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Abstract
Any conservation strategymust deal with the uncertainty caused by anthropogenic climate change. In order to forecast such changes, the
climate changevelocity approachhas beenused tomeasure ecosystemexposure to this phenomenon.TheTropicalAndes and theChilean
Winter Rainfall-Valdivian Forests (Central Chile) hotspots are priority for conservation due to their high species richness and threats,
where climate change is one of the serious pressures to their ecosystems. Even though previous studies have forecasted future climate
velocity patterns across the globe, these biodiversity hotspots lack a regional evaluation of the vulnerability to climate change to inform
conservation decisions. In this study, we evaluated the vulnerability of terrestrial ecosystems to climate change velocity at the Southern
South America ecoregional system, by using regional climatic data that improves the accuracy of predictions.We estimated forward and
backward velocities for temperature and precipitation, and we performed a protected area-level analysis of climate change vulnerability.
Also, we compared our results with previous evaluations. We found that forward velocity was higher in the Tropical Andes hotspot for
both climatic variables analyzed, whereas backward velocity was higher in the Central Chile hotspot considering just the temperature
variable. Finally,we found that in theCentralChile hotspot, smaller protected areas aremore vulnerable to climate change asmeasured by
climate change velocity,whereas in theTropicalAndes hotspot, larger protected areas aremore vulnerable. Several rapid change areas are
expected along the twohotspots. These findings have important conservation implications in the region, especially for the protected areas.

Keywords Climate change velocity . Tropical Andes . Central Chile . Ecosystem vulnerability . Biodiversity hotspots

Introduction

Anthropogenic climate change is one of the key pressures to
biological, physical, social, and economic systems (IPCC

2014, 2018). Biotic and abiotic responses associated with
changes in new climate conditions have been widely docu-
mented during the last century (Parmesan and Yohe 2003;
Dawson et al. 2011; Fei et al. 2017). Moreover, climate
change will experience rapid rates of change towards novel
climatic conditions and will cause the disappearance of some
extant climates (Williams et al. 2007).

There is no guarantee that ecosystemswill be able to circum-
vent such changes at accelerated rates; in fact, ecosystems
worldwide are collapsing as a result of climate- and human-
induced changes (Bland et al. 2017). Ecosystem collapse may
involve biodiversity loss, which has been reported as one of the
most serious menaces to ecosystems, threatening ecosystem
functions and services, as well as threatening human welfare
(Millennium Ecosystem Assessment 2005; Cardinale et al.
2012; Steffen et al. 2015). Furthermore, the uncertainty caused
by climate change (Yousefpour and Hanewinkel 2016) and our
limited capacity to understand the risks and forecast ecosystem
collapse (Bland et al. 2017) are the main challenges for conser-
vation strategies that support adaptation to global environmen-
tal change (Pressey et al. 2007; Lawler et al. 2015).
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Ecosystem exposure to climate change corresponds to the
degree in which an ecosystem is exposed to climate variations
over time or space (Garcia et al. 2014). To assess such expo-
sure, it is important to know how fast the climate is shifting, as
well as the direction of that change (Loarie et al. 2009;
Dobrowski et al. 2013; Nadeau et al. 2017). Climate change
velocity (Loarie et al. 2009; Hamann et al. 2015) is a regional-
type metric and one of the most widely used for estimating
climate change exposure (Garcia et al. 2014), which repre-
sents the rate and direction at which organisms or ecosystems
require to migrate while maintaining constant climatic condi-
tions (Loarie et al. 2009; Dobrowski et al. 2013). Moreover,
climate change direction provides information about how cli-
mate shifts will vary across the landscape (Garcia et al. 2014),
reflecting topographic aspects, or regional climate change
(Ackerly et al. 2010).

Climate velocity can be estimated using several methodol-
ogies (Garcia et al. 2014; Brito-Morales et al. 2018), but two
main approaches have been used to calculate it, namely local
velocity (Loarie et al. 2009) and analogue-based velocity
(Ordonez and Williams 2013; Hamann et al. 2015). The for-
mer considers the climate spatial variation within the neigh-
borhood of a specified location (Loarie et al. 2009; Carroll
et al. 2015). The second approach (analogue-based velocity)
represents the actual distance to where the nearest analogous
climates will be found in the future. It can describe the speed
and direction of climate variation based on landscape hetero-
geneity and is facilitated by efficient nearest-neighbor search
algorithms (Hamann et al. 2015). Climate change velocity
applications have focused on assessing the following: (1) cli-
mate vulnerability of conservation areas (Loarie et al. 2009;
Ackerly et al. 2010; Schueler et al. 2014; García Molinos et al.
2017); (2) climate change exposure of marine and terrestrial
environments (Burrows et al. 2011, 2014; Diffenbaugh and
Field 2013); and (3) species vulnerability, migration capacity,
or refugia (Schippers et al. 2011; Sandel et al. 2011; Bateman
et al. 2012; Schueler et al. 2014; Serra-Diaz et al. 2014;
Hamann et al. 2015; Roberts and Hamann 2016; García
Molinos et al. 2016; Carroll et al. 2017; Williams and Blois
2018).

