-perfect graphs
restricted to the class of tree-cographs.

Theorem 7 If G is a tree-cograph, then G is neighborhood-perfect if and only if G is
{3K2, P6 ∨ 3K1}-free.
Proof It is clear that if G is neighborhood-perfect, it cannot have 3K2 or P6 ∨ 3K1 as
induced subgraphs, for they are both minimally non-neighborhood-perfect graphs. We shall
now prove that if it does not have those graphs as subgraphs, then it is neighborhood-perfect.

Suppose that G is not neighborhood-perfect. Hence G must contain an induced subgraph
H that is minimally non-neighborhood-perfect. Clearly by minimality, H cannot be discon-
nected. If H has disconnected complement, then it is a minimally non-neighborhood-perfect
graph with disconnected complement, and by Theorem 5, it must be C4 ∨ 2K1 = 3K2,
C6 ∨ 3K1 or P6 ∨ 3K1. But C6 ∨ 3K1 is not a tree-cograph, because it is clearly neither a

123

68 Ann Oper Res (2020) 286:55–86

tree, nor the complement of a tree, nor the disjoint union of two tree-cographs nor the join
of two tree-cographs. Thus if H has disconnected complement, it must be 3K2 or P6 ∨ 3K1.

On the other hand if H has a connected complement, then it will be a connected and
co-connected tree-cograph. However by Corollary 4, if H is minimally non-neighborhood-
perfect, then it cannot be a connected and co-connected tree-cograph. Hence H can only be
3K2 or P6 ∨ 3K1, and as H was by construction an induced subgraph of G, this proves the
theorem. �

5 Algorithms and complexity results

In this section we shall present linear-time algorithms to solve the recognition problems
of neighborhood-perfect graphs, as well the problems of finding an optimal neighborhood-
independent set and neighborhood-covering set, restricted to the classes of P4-tidy graphs
and tree-cographs.Moreover, we shall prove that although the problem of determining αn(G)

and ρn(G) can be solved in linear time for complements of trees, it becomes N P-hard for
complements of bipartite graphs.

5.1 Recognition algorithms

By using the particular structure of the modular decomposition trees of P4-tidy graphs and
tree-cographs, and Theorems 6 and 7, we will show two linear-time algorithms that solve the
recognition problem of neighborhood-perfect graphs restricted to these two classes. Both of
these algorithms work on the modular decomposition tree of the input graph.

We shall begin by describing a linear-time algorithm that decides whether or not a P4-tidy
graph is neighborhood-perfect. Let us first remember that, as was said in Sect. 2, it follows
from Theorem 4 that if h is an N-node of the modular decomposition tree of a P4-tidy graph
G, then π(h) must be isomorphic to C5, P5, P5, a prime starfish or a prime urchin. Moreover
in O(nπ (h)) time it can be decided whether or not π(h) is a starfish (resp. urchin) and, if
affirmative, its partition can be found within the same time bound.

Our recognition algorithm for neighborhood-perfect graphs, restricted to the class of P4-
tidy graphs, performs a simple traversal of the modular decomposition tree of the input
graph, which, we shall show, makes the algorithm terminate in O(n) time provided the
modular decomposition tree is given as an input. The algorithm will strongly rely on the
characterization by forbidden induced subgraphs proven in Theorem 6.

In order to simplify the recognition algorithm, we shall first define a boolean function
C : V (T (G)) → {True, False}, where T (G) is the modular decomposition tree of G, and,
for each node h of T (G), C(h) = True if and only if G[h] contains an induced C4. We
shall prove that, given as input the modular decomposition tree T (G) of any P4-tidy graph
G, Algorithm 1 can be implemented so as to compute C(h) for each node h of T (G) in
O(n) overall time. Once we have proved so, we shall use Algorithm 1 as a subroutine in
Algorithm 2, which recognizes neighborhood-perfect graphs in the class of P4-tidy graphs.

Below, we prove that these two algorithms are indeed correct and run in linear-time.

Theorem 8 Algorithm 1 correctly computes C(h) for every node h of any given modular
decomposition tree T (G) in O(n) time, whenever G is a P4-tidy graph.

Proof Clearly the algorithm setsC(h) correctly for each leaf h of T (G). Let h be any nonleaf
node of T (G) and suppose, by induction, that the algorithm correctly sets C(h′) for each
of the nodes h′ visited before h. It is then easy to check that if the algorithm sets C(h) to

123

Ann Oper Res (2020) 286:55–86 69

Algorithm 1: Computes C(h) for every node of T (G), with G a P4-tidy graph
Input: A P4-tidy graph G and its modular decomposition tree T (G)

Output: The modular decomposition tree T (G) with the value C(h) attached to each node h of it,
where C(h) = True if and only if G[h] contains an induced C4

1 Step 1:
2 Traverse the nodes of T (G) in post-order, and in each node h do:
3 if h is a leaf then C(h) := False
4 else if C(h′) is True for any child h′ of h or
5 h is a P-node having at least two nonleaf children or
6 π(h) is P5 or
7 π(h) is a starfish or an urchin and any vertex of its body represents 2K1 then
8 C(h) := True

9 else C(h) := False

10 Step 2:
11 Output C(h) for every node h of T (G)

Algorithm 2: Recognition of neighborhood-perfectness of P4-tidy
Input: A P4-tidy graph G
Output: Determines whether or not G is a neighborhood-perfect graph
Initialization: Build the modular decomposition tree T (G) of G and compute C(h) for every node h of

T (G) using Algorithm 1
1 Step 1:
2 Traverse every node h of T (G) in any order and do:
3 if h is an N-node then
4 if π(h) is a C5 or an urchin with at least 3 ends then
5 output “G is not neighborhood-perfect” and stop

6 else if π(h) is a fat starfish such that a vertex of its body represents 2K1 and C(hr) is True for
hr the child representing the head of π(h) then

7 output “G is not neighborhood-perfect” and stop

8 else if h is an S-node then
9 if h has at least three nonleaf children then

10 output “G is not neighborhood-perfect” and stop

11 else if h has exactly two nonleaf children h1 and h2 and at least one of C(h1) and C(h2) is
True then

12 output “G is not neighborhood-perfect” and stop

13 Step 2:
14 output “G is neighborhood-perfect”

True, G[h] contains an induced C4. Conversely, suppose that G[h] contains an induced C4

and we shall prove that the algorithm correctly sets C(h) to True. Thus, if any vertex h′ of
π(h) represents a graph containing an inducedC4, thenC(h′) is set to True and consequently
also C(h) is set to True. Hence, we assume without loss of generality, that every vertex of
π(h) represents a C4-free graph. Since G[h] contains an induced C4, Theorem 3 implies that
π(h) is P5, an edgeless graph, a complete graph, a starfish or an urchin. If π(h) contains an
induced C4, necessarily π(h) is isomorphic to P5 and the algorithm correctly sets C(h) to
True. Thus, we assume without loss of generality, that π(h) is C4-free. In particular, G[h] is
not P5. If there is a nonsimplicial vertex h′ of π(h) representing a non-complete graph, then
G[h] is a starfish or an urchin and h′ is a vertex of the body representing a non-complete

123

70 Ann Oper Res (2020) 286:55–86

graph; if so, Theorem 4 implies that h′ represents 2K1 and the algorithm correctly sets C(h)

to True. Hence, we assume without loss of generality, that every nonsimplicial vertex of
π(h) represents a complete graph. We conclude that each induced C4 of G[h] arises from
two adjacent simplicial vertices h1 and h2 of π(h), each of which represents a non-complete
graph. Necessarily, h is a P-node and h1 and h2 are nonleafs. Also in this case the algorithm
correctly sets C(h) to True. This completes the proof of the correctness of the algorithm.

As for the complexity of the algorithm, it is clear that each node is seen only once, and
that every node is traversed after all of its children. Hence, as T (G) has at most 2n nodes,
the algorithm can easily be implemented to check for every node h if C(h′) is True for some
child h′ or if h is a P-node with at least two nonleaf children, all in O(n) time. Moreover,
π(h) is P5, an urchin or starfish only if h is an N-node. In O(nπ (h)) time it can be checked if
any N-node h of a P4-tidy graph is P5, C5, P5 or an urchin or starfish and in these cases find
their partitions. Thus, it can be verified for all N-nodes h if π(h) is P5 or if it is a starfish or
urchin with a vertex of its body representing a 2K1, in time O(

∑
h an N-node nπ (h)). As was

already stated in Sect. 2, the sum of nπ (h) for all N-nodes h is at most 2n. Therefore the
whole algorithm can be implemented in O(n) time. �

Theorem 9 Algorithm 2 correctly determines if a P4-tidy graph G is neighborhood-perfect,
in linear-time. Moreover, it works in O(n) time if the modular decomposition tree of G is
given as part of the input.

