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Grade control and short-term planning determine the performance of a mining project.
Improving this decision, by collecting the most informative samples (data) may have sig-
nificant financial impact on the project. In this paper, a method to select sampling locations is
proposed in an advanced drilling grid for short-term planning and grade control in order to
improve the correct assessment (ore-waste discrimination) of blocks. The sampling strategy
is based on a regularized maximization of the conditional entropy of the field, functional that
formally combines global characterization of the field with the principle of maximizing
information extraction for ore-waste discrimination. This sampling strategy is applied to
three real cases, where dense blast-hole data is available for validation from several benches.
Remarkably, results show relevant and systematic improvement with respect to the standard
regular grid strategy, where for deeper benches in the field the gains in ore-waste discrim-
ination are more prominent.

KEY WORDS: Entropy, Uncertainty and information extraction, Multiple-point statistics, Geostatis-
tics, Short-term planning, Advanced sampling.

INTRODUCTION

Short-term planning and grade control aim at
determining the optimum assignment of each block
of material in a mine, considering the potential
economic profit, complying with the mine plan and
the constraints in the mine and processing facilities.
This assignment can be a specific process, a stockpile
or the waste dump. In this paper, the analysis has
been limited to the binary decision case of ore sent
to the processing plant or waste sent to the dump. In
this context, the grade and other properties of each
block are estimated from samples located in its
neighborhood. In most open pit mines, these sam-
ples are taken where blast-holes are drilled. Two
important considerations about this estimation pro-
cedure are: The block grade estimation involves a
change of support, that is the volumetric support of
the samples is usually much smaller than that of the
block, and the block grade is estimated based on the
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most current information, which during production
is the sampled grades obtained at blast-holes.

Because of these considerations, the estimation
technique of the block grade must account for the
support effect as the block ordinary kriging is typi-
cally used to determine the block grade. Secondly,
the fact that the assignment of the block to a specific
destination is based on an estimation from limited
data, means that sampling errors in that information
impair the final assignment (Abzalov et al. 2010;
Chiles and Delfiner 2012, p. 7), which is known as
information effect (Chiles and Delfiner 2012, p. 442)

Short-term planning and grade control are al-
most always based on samples taken from a pseudo-
regular grid of blast-holes. These samples suffer
from high errors due to numerous factors: poor
sample recovery near the collar of the blast-hole,
delimitation error by including the subdrill and
careless applications of sampling procedures since
production has priority and the area must be freed
prior to loading explosives (Francois-Bongarcon
1983; Pitard 1993; Ortiz and Deutsch 2004). Poor
sample quality leads to extremely large economic
losses, which increase when geological domains are
poorly understood or when estimation of the block
grades suffers from large errors (Magri and Ortiz
2000). These sources of uncertainty are hidden, but
have a significant impact in the financial perfor-
mance of mining projects (Magri et al. 2010, 2011;
Ortiz et al. 2012).

Regarding the information used for grade con-
trol, most applications in mining deal with a regular
grid, and optimization is aimed at determining the
spacing of the samples to comply with some mea-
sures of quality (Ortiz and Magri 2014). These
measures of quality are often linked to the kriging
variance, as the measure of performance of the
estimation (McBratney and Webster 1981; McBrat-
ney et al. 1981; Blackwell 1998; Lloyd and Atkinson
1998; Hassanipak and Sharafodin 2004; Vasát et al.
2010). The use of geostatistical simulation allows to
consider uncertainty that may be a function of the
block grade, accounting for the proportional effect
(Journel 1974).

Some authors have proposed other approaches
in the optimization of ore-waste discrimination, but
most of them attempt to optimize the classification
as a post process after the sampled information has
been acquired (Ruiseco et al. 2016). Some interest-
ing works have been carried out from the point of
view of optimization under process/operational

production capabilities constraints (Kumral 2012,
2013).

Furthermore, although in most applications
conventional two-point simulation methods, such as
sequential Gaussian or sequential indicator simula-
tion, are used, some authors have introduced the use
of multiple-point geostatistical simulation in mining
applications (Ortiz 2003; Ortiz et al. 2012; Boisvert
et al. 2008). These methods require the use of a
training image (Mariethoz and Caers 2014), which is
commonly built from an analogue, outcrop or a
geological interpretation (Boisvert et al. 2008).
Data-driven training images can also be used (Ortiz
et al. 2012; Silva Maureira 2015) and are precisely
the approach taken in this study.

