
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/337806595

Perfect Brewster transmission through ultrathin perforated films

Article  in  Wave Motion · December 2019

DOI: 10.1016/j.wavemoti.2019.102485

CITATIONS

0
READS

59

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Homogenization of thin and thick microstructured materials View project

Radiation of open ended ducts: application to complex sources and geometries View project

Agnès Maurel

École Supérieure de Physique et de Chimie Industrielles

170 PUBLICATIONS   1,846 CITATIONS   

SEE PROFILE

Jean-François Mercier

ENSTA ParisTech

72 PUBLICATIONS   649 CITATIONS   

SEE PROFILE

Simon Félix

French National Centre for Scientific Research

67 PUBLICATIONS   591 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Agnès Maurel on 31 December 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/337806595_Perfect_Brewster_transmission_through_ultrathin_perforated_films?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/337806595_Perfect_Brewster_transmission_through_ultrathin_perforated_films?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Homogenization-of-thin-and-thick-microstructured-materials?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Radiation-of-open-ended-ducts-application-to-complex-sources-and-geometries?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Agnes_Maurel2?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Agnes_Maurel2?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ecole_Superieure_de_Physique_et_de_Chimie_Industrielles?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Agnes_Maurel2?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean_Francois_Mercier?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean_Francois_Mercier?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/ENSTA_ParisTech?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean_Francois_Mercier?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon_Felix?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon_Felix?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/French_National_Centre_for_Scientific_Research?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon_Felix?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Agnes_Maurel2?enrichId=rgreq-e258995fa66657aed59bc88c345eb2f0-XXX&enrichSource=Y292ZXJQYWdlOzMzNzgwNjU5NTtBUzo4NDIxMDQzNDc1NzgzNjlAMTU3Nzc4NDczMDg1MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Wave Motion 93 (2020) 102485

Contents lists available at ScienceDirect

WaveMotion

journal homepage: www.elsevier.com/locate/wamot

Perfect Brewster transmission through ultrathin perforated
films
K. Pham a, A. Maurel b,∗, J.-F. Mercier c, S. Félix d, M.L. Cordero e, C. Horvath e

a IMSIA, CNRS, EDF, CEA, ENSTA Paris, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91732 Palaiseau, France
b Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, 1 rue Jussieu, 75005 Paris, France
c Poems, CNRS, ENSTA ParisTech, INRIA, 828 Bd des Maréchaux, 91762 Palaiseau, France
d LAUM, CNRS UMR 6613, Le Mans Université, av. Olivier Messiaen, 72085 Le Mans, France
e Departamento de Física Facultad de Ciencias Físicas y Matematicas, Universidad de Chile, Av. Blanco
Encalada, 2008, Santiago, Chile

a r t i c l e i n f o

Article history:
Received 24 March 2019
Received in revised form 28 November 2019
Accepted 28 November 2019
Available online 6 December 2019

a b s t r a c t

We address the perfect transmission of a plane acoustic wave at oblique incidence on
a perforated, sound penetrable or rigid, film in two-dimensions. It is shown that the
Brewster incidence θ∗ realizing so-called extraordinary transmission due to matched
impedances varies significantly when the thickness e of the film decreases. For thick
films, i.e. ke ≫ 1 with k the incident wavenumber, the classical effective medium model
provides an accurate prediction of the Brewster angle independent of e (this Brewster
angle is denoted θB). However, for thinner films with ke < 1, θ∗ becomes dependent
of e and it deviates from θB. To properly describe this shift, an interface model is used
(Marigo et al., 2017) which accurately reproduces the spectra of ultrathin to relatively
thick perforated films. Depending on the contrasts in the material properties of the film
and of the surrounding matrix, decreasing the film thickness can produce an increase
or a decrease of θ∗; it can also produce the disappearance of a perfect transmission or
to the contrary its appearance.

© 2019 Published by Elsevier B.V.

1. Introduction

Extraordinary optical/acoustical transmission (EOT/EAT) refers to high transmission through films with subwavelength
apertures (Fig. 1), while a single aperture would transmit light/sound very poorly [1]. Such high transmission is made
possible thanks to collective effects of the holes. Collective effects can render the perforated film able to support surface
waves, as observed in plasmonic structures [2] or able to support resonances of the Fabry–Perot type [3,4]. But they can
also be non-resonant when they lend to the film an effective impedance which matches that of the surrounding matrix
at the so-called Brewster incidence [5,6] and, in contrast with resonance-based mechanisms, the resulting EOT has the
advantage to be mildly affected by the losses [7]. It has been shown that the Brewster incidence θ∗ can be tuned by playing
with the geometrical parameters of perforated rigid screens [8,9] and this has been used to realize beam shifter [10] and
flat lenses [11]; similar tuning has been obtained by playing on the material properties of sound penetrable films [12–14].

