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We measured the effective diffusion coefficient in regions of microfluidic networks of controlled geometry
using the FRAP (Fluorescence Recovery After Photobleaching) technique. The geometry of the networks was
based on Voronoi tessellations, and had varying characteristic length scale and porosity. For a fixed network,
FRAP experiments were performed in regions of increasing size. Our results indicate that the boundary of the
bleached region, and in particular the cumulative area of the channels that connect the bleached region to the
rest of the network, are important in the measured value of the effective diffusion coefficient. We found that the
statistical geometrical variations between different regions of the network decrease with the size of the bleached
region as a power law, meaning that the statistical error of effective medium approximations decrease with the
size of the studied medium, although no characteristic length scale could be defined over which the porous
medium is equivalent to an effective medium.

I. INTRODUCTION

Diffusion in porous media has been studied in several bio-
logical contexts, such as protein transport inside the cell [1, 2],
signaling in the brain [3, 4], drug delivery in tumors [5], and
transport of ions in muscles [6, 7]. It is acknowledged that
diffusion is slowed down in porous media both due to impen-
etrable obstacles that reduce the available space for diffusion
and to the intricate trajectories that particles need to describe
in order to circumvent the obstacles. The first effect can be
quantified in terms of the porosity of the medium, φ. The sec-
ond effect is usually described in terms of tortuosity, λ > 1,
which quantifies the increase in path length that diffusive par-
ticles travel within the medium. Hence, when diffusion of
some species is measured in the porous medium filled with a
given fluid, an average, or effective diffusion coefficient, Deff,
is obtained, which is smaller than the diffusion coefficient that
would be measured for the same species in the same fluid but
in a free space, D0.

Typical experimental values of Deff/D0 are ∼ 0.44 for
packed beds of beads [8], ∼ 1 for the brain extracellular
space [4], and between 0.23 and 0.59 for the endoplasmic
reticulum [9]. In real biological situations, however, one has
to deal with complex processes that further slow down the dif-
fusive transport, such as a usually unknown viscosity of the
ambient fluid, binding of the diffusive molecules to macro-
molecular complexes, hindering to diffusion due to molecular
crowding [10, 11] and geometrical blockage of large diffusive
molecules in narrow passages [12], and permeating bound-
aries [13]. In order to asses the relevance of these effects, it
would be desirable to isolate them from the purely geometri-
cal ones of the medium.

Theoretical models describing the porous medium as the
space around a loosely packed bed of solid spheres [14], or a
collection of twisted capillaries [15], yield values of Deff/D0
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of the same order of magnitude than experiments. However,
these models have poor predictive power when applied to real
cases, since it is not clear if they capture the essential geomet-
rical features of a particular medium. Numerical simulations
have delivered useful information [16], but due to practical
limitations they have usually simplified the studies to peri-
odic lattices of polyhedral obstacles [17], which are inherently
anisotropic and unrealistic. Effective medium approximations
have been developed to describe the effective diffusion coef-
ficient of porous media based on Voronoi and Delaunay tes-
sellations [18–20]. Effective medium approximations imply a
description over a length scale much larger than any charac-
teristic geometrical length scale of the medium. In this way,
local geometrical details are averaged and only global features
emerge. However, measurements and simulations of diffusion
in porous media are performed in samples of finite size or in
reduced regions within a sample, and hence the result can re-
flect both the effective properties of the medium and/or local
details of the measurement position [21]. The correct descrip-
tion of a porous medium as an effective one depends on the
correct determination of a minimum length scale over which
the medium can be described as an effective one. We explore
on this idea by studying diffusion in networks of channels
at different length scales compared to the characteristic scale
of the networks. For this, we propose an experimental ap-
proach in which two-dimensional networks of microchannels
are fabricated from Voronoi tessellations to simulate random,
globally isotropic porous media. We measure the diffusion of
fluorescein in water, a small molecule for which geometrical
hindering is negligible in the micrometric channels used, as
well as binding and permeation through the walls. The diffu-
sive properties of the networks are measured locally in differ-
ent regions of the sample with the fluorescence recovery after
photobleaching technique [22–25], which yields a diffusion
coefficient in a region of defined sizeR. By varyingR we can
focus on the local geometrical details of the networks (small
R) or effective properties of the whole sample (large R).