Advanced drilling considering a reverse circu-
lation (RC) drilling rig has been studied as an option
to improve the quality of the samples for short-term
planning and grade control and to provide grades
and other geological information in advance to build
a reliable model for decision-making. This approach
has led to improved financial returns (Magri et al.
2010, 2011; Ortiz and Deutsch 2004; Ortiz and Magri
2014) and allows the use of more sophisticated tools
to build the short-term plan, such as cokriging or
cosimulation to account for multivariate relation-
ships. Furthermore, advanced drilling allows a
characterization of the geological features of the
rock (lithology, alteration, mineralization); hence,
these samples can be used to improve and update
the geological interpretation. Advanced drilling is
normally applied considering a regular drilling grid
with a spacing wider than the blast-hole spacing.
From the high-quality samples obtained in the ad-
vanced drilling grid, a short-term model can be built
using geostatistical estimation (kriging or cokriging)
or simulation (Journel and Kyriakidis 2004). The
simulation approach has usually relied on a multi-
Gaussian method, and to the best knowledge of the
authors, multiple-point geostatistics has not been
applied in grade control. Cost functions that account
differently for the costs of misclassification as ore or
waste have also been used frequently in mining
(Deutsch and Journel 1998; Journel 1974; Verly
2005; Dimitrakopoulos and Godoy 2014).

This work presents a new methodology for
short-term planning sampling and grade control
based on the selection of the sampling locations that
are the most informative in terms of ore-waste dis-
crimination. The proposal aims at characterizing the
contact between ore and waste, by learning from the
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data of previously mined benches the location and
geometry of the contact, and determining the best
locations to be sampled at the current bench. The
implementation of this principle results in an irreg-
ular grid of samples. Furthermore, the sample loca-
tions adapt to the local conditions of the problem.
New samples are drilled at locations that have the
highest conditional entropy based on the available
samples (within the bench) and on the spatial con-
tinuity of the ore and waste blocks. This last com-
ponent of the model is estimated from previously
mined benches. On the specifics, an algorithm is
adopted to this problem to select the best locations,
previously introduced by the authors (Santibañez
et al. 2019). This methodology is summarized (Sec-
tion Entropy-based Adaptive Sampling Strategy),
adapted to the proposed problem (Section Optimal
Sampling for Grade Control), applied to three real
scenarios and then the results for each case are
analyzed, showing the performance improvement
with respect to an advanced regular sampling grid
(Section Case Study and Experiments). Then, the
limitations and potential economic benefits of this
approach are discussed and some final conclusions
are provided.

ENTROPY-BASED ADAPTIVE SAMPLING
STRATEGY

In this section, the proposed method for deter-
mining the best sample locations over a binary two-

dimensional field is reviewed. This strategy is based
on a regularized maximum entropy sampling prob-
lem presented in Santibañez et al. (2019), which
provides a sampling scheme that maximizes the
information extracted from the measurements.

Maximum Entropy Sampling

To formalize the problem, let us consider a 2-D
field with unknown spatial correlation. Notice that
this spatial correlation may be fully characterized by
a variogram or may require higher order statistics to
be described (Mariethoz and Caers 2014; Ortiz
2003). More precisely, and without loss of generality,
the regionalized variable X is a 2-D random array of
variables representing a discrete image of finite size
A � B,

Xu;v : ðX;PÞ ! A ¼ f0; 1g 8ðu; vÞ 2 ½A� � ½B�;
ð1Þ

with values in the finite alphabet A (limited here to
the binary case), and ðX;PÞ describing the sample
space and the probability measure for the stochastic
regionalized variable.

Adopting the concept of entropy as a measure
of uncertainty of a random variable (Cover and
Thomas 2006), an algorithm that finds the placement
rule f through optimal reduction of the posterior
entropy after doing measurements is proposed.
More precisely, for any given number K � A � B of
sample positions to be taken, let FK �
f : 1; ::; k; ::;Kf g ! ½A� � ½B�f g be the collection of

functions that select K-elements in ½A� � ½B�. Then
for any f 2 FK (sampling rule of size K) let�s denote
the measured random vector by:

Xf � ðXf ð1Þ;Xf ð2Þ; . . . ;Xf ðKÞÞ; ð2Þ

and the remaining non-measured random vector by,

Xf � ðXi : i 2 ½A� � ½B� n f Þ: ð3Þ

In this context, the conditional posterior entropy of

Xf given Xf measures the remaining uncertainty of

the field X after sensing the position in Xf (Cover

and Thomas 2006). It can be computed as the joint
entropy of the entire process minus the joint entropy
of the variables measured by f, as shown in Eq. 4.