Proof In order to prove that Algorithm 2 correctly decides neighborhood-perfectness of any
given P4-tidy graph,we shall prove that it outputs that the graph is neighborhood-perfect if and
only if it is {C5, 3-sun, 3K2}-free. This together with Theorem 6 will imply the correctness
of the algorithm.

Suppose that Algorithm 2 outputs thatG is not neighborhood-perfect. Hence the algorithm
stopped in Step 1. There are thus four possible cases. If it stopped in line 5, then G contains
an induced C5 or 3-sun, because every urchin with at least 3 ends contains a 3-sun. If it
stopped in line 7 then π(h) is a fat starfish, such that the vertices of hr induce a C4 and the
and a vertex of the body induces a 2K1 in G. But then, there is an induced 2K1 ∨C4 = 3K2

in G. In the other two possible cases, the h that causes the algorithm to stop is an S-node
and consequently each of its nonleaf children represents a non-complete graph. On the one
hand, if the algorithm stopped in line 10, then any set consisting of a pair of nonadjacent
vertices of each of the three nonleaf children of h induces 2K1 ∨ 2K1 ∨ 2K1 = 3K2 in G.
On the other hand, if the algorithm stopped in line 12, then the vertices of an induced C4 of
the graph represented by h1 or h2 together with a pair of nonadjacent vertices of the graph
represented by the other one induce C4 ∨ 2K1 = 3K2 in G as well. We conclude that if the
algorithm outputs that G is not neighborhood-perfect, then G contains an induced C5, 3-sun
or 3K2.

Let us now prove that, conversely, if G contains any of the three forbidden induced
subgraphs, then the algorithm outputs that G is not neighborhood-perfect.

Suppose first that G contains an induced C5 or an induced 3-sun. By Theorem 3, there
is some N-node h of T (G) such that π(h) contains an induced C5 or 3-sun. By Theorem 4,
π(h) is C5 or an urchin with at least three ends and the algorithms outputs that G is not
neighborhood-perfect in line 5. Finally, let us consider the case when G contains an induced
3K2. Let h be a node of T (G) such that G[h] contains an induced 3K2 but none of the graphs
represented by its children does. Clearly h cannot be a P-node, so it must be an N-node or an
S-node. If h is an N-node and G[h] contains an induced 3K2, then π(h) must be an urchin
or a starfish. However, if π(h) were an urchin, it would contain a 3-sun. Hence, because
we have already covered the case with an induced 3-sun, without loss of generality, let us

123

Ann Oper Res (2020) 286:55–86 71

suppose that it is not an urchin. Suppose π(h) is a starfish with partition (S,C, R) with the
nodes of S and C being leafs of T (G) and R consisting on a single node hr . By hypothesis,
the 3K2 cannot be entirely in hr ,C , or S. Since every vertex of a graph represented by a node
in S has degree at most 2 in G[h], no vertices of graphs represented by nodes in S can be
vertices of any induced 3K2 of G[h]. Now, as each vertex of a graph represented by a vertex
of C are adjacent to every vertex of the graph represented by hr , and 3K2 has no universal
vertex, then each induced 3K2 must have at least two nonadjacent vertices belonging to
graphs represented by a vertex of C . But this is only possible if G[h] is a fat urchin where
some node of C represents 2K1. If this is the case, then an induced 3K2 can only be formed
if there is an induced C4 in the graph represented by hr . To conclude if h is an S-node, since
3K2 = C4∨2K1 = 2K1∨2K1∨2K1, the only two possibilities forG[h] to have an induced
3K2 while none of its children have it, are that there are more than three children representing
non-complete graphs or two children, one containing a C4 and the other one representing a
non-complete graph. In all cases the algorithm outputs that G is not neighborhood-perfect,
which completes the proof of the correctness of the algorithm.

The time complexity of the algorithm can easily be seen to be O(n + m) and O(n) if
the decomposition tree is given. That the Initialization can be performed in O(n + m) time
follows from the remarks made in Sect. 2.2, and Theorem 8 (in particular if the modular
decomposition is already given, the Initialization can be performed in O(n) time). In Step 1
we perform O(nπ (h)) operations in every node h of T (G). Hence, as the sum of nπ (h) over
all nodes h is at most 2n, the algorithm runs in O(n + m) time and even in O(n) time if the
modular decomposition tree T (G) is already given in the input. �

Having presented the algorithm for P4-tidy graphs we shall give another one to decide
neighborhood-perfectness of tree-cographs in linear-time.

As was already pointed out in Sect. 2, the N-nodes of the modular decompositions of
tree-cographs represent only trees and complement of trees. Moreover neighborhood-perfect
tree-cographs were characterized in Theorem 7 as tree-cographs having no 3K2 or P6 ∨ 3K1

as induced subgraphs. We shall use this characterization and the modular decomposition of
tree-cographs to achieve a linear-time recognition algorithm.

We shall first define two functions defined on the nodes h of the modular decomposition
tree T (G) of a graph G. Let P : V (T (G)) → {True, False}, such that P(h) = True if
and only if G[h] has an induced P6. And let α : V (T (G)) → N, such that α(h) = α(G[h]).

Algorithm 3 computes both P(h) and α(h) for all nodes in a modular decomposition tree
T (G) of a tree-cograph. It computes as well C(h) as was defined in above, all in O(n) time,
given the modular decomposition tree. It uses the fact that computing α(T) can be done in
time O(|V (T)|), for any tree T (Savage 1982).

Algorithm 4 is a linear-time algorithm, that uses Algorithm 3 to determine whether any
given tree-cograph is neighborhood-perfect.

We shall proceed to prove that both Algorithms 3 and 4 are both correct and run in the
previously stated time bounds.

Theorem 10 Algorithm 3 correctly computes C(h), P(h) and α(h) for every node h of a
given modular decomposition tree T (G) in O(n + m) time, whenever G is a tree-cograph.

Proof The nodes of T (G) are traversed in post-order, meaning that when the algorithm
computes the functions C , P , and α for h, all the children of h have already been processed.
It is clear that if h is a leaf, the functions are correctly computed. Let us prove then that
for each node h that is not a leaf, the functions are correctly computed, assuming they were
correctly computed for the children of h.

123

72 Ann Oper Res (2020) 286:55–86

Algorithm 3: Computes α(h), P(h) and C(h) for every node h of T (G), with G a
tree-cograph

Input: A P4-tidy graph G and its modular decomposition tree T (G)

Output: C(h), P(h) and α(h) for every node h of T (G)

1 Step 1:
2 Traverse the nodes of T (G) in post-order, and in each node h do:
3 if h is a leaf then C(h) := P(h) := False and α(H) := 1
4 else if h is a P-node with children h1, . . . , hk then
5 C(h) := ∨k

i=1 C(hi), P(h) := ∨k
i=1 P(hi), α(h) := ∑k

i=1 α(hi)

6 else if h is a S-node with children h1, . . . , hk then
7 α(h) := max{α(hi) : 1 ≤ i ≤ k}, P(h) := ∨k

i=1 P(hi),
8 if h has at least two nonleaf children then C(h) := True

9 else C(h) := ∨k
i=1 C(hi)

10 else if π(h) is a tree with children h1, . . . , hk then
11 compute α(G[h]) in linear-time and assign it to α(h), C(h) := False
12 if the longest path in π(h) is of length at least 6 then P(h) := True
13 else P(h) := False

14 else if π(h) is the complement of a tree with children h1, . . . , hk then
15 α(h) := 2, P(h) := False

16 if π(h) has an induced matching of size at least 2 then
17 C(h) := True

18 else C(h) := False

19 Step 2:
20 Output C(h), P(h) and α(h) for every node h of T (G)

Algorithm 4: Recognition of neighborhood-perfectness of tree-cograph
Input: A tree-cograph G
Output: Determines whether G is a neighborhood-perfect graph
Initialization: Build the modular decomposition tree T (G) of G and compute C(h), P(h), and α(h)

for every node h of T (G) using Algorithm 3
1 Step 1:
2 Traverse every node h of T (G) in any order and do:
3 if h is an S-node then
4 if h has at least three nonleaf children then
5 output “G is not neighborhood-perfect” and stop

6 else if h has exactly two nonleaf children h1 and h2 then
7 if C(h1) or C(h2) is True then
8 output “G is not neighborhood-perfect” and stop

9 else if P(h1) is True and α(h2) ≥ 3 or vice versa then
10 output “G is not neighborhood-perfect” and stop

11 if h is an N-node, with π(h) the complement of a tree then
12 if G[h] contains an induced matching of size at least 3 then
13 output “G is not neighborhood-perfect” and stop

14 Step 2:
15 output “G is neighborhood-perfect”

If h is a P-node, then the maximum independent set of G[h] is the union of the maximum
independent sets of each component, moreover it contains an induced P6 or C4 if and only
if one of the components has one.

