
algorithms

Article

Optimal Prefix Free Codes with Partial Sorting †

Jérémy Barbay

Departamento de Ciencias de la Computación, Universidad de Chile, 8370448 Santiago, Chile; jeremy@barbay.cl
† This paper is an extended version of our paper published in the proceedings of the 27th Annual Symposium

on Combinatorial Pattern Matching (CPM 2016) (Tel Aviv, Israel, 27–29 June 2016).

Received: 29 November 2019; Accepted: 25 December 2019; Published: 31 December 2019 ����������
�������

Abstract: We describe an algorithm computing an optimal prefix free code for n unsorted positive
weights in time within O(n(1 + lg α)) ⊆ O(n lg n), where the alternation α ∈ [1..n− 1] approximates
the minimal amount of sorting required by the computation. This asymptotical complexity is within
a constant factor of the optimal in the algebraic decision tree computational model, in the worst case
over all instances of size n and alternation α. Such results refine the state of the art complexity of
Θ(n lg n) in the worst case over instances of size n in the same computational model, a landmark
in compression and coding since 1952. Beside the new analysis technique, such improvement is
obtained by combining a new algorithm, inspired by van Leeuwen’s algorithm to compute optimal
prefix free codes from sorted weights (known since 1976), with a relatively minor extension of Karp
et al.’s deferred data structure to partially sort a multiset accordingly to the queries performed on
it (known since 1988). Preliminary experimental results on text compression by words show α to
be polynomially smaller than n, which suggests improvements by at most a constant multiplicative
factor in the running time for such applications.

Keywords: deferred data structure; Huffman; median; optimal prefix free codes; partial sum;
van Leeuwen

1. Introduction

Given n positive weights W[1..n] coding for the frequencies
{

W[i]/∑n
j=1 W[j]

}
i∈[1..n]

of n

messages (We use the conveniently concise and general terminology of messages for the input and
symbols for the output, as introduced by Huffman [1] himself, which should not be confused with
other terminologies found in the literature, of input symbols, letters, or words for the input and
output symbols or bits in the binary case for the output), and a constant number D of (output)
symbols3, an optimal prefix free code [1] is a set of n code strings on the alphabet [1..D], of variable
lengths L[1..n] such that no string is prefix of another, and the average length of a code is minimized
(i.e., ∑n

i=1 L[i]W[i] is minimal). The particularity of such codes is that even though the code strings
assigned to the messages can differ in lengths (assigning shorter ones to more frequent messages yields
compression to ∑n

i=1 L[i]W[i] symbols), the prefix free property insures a non-ambiguous decoding.
Such optimal codes, known since 1952 [1], are used in “all the mainstream compression formats” [2]

(e.g., PNG, JPEG, MP3, MPEG, GZIP, and PKZIP). “Huffman’s algorithm for computing minimum-
redundancy prefix-free codes has almost legendary status in the computing disciplines” (Moffat [3]).
The concept is “one of the fundamental ideas that people in computer science and data communications
are using all the time” (Knuth [4]), and the code itself is “one of the enduring techniques of data
compression. It was used in the venerable PACK compression program, authored by Szymanski in
1978, and remains no less popular today” (Moffat et al. [5] in 1997).

Even though some compression methods use only precomputed tables coding for an Optimal
Binary Prefix Free Code “built-in” the compression method, there are still many applications that

Algorithms 2020, 13, 12; doi:10.3390/a13010012 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-3392-8353
http://dx.doi.org/10.3390/a13010012
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/1/12?type=check_update&version=2


Algorithms 2020, 13, 12 2 of 21

require the computation of such codes for each instance (e.g., BZIP2 [6], JPEG [7], etc.). In the
current state of the art, the running time of such algorithm is almost never the bottleneck of the
compression process, but nevertheless worth studying if only for theoretical sake, and potentially for
future applications less directly related to compression: Takaoka [8–10] described an adaptive version
of merge sort which scans for sorted runs in the input, and merge them according to a scheme which is
exactly the Huffman code tree; and Barbay and Navarro [11] described how to use such code tree to
compute the optimal shape of a wavelet tree for runs-based compression of permutations. This, in
turns, has applications to the compression of general texts, via the compression of the permutations
appearing in a Burrows Wheeler’s transform of the text.