Terrestrial ecosystems have experienced widespread
changes due to climate over the last century that span the
biological hierarchy from genes to communities and are ex-
pected to intensify in the next few decades (Scheffers et al.
2016). This rate of change is expected to be at least an order of
magnitude, if not several orders of magnitude faster, than the
changes to which terrestrial ecosystems have been exposed to
during the past 65 million years (Diffenbaugh and Field
2013).

Global and continental climate velocity estimations have
indicated that mountain regions with high spatial climate het-
erogeneity will exhibit slower velocity rates, while flatter to-
pographical regions will exhibit faster velocities (Loarie et al.

2009; Carroll et al. 2015). This aspect has been analyzed by
Dobrowski and Parks (2016), who remarked how mountain
climate velocity had previously been underestimated, showing
that distance is not the best metric to measure climate connec-
tivity in these zones; and suggesting climate velocity can be
higher in mountains as they are more isolated and provide
climatic resistance to species movement. However, it is still
uncertain how climate velocity will be able to determine con-
servation plans in complex terrestrial ecosystems such as
mountains.

Southern South America (SSA) includes four of the
world’s five major climate zones (Tropical, Mediterranean,
Temperate, and Boreal) and harbors 2 out of 35 of the world’s
biodiversity hotspots: Tropical Andes and Winter Rainfall-
Valdivian Forests (ChV) in Central Chile. These areas exhibit
great species (Tropical Andes) and genus (ChV) richness of
vascular plant species and high endemism of animal species;
both are already experiencing a high degree of habitat loss
(Myers et al. 2000; Mittermeier et al. 2004, 2011).

Even though previous studies have forecasted future cli-
mate velocity patterns across the globe including SSA (e.g.,
global analysis by Loarie et al. 2009; Burrows et al. 2011,
2014; and a continental analysis by Carroll et al. 2015), bio-
diversity hotspots in SSA lack a regional evaluation of climate
velocity to determine the vulnerability to climate change that
may lead to different conclusions regarding conservation
actions.

This study set out to quantify the vulnerability of terrestrial
ecosystems to climate change in the SSA ecoregional system.
We focused on answering two main questions: (1) How will
the magnitude and rate of climate change velocity be projected
in SSA hotspots and ecoregion units? (2) Which ecoregion
units in SSA will be more vulnerable to climate change, as
measured by climate change velocity?

To address these questions, we assessed an ecoregional
vulnerability in SSA using a forward and backward velocity
approach (Carroll et al. 2015) and estimated the climate
change direction for the two biodiversity hotspots and
ecoregions recognized in this area. Also, we compared our
results with previous evaluations. The forward and backward
climate change direction for each ecoregion and hotspot has
not previously been evaluated for SSA.

Methods

Study area and ecoregion units

We considered the SSA section to include Chile (Fig. 1a),
southern Perú, southwestern Bolivia, and north western
Argentina. To define terrestrial ecosystem units at a broad
level, we used an ecoregional classification following
Dinerstein et al. (2017). This area includes 16 ecoregions:
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the Sechura Desert, Peruvian Yungas, Central Andean Puna
(wet and dry), Bolivian Yungas, Bolivian montane dry forests,
Southern Andean Yungas, Atacama Desert, Southern Andean
Steppe, Chilean Matorral, High Monte, Low Monte,
Valdivian Temperate Forests, Patagonian Steppe, and
Magellanic Subpolar Forests (Fig. 1b). In the case of
Peruvian Yungas, we considered the ecoregion limits sug-
gested by Olson et al. (2001) and revalidated by Britto
(2017). SSA presents different topographical attributes, most-
ly arising from the Andes mountain range across the study
area. Three climatic domains can be found across the study

area: Tropical, Mediterranean, and Temperate. Ecoregions
which present a Tropical climate-type can be found in Perú,
Bolivia, and northern Chile. Mediterranean climate-type can
only be identified in central Chile, whereas Temperate
climate-type can be found in southern regions of Chile and
Argentina. Mountainous topography can be identified along
most of the 16 ecoregions, with some exceptions where flat
areas can be found, at either high or low altitude. These ex-
ceptions include ecoregions located in the high Andes (Puna)
which corresponds to a flat plateau (3, 4, and 5 in Fig. 1), those
located in the coastal area towards the Pacific Ocean in Perú

Fig. 1 Hotspots and ecoregions in Southern South America (SSA). The upper left figure depicts the study area (a), the right figure shows the world
ecoregions considered (b), and finally, in the middle panel (c), the two hotspots of SSA evaluated in this study
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and Chile (1, 9, and 11 in Fig. 1), and those present in the
western slope of the Andes in Argentina, dominated by a flat
terrain (13 and 15 in Fig.1).

Present and future climate data

Current bioclimatic surfaces in SSA were obtained from
Pliscoff et al. (2014), which considered a spatial resolution
of 1 × 1 km, representing a time period of 50 years (1950–
2000), and a dense dataset of meteorological stations—930
meteorological stations located in Chile, Bolivia, Perú, and
Argentina—resulting in a more accurate database than previ-
ously available (e.g., Worldclim, Hijmans et al. 2005). This
climatic baseline has been used by subsequent studies for it
being a better fit for SSA (Valenzuela-Sánchez et al. 2014; De
Porras et al. 2015; Larridon et al. 2015; Martinez-Harms et al.
2017; Espíndola and Pliscoff 2018).