123

Ann Oper Res (2020) 286:55–86 73

If h is an S-node, then the maximum independent set of G[h] is an independent set of
one of the graphs represented by its children. It is as well clear that as P6 has a connected
complement, it must be contained in one of the components of G[h], which are the graphs
represented by the children of h. As for theC4, since it can be formed by the join of two 2K1,
it can be an induced subgraph of G[h] if and only if it is an induced subgraph of the graph
represented by some of the children of h or if there are two nonleaf children of G (because
the join of one non-edge from each of the graphs represented by them form an induced C4).
Thus the only case that remains to be considered is when h is an N-node.

If h is an N-node, with π(h) a tree, then, as G[h] is a tree, it cannot contain an induced
C4, and it contains an induced P6 if and only if there are two vertices at distance 5 or more.
If h is an N-node and π(h) is the complement of a tree with connected complement, then
α(G[h]) = 2 because it cannot be greater than 2 (π(h) would contain a C3) and if it were 1,
then π(h)would be complete and therefore have a disconnected complement. SimilarlyG[h]
cannot contain an induced P6, because it has three independent vertices that would form a
C3 in the complement of π(h). Finally as C4 = 2K2, π(h) = G[h] contains an induced C4

if and only if π(h) contains an induced matching of size 2.
To prove that the algorithm runs in O(n + m) time, we shall see that for every node of

T (G), it performs O(nπ (h)) operations, except for the N-nodes h with π(h) isomorphic to
the complement of a tree, in which the number of operations is in O(nπ (h) + mπ (h)). As
mentioned in Sect. 2 the sum of nπ (h) over all nodes of T (G) is at most 2n, since all edges
in π(h), for h an N-node are in one-to-one correspondence with edges of G, and two graphs
represented by two different N-nodes are vertex-disjoint, the sum of mπ (h) for all N-nodes
with π(h) the complement of a tree must be at most m.

It is clear that if h is a leaf, a P-node, or an S-node, then the number of operations is
proportional to nπ (h). If h is an N-node with π(h) isomorphic to a tree, then using any of
the algorithms in Mitchell et al. (1975, 1979) and Savage (1982) a maximum cardinality
independent set can be found inO(nπ (h)) time. And using the algorithm, suggested by Dijk-
stra in the sixties and formally proved in Bulterman et al. (2002), to find a maximum path
in trees it can be easily tested if the longest path in π(h) has size greater or equal to 6 in
O(nπ (h)) time. The last case to consider is when h is an N-node, with π(h) isomorphic to the
complement of a tree. Because π(h) has �((nπ (h)2) edges, then it can be complemented in
O(mπ (h)) time. Once complemented, the size of the greatest induced matching can be deter-
mined in O(nπ (h) time using any of the algorithms in Fricke and Laskar (1992); Golumbic
and Lewenstein (2000) and Zito (2000). This fact together with the observations made in the
previous paragraph imply that the whole algorithm can be implemented to run in O(n + m)

time. �

Theorem 11 Algorithm 4 correctly determines whether any given tree-cograph G is
neighborhood-perfect, in O(n + m) time.

Proof To prove the correctness of this algorithm, we shall apply the same reasoning as in the
proof of Theorem 9, but using the subgraph characterization of neighborhood-perfect graphs
among tree-cographs proved in Theorem 7. We will then prove that the algorithm outputs
that the graph G is neighborhood-perfect if and only if G is {P6 ∨ 3K1, 3K2}-free.

Let see first that if the algorithm outputs that the graph is not neighborhood-perfect, then
it must contain one of the forbidden induced subgraphs. It must stop in Step 1. If it stops in
line 5, then G[h] must contain an induced 3K2 = 2K1 ∨ 2K1 ∨ 2K1; if it stops in line 8 then
it must contain an induced C4 ∨ 2K1 = 3K2. Moreover if it stops in line 10, then one of the
two children of h contains an induced P6 and the other one has an independent set of size at

123

74 Ann Oper Res (2020) 286:55–86

least 3, implying that G[h] contains an induced P6 ∨ 3K1. Lastly if it stops in line 13, then
G[h] is the complement of a tree that contains an induced 3K2.

To conclude the if and only if proof, suppose now that G contains one of the two for-
bidden induced subgraphs, and let us see that the algorithm must then output that G is not
neighborhood-perfect. IfG contains one of the forbidden induced subgraphs, then there must
be a node h of T (G) such that G[h] contains the induced subgraph, but none of its children
does. Clearly h cannot be a P-node. Moreover, h cannot be an N-node with π(h) isomorphic
to a tree, because both forbidden graphs have cycles. Thus h must be a S-node or an N-node
with π(h) isomorphic to the complement of a tree. If h is a S-node and G[h] contains an
induced 3K2, then, as was shown in the proof of Theorem 9, either h has three nonleaf chil-
dren or has exactly two nonleaf children one of which contains an induced C4. On the other
hand if h is an S-node but G[h] contains an induced P6 ∨ 3K1, then as both P6 and 3K1 are
not the join of any other graph, there must be two children of h, one representing a graph
containing an induced P6 and the other one a graph having an independent set of size at least
3. All of these cases are considered in lines 8, 5, and 10. Finally if h is an N-node, with
π(h) the complement of a tree, then G[h] cannot contain an induced 3K1 ∨ P6, because the
complement of a 3K1 would be a C3, and G[h] is the complement of a tree. If G[h] contains
an induced 3K2, then it could only be because in the complement of π(h) there is an induced
3K2, which is the same as saying that π(h) has an induced matching of size at least 3. Again
this is tested in line 13. So we have proved that if G contains one of the forbidden induced
subgraphs, then the algorithm outputs that G is not neighborhood-perfect, concluding the
proof of the if and only if.

To see that the algorithm runs in O(n + m) time, we shall use the same argument as in
Theorem 10. First recall that as was mentioned in Sect. 2 we can construct the modular tree in
linear-time and, as was already proven, run Algorithm 3 in linear-time. Now, for every node
h in T (G), if h is a P-node or an N-node with π(h) a tree, the algorithm does no operations.
If h is an S-node, then it clearly can determine the number of children hi of h and check the
values ofC(hi), P(hi) and α(hi) for all of them, inO(nπ (h)) time. Finally if h is an N-node,
with π(h) the complement of a tree, then, asmπ (h) ∈ �(nπ (h)2), we can complement π(h)

in O(mπ (h)) time. Once complemented, we can use any of the linear-time algorithms in
Fricke and Laskar (1992), Zito (2000) and Golumbic and Lewenstein (2000), to compute a
maximum induced matching of π(h) in O(nπ (h)) time. Thus the algorithm makes at most a
number of operations proportional to nπ (h) for every N-node h and tomπ (h) for the N-nodes
with π(h) the complement of a tree, which implies that it runs inO(n+m) time for the whole
graph. �

5.2 Optimal sets algorithms

In this section we shall present two new linear-time algorithms to compute a maximum
neighborhood-independent set, a minimum neighborhood set, a maximum 2-independent set,
and aminimumdominating set of P4-tidy graphs and tree-cographs.Wewill refer amaximum
neighborhood-independent set, a minimum neighborhood set, a maximum 2-independent set
and a minimum dominating set of a graph as optimal sets of the graph. As in the previous
section, we shall strongly use the properties of the modular decomposition trees of these two
classes.

First we shall present an algorithm that given a subroutine that computes the optimal sets of
graphs represented by the N-nodes of the modular decomposition tree (meaning that it com-
putes amaximumneighborhood-independent set, aminimumneighborhood-independent set,
a domination sets), finds optimal sets for the graphs represented by all the remaining nodes

123

Ann Oper Res (2020) 286:55–86 75

of the modular decomposition tree. This algorithm will be used for both classes of graphs,
changing only the routine that finds optimal sets for the graph represented by the N-nodes
(which have a different characterization in each class). It is also interesting to note that given
any other graph class with a known characterization of its modular decomposition tree, one
needs only to find a routine that finds optimal sets for the graph represented by the N-nodes
from optimal sets of its children, to obtain an algorithm that finds optimal sets in the whole
graph.

Given a graph G and its modular decomposition tree T (G), for any node h of T (G), let
Rn(h) be a list of vertices of G that form a neighborhood set of G[h] of minimum size,
An(h) be a list of vertices and edges forming a maximum neighborhood-independent set of
G[h], A2(h) be a list of vertices forming a 2-independent set of maximum size of G[h], and
D(h) be a list of vertices of G constituting a minimum dominating set of G[h]. We will call
these four lists, optimal lists for the node h. Algorithm 5 will show how to recursively obtain
optimal lists also for each node h, thus obtaining these lists for the root of T (G), which we
shall call An(G), Rn(G), A2(G) and D(G), respectively. For this purpose, Algorithm 5 will
assume that we have a subroutine that given any N-node and optimal lists for the children
of the N-node, correctly obtains the lists for the N-node. In all the following algorithms, we
shall denote the concatenation of lists l1, . . . , lk , with 1 ≤ i ≤ k as

∑k
i=1 li . To denote the

concatenation of two lists l1 and l2, we will use l1 + l2. We will denote a list by listing its
elements between ‘〈’ and ‘〉’; for instance, a list whose elements are x, y, z will be denoted
by 〈x, y, z〉. If l is a list, we will denote by l[i] its i-th element.