1.1. Background

Any prefix free code can be computed in time linear in the input size from a set of code lengths
satisfying the Kraft inequality ∑n

i=1 D−L[i] ≤ 1. The original description of the code by Huffman [1]
yields a heap-based algorithm performing O(n log n) algebraic operations, using the bijection between
D-ary prefix free codes and D-ary cardinal trees [12]. In order to consider the optimality of this
running time, one must notice that this algorithm is not in the comparison model (as it performs sums
on elements of its input), but still in a quite restricted computational model, dubbed the algebraic
decision tree computational model [13], composed of algorithms which can be modeled as a decision
tree where decision nodes are based only on algebraic operations with a finite number of operators.
In the algebraic decision tree computational model, the complexity of the algorithm suggested by
Huffman [1] is asymptotically optimal for any constant value of D, in the worst case over instances
composed of n positive weights, as computing the optimal prefix free code for the (D× n + 1) weights
W[0, . . . , Dn] = {Dx1 , . . . , Dx1 , Dx2 , . . . , Dx2 , . . . , Dxn , . . . , Dxn} is equivalent to sorting the positive
integers {x1, . . . , xn}, a task proven to require Ω(Dn log(Dn)) = Ω(n log n) (as D is a constant) in the
algebraic decision tree model, by a simple argument of information theory.

Yet, not all instances require the same amount of work to compute an optimal code (see Table 1
for a partial list of relevant results):

• When the weights are given in sorted order, van Leeuwen [14] showed in 1976 that an optimal
code can be computed using within O(n) algebraic operations.

• When the weights consist of r ∈ [1..n] distinct values and are given in a sorted, compressed form,
Moffat and Turpin [15] showed in 1998 how to compute an optimal binary prefix free code using
within O(r(1 + log(n/r))) algebraic operations, which is sublinear in n when r ∈ o(n).

• In the case where the weights are given unsorted, Belal and Elmasry [16,17] described in 2006
many families of instances for which an optimal binary prefix free code can be computed in
linear time.



Algorithms 2020, 13, 12 3 of 21

Table 1. A selection of results on the computational complexity of optimal prefix free codes. n is the
number of weights in the input; r ∈ [1..n] is the number of distinct weights in the input; k ∈ [1..n− 1]
is the number of distinct codelengths produced; and α ∈ [1..n− 1] is the difficulty measure introduced
in this work, the number of alternation between External nodes and Internal nodes in an execution of
the algorithm suggested by Huffman [1] or by van Leeuwen’s algorithm [14] (see Section 3.1 for the
formal definition).

Year Name Time Space Ref. Note

1952 Huffman O(n log n) O(n) [1] original
1976 van Leeuwen O(n) O(n) [14] sorted input
1995 Moffat and Katajainen O(n) O(1) [18] sorted input
1998 Moffat and Turpin O(r(1 + log(n/r))) “efficient” [15] compressed input and Output
2001 Milidiu et al. O(n) O(1) [19] sorted input
2006 Belal and Elmasry O(log2k−1 n) O(n) [16] k distinct code lengths and sorted input
2006 Belal and Elmasry potentially O(kn) O(n) [16] k distinct code lengths
2005 Belal and Elmasry O(16kn) O(n) [17] k distinct code lengths
2016 Group-Dock-Mix O(n(1 + log α)) O(n) [here] α = |S|EI ∈ [1..n− 1]

Such example of “easy instances” suggest that it could be possible to compute optimal prefix
free codes in much less time by taking advantage of some measure of “easiness”, and indeed Belal
and Elmasry [16,17] proposed an algorithm claimed to perform within O(kn) algebraic operations,
in the worst case over instances formed by n weights such that the binary prefix free code obtained by
Huffman’s method [1] has exactly k distinct code lengths. The proof included in the proceedings yields
only a bound within O(16kn), while the claim of a complexity within O(kn) was later downgraded
to O(16kn) in extended versions of their article published on public repositories [17]. Such result is
asymptotically better than the state of the art when k is finite, but worse when k is larger than log2 n,
which does not seem to be the case in practice (see our own experimental results in Table 3).