We incorporated this baseline to infer future climate pre-
dictions for annual mean temperature and annual precipita-
tion, using the delta statistical downscaling method (Hijmans
et al. 2005; Ramírez-Villegas and Jarvis 2010). Climatic
anomalies represent the comparative difference between fu-
ture and present climate (deltas). Anomalies of original global
circulation models (GCM) were obtained and then applied to
the baseline climatic data. GCM deltas were sourced from the
Global Climate Model data portal (Ramirez-Villegas and
Jarvis 2008) (http://www.ccafs-climate.org) for periods 2030
(average for 2021–2040) and 2080 (average for 2071–2090)
for two IPCC Representative Concentration Pathways (RCP):
RCP2.6 and RCP8.5. The RCPs are identified by their
approximate total radiative forcing in the year 2100 relative
to 1750: 2.6 W per square meter (W/m2) for RCP2.6 and 8.
5 W/m2 for RCP8.5 (IPCC 2014). RCP2.6 represents a sce-
nario where radiative forcing peaks at approximately 3 W/m2

before 2100 and then declines (van Vuuren et al. 2011; IPCC
2014). RCP8.5 represents a scenario characterized by an in-
creasing greenhouse gas emission trajectory over time, with
radiative forcing consequently increasing to 8.5W/m2 in 2100
(Riahi et al. 2011; IPCC 2014).

Emission scenarios were used for the CMIP5 multi-model
dataset by 31 GCMs in the RCP8.5 scenario and 25 GCMs
were used for the RCP2.6 scenario based on their availability
in the Global Climate Model data portal. The total GCMs
utilized were as follows: CSIRO-ACCESS1.0, CSIRO-
ACCESS1.3, BCC-CSM1.1, BCC-CSM1.1(m), BNU-ESM,
CanESM2, CCSM4, CESM1(BGC), CESM1(CAM5),
CSIRO-Mk3.6.0, EC-EARTH, FIO-ESM, GFDL-CM3,
GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-R,
IPSL-CM5A-MR, INM-CM4, IPSL-CM5A-LR, FGOALS-
g2., MIROC-ESM, MIROC-ESM-CHEM, MIROC5,
HadGEM2-CC, HadGEM2-ES, HadGEM2-AO, MPI-ESM-
MR, IPSL-CM5B-LR, MRI-CGCM3, and NorESM1-M.

Climate change velocity algorithm

We used the analogue-based velocity approach (Hamann et al.
2015) to estimate the forward and backward velocity and di-
rection of temperatures and precipitation variables, according
to each GCM. Forward velocity describes the distance from
current climate locations to their nearest analogous sites in the
future. In contrast, backward velocity describes the distance
from future projected climatic cells back to current analogous
climate locations (Carroll et al. 2015). Forward and backward
climate analogues were identified using a univariate k-nearest
neighbor search algorithm between present and future data
(Appendix S6 in Hamann et al. 2015), where analogue dis-
tances were measured as Euclidean. Furthermore, to obtain
forward and backward climate directions, we computed the
azimuth angles between the closest analogue climate match
vectors, given the result of the univariate k-nearest neighbor
search algorithm. Angles were calculated in degrees among
each coordinate data pair.

Moreover, to deal with GCM variation, we calculated the
total climate velocity average from all GCMs, at each RCP
scenario and period (2030 and 2080). Climate change velocity
uncertainty was estimated by the standard deviation of veloc-
ities across the multiple GCMs, where lower and upper uncer-
tainty were defined by RCP2.6 and RCP8.5 scenarios, respec-
tively, following the approach by Loarie et al. (2009).

All of these estimations were computed using the R-Project
software version 3.5.1 (R Development Core Team 2018). All
computational calculations were done at the supercomputing
infrastructure of the National Laboratory for High-
Performance Computing in Chile (NLHPC) (ECM-02).

To evaluate our regional results regarding previous climate
change velocity estimations on a continental scale, we com-
pared our results with Carroll’s velocity calculations for SSA,
whose data is available at https://adaptwest.databasin.org.
Specifically, we contrasted the forward and backward
velocity averages of temperatures at each hotspot and their
spatial patterns. Then, we compared two GCMs: HadCM3
(CMIP3)—used by Carroll et al. (2015)—and HadGEM2-
ES (CMIP5)—used in this study—where we considered a
50 × 50-km pixel size for both data sources.

Hotspot vulnerability to climate change velocity

We analyzed the vulnerability of two major hotspots in SSA,
the Tropical Andes and the Chilean Winter Rainfall-Valdivian
Forest hotspots (ChV) (Myers et al. 2000; Mittermeier et al.
2011). The Tropical Andes hotspot in SSA includes the fol-
lowing ecoregions: the Peruvian Yungas, the Central Andean
Puna (wet and dry), the Bolivian Yungas, the Bolivian mon-
tane dry forests, and the Southern Andean Yungas, whereas
the ChV hotspot includes the Chilean Matorral and the
Valdivian temperate forest (Fig. 1c).
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The vulnerability assessment approach follows the
forward-backward velocity assessment described by Carroll
et al. (2015), where the linear relationship between forward
(x-axis) and backward (y-axis) velocity suggests four threat
quadrants, which are defined by the median of each metric.
The interpretation of this relation is described as follows: high
rates of forward-velocity (km/year) suggest threats to local
populations, whereas high rates of backward-velocity suggest
threats to sites. Likewise, a higher forward-backward relation-
ship velocity suggests simultaneous threats to sites and popu-
lations. Finally, a slower forward-backward relationship im-
plies a low threat.