Our results suggest that dispersion on the measuredDeff de-
crease with R as a power law, and hence no inherent length
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scale could be defined for our random networks based on
Voronoi tessellations over which the effective medium is as-
sured to be valid. More precisely, this does not precludes the
definition of an effective diffusion coefficient for each net-
work. Instead, this means that the measured diffusion coef-
ficient will vary from place to place, around a well-defined
mean value, with a dispersion that decreases as a power law
with the size of the studied regions.

The paper is organized as follows. In Sec. II we describe
the design and fabrication of the random networks, and the
experimental procedure to find the diffusion coefficient Deff,
based on the fluorescence recovery after photobleaching tech-
nique [24, 25]. In Sec. III we present the results, which are
discussed in Sec. IV. Section V summarizes our main conclu-
sions.

II. MATERIALS AND METHODS

A. Design of networks

Random networks of channels were designed and fabri-
cated [26]. Briefly, Voronoi polygons were generated from
a set of n random seed points inside a square region of sides
15 mm. The edges of the Voronoi polygons, which become
the microchannels after the fabrication process, were then as-
signed with a given width w between 20 µm and 125 µm.
The disorder of the network can be adjusted from the initial
set of seed points, by imposing a minimum distance d be-
tween any pair of points. This is quantified by the parameter

α = d/d0, where d0 =
√

2A0/(n
√

3) is the distance between
the seed points in a completely regular network (a honeycomb
network), A0 = (15 mm)2 being the area of the square re-
gion [27]. Hence, α = 1 corresponds to a completely regular
honeycomb lattice, while disorder increases as α decreases.
In our study, we arbitrarily fixed α = 0.3.

Inlet and outlet sections were added at opposite sides of the
network, and then the designs were used to fabricate negative
masters of the microchannels through optical lithography in
SU-8 photoresist (GM1070, Gersteltech Sarl). The height of
the molds was set at 50 µm. From the masters, microfluidic
networks were fabricated in polydimethylsiloxane (PDMS)
(Sylgard 184, Dow Corning) using standard soft lithography
techniques [28]. Inlet and outlet access holes were punched
before sealing the PDMS networks against a glass slide by
oxygen plasma activation. An example of a microfluidic net-
work is shown in Fig. 1.

For each network we can control the number n of seed
points, which determines an average length channel 〈L〉. In-
dependently, we can control the width w of the channels.
Thicker channel width increases the porosity φ of the network,
which we define as usual,

φ =
Achannel

A0
, (1)

where Achannel is the total area of the microchannels in the

1 cm

L

w

Figure 1. Left: Photography of an assembled microfluidic channel.
Inlet and outlet tubes are visible. Right: Fluorescence micrography
of a region of one microfluidic network. White areas correspond to
channels, filled with the fluorescent solution.

network. As φ increases, the network resembles less a collec-
tion of narrow channels, as shown in Fig. 2.

φ = 0.09 φ = 0.24 φ = 0.42 φ = 0.62

Figure 2. Micrographies of networks with different porosities (net-
works B-E from Table I). As the width of the channels increases,
the reticular aspect of the network is lost. Color is inverted, so dark
regions represent fluorescent-filled channels.

Several designs with different number of seed points and
different channel widths, hence different φ, were fabricated.
All the channels used in this study are listed in Table I.

Network n 〈L〉 (µm) w (µm) φ

A 500 458 82 0.22
B

2000 227

13 0.09
C 38 0.24
D 75 0.42
E 125 0.62
F 10000 101 24 0.25

Table I. Networks used within this study.