From a theoretical point of view, perfect transmissions have been analyzed owing to effective medium theories based
on classical homogenization. With h the spacing and k the incident wavenumber, classical homogenization predicts that
for kh ≪ 1 the perforated film can be replaced by an equivalent homogeneous one for which the scattering properties
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Fig. 1. Scattering of an acoustic wave at oblique incidence θ on a perforated film. The mass densities and sound velocities are (ρi, ci) in the film
material and (ρm, cm) in the matrix; k = ω/cm is the wavenumber in the matrix.

are explicitly known. Such approaches have been applied firstly to sound-rigid films in acoustics [15,16] and their elec-
tromagnetic counterparts [5,17] and they have been then generalized to more involved geometric perforations [8,9] and
to sound-penetrable films [12,13]. By construction, effective medium theories aim to describe the effective propagation
within the film and they disregard the evanescent field excited at its end boundaries. This is intuitively justified if the film
is thick enough to ensure that the effects of wave propagation are dominant compared to that of the boundary layers due
to the evanescent field. When the boundary layer effects cannot be neglected, other strategies of homogenization have to
be sought. This may happen when they are as important as the effects of wave propagation [18,19] or when they become
dominant [20–22]. In the present case, we expect that the boundary layer effects will become dominant when ke ≪ 1. In
this limit, we already know that perfect transmission based on Fabry–Perot resonances cannot take place (they require
ke > π ). The aim of the present study is to characterize the perfect transmissions based on matched impedances for thin
ke ∼ 1 and ultrathin ke ≪ 1 films. To do so, we use an effective interface model [22] which provides the condition of
existence of perfect transmissions and when perfect transmission is possible, a prediction for θ∗.

The paper is organized as follows. In Section 2, the problem is set and typical variations of the Brewster angles with
the film thickness are given. In Section 3, the classical effective medium model is recalled, resulting in a prediction of the
Brewster incidence θ∗

= θB, Eq. (8) valid for thick films ke > 1. We also provide the predictions given by the effective
interface model detailed in [22] and the resulting Brewster angle θ∗, (13), valid for thin films ke < 1. The variations of
θ∗ when going from thin to thick films are inspected and validated with direct numerics in Section 4. We collect in the
appendices additional calculations and results.

2. Perfect transmission through perforated films

We consider propagation of acoustic waves in the harmonic regime with time dependence e−iωt . The propagation is
described by the wave equation for the pressure p of the form

div
(

1
ρ(x)

∇p
)

+ ω2χ (x) p = 0, (1)

with the mass density ρ(x) and the isentropic compressibility χ (x) varying in space x = (x, y), see Fig. 1. In the perforated
film, with thickness e and filling fraction ϕ, they are denoted ρi and χi = 1/(ρic2i ), with ci the sound speed; in the
surrounding matrix, they are denoted ρm and χm = 1/(ρmc2m). With k = ω/cm the incident wavenumber, the wave
propagation in the matrix reads

∆p + k2p = 0, y /∈ (0, e). (2)

This problem can be solved numerically to get the scattering coefficients (R, T ) for a plane wave at oblique incidence θ on
the film. The numerical results presented in the paper are obtained using a multimodal method for sound-hard films [21]
and adapted for penetrable ones (see Appendix A). We report in Fig. 2 typical reflection spectra for a sound-rigid film
and for three penetrable films against the incidence θ when varying the thickness of the film ke ∈ (0, 1) for kh = 1;
perfect transmissions are visible by means of zero reflections |R| = 0. In the panels (a) and (b), a perfect transmission
takes place for each value of e at an incidence θ∗ being dependent on e. Starting for vanishing thickness with θ∗

= 0 in
panel (a) and with θ∗

= 90◦ in panel (b), the Brewster incidence varies smoothly for increasing e ∈ (0, h) and eventually
reaches a constant value θ∗

→ θB for thicker films. The spectra on the panels (c) and (d) show that the occurrence of a
perfect transmission is not always possible. In panel (c), perfect transmissions are observed for thin films only, with θ∗

experiencing large variations from 0 to 90◦ when e ∈ (0, 0.65h). Reversely, in panel (d), perfect transmissions become
possible for e/h > 0.45 where θ∗

= 90◦ then θ∗ decreases for increasing e/h. Incidentally, a noticeable difference between
the penetrable films and the sound-rigid one is that a penetrable film with vanishing thickness always produces perfect
transmission since in this limit, the film simply disappears. This is not the case for a rigid film: a rigid film with vanishing
thickness is a rigid perforated plate able to scatter efficiently the wave. This is why |R| = 0 for ke = 0 except on the
panel (b).