Forward and backward velocity averages for each
ecoregion and hotspot were calculated for each scenario and
for climate variable considered. In addition, we also evaluated
the relation between the size of Protected Areas and the cli-
mate change velocity metric at each hotspot. Protected Areas
were sourced from the World Database on Protected Areas
(UNEP-WCMC, IUCN 2018). See Methods overview in
Fig. 2.

Results

Climate change velocity behavior in Southern South
America hotspots and ecoregions

Velocity of climate change

Our results suggest that forward velocity was much higher in
the Tropical Andes hotspot than in the ChV hotspot, for both
climatic variables (temperature and precipitation) (see Fig. 3,
Fig. S1 and Fig. S2 in the Online Supplement). Conversely,
backward velocity was higher in the ChV hotspot, but only for
the temperature variable. The differences between hotspots are
seen more clearly for the RCP8.5-2080 scenario when consid-
ering temperature velocity (Fig. 3), as follows: Tropical Andes
hotspot forward (0.48 km/year, mean; 0.29 km/year, median)
and backward velocity (0.71 km/year, mean; 0.37 km/year,
media); and a ChV hotspot forward (0.27 km/year, mean;
0.19 km/year, median) and backward velocity (1.81 km/year,
mean; 1.44 km/year, median).

At the ecoregional scale, higher backward rates were con-
centrated in central Chile and southern ecoregions (Chilean
Matorral, Valdivian, and Magellanic forests), and were also
over 1 km/year in the Atacama Desert in the case of temper-
atures when considering the RCP8.5 scenario. Results show a
north-south trend in velocity, being higher in ecoregions of
northern Chile, northern Argentina, Southern Perú, and
Southwest Bolivia (Central Andean Puna, wet and dry).
Mean value rates can be found in coastal ecoregions of
north-Chile and Perú (Sechura and Atacama deserts), and low-
er rates were seen in all ecoregions of central and Southern

Chile and Argentina, with the exception of Low Monte and
the Patagonian steppe ecoregions. The forward and backward
velocities for each ecoregion are reported in Table 1 for tem-
peratures and in Table S1 for precipitation (see Online
Supplement).

Uncertain spatial patterns of temperature velocity were spa-
tially confirmed beyond the ecoregional area analyzed for
both forward and backward surfaces (see Fig. S8 in the
Online Supplement). In the case of precipitation, uncertainty
was higher in the Patagonian steppe ecoregion, outside the
two analyzed hotspots. Future precipitation patterns in climate
change scenarios have been reported with major uncertainty
levels for the South American Altiplano (Minvielle and
Garreaud 2011). We also found major uncertainty in the spa-
tial patterns for precipitation in the Central Andean wet Puna
ecoregion for RCP8.5-2030 period (see Fig. S9 in the Online
Supplement).

Direction of climate change

The Tropical Andes hotspot exhibited a direction of change
towards southern latitudes based on temperature and precip-
itation in the most conservative scenario (RCP2.6). In con-
trast, the ChV hotspot exhibited different trajectories for
temperature, particularly in the RCP8.5-2080 scenario,
showing both forward (northwest and southwest) and back-
ward estimations (northeast and southeast) (Fig. 3). As part
of the ChV hotspot, the Chilean Matorral exhibited the most
north-westerly direction for temperature in all scenarios (Fig.
S3 in the Online Supplement), which points at the influence
of tropical climate in this ecoregion, in contrast to the
Chilean Mediterranean macrobioclimate (Luebert and
Pliscoff 2017).

The Atacama and Sechura Deserts presented a predomi-
nantly north-westerly direction of change considering tem-
perature (Fig. S3 in the Online Supplement), and a south-
westerly direction for precipitation change (Fig. S4 in the
Online Supplement). These desert environments are defined
by flat coastal areas and low mountain ranges, where the
Atacama Desert has the flattest topography of the two. In
the case of the Peruvian and Bolivian Yungas, temperatures
shifted towards the northwest and northeast (Fig. S3 in the
Online Supplement), and these patterns changed to the
southwest in the backward velocity scenario (Fig. S4 in
the Online Supplement). The topography of the Yungas is
characterized by an abrupt mountain range. The Central
Andean Puna and its divisions—dry and wet Puna—also
showed temperature movement to the south and southwest.
These ecosystems are characterized as highland plateaus.
However, the RCP8.5-2080 scenario featured climate veloc-
ity directions that varied from the other scenarios: the tem-
perature moved southwest for the Central Andean Puna,
west for the dry Puna, and northwest for the wet Puna
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(Fig. S3 in the Online Supplement). Finally, the Patagonian
steppe and Magellanic forest exhibited predominant direc-
tions towards the southeast. Steppe ecosystems show one
of the flattest topographies of SSA; meanwhile, the
Magellanic forest has a mountainous topography (Fig. S3
in the Online Supplement).