HðXf jXf Þ ¼ HðXÞ �HðXf Þ: ð4Þ

Figure 1. Schematic diagram of the sampling rule (10).
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Then, the optimal decision of size K is the solution
of

f �K � argmin
f2FK

HðXf jXf Þ; ð5Þ

which minimizes the uncertainty of the field after K
measurements. Interestingly, adopting some infor-
mation theory identities (Cover and Thomas 2006),
the optimal decision in (5) is equivalent to the

Table 1. Summary statistics

Case study 1 Case study 2 Case study 3

Drill-hole Samples Blast-hole Samples Drill-hole Samples Blast-hole Samples Drill-hole Samples Blast-hole Samples

Count 2045 19752 747 95815 2368 158772

Mean 1.07 1.18 0.34 0.42 0.57 0.48

Std. dev. 0.67 0.78 0.47 0.56 0.55 0.58

Minimum 0.13 0.01 0.01 0.00 0.00 0.00

Maximum 7.24 9.90 4.04 35.00 4.04 35.00

Table 2. Case study coordinates. Elevations represent the centers

of the considered benches

Case study 1 Case study 2 Case study 3

Min Max Min Max Min Max

East 24,550 24,730 72,200 72,550 72,600 72,900

North 25,100 25,550 83,100 83,500 83,100 83,600

Elevation 3860 3940 2405 2455 2415 2465

Figure 2. Grade mineral distributions and basic statistics for the available blast-holes. From left to right: CS1, CS2, CS3.

Table 3. Summary parameters SNESIM

Case study 1 Case study 2 Case study 3

Number of benches (M) 6 6 6

Min data for kriging 4 4 4

Max data for kriging 16 16 16

Max data per octant 0 0 0

(0 : not used)

Maximum search radii [80,80,10] [80,80,10] [80,80,10]

(x, y, z)

Min data for kriging 10 10 10
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solution of the maximum entropy problem (San-
tibañez et al. 2019):

f �K ¼ argmax
f2FK

HðXf Þ ð6Þ

that finds the K positions that jointly lead to the
highest a priori (before the measurements) entropy.
This principle is easier to implement as it requires
marginal distributions and not the complete joint
distribution of X, model for the implementation of
Eq. 5.

The Sequential Adaptive Strategy From the
general principle in Eq. 6, the focus is on the realistic
sequential problem where the decision is taken
sample by sample, and furthermore, the measure-
ments taken in previous iteration of the algorithm
are considered to upgrade the model (or adapt the
model to the data) in the next iteration. More pre-
cisely, considering the set of previous sensed posi-
tion f �k ¼ ðði1; j1Þ; :::; ðik; jkÞÞ and the measurements

of the field X taken at those selected places, i.e.,
�x ¼ ðx1; ::; xkÞ, the solution of the kþ 1 position is
given by the maximum entropy principle in (6)
conditioned on Xði1;j1Þ ¼ x1,.., Xðik�1;jk�1Þ ¼ xk�1 and

Xðik;jkÞ ¼ xk, i.e.,

ðikþ1; jkþ1Þ ¼ arg max
ði;jÞ2½A��½B�n ðil ;jlÞ:l¼1;::;kf g

HðXi;jjXf �
k
¼ �xÞ;

ð7Þ

where f �kþ1 ¼ ðf �k ; ðikþ1; jkþ1ÞÞ 2 Fkþ1. Then iterating

this rule from k ¼ 1; ::;K offers an adaptive and
sequential solution for the problem of selecting the
more informative K positions of the field.

The Regularized Adaptive Strategy The adap-
tive solution in Eq. 7 requires the knowledge of the
statistics of X. In practice, this model is not available
requiring to find a way to infer this model from
empirical data. In the proposed solution, a training
image is required that is deemed to represent the
spatial continuity of the random function describing
the spatial correlations in the underlying spatial
model, and from this a model is estimated using
conditional multiple-point simulations (Mariethoz
and Caers 2014; Ortiz et al. 2012). In particular, a set
of conditional probabilities of the form
l̂Xi;jjXS

ðxi;jjxSÞ are estimated, where i; j 2 ½A� � ½B�,
S 	 ½A� � ½B� denotes the conditioning positions
(attributed to sensed data), and xi;j 2 A and

xS ¼ ðxi;j : ði; jÞ 2 SÞ 2 A Sj j, which is the information

needed to implement (7).
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Finally, a convex combination between the
maximal entropy adaptive criterion in (7) and a
regularization principle that promotes uniform cov-
ering of the sampling space is proposed. It has been
found that a mixed rule that promotes a compromise
between selecting the most informative points (from
the conditional model and previous data) and a good
cover of the sampling space is better than the rule
based on a pure adaptive principle (Santibañez et al.