Below, we prove that Algorithm 5 correctly calculates the desired lists, given that the
subroutine used to calculate the lists in the N-nodes works correctly. Moreover we shall
prove that if the N-nodes’ subroutine works in linear time with respect to π(h) for an N-node
h, then the Algorithm 5 works in linear time with respect to G.

Theorem 12 Algorithm 5 obtains correctly An(G), Rn(G), A2(G) and D(G), given that
the subroutine for N-nodes is correct.

Proof The algorithm traverses T (G) in post-order, meaning that before reaching a node h, all
its children have their optimal lists already computed. It is clear that if h is a leaf, thenG[h] is
a single vertex and then all optimal lists associated with h consist in precisely that vertex. Let
us now see that if we suppose the algorithm correctly builds optimal lists for all the children
h1, . . . , hk of an S-node or P-node, then it correctly computes them for the node itself. If h is
a P-node, then, since the graphs represented by its children are the components of G[h], it is
clear that all optimal sets required can be obtained by simply joining the lists of the optimal
sets for the children. If h is an S-node, it is easy to see that each of the lists A2(h), D(h),
An(h), Rn(h) represent a dominating set, a 2-independent set, a neighborhood-independent
set and a neighborhood set of G[h], respectively. Moreover, since the lengths of these lists
match the optimal values (according to Lemmas 1, 2, 3, and Corollaries 1, 2), the lists build
in this way are optimal lists. �

Lemma 8 Let c(h) be the number of edges made in line 11 of Algorithm 5 if k = 2, for h
and all the descendants of h in a modular decomposition tree T (G). Then, for every node h,
c(h) + α2(h) ≤ n(h), where α2(h) = α2(G[h]).
Proof To prove this statement, we shall use a structural induction in T (G). First, let us see
that for each leaf h, clearly c(h) = 0, α2(h) = 1, and n(h) = 1. Now, let us suppose that
we have a node h, not a leaf, and that the statement holds for every child hi , 1 ≤ i ≤ k
of h. If h is not an S-node, then clearly c(h) = ∑k

i=1 c(hi). As every G[hi] ⊆ G[h], the

123

76 Ann Oper Res (2020) 286:55–86

Algorithm 5: Computes An(G), Rn(G), A2(G), D(G) of a graph G, if a subroutine to
find optimal lists for the graphs represented by N-nodes of its modular decomposition
tree is given

Input: A graph G
Output: An(G), Rn(G), A2(G) and D(G)

Initialization: Construct T (G), the modular decomposition tree of G
1 Step 1:
2 Traverse the nodes of T (G) in post-order, and in each node h do:
3 if h is a leaf, representing only v ∈ V (G) then
4 An(h) := 〈v〉, Rn(h) := 〈v〉, A2(h) := 〈v〉, D(h) := 〈v〉
5 else if h is a P-node with children h1, . . . , hk then
6 Rn(h) := ∑k

i=1 Rn(hi), A2(h) := ∑k
i=1 A2(hi), D(h) := ∑k

i=1 D(hi),

An(h) := ∑k
i=1 An(hi)

7 else if h is an S-node with children h1, . . . , hk then
8 A2(h) := 〈v〉 where v is an arbitrary vertex of G[h]
9 D(h) := a list of minimum length among D(h1), . . . , D(hk), 〈v1, v2〉 for any v1 ∈ V (G[h1])

and v2 ∈ V (G[h2])
10 if k = 2 then
11 An(h) := 〈(A2(h1)[i], A2(h2)[i]) : 1 ≤ i ≤ min{|A2(h1)|, |A2(h2)|}〉
12 else
13 An(h) := 〈(v1, v2)〉 for any v1 ∈ V (G[h1]) and v2 ∈ V (G[h2])

14

R∗ := a list of minimum length among
D∗(h1), . . . , D

∗(hk), Rn(h1), . . . , Rn(hk),
where D∗(hi) = D(hi) + 〈v〉 for any v ∈ G[h] \ G[hi]

15 if k = 2 then
16 Rn(h) := R∗

17 else
18 Rn(h) := a list of minimum length between R∗ and {v1, v2, v3}, where vi ∈ V (G[hi)]) for

i ∈ {1, 2, 3}
19 else if h is an N-node then
20 Use a graph class specific subroutine to calculate An(h), Rn(h), A2(h) and D(h)

21 Step 2:
22 Output An(G), Rn(G), A2(G), D(G)

inequality |I ∩ V (hi)| ≤ α2(hi) must hold for every 2-independent set I of G[h]. Hence, by
the induction hypothesis, c(h)+α2(h) ≤ ∑k

i=1 c(hi)+
∑k

i=1 α2(hi) ≤ ∑k
i=1 n(hi) = n(h).

If h is an S-node and k > 2, then α2(h) = 1, implying c(h)+α2(h) = (
∑k

i=1 c(hi))+1 ≤
∑k

i=1 c(hi) + α2(h) ≤ ∑k
i=1 n(hi) = n(h). Hence, suppose that h is an S-node with two

children and suppose, without loss of generality, that α2(h1) ≤ α2(h2) and consequently
c(h) = c(h1) + c(h2) + α2(h1). Thus, since α2(h) = 1 (because h is an S-node), then
c(h) + α2(h) = c(h1) + c(h2) + α2(h1) + 1 ≤ c(h1) + c(h2) + α2(h1) + α2(h2) ≤
n(h1) + n(h2) = n(h). �

Theorem 13 Algorithm 5 works in O(n + m) time, if the subroutine for N-nodes works in
O(nπ (h) + mπ (h)) time, for every N-node h.

Proof All nodes are traversed exactly once, so let us see that for every leaf, S-node and P-
node, the algorithm performsO(nπ (h)) operations. If h is a leaf, then it only creates four lists
of size 1. If h is a P-node, then the algorithm concatenates four times nπ (h) lists. Which, if
we suppose is done by loosing the original lists, can be achieved in O(nπ (h)) time. If h is an

123

Ann Oper Res (2020) 286:55–86 77

S-node, then to obtain D(h), A2(h), An(h), and Rn(h), clearly it performs at most O(nπ (h))

operations plus the time of building the edges in line 11, if h is an S-node with exactly two
children. Since, by Lemma 8, the number of edges made in all S-nodes is O(n), the sum of
nπ (h) for every node h in T (G) is at most 2n, the sum of allmπ (h) for all N-nodes is at most
m, and finding the modular decomposition tree can be done in time O(n + m), the whole
algorithm can be implemented to run in O(n + m) time. �

Now that we have the “general” algorithm, we shall show an algorithm to find inO(nπ (h))

time the optimal sets for an N-node of the modular decomposition tree T (G) of a P4-tidy
graph G.

Algorithm 6: Computes An(h), Rn(h), A2(h), D(h), for a given N-node h of a modular
decomposition tree T (G) of a P4-tidy graph G

Input: An N-node h of a modular decomposition tree of a P4-tidy graph G
Output: An(h), Rn(h), A2(h) and D(h)

1 Step 1:
2 if π(h) is isomorphic to C5 = v1 . . . v5v1 then
3 An := 〈v1v2, v4v5〉, Rn(h) := 〈v1, v3, v5〉, A2(h) := 〈v1〉, D(h) := 〈v1, v3〉
4 else if π(h) is isomorphic to P5 = v1 . . . v5 then
5 An := 〈v1v2, v4v5〉, Rn(h) := D(h) := 〈v2, v4〉, A2(h) := 〈v1, v4〉
6 else if π(h) is isomorphic to P5 with π(h) = v1 . . . v5 then
7 An := 〈v1v5, v2v4〉, Rn(h) := D(h) = 〈v1, v2〉, A2(h) = 〈v1〉
8 else if π(h) is a starfish with partition (S,C, R) where C = {c1, . . . , ck }, S = {s1, . . . , sk } and

c1s1, . . . , cksk are the legs of π(h) then
9 Let vi ∈ V (G[ci]) and wi ∈ V (G[si]) for each i ∈ {1, . . . , k}

10 A2(h) := 〈w1, . . . , wk 〉, D(h) := 〈v1, . . . , vk 〉, An(h) := 〈v1w1, . . . , vkwk 〉,
Rn(h) := 〈v1, . . . , vk 〉

11 if π(h) is a fat starfish with ci ∈ C representing 2K1 then
12 Replace vi in Rn(h) with wi

13 else if π(h) is an urchin with partition (S,C, R) where C = {c1, . . . , ck }, S = {s1, . . . , sk } and
c1s1, . . . , cksk are the legs of π(h) then

14 A2(h) := 〈v1〉, D(h) := 〈v1, v2〉, An := 〈v1w2〉 and Rn(h) := 〈v1, v2〉 for any
v1 ∈ V (G[c1]), v2 ∈ V (G[c2]) and w2 ∈ V (G[s2]).