From these observations, it is not straightforward to anticipate the scattering properties of a perforated film; it is the
goal of this study to provide a simplified but still accurate model to predict the existence of perfect transmissions and
when they can take place, the corresponding incidences θ∗.
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Fig. 2. Perfect transmission at the Brewster angle. Reflection |R| computed numerically (in colorscale with saturation for |R| > 0.1) against the
incidence θ and the film thickness ke (ϕ = 0.5 and kh = 1) (a) with ρi/ρm = 10−3 and χi/χm = 1, (b) for a sound-rigid perforated film, (c) with
ρi/ρm = 10−3 and χi/χm = 10 and (d) ρi/ρm = 3.5 and χi/χm = 3.10−7 .

3. Effective medium model and effective interface model

Effective models aim at simplifying the problem in the scattering region y ∈ (0, e). In the classical effective medium
model, this is done by replacing the perforated film by a homogeneous and anisotropic one; in the effective interface
model, this is done by imposing non intuitive jump conditions between y = 0 and y = e. Both models are based on
asymptotic homogenization, hence they are valid in the limit kh ≪ 1 (and we shall see the predictions hold up to kh ∼ 1
with reasonable errors). However, while the effective medium model is valid for thick films ke ≫ 1, the effective interface
model is valid in the opposite limit of thin films ke ≪ 1.

3.1. Classical effective medium model

The classical model is based on effective medium theory (or classical asymptotic homogenization); it tells us that a
medium made of layers can be replaced by an equivalent homogeneous and anisotropic medium described by the wave
equation

div
((

ρm/ρx 0
0 ρm/ρy

)
∇p

)
+ χr k2p = 0, y ∈ (0, e), (3)

involving effective mass densities (ρx, ρy) and a relative effective compressibility χr defined by⎧⎪⎨⎪⎩
ρm

ρy
= ϕ

ρm

ρi
+ 1 − ϕ,

ρx

ρm
= ϕ

ρi

ρm
+ 1 − ϕ,

χr = ϕ
χi

χm
+ (1 − ϕ).

(4)

Within this description, the perforated film is replaced by a homogeneous one of same thickness e where (3) applies
surrounded by the matrix where (2) applies. It follows that for an incident plane wave at incidence θ , the solution reads

p(x) = eikx sin θ

⎧⎪⎪⎨⎪⎪⎩
(
eiky cos θ

+ R e−iky cos θ
)
, y ∈ (−∞, 0),(

A eiKy + B e−iKy) , y ∈ (0, e),

T eik(y−e) cos θ , y ∈ (e, +∞).

(5)
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At y = 0, e, by using the continuities of the pressure and of the normal velocity uy (uy =
1
ρy

∂yp in the effective film and
uy =

1
ρm

∂yp in the matrix), we get the scattering coefficients of the form⎧⎪⎪⎨⎪⎪⎩
R =

2i(ξ 2
− 1) sin Ke

(ξ − 1)2eiKe − (ξ + 1)2e−iKe ,

T = −
4ξ

(ξ − 1)2eiKe − (ξ + 1)2e−iKe ,

(6)

with

K = k
√

ρy

ρm
χr −

ρy

ρx
sin2 θ, ξ =

ρy

ρm

k cos θ

K
. (7)

The Brewster incidence θB for which perfect transmission occurs independently of the frequency k corresponds to the
condition of impedance matching, ξ = 1, which provides the relation

cos θB =

√
ρm − χr ρx

ρm − ρxρy/ρm
. (8)

Eventually, perfect transmissions due to Fabry–Perot resonances are obtained for Ke = nπ with n integer; it corresponds
to constructive interferences during wave propagation within the film and, as previously said, it requires large film
thickness e.

3.2. Effective interface model

The effective model based on homogenization of thin interface has been detailed in [22]. It aims at capturing the
boundary layer effects due to the evanescent field excited at the end boundaries of the perforated film. Because of the
low frequency regime, the evanescent field resembles a static one associated with the Laplace equation. This allows us to
encapsulate the effect of the evanescent fields in effective, though non intuitive, transmission conditions. These conditions
tell us that the pressure and the normal velocity are not continuous but they experience jumps, specifically

JpK = hB
∂p
∂y

,

t
∂p
∂y

|

= −hC
∂2p
∂x2

− hDk2 p, (9)

where for any field f , Jf K ≡ f (x, e) − f (x, 0) and f ≡
1
2 [f (x, e) + f (x, 0)]. Among the 3 interface parameters (B, C,D)

entering in the jump conditions, D is explicitly known and it reads

D = χr
e
h
, (10)

with χr defined in (4), while (B, C) are deduced from static problems. In general, B and C have to be determined
numerically (see Appendix B, (B.1) and Fig. B.10). However, we shall see that closed-forms are known in the limits of
thin and thick films, see forthcoming (14).