1.2. Question

In the context described above, we wondered about the existence of an algorithm taking advantage
of small values of k, while behaving more reasonably than Belal and Elmasry’s solution [16,17] for large
values of k (e.g., k ∈ [log n . . . n− 1]). Kirkpatrick [20] defined a dovetailing combination of several
algorithms as running all of them algorithms in parallel (not necessarily at the same rate) and stopping
them all whenever one reaches the answer. We wonder if there is an algorithin more interestingly than
a “dovetailing” combination of solutions running respectively in time within O(n log n) and O(kn).

Given n positive integer weights, can one compute an optimal binary prefix free code in time
within o(min{kn, n log n}) in the algebraic decision tree computational model for some general class
of instances?

1.3. Contributions

We answer in the affirmative for many classes of instances (extending and formalizing the proofs of
the same theoretical results previously described in 2016 [21]), identified by the “alternation” measure
α ∈ [1..n− 1] assigning a difficulty to each instance (formally defined in Section 3.1):

Theorem 1. The computational complexity of optimal binary prefix free code is within Θ(n(1 + log α)) in the
algebraic decision tree computational model, in the worst case over instances of size n and alternation α.

Proof. We describe in Lemma 2 of Section 2.2 a deferred data structure which supports q queries
of type rank, select and partialSum in time within O(n(1 + log q) + q log n), all within the algebraic
decision tree computational model. We describe in Section 2.3 the Group–Dock–Mix (GDM) algorithm,
inspired by the van Leeuwen’s algorithm [14], modified to use this deferred data structure to compute
optimal prefix free codes given an unsorted input, and we prove its correction in Lemma 3. We show
in Lemma 8 that any algorithm A in the algebraic decision tree computational model performs within



Algorithms 2020, 13, 12 4 of 21

Ω(n log α) algebraic operations in the worst case over instances of size n and alternation α. We show
in Lemma 5 that the GDM algorithm performs q ∈ O(α(1 + log n−1

α )) such queries, which yields in
Corollary 6 a complexity within O(n(1+ log α) + α(log n)(log n

α )), all within the algebraic decision
tree computational model. As α ∈ [1..n−1] and O(α(log n)(log n

α )) ⊆ O(n(1+ log α)) for this range
(Lemma 7), the asymptotic optimality ensues.

When α is at its maximal (i.e., α = n−1), this complexity matches the tight asymptotic computational
complexity bound of Θ(n log n) for algorithms in the algebraic decision tree computational model in
the worst case over all instances of size n. When α is substantially smaller than n (e.g., α ∈ O(log n),
which practicality we discuss in Section 4), the GDM algorithm performs within o(n log n) operations,
down to linear in n for finite values of α.

Another natural question is whether practical instances present small enough values of parameters
such as k and α that taking advantage of them makes a difference. By a preliminary set of experiments
on word-based compression of English texts, we answer with a tentative negation (this experimentation
is a new addition to the previous presentation of this work [21]). The alternation α of practical instances
is much smaller than the number n of weights, with ratios (see Table 3 for more similar values) from
77 (α = 40 and n = 3099) to 154 (α = 440 and n = 67,780). However, it does not seem to be small
enough to make a meaningful difference in term of running time, as log α ≥ 1

2 log n on the data set,
which suggests that such instances are not “easy enough” for such techniques to make a meaningful
difference in running time. We obtain similar results about the parameter k, with k > log n for all
instances of the data set, rendering a solution running in time within O(kn) non competitive compared
either to the state of the art solution running in time within O(n log n), nor to the solution proposed in
this work running in time within O(n(1 + log α)).

In the next section (Section 2), we describe our solution in three parts: the intuition behind the
general strategy in Section 2.1, the deferred data structure which maintains a partially sorted list
of weights while supporting rank, select and partialSum queries in Section 2.2, and the algorithm
which uses those operators to compute an optimal prefix free code in Section 2.3. Our most technical
contribution consists in the analysis of the running time of this solution, described in Section 3:
the formal definition of the parameter of the analysis in Section 3.1, the upper bound in Section 3.2
and the matching lower bound in Section 3.3. In Section 4, we compare the experimental values of the
difficulty measures over unordered instances of the optimal prefix free code computation on a sample
of texts, the alternation α introduced in this work and the number k of distinct code lengths proposed
by Belal and Elmasry [16,17]. We conclude with a theoretical comparison of our results with those from
Belal and Elmasry [16,17] in Section 5, along with a discussion of potential themes for further research.