15 Step 2:
16 Output An(h), Rn(h), A2(h), D(h)

Theorem 14 Algorithm 6 correctly finds An(h), Rn(h), A2(h), D(h), for any given N-node
h of the modular decomposition tree T (G) of any P4-tidy graph G.

Proof It can be checked by simple inspection that if π(h) is isomorphic to C5, P5, or P5,
optimal lists are chosen (recall that if this is the case G[h] = π(h)). If π(h) is a starfish, then
clearly the lists A2(h), D(h), An(h) and Rn(h) computed by the algorithm correspond to
a 2-independent set, a dominating set, a neighborhood-independent set and a neighborhood
set of G[h], respectively. Moreover, such lists are optimal lists because A2(h) has the same
length as D(h), and An(h) has the same length as Rn(h). If π(h) is an urchin, clearly we
cannot dominate all vertices with only one vertex, but if we take two vertices belonging to
different graphs represented by vertices of C , we obtain a minimum dominating set, as well
as a minimum neighborhood set. In an urchin all vertices are at most at distance two from

123

78 Ann Oper Res (2020) 286:55–86

each other, and thus all 2-independent sets of G[h] have size 1. It is also easy to see that if
π(h) is an urchin then no two edges can be neighborhood-independent; so, the maximum
neighborhood-independent set must be composed of at most one edge. Hence, if π(h) is an
urchin, then the lists A2(h), D(h), An(h) and Rn(h) built by the algorithm are optimal lists.
Therefore, asG is P4-tidy, we have seen that for all possible scenarios the algorithm correctly
computes the optimal sets. �

Theorem 15 Algorithm 6 works in O(nπ (h)) time, for h an N-node in the modular decom-
position tree of any P4-tidy graph G.

Proof As we have already seen in Sect. 2, if G is a P4-tidy, we can decide in O(nπ (h))

time whether π(h) is isomorphic to P5, C5, P5, or is a starfish or urchin, and in the latter
two cases obtain its decomposition. It is clear that if π(h) is isomorphic to a P5, C5, P5, the
algorithm performs a constant number of operations. If π(h) is a starfish, then once it has
obtained C and S, and determined if there is a replaced vertex of C (all in O(nπ (h)) time), it
does only constant time assignments and it generates |C | edges, all of which can be done in
O(nπ (h)) time. Finally if π(h) is an urchin, then once again it performs a constant number
of operations. Therefore in all possible cases it runs in O(nπ (h)) time. �

Now we shall present an algorithm to find the optimal sets of N-nodes in a modular
decomposition tree of a tree-cograph. To this purpose we shall give a characterization of
connected complements of trees with αn > 1. This characterization will allow us to easily
identify these graphs and find a neighborhood-independent set of maximum size, all in
linear-time. Notice that a total dominating set is a dominating set inducing a subgraph with
no isolated vertices, and γt(G) denotes the minimum size of any total dominating set of G.

Lemma 9 If G is a connected graph then, αn(G) > 1 if and only if G has at least two
neighborhood-independent edges.

Proof Clearly if G has two neighborhood-independent edges, then αn(G) > 1. Now, if
αn(G) > 1, let S be a maximum neighborhood-independent set with maximum amount of
edges. Let us assume by contradiction that S has less than two edges of G. Because |S| > 1,
then Smust have at least one vertex. Ifwe take any suchvertex x , becauseG is connected, there
is an edge xy in E(G). Clearly xy /∈ S, moreover because x is neighborhood-independent to
all elements of S, then xy must be as well. Therefore S \{x}∪{xy} is a maximum cardinality
neighborhood-independent set with one more edge than S. �

Lemma 10 If G is a connected graph, then αn(G) > 1 if and only if G has two edges xy
and wz such that {x, y, w, z} is a total dominating set of G.

Proof By Lemma 9, αn(G) > 1, if and only if there are two neighborhood-independent
edges xy andwz inG. Moreover, any two edges xy and zw ofG, neighborhood-independent
satisfy that every vertex is at least nonadjacent in G to at least one vertex in {x, y, w, z}
different from itself, or equivalently {x, y, w, z} is a total dominating set of G. �

For the following results we will denote by T ′ a tree obtained from a tree T by deleting
all leaves of T .

Lemma 11 If G is a connected complement of a tree with αn(G) > 1, and T = G, then T ′
must be a path.

123

Ann Oper Res (2020) 286:55–86 79

Proof If G is a connected complement of a tree, then clearly T is a tree and hence T ′ must
be also a tree. Let us suppose by contradiction that T ′ is not a path. As paths are trees with at
most two leafs, then T ′ has by our supposition three different leafs x , y, z and, as |V (T ′)| > 2,
these three vertices must form an independent set of T ′ (and thus of T). The fact that these
three vertices are in T ′ implies that they were not leafs in T , but as they are leafs of T ′, then
they must have been adjacent to leafs in T . Given a tree, all vertices adjacent to leafs must
be in all total dominating sets, because they are the only vertices that can dominate the leafs.
Hence x , y and z are in all total dominating sets of T . Since αn(G) > 1, Lemma 10 implies
that there must be a vertex w such that {x, y, w, z} is a total dominating set of T and by
symmetry we may assume that xy and wz are edges of G; i.e., non-edges of T . But then,
as z is nonadjacent in T to each of x , y, and w, the vertex z is not strongly dominated by
{x, y, z, w} in T , a contradiction. The contradiction came from the supposition that T ′ was
not a path. �

Before presenting the characterization, we shall state an inequality that will be used in the
proof of Lemma 12.

Theorem 16 (Chellali and Haynes 2006) The following inequality holds for every tree T :

γt(T) ≥ (n(T) + 2 − l(T))/2.

Where n(T) is |V (T)|, l(T) is the number of leafs of T and γt(T) is the total dominating
number of T .

Lemma 12 If G is a connected complement of a tree and T = G, then αn(G) > 1 if and
only if T ′ is either P2, P3, P4, or T ′ is P5 or P6 with no central vertex of T ′ adjacent to a
leaf of T .

Proof Let us first prove that if G is a connected complement of a tree with αn(G) > 1, then
T ′ is as described above. By Lemma 11, T ′ must be a path. Clearly T ′ cannot have only 1
vertex, because T would be a star and G would be disconnected. As we have already seen
in Lemma 10, γt(T) ≤ 4 if T = G. Thus, Theorem 16 implies that 6 ≥ n(T) − l(T), but
n(T) − l(T) = n(T ′). Therefore T ′ is Pi with 2 ≤ i ≤ 6. If T ′ = P5 or T ′ = P6, then
suppose by contradiction that there is a leaf in T adjacent to any central vertex of T ′. As was
already mentioned in the proof of Lemma 11, this means that there is a central vertex of T ′
that must be in every total dominating set of T , this is also always true for both leafs of T ′.
But then there cannot be a total dominating set of T of size 4, because all three vertices are
nonadjacent in T and there is no vertex that is adjacent to all three at the same time. This
leads to a contradiction because we have already proved that γt ≤ 4. Hence no central vertex
of T ′ can be adjacent to a leaf of T if T ′ is a P5 or P6.

To prove the converse implication, if T ′ is P2, P3 or P4, simply take all vertices of T ′ plus
two, one, or zero leafs of T , respectively, adjacent to different leafs of T ′, and we shall have
a total dominating set of T of size 4. If this set is {x, y, w, z}, then clearly we can always
take xy and wz to be non-edges of T and thus edges of G, and by Lemma 10, αn(G) > 1.
If T ′ is P5 or P6, we can take all vertices of T ′, except for the central vertices of the path.
As no central vertex is adjacent to leafs of T , then clearly these four vertices must be a total
dominating set of T . Once again it is easy to check that we can find two non-edges of T
among these four vertices, and therefore αn(G) > 1. �

Corollary 5 If G is the complement of a tree, it can be decided in O(n + m) time whether
αn(G) > 1 and if so find a neighborhood-independent set of G with size 2.