2019). More precisely, let Sk ¼ ðial ; jal Þ : l ¼ 1; ::; k
� �

denote the collection of k positions previously ob-

tained. XSk ¼ Xia
1
;ja
1
; ::;Xia

k
;ja
k

n o
denote the random

vector at the locations Sk, and xSk ¼ x1; ::; xkf g be
the data collected at Sk. Then, the regularized rule is
the solution of

ðiak; jakÞ
¼ arg max

ði;jÞ2½A��½B�nSk�1

a �HðXi;jjXSk�1
¼ xSk�1

Þ

þ ð1� aÞ �Dðði; jÞ; Sk�1Þ:

ð8Þ

Note that the second term promotes a uniform
sampling by using a distance criterion

Dðði; jÞ; Sk�1Þ ¼ min
ð~i;~jÞ2Sk�1

dðði; jÞ; ð~i;~jÞÞ; ð9Þ

where dðði; jÞ; ð~i;~jÞÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~i� iÞ2 þ ð~j� jÞ2

q
. Therefore,

the proposed regularized rule corresponds to a glo-
bal maximin strategy.

Figure 4. Blast-hole data for case study 1. From left to right: Benches 1–6. Colormap: the same as in Figure 3.

Figure 5. Ground truth estimated from drill-holes and blast-holes samples for case study 1. From left to right: Benches 1–6. Colormap: the

same as in Figure 3.
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OPTIMAL SAMPLING FOR GRADE
CONTROL

In grade control, the target is to define the
destination of every single block in the current
mining bench. In order to achieve this task, the
estimated grade of the block is considered and
compared with the Cut-off grade. The Cut-off grade
corresponds to the minimum grade required for a
block to be considered for processing (expecting a
positive economical benefit). Therefore, a block
found to be above this Cut-off grade is considered to
be ore, while a block below this grade is considered
to be waste. Then, the grade control relies on a
binary decision even when the value of the block
grade corresponds to a continuous variable.

The Cut-off grade can be established by various
methods. Its selection is related to a certain pro-
duction objective, such as the use of resources or
economic benefit. These objectives give rise to dif-

ferent types of targets, such as maximizing global
economic benefits, immediate benefits and so on.
The Cut-off grade does not have a fixed or prede-
fined value, but instead it corresponds to a strategic
variable that has important implications in the de-
sign and production of the mine.

The application of the adaptive sampling strat-
egy to grade control is described in this section by
considering a scenario where several benches are to
be mined in a sequential process. The sampling
strategy is used with the objective of improving the
prediction of ore-waste contact in successive work-
ing benches. For every bench, the method works in
two stages: first, the general features of the field are
learned through a coarse regular sampling grid; then,
the sampling adapts to the features learned from the
regular grid and aims at characterizing the contacts
between ore and waste for a better characterization
of non-sensed blocks as learned from the benches
previously mined out. In each bench, the process is

Figure 6. Samples for Case Study 1. From left to right: Benches 2–6. Top: Samples from structured sampling. Down: Samples from

adaptive sampling using Cut-off grade 1:012%. Colormap: Describe batch of samples in the order of the performed sampling.
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applied sequentially, where current samples are used
to make decisions about the subsequent locations to
be sampled.

Proposed Methodology for Sampling

More precisely, let consider a collection of M
benches, where every bench is indexed by m 2
f1; . . . ;Mg an it is a rectangular grid, i.e., a 2-D

image, denoted by Imgrade 2 RAxB of size A x B. On

each bench m, K measurements will be taken to
infer a model of the mineral distribution of non-
sampled blocks at this bench. Therefore, the main
problem is to define the best K locations using the
framework presented in Section Entropy-based
Adaptive Sampling Strategy. From these K samples,
an estimation is made on all the non-sensed blocks
of the bench producing what is defined as the block
model. Finally, a hard threshold is applied on the
block model using a Cut-off grade to create a binary

2-D image denoted by Imo�w 2 AAxB (with jAj ¼ 2),
where, consequently, non-sensed blocks are classi-
fied as ore or waste.

In the initial stage of this process ( m ¼ 1), the
upper bench is considered. As no preliminary data
are available from previous benches, the conditional
entropies are drawn from an i.i.d distribution of ore
and waste for implementing Eq. 8. This worst case
scenario in terms of prior information for the
inference, reduces Eq. 8 to the classical near regular
sampling, since its second term in Eq. 9 dominates
the optimization promoting distance as a criterion
where a uniform coverage of the space is the optimal
solution. Thus for the bench m ¼ 1, K samples are
distributed in a regular grid. An empirical estimation
of the remaining (non-sensed) mineral grades is
performed by 2-D kriging. Finally, after applying the

Cut-off grade the image I1o�w is obtained.
For benches m ¼ 2; . . . ;M, the use of the previ-

ously estimated binary block model Im�1
o�w for bench

m� 1 is used as the training image (model) for infer-
ence of the conditional entropies used in Eq. 8 in the
current bench. The key assumption made on this
selection is that the previous bench m� 1 reflects the
spatial distribution of the ore and waste blocks more
accurately than the i.i.d. assumptionmadeon the initial

stage ( m ¼ 1). Using Im�1
o�w as a training image along

Figure 7. Estimated grade for Case Study 1. From left to right: Benches 2–6. Top: Samples from structured

sampling. Down: Samples from adaptive sampling using Cut-off grade 1:012%. Colormap: the same as in