2. Solution

The solution that we describe is a combination of two results: some results about deferred data
structures for multisets, which support queries in a “lazy” way; and some results about optimal prefix
free codes themselves, about the relation between the computational cost of partially sorting a set of
positive integers and the computational cost of computing a binary optimal prefix free code for the
corresponding frequency distribution. We describe the general intuition of our solution in Section 2.1,
the deferred data structure in Section 2.2, and the algorithm in Section 2.3.

2.1. General Intuition

Observing that the algorithm suggested by Huffman [1] in 1952 always creates the internal nodes
in increasing order of weight, van Leeuwen [14] described in 1976 an algorithm to compute optimal
prefix free codes in linear time when the input (i.e., the weights of the external nodes) is given in
sorted order. A close look at the execution of van Leeuwen’s algorithm [14] reveals a sequence of
sequential searches for the insertion rank r of the weight of some internal node in the list of weights
of external nodes. Such sequential search could be replaced by a more efficient search algorithm in



Algorithms 2020, 13, 12 5 of 21

order to reduce the number of comparisons performed (e.g., a doubling search [22] would find such a
rank r in 2dlog2 re comparisons instead of the r comparisons spent by a sequential search). Of course,
this would reduce the number of comparisons performed, but it would not reduce the number of
algebraic operations (in this case, sums) performed, and hence neither would it significantly reduce
the total running time of the algorithm.

Example 1. Consider the following instance for the computation of a optimal prefix free code formed by n = 16
sorted positive weights W= 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
such that the first internal node created has larger weight than the largest weight in the original array (i.e.,
W[1]+W[2] = 16+17 = 33 > W[16] = 31). On such an instance, van Leeuwen’s algorithm [14] starts
by performing n−2 = 14 comparisons in the equivalent of a sequential search in W for W[1]+W[2] = 33:
a binary search would perform dlog2 ne = 4 comparisons instead, and a doubling search [22] no more than
2dlog2 ne = 8 comparisons.

As mentioned above, any algorithm must access (and sum) each weight at least once in order
to compute an optimal prefix free code for the input, so that reducing the number of comparisons
does not reduce the running time of van Leeuwen’s algorithm on a sorted input, but it illustrates
how instances with clustered external and internal nodes are “easier” than instances in which they
are interleaved.

The algorithm suggested by Huffman [1] starts with a heap of external nodes, selects the two nodes
of minimal weight, pair them into a new node which it adds to the heap, and iterates till only one node
is left. Whereas the type of the nodes selected, external or internal, does not matter in the analysis of the
complexity of Huffman’s algorithm, we claim that the computational cost of optimal prefix free codes
can be greatly reduced on instances where many external nodes are selected consecutively. We define
the “EI signature” of an instance as the first step toward the characterization of such instances:

Definition 1 (EI signature). Given an instance of the optimal prefix free code problem formed by n positive
weights W[1..n], its EI signature S(W) ∈ {E, I}2n−1 is a string of length 2n− 1 over the alphabet {E, I} (where
E stands for “external” and I for “internal”) marking, at each step of the algorithm suggested by Huffman [1],
whether an external or internal node is chosen as the minimum (including the last node returned by the algorithm,
for simplicity).

The analysis described in Section 3 is based on the number |S|EI of maximal blocks of consecutive
positions formed only of E in the EI signature of the instance S . We can already show some basic
properties of this measure:

Lemma 1. Given the EI signature S of n unsorted positive weights W[1..n],

1. The number of occurrences |S|E of E in the signature S is |S|E = n;
2. The number of occurrences |S|I of I in the signature S is |S|I = n− 1;
3. The length |S| of the signature S is their sum, |S| = 2n− 1;
4. The signature S starts with two E;
5. The signature S finishes with one I;
6. The number |S|EI of consecutive occurrences of EI in the signature S is one more than the number of

occurrences of IE in it, |S|EI = |S|IE + 1;
7. The number |S|EI of consecutive occurrences of EI in the signature S is at least 1 and at most n− 1,

|S|EI ∈ [1..n− 1].

Proof. The three first properties are simple consequences of basic properties on binary trees. S starts
with two E as the first two nodes paired are always external. S finishes with one I as the last node



Algorithms 2020, 13, 12 6 of 21

returned is always (for n > 1) an internal node. The two last properties are simple consequences of the
fact that S is a binary string starting with an E and finishing with an I.