From (9), the perforated film has been replaced by a region y ∈ (0, e) across which jumps apply. It is worth noting
that the solution in y ∈ (0, e) does not need to be specified (and in fact it cannot be specified). The jumps are sufficient
to link the behavior of the wave on both sizes of the interface and doing so, the solution of the scattering problem reads

p(x) = eikx sin θ

{
eiky cos θ

+ Re−iky cos θ , y ∈ (−∞, 0),
Teik(y−e) cos θ , y ∈ (e, +∞),

(11)

with ⎧⎪⎪⎨⎪⎪⎩
R =

1
2

(
z1
z∗

1
−

z2
z∗

2

)
, T =

1
2

(
z1
z∗

1
+

z2
z∗

2

)
,

z1 = 1 +
ikh
2

B cos θ, z2 = 1 +
ikh

2 cos θ

(
D − C sin2 θ

)
.

(12)

It follows that perfect transmission is expected at an incidence θ∗ satisfying

cos θ∗
=

√
C − D
C − B

, (13)

and we shall see that θ∗ in general differs from the classical prediction θB in (8). Expectedly, the effective interface model
is unable to predict resonances of the Fabry–Perot type and this is because the film is assumed to be thin, and notably
too thin to satisfy a criterion of the quarter wavelength type.
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Fig. 3. Reflection spectra against θ and log10(ke) for kh = 1 (ρi/ρm = 10−3 and χr = 1). The effective medium model (b) reproduces the actual
spectrum (a) for large ke ∈ (10 − 103) in particular the Fabry–Perot resonances at Ke = nπ in (7); the interface model (c) reproduces the actual
spectrum (a) for small ke ∈ (10−1

− 1) in particular the variations of θ∗ in (13). In the intermediate range ke ∈ (1− 10) the two models are roughly
equivalent.

4. Variation of the Brewster angle for thin films

4.1. The case of sound-penetrable films

To begin with, we report in Fig. 3 the spectrum of the reflection computed numerically and the spectra given by the
effective medium theory and given by the effective interface theory. The film is that of Fig. 2(a) and we extended the range
of thickness to ke ∈ (10−1

− 103) (with kh = 1). As expected, the actual spectrum is well reproduced by the effective
interface model for thin films and it is well reproduced by the effective medium model for thick films; in between, the
two models are roughly equivalent in accuracy. For the somehow arbitrary division chosen in Fig. 3, we get the following
absolute errors |Rnum − R| (where R is given in (6) or (12)) : for ke ∈ (10−1

− 1) it is 0.3% for the interface model and 13%
for the effective medium model, for ke ∈ (1 − 101) it is 3% and 5% and for ke ∈ (101

− 103) it is 20% and 7%.
For ke = 0.1, the profiles are shown in Fig. 4 (hence e/h = 0.1 and for this aspect ratio, the interface parameters are

B = 0.037, C = 0.441 and D = 0.1); the equivalent interface model is here very accurate while the effective medium
model clearly fails in a correct prediction. In particular the perfect transmission takes place at θ∗

= 23◦ well below the
usual θB = 45◦ prediction. Eventually, the inset shows that the variations of θ∗ against e/h are accurately captured by the
interface model.

Similar results, not reported, are found for the sound-penetrable films considered in Fig. 2(c) and (d). In each case,
(B, C) are obtained by resolving the static problems (see Appendix B, Eq. (B.1)) and they depend on the characteristics of
the film, namely the contrasts (ρi/ρm, χi/χm) and the aspect ratio e/h; in contrast, they do not depend on the frequency,
and this is the gain of the homogenization process. However, a more significant gain would be to have explicit expressions
for those parameters, in which case one could anticipate the scattering properties of films and in particular their ability
to support perfect transmission. We did not find approximate expressions for (B, C) valid for any film; however, explicit
expressions can be determined in the limits of small and large aspect ratio e/h by inspecting the theoretical bounds of
these coefficients. In [22], lower bounds were established and we provide in the Appendix B the derivation of the upper
bounds, from which

ρy

ρm

e
h

≤ B ≤
ρx

ρm

e
h
,

ρm

ρx

e
h

≤ C ≤
ρm

ρy

e
h
, (14)
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Fig. 4. Profile of |R| against θ from Fig. 3 for ke = 0.1. Plain blue line shows |Rnum|, dotted yellow lines |R| from the effective interface model (12),
and dashed gray line from the classical effective medium model (6)–(7). The inset shows the variations of θ∗ against e/h (kh = 0.01 is used to avoid
Fabry–Perot resonances for large ke values).