123

80 Ann Oper Res (2020) 286:55–86

Proof We use the characterization presented in Lemma 12.We can easily complementG and
remove the vertices with degree 1. If the resulting tree is a P2, P3, P4, or a P5 or P6 satisfying
that no central vertex was adjacent to one of the removed vertices, then αn(G) > 1 and,
following the instructions of the proof of Lemma 12, we can obtain the two neighborhood-
independent edges of G. As G is the complement of a tree, m ∈ O(n2) meaning that we can
complement G in time O(m). Deciding whether a tree becomes a path of bounded size by
removing its leafs and, if so, also computing the corresponding path, can all be done inO(n).
Finally obtaining the edges following the instructions of Lemma 12 can be easily done in
time O(n). �

Algorithm 7:Computes An(h), Rn(h), A2(h), D(h), for a givenN-node h of themodular
decomposition tree T (G) of a tree-cograph G

Input: An N-node h of a modular decomposition tree of a tree-cograph G
Output: An(h), Rn(h), A2(h) and D(h)

1 Step 1:
2 if π(h) is a tree then
3 A2(h) := a maximum 2-independent set of G[h]
4 D(h) := a minimum dominating set of G[h]
5 An(h) := a maximum matching of G[h]
6 Rn(h) := a minimum vertex cover of G[h]
7 else if π(h) is the complement of a tree then
8 if π(h) has a total dominating set of size 2 then A2(h) := a total dominating set of G[h] of

size 2
9 else A2(h) := 〈v1〉 for any v1 ∈ G[h]

10 if αn(π(h)) > 1 then An(h) := {e1, e2} with e1, e2 neighborhood-independent edges of G[h]
11 else An(h) = {e1} with e1 any edge of π(h)

12 D(h) := 〈vl , vn〉, Rn(h) := 〈vl , vn〉, with vl a leaf of G[h] and vn its only neighbor in G[h]
13 Step 2:
14 Output An(h), Rn(h), A2(h), D(h)

Now that we have given this characterization, we shall prove that Algorithm 7 finds
the optimal sets for an N-node of the modular decomposition tree of a tree-cograph, all in
O(nπ (h) + mπ (h)) time.

In line 8, we check if π(h) has a total dominating set of size 2. Let us see why this allows
us to find the 2-independent set π(h) that we need.

Lemma 13 If G is a graph, then {v1, v2} ⊆ V (G) is a 2-independent set of G if and only if
it is a total dominating set of G.

Proof The set S = {v1, v2} is a 2-independent set of G if and only if NG [v1] ∩ NG [v2] = ∅.
But this means that in G no vertex can be nonadjacent to both v1 and v2, which is to say that
all vertices of G must be adjacent to v1 or v2. Therefore S is a 2-independent set of G if and
only if S is a total dominating set of G of size 2. �

Theorem 17 Algorithm 7 correctly finds An(h), Rn(h), A2(h) and D(h), for any given
N-node h of the modular decomposition tree of a tree-cograph G.

Proof If G is a tree-cograph, then an N-node h of its modular decomposition is a tree
with connected complement or a connected complement of a tree. In both cases π(h) is

123

Ann Oper Res (2020) 286:55–86 81

isomorphic to G[h], thus we can find the optimal sets analyzing π(h). If π(h) is a tree,
then as was already seen in Lehel and Tuza (1986) a maximum matching of G[h] is also a
maximum neighborhood-independent edge set and a minimum vertex cover is a minimum
neighborhood cover set. Hence if π(h) is a tree, then clearly the algorithm computes the
correct values for the optimal sets. On the other hand if π(h) is the complement of a tree,
then as was seen in Lemma 13, if we find a total dominating set of size 2 in G[h], we will
have a 2-independent set of size 2 of G[h]. Clearly the complement of a tree cannot have an
independent set of size three, thus αn(π(h)) ≤ 2. Clearly if there are no 2-independent sets
of size 2, then any node is a maximum 2-independent set. It was already stated in Corollary 5
that there is a linear-time algorithm to determine if αn(π(h)) > 1 and if this is the case to
find a neighborhood-independent set of size 2. Thus in line 10, we correctly obtain An(h).
Note that αn(G[h]) ≤ 2, because if we take a leaf of G[h] and its only neighbor in G[h], we
clearly have a neighborhood set as well as a dominating set of G(h). Moreover if there were
a dominating set or neighborhood set of size 1, then that would mean an isolated vertex in
G[h], which would contradict the fact that it is a tree. �

Theorem 18 Algorithm 7 can be implemented to run in O(nπ (h) + mπ (h)) time.

Proof It is clear that in linear time it can be determined if π(h) is a tree. Moreover, if
π(h) is not a tree, then it must be the complement of a tree because all N-nodes of a tree-
cograph are trees or complements of trees. If π(h) is a tree, linear-time algorithms for finding
minimumvertex cover sets, minimumdominating sets andmaximummatchings can be found
in Mitchell et al. (1975, 1979) and Savage (1982). Obtaining a 2-independent maximum set
of a tree can also be done efficiently with an algorithm very similar to the one mentioned in
Mitchell et al. (1979) for independent sets.We explicitly state here, for the sake of completion,
this linear-time algorithm for finding a 2-independent maximum set of a tree T :

Given a tree T , we regard it as a directed tree with an arbitrary root vertex r and traverse
its vertices in post-order. For every vertex i , we determine Use(i), NUse(i), and NUseC(i)
where Use(i) is a maximum 2-independent set using vertex i in the subtree rooted at i ,
NUse(i) is defined analogously but without using i , and NUseC(i) without using either i or
the children of i . Thus, if i is not a leaf, Use(i) = i ∪ ⋃

(NUseC(j) : j is a child of i) and
NUse(i) = max{⋃(NUse(j) : j �= k) ∪ max{Use(k), NUse(k)} : k is child of i}, where
max{A, B} denotes a set with maximum number of vertices among A and B. Moreover,
NUseC(i) = ⋃

(NUse(j) : j is child of i). If i is a leaf, then Use(i) = {i} and NUse(i) =
NUseC(i) = ∅. This implies that, Use(i), NUse(i), and NUse(i) can be determined in
overall linear-time for all vertices i . Finally, max{Use(i),NUse(i)}, which is a maximum
2-independent set of T , can be found in linear-time.

Hence, using the algorithms mentioned above, which clearly run in O(nπ (h)) time, we
can obtain corresponding to a node h whenever π(h) is a tree. If π(h) is the complement of a
tree, then, as was alreadymentioned, we can complement it inO(mπ (h)) time, then using any
of the algorithms mentioned in Laskar et al. (1984), Chellali and Haynes (2006) and Henning
and Yeo (2013), we can obtain a maximum total dominating set of π(h), and if it is of size 2,
we can obtain the corresponding total dominating set of G[h] and assign it to A2(h) (bearing
in mind that π(h) and G[h] are isomorphic). Using the algorithm mentioned in Corollary 5,
we can find in time O(nπ (h) +mπ (h)) a maximum neighborhood-independent set of G[h].
Finally, having already complemented π(h), finding a leaf of G[h] and its neighbor can be
done easily in linear-time. Therefore if π(h) is the complement of a tree, the algorithm can
also be implemented to run in O(nπ (h) + mπ (h)) time. �

123

82 Ann Oper Res (2020) 286:55–86

5.3 Complexity results

Theorems 13 and 18 imply that the problem of finding αn(G) and ρn(G) can be solved in
linear-time ifG is the complement of a tree. Nevertheless, as was already stated, the problems
of determining these two parameters for general graphs have been proven to be NP-hard in
Chang et al. (1993).Weprove here that even ifG belong to the class of complement of bipartite
graphs, that includes the class of complements of trees, these problems are NP-hard.

Theorem 19 It is NP-hard to determine αn(G) and ρn(G) when G is the complement of a
bipartite graph.

We shall denote complement of bipartite graphs as co-bipartite graphs. The proofs of
Lemmas 14 and 15 together constitute a proof of Theorem 19.

If X and Y are disjoint sets and F ⊆ X ×Y , we shall denote by (X, Y, F) the co-bipartite
graph with vertex set X ∪ Y where X and Y are cliques and the edges between X and Y are
those in F .

Lemma 14 It is NP-hard to determine the neighborhood independence number in co-
bipartite graphs.

Proof We shall prove the NP-hardness of the problem, by showing a polynomial reduction
of the problem of determining the size of a maximum independent set of a graph H . For that
purpose, given any graph H , we will define a co-bipartite graph G such that αn(G) = α(H).

Given any graph H = (V, E), let G = (X, Y, F) where X = {v′ : v ∈ V }, Y = V ∪ E
and F = {v′e : v ∈ V, e ∈ E and v is incident to e} ∪ {v′v : v ∈ V }; that is, we connect
every vertex in Y to its copy in X and every edge in Y to the copies of its endpoints in X .
Let us first note that as there are no isolated vertices in G, then in order to determine the
neighborhood-independence number we can restrict our attention to those neighborhood-
independent sets consisting only of edges. Moreover, being X and Y cliques, there is some
maximum neighborhood-independent set having all its edges in F .

Given an independent set S ∈ V of H , let I be the subset of F defined by I = {v′v : v ∈ S}.
By definition, |I | = |S|. We can see that I is a neighborhood-independent set because given
two different edges v′v and w′w of I , there is no vertex adjacent to all four vertices. In fact,
the only vertices in X adjacent to v and w are v′ and w′ respectively and if there were an
element of Y adjacent to v, v′, w, and w′, then it would necessarily be an edge e of H joining
v to w, which contradicts the fact that S is an independent set of H . This contradictions
proves that I is a neighborhood-independent set and hence αn(G) ≥ α(H).