Example 2. For example, consider the text T = “ABBCCCDDDDEEEEEFFFFFGGGGGGHHHHHHH”
formed by the concatenation of one occurrence of “A”, two occurrences of “B”, three occurrences of “C”,
four occurrences of “D”, five occurrences of “E”, five (again) occurrences of “F”, six occurrences of “G” and
seven occurrences of “H”, so that the corresponding frequencies are W = 1 2 3 4 5 5 6 7 .
It corresponds to an instance of size n = 8, of EI signature S(W) = EE EI EEE EI EI IIII of length 15,
which starts with EE, finishes with I, and contains only α = 3 occurrences of EI (underlined), corresponding to
a decomposition into α = 3 maximal blocks of consecutive Es (in bold), out of a maximal potential number of 7
for the alphabet size n = 8.

Instances such as that presented in Example 2, with very few blocks of E (more than in Example 3,
but much less than in the worst case), are easier to solve than instances with many such blocks.
For example, an instance W of length n such that its EI signature S(W) is composed of a single run
of n Es followed by a single run of n − 1 Is (such as the one described in Figure 1) can be solved
in linear time, and in particular without sorting the weights: it is enough to assign the codelength
l = blog2 nc to the n− 2l largest weights and the codelength l + 1 to the 2l smallest weights. Separating
those weights is a simple select operation, supported in amortized linear time by the data structures
described in the following section. We describe two other extreme examples, starting with one where
all the weights are equal (as a particular case of when they are all within a factor of two of each other).

Example 3. Consider the text T = “ba_bb_caca_ba_cc” from Figure 1. Each of the four messages (input
symbols) of its alphabet {a, b, c, _} occurs exactly 4 times, so that an optimal prefix free code assigns a uniform
codelength of 2 bits to all messages (see Figure 1). There is no need to sort the messages by frequency (and
the prefix free code does not yield any information about the order in which the messages would be sorted by
monotone frequencies), and accordingly the EI signature of this text, S(T) = “EEE EI II”, has a single block of
Es, indicating a very easy instance. The same holds if the text is such that the frequencies of the messages are all
within a factor of two of each other.

a 4 2
b 4 2
c 4 2
_ 4 2

16

8

a b

8

c _

Figure 1. Illustrations for the instance based on the text T = “ba_bb_caca_ba_cc”, minimizing the
number of occurrences of “EI” in its EI signature S(T) = “EEE EI II”. The columns of the array
respectively list the messages, their numbers of occurrences and the code lengths assigned to each.

On the other hand, some instances present the opposite extreme, where no weight is within a
factor of two of any other, which “forces” any algorithm computing optimal prefix free codes to sort
the weights.

Example 4. Consider the text T = “aaaaaaaabcc____” from Figure 2 (composed of one occurrence of “b”,
two occurrences of “c”, four occurrences of “_”, and eight occurrences of “a”), such that the frequencies of its
messages follow an exponential distribution, so that an optimal prefix free code assigns different codelengths to
almost all messages (see the third column of the array in Figure 2). Any optimal prefix free code for this instance
yields all the information required to sort the messages by frequencies. Accordingly, the EI signature S(T) =
“E EI EI EI” of this instance has three blocks of Es (out of three possible ones) for this value of the alphabet size
n = 4, indicating a more difficult instance. The same holds with more general distributions, as long as no two
pairs of message frequencies are within a factor of two of each other.



Algorithms 2020, 13, 12 7 of 21

a 8 1
b 1 3
c 2 3
_ 4 2

15

a 7

_ 3

b c

Figure 2. Illustrations for the instance based on the text T = “aaaaaaaabcc____”, maximizing the
number of occurrences of “EI” in its EI signature S(T) = “E EI EI EI”. The columns of the array
respectively list the messages, their numbers of occurrences and the code lengths assigned to each.

Those various examples should give an intuition of the features of the instance that our techniques
aim to take advantage of. We describe those techniques more formally in the two following sections,
starting with the deferred data structure allowing to partially sort the weights in Section 2.2, and following
with the algorithm itself in Section 2.3.