Figure 3.
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with MPS, in particular the SNESIM algorithm, and
the previous k� 1 measurements at the current bench

m, it is possible to estimate the entropy map, Ĥm;k, for
this bench. This is required for the implementation of
the sampling rule inEq. 8.Moreprecisely, the selection
rule for the kth sample at benchm given the previously
sampled locations Smk�1 corresponds to the solution of:

ðiak; jakÞ
m

¼ arg max
ði;jÞ2½M��½M�nSm

k�1

aĤm;kðXm
i;j jXm

Sm
k�1

¼ xSm
k�1

Þ þ ð1� aÞ

ð10Þ

The solution of Eq. 10 places the new samples in the
locations with an optimal balance between maxi-
mum conditional entropy (information criterion)
and the maximum distance to previously sampled
positions (regularization). It is important to mention
that in the proposed practical implementation of
Eq. 8, the adaptive sequential sampling strategy se-
lects a new batch of s samples at every sampling
step. This iterative strategy is repeated until the K
samples are obtained. For completeness, a schematic
representation of the sampling rule in (10) is illus-
trated in Figure 1. Finally, the pseudo-code of the

Figure 8. Estimated grade control for Case Study 1. From left to right: Benches 2–6. From top to bottom:

Ground truth, structured sampling, adaptive sampling using Cut-off grade 1:012%.
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implementation of Eq. 10 is presented in Appendix
A: Pseudo-code.

Classification Process

Concerning the final ore-waste classification,
after the K samples are taken in every bench, ordi-
nary kriging is performed using the routine provided
in GSLIB (Deutsch et al. 2000). A variogram model
is fit in each case over the full bench, performing the
estimation by using a minimum of minS samples and
a maximum of maxS, with a search radius of radS
[m]. A block discretization of nA� nB� nZ points
per block is used. The resulting estimated block
model for the bench is binarized by applying a Cut-
off grade. The resulting binary model (image Imo�w)
represents the estimated ore and waste blocks that
are used in short-term planning.

Figure 9. Confusion Matrix for Case Study 1. From left to right: Benches 2–6. Top: Structured sampling. Down: Adaptive sampling

using Cut-off grade 1:012%.

Table 4. Performance error summary for case study 1

Case study 1

Cut-off grade

1.102

Cut-off grade

1.241

Cut-off grade

1.518

STR ADA STR ADA STR ADA

Bench 2 0.112 0.069 0.133 0.114 0.059 0.055

Bench 3 0.138 0.106 0.104 0.102 0.066 0.064
Bench 4 0.109 0.082 0.091 0.086 0.053 0.051

Bench 5 0.084 0.048 0.086 0.083 0.090 0.083

Bench 6 0.111 0.060 0.127 0.108 0.109 0.097
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CASE STUDY AND EXPERIMENTS

The proposed methodology has been applied to
three different cases, two of them coming from the
same ore deposit. The corresponding databases
consist of drill-hole composites widely spaced and
denser blast-hole samples, which are used to validate
the sampling strategy. The two projects correspond
to massive porphyry copper deposits that are cur-

rently under operation (more details can be found in
supplementary material).

In this section, the implementation parameters
are provided and the results of the first case study
are described in detail. For sake of space, only the
relevant results for the other two cases are presented
(additional details and results can be found in sup-
plementary material and Appendix B: Additional
Experimental Results).

Database Description

Case studies 1 and 2 come from the same min-
ing project, but from different areas of the open pit.
These areas have already been mined out, providing
blast-hole samples to test the hypothesis that adap-
tive sampling can achieve better discrimination be-
tween ore and waste than classical regular sampling.
For this mining project, the available blast-hole da-
tabase consists of nearly regularly spaced samples

Table 5. Performance error summary for case study 2

Case Study 2

Cut-off grade

0.220

Cut-off grade

0.445

Cut-off grade

0.692

STR ADA STR ADA STR ADA

Bench 2 0.048 0.043 0.100 0.096 0.112 0.080
Bench 3 0.039 0.032 0.109 0.097 0.091 0.068

Bench 4 0.037 0.034 0.078 0.066 0.057 0.045

Bench 5 0.055 0.038 0.036 0.024 0.036 0.026
Bench 6 0.031 0.015 0.025 0.010 0.013 0.010

Table 6. Performance error summary for case study 3

Case Study 3

Cut-off grade

0.115

Cut-off grade

0.273

Cut-off grade

0.486

STR ADA STR ADA STR ADA

Bench 2 0.067 0.048 0.060 0.039 0.067 0.054

Bench 3 0.039 0.031 0.057 0.030 0.030 0.014
Bench 4 0.049 0.029 0.052 0.033 0.054 0.049