Conversely, let I be a neighborhood-independent set of edges in G such that I ⊆ F . We
shall see that S = {v ∈ V : v′y ∈ I } is an independent set of H . Suppose, by contradiction,
that there is an edge e of H joining two vertices v and w of S. By definition, there are
y1, y2 ∈ Y such that v′y1, w′y2 ∈ F and, by construction, e is adjacent in G to all the four
endpoints of v′y1 and w′y2, which contradicts the fact that F is a neighborhood-independent
set. This contradictions shows that S is an independent set of H and thereforeα(H) ≥ αn(G).
This completes the proof of the polynomial reduction of the maximum independent set
problem to the maximum neighborhood-independent set problem in co-bipartite graphs. �

To prove theNP-hardness of determining the neighborhood number of co-bipartite graphs,
we will use the following result from Dinur and Safra (2005).

Theorem 20 (Dinur and Safra 2005) Given a graph G, it is NP-hard to approximate the
Minimum Vertex Cover to within any factor smaller than 10

√
5 − 21 = 1.3606

123

Ann Oper Res (2020) 286:55–86 83

Lemma 15 It is NP-hard to determine the neighborhood number in co-bipartite graphs.

Proof To prove that the problem is NP-hard, we shall use Theorem 20, and show that a
polynomial-time reduction from a 4

3 -approximation of the Minimum Vertex Cover problem
can be easily obtained. For that purpose, given a graph H , we will show to build a co-bipartite
graph G such that β(H) ≤ ρn(G) ≤ β(H) + 1, where β(H) is the size of the minimum
vertex cover of H . Namely, given any graph H = (V, E), let G = (X, Y, F) where X = V ,
Y = E and F = {ve ∈ V × E : v is incident to e in H}; that is, every vertex in X is joined
to the edges in Y to which it is incident in H .

Given a set vertex cover C ⊆ V of H , then C together with any element of Y is clearly
neighborhood set of G. In fact, all the edges of the cliques X and Y will clearly be covered
by any vertex of X and the vertex of Y , respectively. Moreover all edges of F will be covered
because if ve ∈ F , then e = vw (in H) for some w ∈ V . Hence, since C was a vertex cover
of H , v or w must be in C and both cover the edge ve in G (because v,w, e is a triangle in
G). Thus ρn(G) ≤ β(H) + 1.

To check the remaining inequality, let S ⊆ X ∪ Y be a neighborhood set of G with
minimum cardinality. If e is any element in S ∩ Y , then e is covering in G only two edges
of F , namely the ve and we, where vw = e (in H). Thus if we replace e by v or w in S, this
set that arises still covers all the the edges of F . If we apply this procedure successively for
all vertices in S ∪ Y , we will obtain at the end a vertex set of S′ ⊆ X that is a neighborhood-
covering set of F and has size less than or equal to ρn(G). It turns out that S′ ⊆ V will be a
vertex cover of H , because for any edge e ∈ E , where e = vw (in H), v or w will be in S′
for these are the only vertices in X that cover ve ∈ F . As S′ is a a vertex cover of H whose
size is less than or equal to ρn(G), β(H) ≤ ρn(G).

Now that we have proved that this co-bipartite graph G satisfies β(H) ≤ ρn(G) ≤
β(H) + 1, it is easy to give a polynomial-time reduction to the problem of approximating
β(H) within a factor of 4

3 . Given a graph H , we can in polynomial (linear) time decide
whether it has a vertex cover of size 1 or 2 and, if so, we transform H into an arbitrary co-
bipartite graphwhose correspondingmaximumneighborhood set has size 1 or 2, respectively.
If β(H) ≥ 3 we construct in polynomial time G as described above. As proven before
β(H) ≤ ρn(G) ≤ β(H) + 1, which as β(H) ≥ 3 means that 1 ≤ ρn(G)

β(H)
≤ 1 + 1

3 . This
proves the reduction from the problem of approximating theMinimumVertex Cover problem
less than 10

√
5 − 21 = 1.3606 . . . , as desired. �

Remark 2 We observe that obtaining the other two optimal sets considered in this section,
namely, a maximum 2-independent set and a minimum dominating set, can be done in
linear time even for co-bipartite graphs. A maximum 2-independent set would be any pair of
nonadjacent vertices if there is any such pair, or any vertex if not (that would necessarily be
a universal vertex). While a minimum dominating set would be either a universal vertex (if
there is one), or a pair of vertices, one from each bipartition of the complement.

6 Further remarks

It is worth noting that a different approach for obtaining linear-time algorithms for P4-tidy
graphs (and, more generally, in graph classes having bounded clique-width) was introduced
in Courcelle et al. (2000). This approach allows for linear-time solutions of recognition and
optimization problems that are expressible in a certain monadic second-order logic. Never-
theless, it is not clear whether the definition of neighborhood-perfectness can be expressed in

123

84 Ann Oper Res (2020) 286:55–86

the corresponding second-order logic. However, by virtue of our Theorem 6, neighborhood-
perfectness restricted to P4-tidy graphs is equivalent to the absence of a finite number of fixed
induced subgraphs. As the absence of a fixed induced subgraph can be expressed in the logic
and a clique-width expression of any P4-tidy graph can be obtained in linear-time (Courcelle
et al. 2000), Courcelle et al.’s methateorem together with our Theorem 6 gives an alternative
proof of the fact that neighborhood-perfectness can be detected in linear time for P4-tidy
graphs. Similarly, as the class of tree-cographs also has bounded clique-width and the clique-
width expression can be found in linear-time, Courcelle et al.’s metatheorem together with
our Theorem 7 would give an alternative proof of the existence of a linear-time algorithm for
the recognition problem of neighborhood-perfectness restricted to the class of tree-cographs.

Nevertheless, we stress the necessity of Theorems 6 and 7 for proving the existence of
such linear-time recognition algorithms using the approach of Courcelle et al. (2000). Still,
although Courcelle et al.’s metatheorem is of great theoretical importance, the algorithm
obtainedby it is far away frombeingpractical; because itmayhave enormoushidden constants
in the linear-time complexity [even if the input graph has small clique-width, see Courcelle
(2008)]. This combinatorial explosion of the constants seems to be a consequence of the
generality of the metatheorem, given that it requires only a monadic second-order formula
and an input graph to solve the problem. This seems unavoidable if one wishes to obtain
results for general monadic second-order formulas (Frick and Grohe 2004). Therefore, it
is clearly of interest to find more practical algorithms, that can work by only performing a
simple transversal of the modular decomposition trees of the input graph as those developed
in Sect. 5. In addition, linear-time algorithms for solving the neighborhood-independence
number problem for P4-tidy graphs and tree-cographs, as those given in Sect. 5.2, do not
seem to follow from the approach of Courcelle et al. (2000) as the problem is not directly
expressible in the corresponding logic (as quantification over subsets of edges is not allowed).

Acknowledgements We would like to thank the anonymous reviewers for their suggestions and com-
ments that helped improve the quality of this paper. This work was partially supported by UBACyT
Grant 20020130100808BA (Argentina), CONICET PIP 112-201201-00450CO and PIO 14420140100027CO
(Argentina), ANPCyT PICT 2015-2218 (Argentina), UNS PGI 24/ZL16 (Argentina), FONDECyT Grant
1140787 (Chile), and Institute for Complex Engineering Systems (ICM-FIC: P05-004-F, CONICYT: FB0816,
Chile).

References

Baumann, S. (1996). A linear algorithm for the homogeneous decomposition of graphs. Report TUMM9615.
Munich: Fakultt fr Mathematik, Technische Universitt Mnchen.

Berge, C. (1961). Färbung von graphen, deren sämtliche bzw. deren ungerade kreise starr sind.Wiss Z Martin-
Luther-Univ Halle-Wittenberg Math-Natur Reihe, 10(114), 88.

Bonomo, F., Durán, G., & Groshaus, M. (2007). Coordinated graphs and clique graphs of clique-helly perfect
graphs. Utilitas Mathematica, 72, 175–192.

Brandstädt, A., Chepoi, V. D., & Dragan, F. F. (1997). Clique r -domination and clique r -packing problems
on dually chordal graphs. SIAM Journal on Discrete Mathematics, 10(1), 109–127. https://doi.org/10.
1137/S0895480194267853.

Buer, H., &Möhring, R. H. (1983). A fast algorithm for the decomposition of graphs and posets.Mathematical
Operations Research, 8(2), 170–184. https://doi.org/10.1287/moor.8.2.170.

Bulterman, R. W., van der Sommen, F. W., Zwaan, G., Verhoeff, T., van Gasteren, A. J. M., & Feijen, W. H.
J. (2002). On computing a longest path in a tree. Information Processing Letters, 81(2), 93–96. https://
doi.org/10.1016/S0020-0190(01)00198-3.