Besides the random networks, one circular chamber of di-
ameter 1.5 cm and height 50 µm was fabricated with SU-8
walls on a glass slide, filled with the fluorescent solution
and closed with a cover slip in order to measure diffusion in
free, two dimensional space. Finally, a “flow-focusing” mi-
crochannel was used to measure the diffusion coefficient in
flow by measuring the widening of a central fluorescent solu-
tion sheathed by two water streams [29].

B. FRAP experiments

After fabrication, the networks were filled with an aqueous
solution of fluorescein (Kingscote Chemicals) at a concentra-
tion of 0.5 mM. Microchannels were mounted on an inverted
microscope (Nikon TS100) with epifluorescence illumination,
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and observed with a CMOS camera (DCC1545M, Thorlabs)
at a rate between 1 and 1/5 frames per second (fps).

The effective diffusion coefficient of fluorescein was mea-
sured through the fluorescence recovery after photobleach-
ing (FRAP) technique. The technique consists in irre-
versibly inactivating (bleaching) the fluorescence of fluo-
rescein molecules with a high intensity excitation illumi-
nation in a small region. Afterwards, fluorescence is ob-
served with a lower intensity excitation illumination. As
bleached molecules diffuse out of, and non-bleached fluores-
cent molecules diffuse into the bleached area, the fluorescence
is recovered in the the bleached region. Fluorescence recov-
ery curves are then fitted with a model based on the diffu-
sion equation [30, 31] and an effective diffusion coefficient is
obtained. In our experiments, bleaching was achieved using
the highest intensity of the epifluorescence excitation illumi-
nation, focused into the sample with a 10X, 0.25 NA objec-
tive during 5 s. The radius R of the bleached area was con-
trolled with a diaphragm between 250 µm and 1.1 mm. Note
that the time duration of the bleaching is considerably smaller
than the diffusion time scale over a region of size R, as the
diffusion coefficient of fluorescein in water at room tempera-
ture (which varied between 20 ◦C and 25 ◦C) was measured at
D0 = 6.66× 10−10 m2/s (see Sec. III A) and the time scale
for diffusion in a two-dimensional circle of radius R is given
by

τ =
R2

4D0
, (2)

which ranges between τ = 23 s and τ = 454 s for the given
values of R.

Recovery of the fluorescence was observed through a 2X,
0.06 NA objective using a dimmed excitation illumination
to minimize further bleaching (1/32 times the intensity used
for bleaching), during a period of time that ranged between
15 min and 60 min, depending on R.

Depending on the radius of the bleached zone, more or less
details of the network are included in the bleached area. To
quantify the effect of geometrical details on the recovery of
fluorescence, we define the homogeneity parameter

γ =
R

〈L〉
. (3)

A value of γ < 1 indicates that only a fraction of a straight
channel is bleached. On the other hand, γ � 1 means that
many straight segments of the networks are included in the
bleached area, and geometric details of the network are aver-
aged in the bleached region. Examples of different bleached
areas with various values of γ are shown in Fig. 3.

C. Recovery curve and curve fitting

Recovery curves were obtained in the following manner.
Prior to the experiment, a pre-bleaching image of the net-
work was recorded with the 2X objective and low excitation

γ = 1.9 γ = 2.5 γ = 5.4 γ = 6.8 γ = 7.8γ = 3.2 γ = 4.2

Figure 3. Color-inverted micrographies of bleached areas with dif-
ferent γ. Images correspond to network E in Table I.

intensity. A binary mask M of the bleached region was ob-
tained by dividing the pre-bleached image and the first post-
bleaching image, then binarizing with application of a thresh-
old (see Figs. 4(a)-(c)). A complementary mask, M c was
also obtained by subtracting the mask M to the binarized pre-
bleaching image, as shown in Fig. 4(d). The average fluores-
cence in the bleached and complementary regions were then
computed as

Fin =
∑

i,j Iij(t)Mij∑
i,j Mij

, (4)

Fout =
∑

i,j Iij(t)Mc
ij∑

i,j M
c
ij

, (5)

where Iij(t) represents the gray value of the pixel (i, j) of the
post-bleaching image I at time t, and Mij and M c

ij represent
the value of the masks M and M c at the pixel (i, j).