Fig. 5. Interface parameters B (plain blue line) and C (plain green line) for ϕ = 0.5 (a) against log10(ρm/ρi) for e/h = 1 and (b) against log10(e/h)
for ρm/ρi = 103 . The dashed and the dashed–dotted lines shows the theoretical lower and upper bounds (14).

where (ρx, ρy) are the geometrical and arithmetical averages of the mass densities defined in (4), and ρy ≤ ρx by definition.
Now, a remarkable fact is that the parameters (B, C) reach their upper bounds for vanishing thickness e/h and their lower
bounds for large e/h, as illustrated in Fig. 5.

Hence, it is sufficient to use the explicit bounds (14) in (13) to get the limiting values of the Brewster angle θ∗ namely
from the

effective interface model,

⎧⎪⎨⎪⎩e/h ≪ 1, cos θ∗
=

√
ρm − χr ρy

ρm − ρxρy/ρm
,

e/h ≫ 1, θ∗
= θB,

(15)

with θB defined in (8). It is worth noting that in the limit of e/h ≫ 1, we recover the expression of the Brewster angle
θB predicted by the effective medium model; this means that in the limit kh ≪ ke ≪ O(1) where the effective interface
model is valid the Brewster angle reaches θB predicted in the limit kh ≪ O(1) ≪ ke where the effective medium model
is valid. In other words θ∗ tends to θB as soon as e/h ≫ 1 independently of the value of ke.

Now, by looking the relations (15) along with (8) we can predict that perfect transmission is not always possible
depending on the contrast ρi/ρm and on χr. This is summarized in Fig. 6 where we report for ρi > ρm and ρi < ρm the
ranges of χr allowing for perfect transmission in the limits of thin and thick films. For instance when ρi/ρm < 1, four
scenarios are possible depending on the value of χr: (i) if χr ∈ (ρy/ρm, ρx/ρm) perfect transmission is not observed for thin
films but appears for thick films, (ii) if χr ∈ (ρx/ρm, ρm/ρx) perfect transmission is always possible and θ∗ varies when e/h
varies according to the limits in (15), (iii) if χr ∈ (ρm/ρx, ρm/ρy), perfect transmission is possible only for thin films; (iv)
eventually for χr ∈ (−∞, ρy/ρm) or (ρm/ρy, +∞), perfect transmission is never realized whatever the film thickness. It
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Fig. 6. Ranges of parameters for which perfect transmission is allowed in the limits e/h ≪ 1 and e/h ≫ 1, from (15).

is easy to see that two of these scenarios are illustrated in Fig. 2(a) and (c). For these films, ρx/ρm ≃ 0.5, ρy/ρm ≃ 2.10−3,
hence in (a) χr = 1 results in perfect transmission allowed both for thin and thick films (scenario (ii)) and in (c) χr = 5.5
results in perfect transmission allowed for thin films only (scenario (iii)). Eventually, the case of Fig. 2(d) with ρi/ρm > 1,
ρm/ρx ≃ 0.44, ρm/ρy ≃ 0.64 and χr ≃ 0.5 illustrates a case where perfect transmission is not allowed for very thin films.
In these 3 cases, the limit of θ∗ for vanishing e/h from (15) is for (a) θ∗

≃ 1.8◦, for (c) θ∗
≃ 5.7◦ and for (d) θ∗ is found

imaginary, in agreement with the observation in Fig. 2.

4.2. The case of sound-hard film

A case of practical interest in acoustics is that of sound-hard films whose analog in electromagnetism are metallic
films for polarized waves in the far-infrared. The effective models have been derived in [21,23] see also [24], and they
correspond to the limit ρm/ρi = χi/χm = 0, hence from (4)

ρm/ρx = 0, χr = ρm/ρy = (1 − ϕ).

According to Fig. 6(a), this already tells us that a perfect transmission can take place for any value of e/h that is for thin
and thick films. But this does not tell much about B and C since the bounds in (14) leave us with 1

1−ϕ
e
h ≤ B ≤ +∞

and 0 ≤ C ≤ (1 − ϕ) eh . However, very good estimates of (B, C) have been found in [23], and D is still known explicitly;
specifically we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

BNeu ≃
1

(1 − ϕ)
e
h

−
2
π

log
(
cos

πϕ

2

)
,

CNeu ≃
π

8
(1 − ϕ)2

(
1 − e−

8e
(1−ϕ)πh

)
,

DNeu = (1 − ϕ)
e
h
.