Bench 5 0.051 0.037 0.053 0.041 0.053 0.034

Bench 6 0.037 0.021 0.047 0.035 0.038 0.034

Table 7. Economical profit estimation for case study 1

Case Study 1

Cut-off grade

1.102

Cut-off grade

1.241

Cut-off grade

1.518

STR ADA STR ADA STR ADA

Bench 2 33.574 34.146 13.483 13.726 2.675 1.737

Bench 3 28.581 28.462 10.419 9.439 1.284 2.520
Bench 4 33.562 34.150 15.423 16.114 6.295 5.792

Bench 5 41.065 41.590 23.272 23.814 11.174 11.502

Bench 6 46.401 47.135 27.623 28.165 16.420 15.427

Global 183.183 185.483 90.221 91.257 37.849 36.977

In MM US$

Table 8. Economical profit estimation for case study 2

Case study 2

Cut-off grade

0.220

Cut-off grade

0.445

Cut-off grade

0.692

STR ADA STR ADA STR ADA

Bench 2 49.281 49.320 23.729 23.992 6.096 6.704
Bench 3 39.309 39.458 16.727 16.362 �5.363 �4.555

Bench 4 47.299 47.262 23.257 23.646 8.957 9.425

Bench 5 36.460 36.703 19.278 19.181 10.392 10.714
Bench 6 9.790 9.994 1.145 1.330 �4.058 �3.937

Global 182.139 182.735 84.137 84.512 16.023 18.351

In MM US$

Table 9. Economical profit estimation for case study 3. In MM

US$

Case study 3

Cut-off grade

0.115

Cut-off grade

0.273

Cut-off grade

0.486

STR ADA STR ADA STR ADA

Bench 2 17.685 17.974 17.382 17.371 3.059 2.419

Bench 3 11.577 11.674 10.136 11.130 �2.159 �1.943
Bench 4 10.651 10.904 9.772 10.213 �2.440 �2.553

Bench 5 14.629 14.859 14.111 13.993 1.192 1.725

Bench 6 16.038 16.288 15.316 15.262 3.136 3.964

Global 70.580 71.699 66.717 67.969 2.787 3.611
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taken in a grid of approximately 10m by 10m. The
database contains areas without samples; therefore,
it was split into two informed sectors to generate
case studies 1 and 2. Finally, case study 3 comes from
a different mining project with similar sampling
conditions.

Blast-hole data are migrated to a regular grid
creating 6 consecutive benches uniformly sampled
for each case study. From the selected X–Y section
of the raw information provided by the blast-hole
samples, a set of dense benches has been created
that completely describe the ore distribution of the
3-D deposit.

The basic statistical information used to build
the case studies is summarized in Tables 1 and 2.

The statistical distributions of blast-holes grades
present in the analyzed case studies are described in
Figure 2, along with their basic statistics.

Construction of Validation Block Model

From the unevenly distributed blast-hole and
drill-hole data, a fully informed block model is ob-
tained by performing block ordinary kriging using
the kt3d routine of GSLIB. Finally, six consecutive
benches were considered as ground truth for every
case study by considering the blocks inferred from
the densely sampled available information. The
parameters for the kriging estimation are presented
in Table 3.

In order to illustrate the density of available
information for every single bench, Figures 3 and 4
show the drill-hole composites and blast-hole sam-
ples for the first case study. The block model esti-
mated by ordinary kriging is displayed for these data
in Figure 5. Systematic descriptions of the other two
case studies can be found in the supplementary
material.

Experimental Results: Adaptive Sampling Strategy

As mentioned, the value for the Cut-off grade
corresponds to an operational decision, then in order
to demonstrate the benefit of the proposed sampling
approach, results for different Cut-off grade values
are presented. In this work, the Cut-off grade has not
been defined under operational or economic prin-
ciples, instead in the presented results the Cut-off
grades have been considered from the three

quartiles of the distribution of available data (q25,
q50 and q75). Thus, the focus of this work is main-
tained on the effect on ore-waste classification as a
function of the sampling strategy.

To illustrate the implementation and outcomes
of the adaptive sampling strategy, full details are
provided for the first case study. For case studies 2
and 3, only summary figures and results are pre-
sented, in the understanding that the procedure is
similar to that illustrated for case study 1 (details for
case study 2 and 3 can be found in supplementary
material).