Chang, G. J., Farber, M., & Tuza, Z. (1993). Algorithmic aspects of neighborhood numbers. SIAM Journal on
Discrete Mathematics, 6(1), 24–29.

123

https://doi.org/10.1137/S0895480194267853
https://doi.org/10.1137/S0895480194267853
https://doi.org/10.1287/moor.8.2.170
https://doi.org/10.1016/S0020-0190(01)00198-3
https://doi.org/10.1016/S0020-0190(01)00198-3

Ann Oper Res (2020) 286:55–86 85

Chellali,M.,&Haynes, T.W. (2006).A note on the total domination number of a tree. Journal of Combinatorial
Mathematics and Combinatorial Computing, 58, 189–193.

Chudnovsky, M., Robertson, N., Seymour, P., & Thomas, R. (2006). The strong perfect graph theorem. Annals
of Mathematics, 164(1), 51–229. https://doi.org/10.4007/annals.2006.164.51.

Courcelle, B. (2008). A multivariate interlace polynomial and its computation for graphs of bounded clique-
width. The Electronic Journal of Combinatorics, 15(1), R69.

Courcelle, B., Makowsky, J. A., & Rotics, U. (2000). Linear time solvable optimization problems on
graphs of bounded clique-width. Theory of Computing Systems, 33(2), 125–150. https://doi.org/10.1007/
s002249910009.

Cournier, A., & Habib, M. (1994). A new linear algorithm for modular decomposition. In Trees in algebra and
programming—CAAP ’94 (Edinburgh, 1994), Lecture notes in computer science (Vol. 787, pp. 68–84).
Berlin: Springer. https://doi.org/10.1007/BFb0017474.

Dahlhaus, E., Gustedt, J., &McConnell, R.M. (2001). Efficient and practical algorithms for sequentialmodular
decomposition. Journal of Algorithms, 41(2), 360–387. https://doi.org/10.1006/jagm.2001.1185.

Dinur, I., & Safra, S. (2005). On the hardness of approximatingminimum vertex cover.Annals ofMathematics,
162(1), 439–485. https://doi.org/10.4007/annals.2005.162.439.

Fouquet, J. L., & Giakoumakis, V. (1997). On semi-P4-sparse graphs. Discrete Mathematics, 165/166, 277–
300. https://doi.org/10.1016/S0012-365X(96)00177-X. Graphs and combinatorics (Marseille, 1995).

Frick,M., &Grohe,M. (2004). The complexity of first-order andmonadic second-order logic revisited.Annals
of Pure and Applied Logic, 130(1–3), 3–31. https://doi.org/10.1016/j.apal.2004.01.007.

Fricke, G., & Laskar, R. (1992). Strong matchings on trees. In Proceedings of the Twenty-third Southeastern
International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1992),
vol 89, pp 239–243.

Gallai, T. (1967). Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hungaricae, 18,
25–66.

Giakoumakis, V., Roussel, F.,&Thuillier, H. (1997). On P4-tidy graphs.DiscreteMathematics and Theoretical
Computer Science, 1(1), 17–41.

Golumbic,M.C.,&Lewenstein,M. (2000). New results on inducedmatchings.Discrete AppliedMathematics,
101(1–3), 157–165. https://doi.org/10.1016/S0166-218X(99)00194-8.

Guruswami, V., & Rangan, C. P. (2000). Algorithmic aspects of clique-transversal and clique-
independent sets. Discrete Applied Mathematics, 100(3), 183–202. https://doi.org/10.1016/S0166-
218X(99)00159-6.

Gyárfás, A., Kratsch, D., Lehel, J., & Maffray, F. (1996). Minimal non-neighborhood-perfect graphs. Jour-
nal of Graph Theory, 21(1), 55–66. https://doi.org/10.1002/(SICI)1097-0118(199601)21:1<55::AID-
JGT8>3.0.CO;2-L.

Habib, M., & Paul, C. (2010). A survey of the algorithmic aspects of modular decomposition. Computer
Science Review, 4(1), 41–59. https://doi.org/10.1016/j.cosrev.2010.01.001.

Henning, M. A., & Yeo, A. (2013). Total domination in graphs. Springer monographs in mathematics. New
York: Springer. https://doi.org/10.1007/978-1-4614-6525-6.

Laskar, R., Pfaff, J., Hedetniemi, S. M., & Hedetniemi, S. T. (1984). On the algorithmic complexity of
total domination. SIAM Journal on Algebraic Discrete Methods, 5(3), 420–425. https://doi.org/10.1137/
0605040.

Lehel, J. (1994). Neighbourhood-perfect line graphs.Graphs and Combinatorics, 10(4), 353–361. https://doi.
org/10.1007/BF02986685.

Lehel, J., & Tuza, Z. (1986). Neighborhood perfect graphs. Discrete Mathematics, 61(1), 93–101. https://doi.
org/10.1016/0012-365X(86)90031-2.

McConnell, R. M., & Spinrad, J. P. (1999). Modular decomposition and transitive orientation. Discrete Math-
ematics, 201(1–3), 189–241. https://doi.org/10.1016/S0012-365X(98)00319-7.

Mitchell, S., Hedetniemi, S., & Goodman, S. (1975). Some linear algorithms on trees. In Proceedings of the
Sixth Southeastern Conference onCombinatorics, Graph Theory, and Computing (FloridaAtlantic Univ.,
Boca Raton, Fla., 1975), Utilitas Math., Winnipeg, Man., pp 467–483. Congressus Numerantium, No.
XIV.

Mitchell, S. L., Cockayne, E. J., & Hedetniemi, S. T. (1979). Linear algorithms on recursive representa-
tions of trees. Journal of Computer and System Sciences, 18(1), 76–85. https://doi.org/10.1016/0022-
0000(79)90053-9.

Sampathkumar, E., & Neeralagi, P. S. (1985). The neighbourhood number of a graph. Indian Journal of Pure
and Applied Mathematics, 16(2), 126–132.

Savage, C. (1982). Depth-first search and the vertex cover problem. Information Processing Letters, 14(5),
233–235. https://doi.org/10.1016/0020-0190(82)90022-9.

123

https://doi.org/10.4007/annals.2006.164.51
https://doi.org/10.1007/s002249910009
https://doi.org/10.1007/s002249910009
https://doi.org/10.1007/BFb0017474
https://doi.org/10.1006/jagm.2001.1185
https://doi.org/10.4007/annals.2005.162.439
https://doi.org/10.1016/S0012-365X(96)00177-X
https://doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.1016/S0166-218X(99)00194-8
https://doi.org/10.1016/S0166-218X(99)00159-6
https://doi.org/10.1016/S0166-218X(99)00159-6
https://doi.org/10.1002/(SICI)1097-0118(199601)21:1<55::AID-JGT8>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1097-0118(199601)21:1<55::AID-JGT8>3.0.CO;2-L
https://doi.org/10.1016/j.cosrev.2010.01.001
https://doi.org/10.1007/978-1-4614-6525-6
https://doi.org/10.1137/0605040
https://doi.org/10.1137/0605040
https://doi.org/10.1007/BF02986685
https://doi.org/10.1007/BF02986685
https://doi.org/10.1016/0012-365X(86)90031-2
https://doi.org/10.1016/0012-365X(86)90031-2
https://doi.org/10.1016/S0012-365X(98)00319-7
https://doi.org/10.1016/0022-0000(79)90053-9
https://doi.org/10.1016/0022-0000(79)90053-9
https://doi.org/10.1016/0020-0190(82)90022-9

86 Ann Oper Res (2020) 286:55–86

Seinsche, D. (1974). On a property of the class of n-colorable graphs. The Journal of Combinatorial Theory
Series B, 16, 191–193.

Tedder,M.,Corneil,D.,Habib,M.,&Paul, C. (2008). Simpler linear-timemodular decomposition via recursive
factorizing permutations. In Automata, languages and programming. Part I, Lecture notes in computer
science (Vol. 5125, pp. 634–645). Berlin: Springer. https://doi.org/10.1007/978-3-540-70575-8_52.

Tinhofer, G. (1988/1989) Strong tree-cographs are Birkhoff graphs. Discrete Applied Mathematics, 22(3),
275–288. https://doi.org/10.1016/0166-218X(88)90100-X.

West, D. B. (2001). Introduction to graph theory. Upper Saddle River, NJ: Prentice Hall.
Zito, M. (2000). Linear time maximum induced matching algorithm for trees. Nordic Journal of Computing,

7(1), 58–63.

123

https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1016/0166-218X(88)90100-X

	Neighborhood covering and independence on P4-tidy graphs and tree-cographs
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Modular decomposition
	2.2 Structure of P4-tidy graphs and tree-cographs

	3 Parameters and minimal forbidden induced subgraphs
	4 Structural characterizations
	5 Algorithms and complexity results
	5.1 Recognition algorithms
	5.2 Optimal sets algorithms
	5.3 Complexity results

	6 Further remarks
	Acknowledgements
	References