(16)

The variations of (BNeu, CNeu) against e/h are reported in Fig. 7(a) together with their values computed numerically; the
excellent agreement justifies their use. Hence, once reported in (13), we get an explicit estimate of θ∗ whose variations
against e/h and ϕ are shown in Fig. 7(b). The actual Brewster angle θ∗ has been computed numerically as the minimum
of |Rnum| for each couple (e/h, ϕ); (and kh = 1) the agreement with the theoretical estimate is better than 3% on average
for e/h ∈ (0, 2) and ϕ ∈ (0, 1).

In particular, from (16), we get simplified expressions of θ∗ in the limits of thin and thick films⎧⎪⎪⎨⎪⎪⎩
for thin films, cos θ∗

=

√
−2

log
(
cos πϕ

2

) e
h

→ 0,

for thick films, cos θ∗
= (1 − ϕ),

(17)

and as we have found for sound-penetrable films, the Brewster angle for thick films coincides with θB given by the classical
effective medium model see e.g. [5,17]. Next by continuity, it follows that perfect transmission is always possible with a
Brewster angle decreasing when e/h increases, a fact observed in Fig. 2(b).
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Fig. 7. Limiting case of rigid films – (a) Parameters (BNeu, CNeu) as a function of (e/h) (ϕ = 0.5). The estimates in (16) are plotted in dashed lines.
(b) Brewster angle θ∗ against ϕ and e/h from (13) along with (16). The classical Brewster angle θB = acos(1 − ϕ) is reported for comparison.

Fig. 8. Reflection |R| against θ and log10(ke) for a perforated rigid film (kh = 1). Same representation as in Fig. 3.

The ability of the models to reproduce the scattering properties of the sound-hard films is illustrated in Figs. 8 and 9.
As for the case of sound-penetrable films, the actual spectrum is well reproduced by the effective interface model for thin
films, here for ke ∈ (10−1

− 1). Conversely, for thick films, the effective medium model is more accurate; in particular it
recovers the Fabry–Perot resonances occurring at ke = nπ (since K = k in (7)) except in the vicinity of the intersection
of two perfect transmissions; this is attributable to a deeper excitation of the evanescent field in these regions which
would require to conduct the model at higher orders (see Appendix C). It is worth noting that it is more difficult in the
present case to define a region of transition due to the occurrence of Fabry–Perot resonances at relatively low ke -value.
The overall error between Rnum and interface model is 7% for ke ∈ (10−1

− 1) and 70% for ke ∈ (1 − 10); for the effective
medium model, it is 40% for ke ∈ (10−1

− 1) and it remains as large as 20% for ke ∈ (1 − 10); for the effective interface
model, (B, C) have been calculated using (16).

Eventually, typical profiles for a thin film are reported in Fig. 9 which illustrates the accuracy of the effective interface
model. As in Fig. 4, we also report in the inset the variations of θ∗ from 90◦ to acos(1 − ϕ) when increasing e/h, in
agreement with (17). For intermediate values of e/h, the ability of our expression (13) along with (16) to predict θ∗ is
excellent; in the present case, θ∗ is explicit for any film thickness.

5. Conclusion

We have studied the scattering properties of perforated films with a focus on thin films. The conditions under which
perfect transmissions are possible are modified when ultrathin devices are considered; in particular an extraordinary
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Fig. 9. Reflection |R| against θ for a perforated rigid film, e/h = 0.1 (ϕ = 0.5 and kh = 1). Same representation as in Fig. 4.

transmission observed for a thick film can disappear when reducing its thickness, and the reverse situation is possible as
illustrated at the beginning of this paper in Fig. 2. In all cases, a shift in the Brewster incidence θ∗ has been exhibited: for
film materials lighter than the surrounding matrix, θ∗ increases with the thickness up to θB, for film material heavier, θ∗

decreases with the thickness up to θB. The case of perforated sound-rigid films has been shown to be a limiting case of
the sound-penetrable ones for a film material infinitely heavy; in this case, perfect transmission is always possible which
is of particular interest since a perforated plate obtained for vanishing thickness remains very efficient to block waves.

These features, and more generally the scattering properties of thin films, are accurately reproduced by an effective
interface model which aims at capturing the boundary layer effects largely dominant compared to that of wave
propagation. Beyond the geometrical or compositional effects of the perforations, the thickness of the films offers a degree
of freedom to tune its properties. Besides, it is a parameter of practical importance since it measures the compactness of
the structure. With regards to the design of ultrathin devices, such alternative models are of particular interest since they
have their range of validity which complements that of the classical effective medium theory.