For each sampling strategy, 100
9 % 
 11: �11% of

the available locations for each bench were sampled

(K ¼ 1
3 �Am � 1

3 � Bm). For case study 1, the proposed

samples are presented in Figure 6. The outcomes for
kriging estimation from the proposed samples are
displayed in Figure 7 for the benches 2, 3, 4, 5 and 6.
Three Cut-off grade values, corresponding to the
three quartiles of the grade distribution, were con-
sidered to evaluate the differences between the
classical structured sampling (STR) and the pro-
posed adaptive sampling (ADA) approach (Fig. 8).

The results for the case of regular sampling
have considered perturbations about the location of
the origin of the grid. Thus, the average results are
always considered from different origins of the reg-
ular grids with the aim to avoid a bias from
unsampled locations in the edges of the fields.

From the results presented in Figure 9, it is
clear that the number of misclassified blocks is re-
duced with the adaptive sample in comparison with
the structured classical approach.

Performance Assessment

Binary Image Inference Performance We begin
by comparing the performances in terms of image
recovery achieved by the proposed adaptive sam-
pling strategy with respect to the classical structured
sampling. The results are summarized in the Ta-
bles 4, 5, and 6 for case studies 1, 2, and 3, respec-
tively. Here the performance is evaluated in the
binary ore-waste estimated image for each bench by
computing the proportion of misclassified blocks.
For all the results Tables 4, 5, 6, 7, 8, and 9 presented
in this work, the best performances have been
highlighted in bold for each case study and bench.
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From the point of view of the binary allocation
of blocks (as ore or waste), the adaptive sampling-
based method provides a better overall classification
of the blocks. This behavior is consistent for the
proposed Cut-off grades along all three case studies
presented.

In general, as the procedure advances down the
benches (asm increases), the improvement increases
as well in terms of the reduction of error as com-
pared to the classical sampling method. Thus, the
adaptive strategies outperform the classical sampling
method, achieving a consistent improvement over all
benches.

It is worth mentioning that it is possible to im-
prove the performance of the proposed technique by
feeding the model for the training image of bench m
with all the information available from the previous
benches ( 1; ::;m� 1) instead of just from the bench
above (bench m� 1).

Economic Performance In order to provide a
summary of the economic impact related with the
sampling strategy in the ore-waste selection process,
a brief evaluation of profit is presented taking into
consideration some relevant scenarios. The variables
and estimations considered for this economic anal-
ysis are detailed in Appendix C: Economic Evalua-
tion. The achieved results are summarized in
Tables 7, 8, and 9. For the analysis presented, both
the price of copper and production costs have been
considered as constant. These are only presented to
explain the calculation of Cut-off grade (for which
three values have been studied in order to demon-
strate the general improvement provided by the
proposed strategy).

Although in some benches the economic results
are variable, the overall result obtained shows a
systematic improvement over the classic sampling
scheme.

Even though the binary assignment as ore-
waste is systematically better with the proposed
adaptive approach (ADA) in terms of mean global
error, the current grades are not considered for this
evaluation. Therefore, cases can be found where

when block grades are close to the Cut-off value,
then the classification may fail and the economic
value for the bench may decrease.

Negative profits may occur when the processing
plants lack ore, and marginal material must be sent
to fulfill the production requirements, which may
have a negative value, but will likely be higher than
dumping these blocks in the waste dump. Now, in
most practical cases the Cut-off will be defined to
generate profit, rather than minimize loss.

CONCLUSIONS

In this work, the problem of optimal sampling
in the context of short-term planning and the task of
classifying blocks to be processed as waste or ore has
been addressed. The problem has been formalized
and its validation has been presented through the
use of subsets of actual mining data.

The proposed methodology takes advantage of
the information available from the locations previ-
ously sampled, allowing to improve the performance
as compared with the classical non-adaptive sam-
pling schemes that has been used for advanced
drilling tasks. The proposed strategy has been vali-
dated with real blasting data from the exploitation of
two copper mines.

From the results obtained across the three
analyzed scenarios, it is possible to see that in terms
of both error in image reconstruction and global
economic value, the proposed methodology achieves
better performance than the regular grid based
sampling strategy.

APPENDIX A: PSEUDO-CODE

The implemented pseudo-code that summarizes
the proposed framework is shown here.
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APPENDIX B: ADDITIONAL
EXPERIMENTAL RESULTS

Case study 1: Cut-off grade 1:241%

With Cut-off grade 1:241%, Figures 10, 11, 12,
and 13 describe the achieved outcome. Figure 13
provides a summary of the confusion matrices for
case study 1 considering a Cut-off grade of 1.241%.