2.2. Partial Sum Deferred Data Structure

Given a multiset W[1..n] of size n on an alphabet [1..σ] of size σ, Karp et al. [23] defined the first
deferred data structure supporting for all x ∈ [1..σ] and r ∈ [1..n] queries such as rank(x), the number
of elements which are strictly smaller than x in W; and select(r), the value of the r-th smallest value
(counted with multiplicity) in W. Their data structure supports q queries in time within O(n(1+ log q) +
q log n), all in the comparison model (Karp et al.’s result [23] is actually better than this formula when
the number of queries q is larger than the size n of the multiset, but such configuration does not occur
in the case of the computation of an optimal prefix free code, where the number q of queries is always
smaller or equal to n: for simplicity, we summarize their result as O(n(1 + log q) + q log n)). To achieve
this results, it partially sorts its data in order to minimize the computational cost of future queries,
but avoids sorting all of the data if the set of queries does not require it: the queries have then become
operators in some sense (they modify the data representation). Note that whereas the running time of
each individual query depends on the state of the data representation, the answer to each query is itself
independent of the state of the data representation.

Karp et al.’s data structure [23] supports only rank and select queries in the comparison model,
whereas the computation of optimal prefix free codes requires to sum pairs of weights from the input,
and the algorithm that we propose in Section 2.3 requires to sum weights from a range in the input.
Such requirement can be reduced to partialSum queries. Whereas partialSum queries have been
defined in the literature based on the positions in the input array, we define such queries here in a way
that depends only on the content of the multiset (as opposed to a definition depending on the order in
which the multiset is given in the input), so that it can be generalized to deferred data structures.

Definition 2 (Partial sum data structure). Given n unsorted positive weights W[1..n], a partial sum data
structure supports the following queries:

• rank(x), the number of elements which are strictly smaller than x in W;
• select(r), the value of the r-th smallest value (counted with multiplicity) in W;
• partialSum(r), the sum of the r smallest elements (counted with multiplicity) in W.

Example 5. Given the array A = 5 3 1 5 2 4 6 7 ,

• the number of elements strictly smaller than 5 is rank(5)= 4,
• the sixth smallest value is select(6)= 5 (counting with redundancies), and
• the sum of the two smallest elements is partialSum(2)= 3.

We describe below how to extend Karp et al.’s deferred data structure [23], which already
supports rank and select queries on multisets, in order to add the support for partialSum queries, with



Algorithms 2020, 13, 12 8 of 21

an amortized running time within a constant factor of the asymptotic time of the original solution.
Note that the operations performed by the data structure are not any more within the comparison
model, but rather in the algebraic decision tree computational model, as they introduce algebraic
operations (additions) on the elements of the multiset. The result is a direct extension of Karp et al. [23],
adding a sub-task taking linear time (updating partial sums in an interval of positions) to a sub-task
which was already taken linear time (partitioning this same interval by a pivot):

Lemma 2. Given n unsorted positive weights W[1..n], there is a partial sum deferred data structure which
supports q operations of type rank, select, and partialSum in time within O(n(1 + log q) + q log n), all within
the algebraic decision tree computational model.

Proof. Karp et al. [23] described a deferred data structure which supports the rank and select queries
(but not partialSum queries). It is based on median computations and (2, 3)-trees, and performs q
queries on n values in time within O(n(1 + log q) + q log n), all within the comparison model (and
hence in the even less restricted algebraic decision tree computational model). We describe below
how to modify their data structure in a simple way, so that to support partialSum queries with
asymptotically negligible additional cost.

At the initialization of the data structure, compute the n partial sums corresponding to the n
positions of the unsorted array. After each median computation and partitioning in a rank or select
query, recompute the partial sums on the range of values newly partitioned, which increases the cost of
the query only by a constant factor. When answering a partialSum query, perform a select query, and
then return the value of the partial sum corresponding to the value by the select query: the asymptotic
complexity is within a constant factor of the one described by Karp et al. [23].

Barbay et al. [24] further improved Karp et al.’s result [23] with a simpler data structure (a single
binary array) and a finer analysis taking into account the gaps between the positions hit by the queries.
Barbay et al.’s results [24] can similarly be augmented in order to support partialSum queries while
increasing the computational complexity by only a constant factor. This finer result is not relevant to
the analysis described in Section 3, given the lack of specific features of the distribution of the gaps
between the positions hits by the queries, as generated by the GDM algorithm described in Section 2.3.