During the reviewing of this paper, the authors have been informed of a related study [25] revisiting the extraordinary
transmission through a single narrow slit.
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Appendix A. Numerical resolution

The numerical resolution of the actual problem is performed using multimodal methods. For sound-rigid films, the
method has been described in [26] and we give below the adaptation of the method to sound-penetrable films. We
consider the expansion of the solution onto the basis of transverse functions Qn(x) = eiβnx with βn = k sin θ + 2nπ/h
(n integer) satisfying the condition of pseudo-periodicity for an incident wave of the form eik(sin θx+cos θy), hence

p(x, y) = pn(y)Qn(x), (A.1)

where repeated indices mean summation. In the matrix y /∈ (0, e) the evolution equations of the modal coefficients pn
are not coupled and they satisfy p′′

n + k2npn = 0 with kn =
√
k2 − β2

n . Hence they can be written as{
pn(y) = eik cos θyδn0 + Rne−ikny, y ∈ (−∞, 0),
pn(y) = Tneikny, y ∈ (e, ∞). (A.2)

For y ∈ (0, e), the heterogeneity of the medium in the transverse direction induces a coupling of the modal components
pn and the problem then read{

Lmnp′′

n + Mmnpn = 0,
Lmn = fmn (ρm/ρi) , Mmn = k2fmn (χi/χm) − βmβnfmn (ρm/ρi) ,

(A.3)
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Fig. B.10. Elementary problems on Qα , α = x, y used to calculate (B, C), Eqs. (B.1). The problems are set in Ω = Ωi ∪Ωm = (−1/2, 1/2)× (−∞, ∞).

where we have defined fmn(c) = δmn + (c − 1)ϕ sinc (π (m − n)ϕ). It is solved using the eigensolutions of N = L−1M =

PKP−1 with K the diagonal matrix of the eigenvalues K 2
n . The eigenmodes are Pm = P−1

mn pn = AneiKmy
+ Bne−iKm(y−e) and

eventually

pn(y) = Pnm
(
AmeiKmy

+ Bme−iKm(y−e)) , y ∈ (0, e). (A.4)

Next, the continuities of the pressure and of the normal velocity at x = 0 and x = e can be accounted for to get
the unknown complex amplitudes (Rn, Tn, An, Bn). This is done on average, namely defining Y = {|x| ∈ (0, h/2)},
Yi = {|x| ∈ (0, ϕh/2)} and Ym = {|x| ∈ (ϕh/2, h/2)}, we use that⎧⎪⎪⎨⎪⎪⎩

∫
Y
p(x, 0−)Qm(x) dx =

∫
Y
p(x, 0+)Qm(x) dx,∫

Y
∂yp(x, 0−)Qm(x) dx =

∫
Ym

∂yp(x, 0+)Qm(x) dx +
ρm

ρi

∫
Yi

∂yp(x, 0+)Qm(x) dx,
(A.5)

and the same at x = e. The resulting system reads⎛⎜⎝−I P PE 0
kI H −HE 0
0 PE P −I
0 HE −H −kI

⎞⎟⎠
⎛⎜⎝R
A
B
T

⎞⎟⎠ =

⎛⎜⎝S1
S2
0
0

⎞⎟⎠ (A.6)

where I is the identity matrix, E = eiKe, Hmn = fmp(ρm/ρi)PpnKn. The vectors (R, T,A,B) are the column vectors of the
coefficients (Rn, Tn, An, Bn) in the truncated series n ∈ (−N,N) and the source terms are S1,n = δn0, S2,n = k cos θδn0. It is
now sufficient to invert the above system to get the unknown amplitudes in (A.2) and (A.4) and thus the whole solution
in (A.1).

Appendix B. Effective parameters (B,C) and their bounds

In the jumps (9) of pressure and normal velocity, the parameters (B, C) have to be determined numerically. They are
defined as⎧⎪⎪⎨⎪⎪⎩

B ≡
e
h

+

(
lim

y1→+∞
Qy − lim

y1→−∞
Qy

)
,

C ≡
e
h

(
ϕ

ρm

ρi
+ 1 − ϕ

)
+

∫
Ω

dξ
ρm

ρ(ξ)
∂Qx

∂ξx
(ξ),

(B.1)

with ξ = (ξx, ξy) = (x, y)/h a rescaled coordinate and ϕ = Si/h2 where Si is the surface of the perforated film; the fields
Qα , α = x, y, are solutions of the static problems defined in Fig. B.10.

It is worth noting that these problems have several advantages (i) they are static, (ii) they depend on the contrast
in mass density only, the contrast in the sound speed being encapsulated explicitly in χr, (iii) they are set in a non-
dimensional geometry (with a reference length h). As such (B, C) hold for a large family of settings; besides, once they
are determined, the effective problem can be solved in the transient as in the harmonic regime for any kind of source
and any radiation or boundary conditions.