Figure 10. Samples for Case Study 1. From left to right: Benches 2–6. Top: Samples from structured sampling. Down:

Samples from adaptive sampling using Cut-off grade 1:241%.
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Figure 11. Estimated grade for Case Study 1. From left to right: Benches 2–6. Top: Kriging from structured

sampling. Down: Kriging from adaptive sampling using Cut-off grade 1:241%.
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Figure 12. Estimated grade control for Case Study 1. From left to right: Benches 2–6. From top to bottom:

Ground truth, structured sampling, adaptive sampling using Cut-off grade 1:241%.
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Figure 13. Confusion Matrix for Case Study 1. From left to right: Benches 2–6. Top: Structured sampling. Down: Adaptive sampling using

Cut-off grade 1:241%.
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Case study 1: Cut-off grade 1:518%

Considering the Cut-off grade 1:518%, the out-
come for the benches 2, 3, 4, 5 and 6 is described in
Figures 14, 15, 16, and, 17. The Figure 17 provide
the performance summary in terms of the confussion
matrices for case study 1 and Cut-off grade 1.518%.

Figure 14. Samples for Case Study 1. From left to right: Benches 2–6. Top: Samples from structured sampling. Down:

Samples from adaptive sampling using Cut-off grade 1:518%.
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Figure 15. Estimated grade for Case Study 1. From left to right: Benches 2–6. Top: Kriging from structured

sampling. Down: Kriging from adaptive sampling using Cut-off grade 1:518%.
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Figure 16. Estimated grade control for Case Study 1. From left to right: Benches 2–6. From top to bottom:

Ground truth, structured sampling, adaptive sampling using Cut-off grade 1:518%.
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APPENDIX C: ECONOMIC EVALUATION

In order to perform a realistic evaluation of cost
and profit, several considerations must be defined
for the mining and waste processing. In particular, in
this work the variables summarized in Table 10 have
been considered, where a range of realistic values
for these variables is proposed. This analysis takes
into account the block size (fixed to 1000 m3, the
same block size used in the experimental section),
the mining cost by mined ton, the metallurgical
recovery, and the stripping ratio (the proportion of
tons of expected waste material and ore material).
For the purpose of the present analysis, the eco-
nomic costs considered were the processing cost by
processed ton, the price and selling cost per pound
of copper.

In practice, the Cut-off grade, Cg, can be de-
fined by,

Cg ¼ 10000 � ðCostm � ð1þ SrÞ þ CostpÞ
ðPriceCu � CostsÞ � Rm � 2204:6 ; ð11Þ

where the value 2204.6 corresponds to the conver-
sion factor from pounds to tons.

Given the set of values for the considered
parameters, it is possible to estimate the profit of a
block. For a block with an estimated grade under the
Cut-off grade value, for simplification it has been
defined that the cost to process the waste block in
the dump facilities is considered equal for each
dumped block without taking into account its actual
mineral grade or another variables. For this brief
analysis, the revenue from dumping the block is zero
(in practice if the block has a zero profit, since it has
already been mined then it could be considered as
stock pile). Thus:

Profitd ¼ �Costm ð12Þ

In the case of a block estimated as ore (estimated
block grade is above the Cut-off grade), it is pro-
cessed by the mine and its benefit is calculated
considering the content of metal in percentage of
tons of copper as,

Figure 17. Confusion Matrix for Case Study 1. From left to right: Benches 2–6. Top: Structured sampling. Down: Adaptive sampling using

Cut-off grade 1:518%.
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Contm ¼ Gradeb
100:0

� sizeb � db ð13Þ

The content of recovered metal in tons of copper is
estimated as

Contrm ¼ Contm � Rm

100:0
ð14Þ

Then, the revenue from mining the block is esti-
mated by,

Revmb ¼ Contrm � 2204:6 � ðPriceCu � CostsÞ; ð15Þ

while the processing cost of the block is estimated as

Cost
p
b ¼ sizeb � db � ðCostm þ CostpÞ: ð16Þ

Finally, the profit of the processed block is defined
by,

Profit
p
b ¼ Revmb � Cost

p
b: ð17Þ

Therefore, from Eqs. 12 and 17 and the cost of
processing ore and waste blocks, it is possible to
estimate the profit or loss of any block.

Considering the Cut-off grade of the experi-
mental analysis and Eq. 11, the appropriate eco-
nomic parameters have been estimated. The initial
values shown in Table 10 are provided as an exam-
ple to obtain the Cut-off grade as the first quartile in
Case Study 1. For each case study and for every
empirical Cut-off grade, the best set of parameters
has been estimated in order to perform the eco-
nomic analysis.

Then, from the experimental data the profit of
every block has been evaluated in the proposed
scenarios for the sampling strategies under analysis.
Given an estimated bench block model from a
specific sampling strategy, the economic profit can

be calculated as the sum of the profit for each block
conforming this bench.

ELECTRONIC SUPPLEMENTARY
MATERIAL

The online version of this article (https://doi.or
g/10.1007/s11053-020-09625-3) contains supplemen-
tary material, which is available to authorized users.
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