Previous climate change velocity evaluations in Southern
South America

Our regional results compared with Carroll’s velocity calcula-
tions for SSA (Carroll et al. 2015) featured spatial differences
for temperature velocity (see Fig. S5 and S6 in the Online

Fig. 2 The methodological developed process. Including (A) GIS pre-
processing, (B) analysis in the R environment, and (C) GIS post-
processing steps. The abbreviations used in the scheme are described

below: geographic information system (GIS), Southern South America
(SSA), global circulation model (GCM), and climate change (CC)
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Supplement). According to Carroll’s velocity (calculated at the
continental level), forward and backward velocity averages were
higher in the Tropical Andes hotspot than in the ChV hotspot,
showing 3.72 km/year for forward velocity and 4.192 km/year
for backward velocity averages. In this study—only considering
the HadGEM2-ES model—forward velocity was higher in the
Tropical Andes hotspot (0.740 km/year). Conversely, backward
velocitywas higher in theChVhotspot (1.74 km/year). The same
trend was found considering the velocity average of 31 GCMs.
On the striking difference in magnitude between the climate
change velocities found by Carroll et al. (2015) and this study,
see our Discussion section below.

Hotspot vulnerability to climate change velocity
in Southern South America

The magnitude of climate change through SSA hotspots var-
ied according to the variable considered—temperature or
precipitation—and to the RCP scenario.

Ecoregions within the Tropical Andes hotspot, such as
Central Andean Puna, Central Andean dry Puna, and
Central Andean wet Puna, showed a higher linear relation

of forward and backward velocity for both variables (tem-
perature and precipitation) in the RCP2.6 scenario
(Fig. 4b, d), as well as in the RCP8.5 scenario considering
precipitation (Fig. 4c). Forward temperature velocity was
higher than backward velocity for the RCP8.5 scenario
(Fig. 4a). In the case of the Yungas ecoregions, backward
velocity presented the highest rates (Fig. 4). Furthermore,
the ChV hotspot and their two ecoregions—Chilean
Matorral and the Valdivian Temperate Forests—presented
higher backward than forward velocity for temperature and
precipitation at both RCP scenarios (Fig. 4a, c).
Additionally, the Chilean Matorral presented the highest lin-
ear relation of forward and backward velocity for both var-
iables (temperature and precipitation) in the RCP2.6 scenario
(Fig. 4b, d, and Table 1).

The vulnerability interpretation of these four quadrants
(Fig. 4) suggests threats to sites in the ChV hotspot, with the
Chilean Matorral the most threatened under the RCP2.6 sce-
nario (threats to sites and local populations). For the Puna
ecoregions, threats to sites and local populations were the
most frequent responses. Finally, for the Yungas ecoregions,
threats to sites were also identified (Fig. 4b–d).

Fig. 3 Spatial climate change velocity patterns for temperature in the
SSA hotspots for the RCP8.5-2080 scenario. The center panel shows
forward (left) and backward (right) spatial patterns of climate change
velocity (in km/year). The histogram plots show the average
temperature speed (forward and backward) for the Tropical Andes
hotspot (red boxplot) and ChV hotspot (blue boxplot), where the
averages are taken over the range of GCMs used and the thick
horizontal line represents the median value. The bottom of each box
represents the RCP8.5 scenario including the mean value. The vertical
line represents the velocity rate in km/year. Histogram plots in polar
coordinates show the average temperature direction of change (forward
and backward) for the Tropical Andes hotspot (red plots) and ChV

hotspot (blue plots). The Tropical Andes hotspot exhibited a common
southwest direction between forward and backward estimations. The
ChV hotspot exhibited opposite directions, between forward (northwest
and southwest) and backward (northeast and southeast) estimations. The
two arms on each of these plots represent the main directions observed at
each hotspot which are influenced by the Mountain ranges (Andes and
Coastal Mountains). Zoom pictures of the spatial pattern of climate
change velocity are shown in the upper-left panel for the Tropical
Andes hotspot, and in the upper-right panel for the ChV hotspot. See
the higher spatial contrast between slower (blue scale, on the eastern
side) and faster (red scale) backward velocities at ChV, which are
clearly differentiated by the Andes Mountain range
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Finally, the relationship between protected area size and
forward and backward velocity presented different responses
along hotspots and ecoregions (Fig. 5). Forward velocities did
not show a clear relationship with protected area size in either
one of the ecoregions; however, backward velocities showed
either a positive or negative relation with protected area size

depending on the hotspot. Protected areas in the Tropical
Andes hotspot exhibited a higher vulnerability when the
protected area size increased, and the ChV hotspot showed
higher vulnerability in smaller protected areas. These trends
were similar for both temperature and precipitation velocity
calculations.