500 µm

(a) (b)

(c) (d)

Figure 4. Procedure for obtaining the bleached and complementary
masks. (a) Image before photobleaching. (b) First image after pho-
tobleaching. (c) and (d) Bleached and complementary masks.

As fluorescent molecules diffuse into, and bleached
molecules diffuse out of the bleached area, the average fluo-
rescence of the bleached area, Fin increases and the average
fluorescence of the complementary region, Fout, decreases.
However, unwanted, inhomogeneous, non-negligible bleach-
ing occurs during observation of the fluorescence recovery,
causing Fin(t) not to increase monotonically, and Fout(t) to
decrease both due to diffusion and bleaching, as shown in
Fig. 5. To correct for this, images of the same region of the
microfluidic network are obtained with the same illumination
and acquisition protocol, but without the initial bleaching. In
this way, only the bleaching due to observation is recorded
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as a reference. The average fluorescence of the bleached and
complementary regions for these reference images are com-
puted in the same way for these reference images, as

F ref
in =

∑
i,j I

ref
ij (t)Mij∑

i,j Mij
, (6)

F ref
out =

∑
i,j I

ref
ij (t)Mc

ij∑
i,j M

c
ij

, (7)

where I ref
ij represents the gray value of pixel (i, j) of the refer-

ence image I ref at time t. Hence, the fraction of fluorescence
recovered due to diffusion in the bleached area with respect to
the complementary region is defined as

F (t) =
Fin(t)/F ref

in (t)

Fout(t)/F
ref
out(t)

. (8)

0 500 1000 1500 2000 2500 3000 3500 4000

time (s)

30

40

50

60

70

80

fl
uo

re
sc

en
ce

 (
A

U
)

F in

Fout

Figure 5. Evolution of the average fluorescence of the bleached and
complementary regions.

Effective diffusion coefficients are obtained by adjusting
F (t) to a numerically obtained model recovery curve, simi-
lar to what is described in Ref. [30] but taking into account
the intensity profile for bleaching. The recovery curve F (t) is
not normalized between 0 and 1, as is usually done, in order
to increase the sensitivity of the fit. The fitting procedure has
two fitting parameters, the amount of bleaching, G, and the
characteristic timescale

τ =
R2

4Deff
, (9)

from which the effective diffusion coefficient, Deff, is ob-
tained.

III. RESULTS

A. Absolute diffusion coefficient of fluorescein

The absolute diffusion coefficient of fluorescein in wa-
ter, D0, was measured in two different ways. First, FRAP
measurements were performed in the circular quasi-two-
dimensional chamber. Two different bleaching radii were

used, R1 = 198 µm and R2 = 567 µm. The same numer-
ical fitting procedure used in the random networks was em-
ployed here, yielding the values of D(1)

0 = (6.77 ± 0.23) ×
10−10m2/s,D(2)

0 = (6.35±0.25)×10−10m2/s, respectively.
Errors represent the standard deviation of five repetitions, and
are below 5%.

On the other hand, the diffusion coefficient was determined
in the flow-focusing microchannel [29]. Briefly, a central
stream of the fluorescent solution and two flanking water
streams were injected at constant flow rates. For a fixed lo-
cation of the microchannel, the fluorescence intensity profile
of the central stream was obtained and fitted to a Gaussian
curve. The width of the Gaussian curve increases linearly with
the downstream location, from which the diffusion coefficient
was obtained atD(3)

0 = (6.87±0.61)×10−10m2/s. The error
corresponds to the standard deviation of seven measurements
performed with different flow rates.

All results thus obtained are close to each other. In aver-
age, the free-space diffusion coefficient for fluorescein in wa-
ter was considered to be D0 = (6.66± 0.69)× 10−10m2/s.