B.1. Upper bound for B

Determining an upper bound for B requires to invoke the Thomson principle (a similar calculation can be found in [22]
for the determination of the upper bound for C). It is based on the equivalence between the problem on Qy and the problem
of energy minimization for U = (ρm/ρ)∇(Qy + ξy) which reads

E(U ) ≤ E(Ũ ),

with E(Ũ ) =
1
2

∫
Ω

dξ
ρ

ρm

⏐⏐⏐⏐ Ũ −
ρm

ρ
ey

⏐⏐⏐⏐2 ,
(B.2)
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Fig. C.11. Same representation as in Fig. 8 with in (a) the result of the monomodal version of the numerics, hence omitting the evanescent field.

Fig. C.12. Same representation as in Fig. 8 with in (b) the result of the effective medium model at the higher order 1, from [27].

for any admissible field Ũ which corresponds to Ũ · n continuous, Ũ ξx-periodic in Ω and satisfying divŨ = 0, Ũ → ey

for ξy → ±∞. We start by linking E(U ) =
1
2

∫
Ω
dξ ρm

ρ
|∇Qy|

2 to B; we use that 0 =
∫

Ω
dξ (Qy − ξy) div

[
ρm
ρ

∇
(
Qy + ξy

)]
,

from which making use of the boundary conditions∫
Ω

dξ
ρm

ρ
|∇Qy|

2
=

∫
Ω

dξ
ρm

ρ
+ lim

ξm→+∞

[
Qy − ξy

]+ξm
−ξm

. (B.3)

Both terms on the right hand side diverge in the above expression, but not their sum; specifically, we have⎧⎪⎨⎪⎩
∫

Ω

dξ
ρm

ρ
= 2 lim

ξm→+∞

ξm − ϕ
e
h

(
1 −

ρm

ρi

)
,

lim
ξm→+∞

[
Qy − ξy

]+ξm
−ξm

= (B+
− B−) − 2 lim

ξm→+∞

ξm,
(B.4)

where B±
= limy1→±∞Qy. Hence

E(U ) =
1
2

[
(B+

− B−) − ϕ
e
h

(
1 −

ρm

ρi

)]
. (B.5)
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It is now sufficient to choose the simple admissible field Ũ = ey, which provides E(Ũ ) =
ϕe
2h

ρi
ρm

(
1 −

ρm
ρi

)2
and to invoke

(B.2) to get that B = (B+
− B−) +

e
h in (B.1) satisfies

B ≤
e
h

(
ϕ

ρi

ρm
+ 1 − ϕ

)
. (B.6)

B.2. Upper bound for C

The upper bound on C is straightforward. It is sufficient to use that∫
Ω

dξ Qx div
[

ρm

ρ
∇ (Qx + ξx)

]
= 0,

from which it is deduced∫
Ω

dξ
ρm

ρ

∂Qx

∂ξx
(ξ) = −

∫
Ω

dξ
ρm

ρ
|∇Qx|

2
≤ 0, (B.7)

where we used the boundary conditions on Qx. With C defined in (B.1), we get the upper bound

C ≤
e
h

(
ϕ

ρm

ρi
+ 1 − ϕ

)
. (B.8)

Appendix C. Remark on the effective medium model at higher order

In the comment of Fig. 8, we have stressed that the relatively bad agreement between the actual spectrum for
ke ∈ (1− 10) and that predicted by the classical effective medium model was attributable to the effect of the evanescent
field. In this appendix, we justify this statement. To begin with, we report in Fig. C.11 the same figures than in Fig. 8
but with the actual spectrum (a) calculated using a monomodal version of the multimodal method; this means that the
numerics is performed with only the propagating mode (n = 0).

Doing so, the evanescent field is neglected. It results a spectrum (a) which resembles that given by the effective medium
model (b) with agreement better than 2% on the whole range ke ∈ (10−1

− 10). This confirms that the effects of the
evanescent field are dominant for ke ∈ (10−1

− 1) and significant for ke ∈ (1 − 10).
This failure can be remediated by pursuing the asymptotic analysis to higher order which means by improving the

model. This has been done in [27] and we report below the result to illustrate the resulting gain for thick films. The
Fig. C.12 reports the same figures (a) and (c) than in Fig. 8 but the panel (b) shows now the spectrum obtained with the
effective medium model conducted at the higher order. The improvement in the prediction is very significantly increased
for ke ∈ (1 − 10), with an error reduced to 0.5%. Expectedly, it remains high for ke ∈ (10−1

− 1), with an error of 20%.
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