Table 1 Temperature forward and backward velocity (km/year) in the SSA ecoregions

Code Forward velocity (km/year)

RCP 26 2030 RCP 26 2080 RCP 85 2030 RCP 85 2080

Mn Md 1Q Mn Md 1Q Mn Md 1Q Mn Md 1Q

SD 0.13 0.08 0.06 0.08 0.05 0.03 0.17 0.10 0.07 0.38 0.16 0.09
PY 0.11 0.07 0.05 0.06 0.04 0.03 0.13 0.08 0.06 0.23 0.15 0.07
CDP 0.20 0.14 0.09 0.12 0.08 0.05 0.25 0.17 0.11 0.52 0.39 0.23
CP 0.16 0.10 0.07 0.10 0.06 0.04 0.22 0.14 0.09 0.54 0.35 0.18
CWP 0.19 0.11 0.07 0.12 0.07 0.04 0.26 0.15 0.08 1.03 0.46 0.28
BY 0.12 0.08 0.06 0.07 0.05 0.03 0.14 0.09 0.06 0.23 0.18 0.11
BDF 0.11 0.07 0.06 0.07 0.05 0.03 0.13 0.09 0.06 0.27 0.21 0.12
SY 0.12 0.09 0.06 0.07 0.05 0.04 0.15 0.10 0.07 0.24 0.19 0.11
AD 0.18 0.15 0.10 0.12 0.10 0.06 0.24 0.19 0.13 0.39 0.34 0.22
SS 0.09 0.06 0.05 0.05 0.04 0.03 0.11 0.08 0.06 0.24 0.12 0.08
ChM 0.13 0.09 0.06 0.08 0.06 0.04 0.16 0.12 0.07 0.26 0.22 0.13
HM 0.12 0.08 0.06 0.07 0.05 0.04 0.14 0.10 0.07 0.16 0.13 0.09
LM 0.71 0.58 0.30 0.44 0.36 0.19 0.97 0.78 0.41 1.04 0.87 0.56
VF 0.11 0.06 0.05 0.07 0.04 0.03 0.14 0.07 0.05 0.27 0.17 0.07
PS 0.42 0.22 0.10 0.26 0.14 0.07 0.56 0.31 0.15 0.80 0.65 0.33
MF 0.10 0.06 0.05 0.06 0.04 0.03 0.12 0.07 0.05 0.22 0.14 0.06

Code Backward velocity (km/ year)

RCP 26 2030 RCP 26 2080 RCP 85 2030 RCP 85 2080

Mn Md 1Q Mn Md 1Q Mn Md 1Q Mn Md 1Q

SD 0.37 0.08 0.06 0.24 0.05 0.04 0.50 0.10 0.07 0.79 0.21 0.09

PY 0.28 0.07 0.05 0.13 0.04 0.03 0.33 0.08 0.06 0.28 0.11 0.06

CDP 0.57 0.37 0.12 0.33 0.23 0.08 0.68 0.49 0.17 0.69 0.63 0.36

CP 0.25 0.12 0.07 0.15 0.08 0.04 0.32 0.16 0.09 0.41 0.31 0.16

CWP 0.26 0.09 0.06 0.15 0.06 0.04 0.31 0.12 0.07 0.30 0.18 0.10

BY 1.34 0.10 0.06 0.84 0.07 0.03 1.66 0.13 0.06 0.81 0.29 0.10

BDF 0.24 0.08 0.06 0.16 0.05 0.03 0.31 0.10 0.06 0.69 0.36 0.17

SY 0.55 0.15 0.06 0.39 0.11 0.04 0.76 0.21 0.08 2.77 1.85 0.31

AD 0.39 0.22 0.11 0.26 0.14 0.07 0.54 0.30 0.15 1.65 1.09 0.48

SS 0.24 0.07 0.05 0.11 0.04 0.03 0.22 0.08 0.06 0.23 0.14 0.07

ChM 0.73 0.21 0.07 0.48 0.16 0.04 1.06 0.37 0.09 2.32 2.49 0.50

HM 0.48 0.18 0.06 0.31 0.12 0.04 0.66 0.27 0.08 2.00 0.86 0.23

LM 1.79 1.24 0.56 1.15 0.85 0.39 2.65 1.95 0.94 4.18 4.39 2.88

VF 0.47 0.08 0.05 0.31 0.05 0.03 0.67 0.11 0.05 1.54 0.86 0.13

PS 0.67 0.44 0.16 0.43 0.29 0.11 0.95 0.66 0.25 1.96 1.80 0.91

MF 1.00 0.14 0.05 0.68 0.17 0.03 1.34 0.32 0.05 2.29 2.40 0.68

Ecoregion code: SD, Sechura Desert; PY, Peruvian Yungas;CDP, Central Andean dry Puna; CP, Central Andean Puna; CWP, Central Andean wet Puna;
BY, Bolivian Yungas; BDF, Bolivian montane dry forests; SY, Southern Andean Yungas; AD, Atacama Desert; SS, Southern Andean steppe; ChM,
Chilean Matorral; HM, High Monte; LM, Low Monte; VF, Valdivian temperate forests; PS, Patagonian steppe; MF, Magellanic subpolar forests.
Statistics: Mn, mean; Md, median; 1Q, 1st quantile

   27 Page 8 of 15 Reg Environ Change           (2020) 20:27 



Discussion

Climate change velocity analysis contribution
for Southern South America

Anthropogenic climate change has caused widespread chang-
es in climate conditions during the last century, and more rapid
rates of change are expected to occur in the next decades
(IPCC 2014, 2018). Such changes are expected to be faster
than the changes to which terrestrial ecosystems have been
exposed before (Diffenbaugh and Field 2013).