B. Number of feeding channels

We investigate the effective diffusion coefficient in small
bleaching regions located at the intersection between chan-
nels, as shown in Fig. 6(a)-(d). The objective is to establish
the role that the number of channels that converge into the
bleaching region, N , has in the recovery process. These ex-
periments were performed in network A with a bleaching ra-
dius R = 251 µm, which is smaller than the average length of
the network’s channels (γ = 0.6).

(a)

1 mm

(b) (c) (d)

0 1 2 3 4 5 6 7
N

0

0.2

0.4

0.6

0.8

1

D
ef

f/D
0

(e)

Figure 6. (a)-(d) Images of FRAP experiments with varying number
of feeding channels. All cases correspond to network A in Table I.
Dashed red circles indicate the bleached region. (e) Normalized ef-
fective diffusion coefficient,Deff/D0 for different number of feeding
channels, N .
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For each number N of converging channels, five regions
were randomly selected in the network. The average effective
diffusion coefficient, Deff, normalized by D0 is plotted as a
function of the number of feeding channels in Fig. 6(e), with
error bars representing the standard deviation of the five mea-
surements. The effective diffusion coefficient increases with
the number of feeding channels, from a value of ≈ 0.25D0

for N = 2 to ≈ 0.45D0 when N = 6.

C. Effective medium

In order to determine the minimum radius R for which the
network can be considered as an effective medium, we per-
form FRAP experiments using a single network (network F
from Tab. I) and we vary the size of the bleached region, from
γ = 1.33 (R = 134 µm) to γ = 13.59 (R = 1373 µm). For
each value of γ, ten FRAP experiments were performed in
random locations of the network to obtain an effective diffu-
sion coefficientDeff and its statistical variation ∆Deff from the
average and standard deviation of the obtained coefficients.

The results are shown in Fig. 7. In all cases, Deff/D0 < 1,
indicating that the geometry of the network slows down the
diffusion coefficient, as expected. The average values of Deff
vary between 0.55D0 and 0.62D0 in a non monotonic way as
γ is increased in a decade (Fig. 7(a)).

The dependence of the fractional error ∆Deff/Deff with γ is
shown in Fig. 7(b). For small bleached area, the dispersion in
the fitted diffusion coefficient is larger than 20%. As the size
of the bleached region increases, ∆Deff rapidly decreases. For
γ >∼ 10, ∆Deff becomes comparable to the characteristic error
of the method, which is estimated at ∼ 5% (dashed line in
Fig. 7(b)), according to the measurements for D0 presented in
Section III A.

D. Available area

Finally, in order to determine the effect of the available area
for diffusion, we perform experiments in networks with the
same geometry but varying channel width (networks B-E from
Tab. I). In these networks, the original Voronoi polygons are
the same, and only the channel width is varied. In all cases, we
fix the size of the bleaching region at γ = 3.99 (R = 790 µm).
Six locations were randomly chosen in the geometry to per-
form the FRAP experiments. We uses the same six bleaching
positions in all networks, as can be noted in Fig. 2, although
minor displacements occurred between different networks.

The results are shown in Fig. 8. The point φ = 1 cor-
responds to a hypothetical network for which channels are
so wide that merge into a quasi-two-dimensional chamber, in
which case the absolute diffusion coefficient D0 should be re-
covered. The error bar in this case corresponds to the propa-
gated error of the three different measured values of D0 (sec-
tion III A). As channels become more slender and φ decreases,
the normalized effective diffusion coefficient decreases. In
these cases, the error bars represent the standard deviation in
the Deff obtained in all six locations for each network. Note

0 5 10 15
0

0.2

0.4

0.6

0.8

1

D
ef

f/D
0

(a)

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

D
ef

f/D
ef

f

(b)

Figure 7. (a) Normalized effective diffusion coefficient, Deff/D0 as
a function of γ for network F. (b) Standard deviation ofDeff, normal-
ized by Deff, for ten realizations in arbitrary locations of the same
network, at fixed γ. The dashed line marks the 5% accuracy limit of
our measurements.

that, for the chosen size of the bleaching region, the disper-
sion in the results between different regions is expected to be
higher than the precision of the method (5%), which is consis-
tent with the values obtained for the error bars (between 5%
and 11%).