In this study, we evaluated the vulnerability of terrestrial
ecosystems to climate change velocity in the SSA ecoregional
system, and we found that forward velocity was higher at the
Tropical Andes hotspot than at the ChV hotspot, for both
climatic variables analyzed (temperature and precipitation).

Additionally, backward velocity was higher at the ChV
hotspot for the temperature variable.

Vulnerability analysis of climate change velocity allows
us to identify differences in the more relevant threats
between hotspots. We identified a higher threat for sites
than for species and an inverse relation between protected
area size and backward velocities for the ChV hotspot.
These findings improve the results of climate change
velocity conservation implications reported previously for
SSA, at global (Loarie et al. 2009) and regional scale
(Carroll et al. 2015).

Our regional results compared with Carroll’s velocity calcula-
tions for SSA (Carroll et al. 2015) featured spatial differences for
temperature velocity in each hotspot, being the forward and back-
ward velocity rates higher in the Tropical Andes hotspot than they
were in the ChV hotspot. Comparatively, in our study, average

Fig. 4 Vulnerability scheme applied to analyze forward and backward
velocity of temperature and precipitation variables. Four plots are shown
for the Tropical (red triangles) and the ChV hotspot (blue triangles),
where the limits of quadrants are drafted by the median: a forward and
backward temperature velocity for the RCP8.5 2080 scenario, b forward
and backward precipitation velocity for the RCP8.5 2080 scenario, c
forward and backward temperature velocity for the RCP2.6 2080

scenario, and finally d forward and backward precipitation velocity for
the RCP2.6 2080 scenario. The ecoregion codes are described as follows:
(PY) Peruvian Yungas, (CDP) Central Andean dry Puna, (CP) Central
Andean Puna, (CWP) Central Andean wet Puna, (BY) Bolivian Yungas,
(BDF) Bolivian montane dry forests, (SY) Southern Andean Yungas,
(ChM) Chilean Matorral, (VF) Valdivian temperate forests
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velocity values were lower in magnitude than Carroll’s results,
and backward velocity was higher in the ChV hotspot than the
Tropical Andes hotspot in a pessimistic scenario. Carroll et al.’s
(2015) study was done at the continental level, considering all of
north, central, and south America. From this perspective, our
findings recall the importance of regional climate change evalu-
ations to inform conservation decisions, and of preserving sites to
face climate change in key areas in the ChV hotspot.

When we compare our results with future species and eco-
system distribution models reported in SSA areas (e.g. Pliscoff
et al. 2012; Swenson et al. 2012; Bambach et al. 2013; Tovar
et al. 2013; Ramirez-Villegas et al. 2014; Alarcón and Cavieres
2015; Fuentes-Castillo et al. 2019), we can find new emergent
situations. One of them is the overlapping areas between for-
ward velocity identified in this study, and species range con-
traction areas reported previously. These combinations can be

Fig. 5 Protected area size versus climate change velocity. Four linear
regressions are shown by each climate variable: temperature velocity in
the upper four panels (charts a, b, c, d), and precipitation velocity in the
four lower panels (charts d, e, f, g). Each linear regression indicates the
protected area size (x-axis) and climate velocity (y-axis) with a

logarithmic scale. Protected areas are differentiated by the groups of
ecoregions in each hotspot Tropical Andes hotspot as heat point colors
(in upper chart of each part of the figure, i.e., charts a, b, e, f), ChV
hotspot as green point colors (in lower chart of each part of the figure,
i.e., charts c, d, g, h)
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interpreted as priorities for the establishment of conservation
area networks under climate change (Carroll et al. 2017), be-
cause the combination of faster forward velocities and species/
ecosystem range contraction show more urgent priority sites
that could be incorporated within a climate-smart conservation
network (Nadeau et al. 2015). The combination of scenarios of
rapid forward velocity and upward direction could increase the
threat for many taxa, especially in the case of species with low
dispersal capacities in the most vulnerable ecoregions of the
Tropical Andes hotspot (central Andes wet and dry Puna),
where altitudinal gradient decreases the area available to find
suitable conditions in the future.

In fact, the main effect of mountain heterogeneous
landscapes—such as the main landscapes in SSA—will be to
slow climate velocity, and lowland homogeneous landscapes
will increase climate velocity (Loarie et al. 2009; Diffenbaugh
and Field 2013; Dobrowski et al. 2013). However, heteroge-
neous terrain landscapes, especially inmountain areas, can have
areas where climate trajectories traverse dissimilar climates and
species must follow paths that minimize their exposure. Thus,
the required velocity can have an opposite rate than a climate
velocity obtained by a Euclidian distance-based approach
(Dobrowski and Parks 2016).

Nevertheless, mountain areas can also exhibit larger flat
terrains, such as plateau systems (highlands) that will present
faster cores of climate velocity. In this case, the tropical Andes
hotspot presents a large plateau system (such as the Puna
ecoregion) that exhibited faster climate velocity cores. On
the contrary, the ChV hotspot is completely shaped by hetero-
geneous mountain chains and without these plateau systems.
These differences in geographic space will impact habitat
availability of micro and macro refugia that could facilitate
species persistence under climate change (Ashcroft 2010;
Slavich et al. 2014; Carroll et al. 2017; Michalak et al. 2018).