IV. MODEL FOR DETERMINATION OF
CHARACTERISTIC LENGTH SCALE

FRAP experiments in small regions of our random net-
works of channels, presented in Sec. III B, demonstrate the
relevance of the number of channels that feed the bleached re-
gion with the diffusing species. On the other hand, the depen-
dence of Deff with the size of the bleached region was studied
in Sec. III C, in an attempt to establish the scale at which the
random network can be approximated as an effective medium.
In order to relate these two results, we present here a model
based on the diffusion equation and on the statistical charac-
teristics of the geometries used to fabricate the networks.

Consider, similarly to the experiments, the region consist-
ing of the intersection between a two-dimensional random
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Figure 8. Normalized effective diffusion coefficient, Deff/D0 as a
function of the porosity φ for fixed γ = 3.99.

network and a circle of radius R, to which we call Ω. As-
suming a uniform excitation illumination, the fluorescence
recorded within Ω is given by

FΩ(t) = q

∫
Ω

c(r, t)d2r, (10)

where c(r, t) is the concentration of non-bleached fluorescein
molecules and q is a constant that accounts for all efficiencies
of absorption, emission and detection of fluorescence and the
excitation illumination intensity, which we will omit in the
following.

Neglecting the unwanted bleaching due to observation that
occurs in the experiments, the rate of change of fluorescence
recorded within the region is given by the incoming flux of
fluorescent molecules into Ω. In comparison with free space,
where the diffusive flux comes across the whole circumfer-
ence of radius R, in the random network the incoming flux
comes only through the N feeding channels that intersect the
circumference,

ḞΩ(t) =
N∑
i=1

Ji. (11)

Ji is given by Fick’s first law integrated in the corresponding
portion of the circumference, of perimeter Pi, and oriented at
an angle θi,

Ji = D0

∫
Pi

∇c · r̂d` ≈ D0
∂c

∂r

∣∣∣∣
(R,θi,t)

Pi (12)

Assuming isotropy, we write

ḞΩ(t) = D0
∂c
∂r

∣∣
(R,t)

∑N
i=1 Pi (13)

= Deff2πR
∂c
∂r

∣∣
(R,t)

, (14)

where we can identify the effective diffusion coefficient as

Deff =
D0

2πR

N∑
i=1

Pi. (15)

This suggests that an important feature of a patterned space in
its diffusing properties, at least as measured with FRAP exper-
iments, is the fraction of open area that transports the diffusing
species into the bleached region. This picture is incomplete,
since the concentration field in the effective medium, say ceff,
is different to the actual concentration of the species, c, and
should appear in (14). However, if we assume that the argu-
ment is qualitatively correct, it yields to an interesting con-
clusion regarding the definition of a length scale appropriate
to define an effective medium, at least in channels based of
Voronoi polygons like ours, as we shall present next.

As illustration, we consider the geometry of network H in
Table I. All initial Voronoi polygons were stored in a Mat-
lab routine and shrunk to produce the simulated network of
24 µm-wide channels. At 121 equally spaced locations, cir-
cles of increasing radiusR were drawn and the total perimeter
of feeding channels, P =

∑
Pi, was computed for each loca-

tion and radius. Results are presented in Fig. 9 as a function of
γ, which is defined, as in the experiments, as γ = R/〈L〉. The
average perimeter fraction, P/2πR, is shown in Fig. 9(a). Lit-
tle variation occurs in the whole investigated range of γ, which
spans over two decades. Error bars represent the standard de-
viation of the perimeter fraction, ∆P/2πR, which decrease
dramatically as γ increases. Figure 9(b) presents the normal-
ized standard deviation of P . As demonstrated by the linear
trend in the log-log plot, ∆P/P follows a power law with γ,
which was fitted as