In the tropical Andes, the direction of climate change iden-
tified in this study coincides with those reported previously for
species and ecosystems, in which an upward movement for
high conservation value species and ecosystems has been
forecasted due to climate change (Feeley et al. 2011;
Ramirez-Villegas et al. 2014). In the case of the ChV hotspot,
the direction of climate change exhibited southward move-
ment, which has also been showed for main vegetation forma-
tions (Pliscoff et al. 2012) and for plant species under climate
change projections (Fuentes-Castillo et al. 2019), especially
those inhabiting lowland areas.

Final considerations

This evaluation is based on velocity gradients given by two
climate variables (temperature and precipitation). However,
these results must be taken cautiously, considering that species
and ecosystems may respond differently to rainfall and temper-
ature gradients (Parmesan 2006). Our findings are based on

univariate climate change velocities (Hamann et al. 2015) de-
rived from average values of temperature and precipitation in
each ecoregion, so the results have been interpreted at the
ecoregional level avoiding conclusions at the level of species.
It is expected to be an initial baseline for the study of the re-
sponse in terms of movement of geographic distributions of
ecosystems in the study area. Further analyses should incorpo-
rate new approaches that allow analyzing the multivariate cli-
mate effect of velocity at the species level. For example, recent
methodological approaches allow the incorporation of multiple
variables in climate velocity analyses (Guerin et al. 2018),
allowing to connect species composition with movement gra-
dients. Another element of the analysis that should be analyzed
with caution is the effect of pixel size. This is especially relevant
in some ecoregions of the study area that are dominated by an
extremely diverse topography (Hamann et al. 2015). Many of
the altitudinal gradients relevant to regional scale movement
may not be represented with a resolution of analysis of 1 km.
However, our study shows that velocity of movement in moun-
tainous areas is lower than in flat areas, which should amelio-
rate the effect of altitude gradients. In addition, the values pre-
sented here are averages at the ecoregional scale, so fewer con-
clusions can be drawn for more restricted sites. By using only
two climate variables to quantify velocity gradients, the intrin-
sic variability present in each ecoregion has a very relevant
biological effect. A change in rainfall of (say) 20 mm/year in
a hyper-arid desert environment has greater biological effect
than the same amount in a tropical forest. The analysis of aver-
age values could mask these variations, but it allows their inter-
ecoregional comparison.

Conservation implications

This study shows a methodological advance by using regional
climatic data to improve the accuracy of predictions, com-
pared with global data. This is especially important for land-
scapes with high environmental heterogeneity such as SSA.
Furthermore, several rapid change areas are expected along
the two SSA hotspots and these findings may add important
information to determine conservation planning in the region.

As backward velocity describes the isolation degree that a
site will experience under climate change (Carroll et al. 2015),
this metric was identified as being more relevant in the ChV
hotspot, while at the same time, we found an inverse relation
between protected area size and backward velocity. The status
of the Chilean Matorral has been remarked to have several
conservation issues associated with land use intensity
(Echeverria et al. 2006; Schulz et al. 2010), insufficient
protected areas (Pliscoff and Fuentes-Castillo 2011), high sus-
ceptibility to anthropogenic forest fire events (Urrutia-Jalabert
et al. 2018), and the rapid spread of exotic species (Fuentes
et al. 2015). Protected areas in this ecoregion are not only
scarce but small in area (Pliscoff and Fuentes-Castillo 2011)
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and surrounded by exotic tree plantations, agriculture, and
urban developments (Armesto et al. 2010; Miranda et al.
2017). National parks and reserves are concentrated mainly
in the Andes Mountain ranges (Pliscoff and Fuentes-Castillo
2011). For the ChV, the availability of protected areas to the
south of the hotspot could buffer the effects of the higher
velocities of change in lowland areas.

On the other hand, forward velocity interpretation as a
stand-alone climatic evaluation and without considering spe-
cies data (Brito-Morales et al. 2018) describes the exposure of
species that are climatically adapted to a site in the present.
This metric was identified as more relevant in the Tropical
Andes hotspot, in which protected area size is positively cor-
related with vulnerability. Protected areas within this hotspot
also present several conservation issues, especially due to an-
thropogenic pressures (Hoffmann et al. 2011), where climate
change can make conservation efforts more complex
(Ramirez-Villegas et al. 2014; Bax and Francesconi 2019).
Additionally, threatened species may not be well represented
in the current protected areas according to climate change
forecasts (del R Avalos and Hernández 2015).

New conservation planning approaches need to incorporate
these synergies between metrics to be more effective in the
face of biodiversity impacts of climate change. Some recent
examples demonstrating this approach could be applied using
different metrics, data inputs, and spatial scales (Nadeau et al.
2015; Carroll et al. 2017; Malakoutikhah et al. 2018), thus
providing more tools and options to build conservation net-
work areas that would be more resilient under climate change
scenarios.

Our results have provided conservation implications for
terrestrial ecosystems in SSA hotspots considering climate
change velocity, especially in protected areas. However, fur-
ther research should focus on species responses to climate
change in these hotspots; it will be helpful to understand
how biodiversity can be affected by climate change exposure.
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