∆P
P

= 0.34 γ−0.49. (16)

The normalized standard deviation, ∆P/P , is important
to determine whether or not the network can be considered
as an effective medium at the scale γ. Here, ∆P/P quanti-
fies the effects of geometrical variation of inlet area between
the different regions of the random network, and thus, for a
truly effective medium in which the location of measurement
is irrelevant, ∆P/P should be zero. Our results indicate that
∆P/P decreases with γ, ie., that the variations in geometry
between different regions decrease as the size of the consid-
ered region increases. Although the power law found excludes
the existence of a characteristic length scale over which the
effective medium approximation can be used, our results do
indicate that the statistical differences between regions can be
made as small as wanted by considering sufficiently large re-
gions. Typically, one should aim to decrease the dispersion to
the accuracy limit of the method, which was estimated at 5%
in our case. Experimentally, for our Voronoi-based random
networks, this limit was reached for bleached regions of ra-
dius approximately 10 times larger than the mean cell length
(Fig. 7(b)).

V. DISCUSSION AND CONCLUSIONS

We have presented here an experimental approach to in-
vestigate the relevance of the geometry of porous media to
diffusion properties measured with the FRAP technique. Our
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Figure 9. (a) Perimeter fraction of feeding channels as a function
of γ. (b) Normalized standard deviation of the perimeter fraction of
feeding channels as a function of γ. The solid line represents the fit
of Eq. (16).

experiments are performed in controlled microfluidic environ-
ments, whose geometry is based on Voronoi polygons. How-
ever, other two-dimensional geometries can be used as well,
such as assemblies of circular obstacles or regular polygons.
This could be interesting in order to determine the relevance
of geometrical features that are not present in the Voronoi tes-
sellations, such as dead ends, large accumulation chambers,
or large-scale anisotropy. Moreover, a similar microfluidic
approach could complement recent efforts in the numerical
reconstruction of cellular structures [9, 32]. Indeed, microflu-
idic networks of virtually any two-dimensional geometry can
be fabricated, which can aid in determining the role of ge-
ometry in the diffusive transport. Unfortunately, however,
no standardized methods exist yet to fabricate complex three-
dimensional microfluidic geometries, limiting the applicabil-

ity of this idea to two-dimensional networks.
The method used in this work to generate the porous me-

dia, based on Voronoi polygons, can be used to vary indepen-
dently the whole geometry of the network (ie. its tortuosity)
by changing the seed points used to generate the polygons, or
its porosity, by changing the width of the channels. Keeping
constant the tortuosity of the networks demonstrates the rele-
vance of the porosity in the effective diffusion coefficient (net-
works B-E and Fig. 8). It is less evident to keep the porosity
constant and vary the tortuosity in a systematic way. Compar-
ison between networks C (φ = 0.24, Deff = (0.80±0.06)D0,
see Fig. 8 and H (φ = 0.25, Deff = (0.76±0.03)D0, Fig. 7(a))
suggests that reduction of available space, and not the partic-
ular path length, is the major geometric source of the slowing
down of diffusion in porous media compared with free space.
These results are consistent with existing work with aligned
and staggered polygons [5].

The results and the model presented here suggest that the
total area connecting the bleached and the outer region plays
an important role in the effective diffusion properties mea-
sured by the FRAP technique. In particular, for small re-
gions where the number N of feeding channels can be eas-
ily counted, the effective diffusion coefficient was found to
increase with N . For larger regions, where N is not easily
determined, we argue that variations of the perimeter fraction
that connects with the outer region can explain in part the dis-
persion of the effective diffusion coefficient measured in dif-
ferent regions.

Applying that idea, we found that no characteristic length
scale can be determined for our networks based on Voronoi
polygons over which FRAP experiments are to measure a
truly effective medium. Nevertheless, we found that the statis-
tical variations between different regions of our medium de-
crease as a power law with the size of the bleached region,
with exponent ≈ −0.5, and thus can be made as small as the
inherent accuracy limit of the FRAP method.
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