Such a deferred data structure is sufficient to simply execute van Leeuwen’s algorithm [14] on
an unsorted array of positive integers, but would not result in an improvement in the computational
complexity: such a simple variant of van Leeuwen’s algorithm [14] is simply performing n select
operations on the input, effectively sorting the unsorted array. We describe in the next section an
algorithm which uses the deferred data structure described above to batch the operations on the
external nodes, and to defer the computation of the weights of some internal nodes to later, so that for
many instances the input is not completely sorted at the end of the execution, which indeed reduces
the total cost of the execution of the algorithm.

2.3. Algorithm “Group–Dock–Mix” (GDM) for the Binary Case

There are five main phases in the GDM algorithm: the initialization, three phases (grouping,
docking, and mixing, giving the name “GDM” to the algorithm) inside a loop running until only
internal nodes are left to process, and the conclusion:

1. In the initialization phase, initialize the partial sum deferred data structure with the input, and the
first internal node by pairing the two smallest weights of the input.

2. In the grouping phase, detect and group the weights smaller than the smallest internal node: this
corresponds to a run of consecutive E in the EI signature of the instance.

3. In the docking phase, pair the consecutive positions of those weights (as opposed to the weights
themselves, which can be reordered by future operations) into internal nodes, and pair those
internal nodes until the weight of at least one such internal node becomes equal or larger than



Algorithms 2020, 13, 12 9 of 21

the smallest remaining weight: this corresponds to a run of consecutive I in the EI signature of
the instance.

4. In the mixing phase, rank the smallest unpaired weight among the weights of the available
internal nodes, and pairs the internal node of smaller weight two by two, leaving the largest one
unpaired: this corresponds to an occurrence of IE in the EI signature of the instance. This is the
most complicated (and most costly) phase of the algorithm.

5. In the conclusion phase, with i internal nodes left to process (and no external node left), assign
codelength l = blog2 ic to the i− 2l largest ones and codelength l+1 to the 2l smallest ones: this
corresponds to the last run of consecutive I in the EI signature of the instance.

The algorithm and its complexity analysis distinguish two types of internal nodes: pure nodes,
which descendants were all paired during the same grouping phase; and mixed nodes, each of which
either is the ancestor of such a mixed node, or pairs a pure internal node with an external node,
or pairs two pure internal nodes produced at distinct phases of the GDM algorithm. The distinction
is important as the algorithm computes the weight of any mixed node at its creation (potentially
generating several data structure operations), whereas it defers the computation of the weight of some
pure nodes to later, and does not compute the weight of some pure nodes. We will discuss this further
in Section 5 about the non istance optimality of the solution presented.

Before describing each phase more in detail, it is important to observe the following invariant of
the algorithm:

Property 1. Given an instance of the optimal binary prefix free code problem formed by n > 1 positive weights
W[1..n], between each phase of the algorithm, all unpaired internal nodes have weight within a constant factor of
two (i.e., the maximal weight of an unpaired internal node is strictly smaller than twice the minimal weight of
an unpaired internal node).

Proof. The generally property is proven by checking that each phase preserves it:

1. Initialization: there is only one internal node at the end of this phase, hence the conditions for the
property to stand are created.

2. Grouping: no internal node is created, hence the property is preserved.
3. Docking: pairing until at least one internal node has weight equal or larger than the smallest

weight of a remaining weight (future external node) insures the property.
4. Mixing: as this phase pairs all internal nodes except possibly the one of largest weight, the property

is preserved.
5. Conclusion: A single node is left at the end of the phase, hence the property.

As the initialization phase creates the property and each other phase preserves it, the property is
verified through the execution of the algorithm.

We now proceed to describe each phase in more details:

1. Initialization: Initialize the deferred data structure partial sum with the input; compute the weight
currentMinInternal of the first internal node through the operation partialSum(2) (the sum of the
two smallest weights); create this internal node, of weight currentMinInternal and children
1 and 2 (the positions of the first and second weights, in any order); compute the weight
currentMinExternal of the first unpaired weight (i.e., the first available external node) by the
operation select(3); setup the variables nbInternals= 1 and nbExternalProcessed= 2.

2. Grouping: Compute the position r of the first unpaired weight larger than the smallest
unpaired internal node, through the operation rank(currentMinInternal); pair the ((r −
nbExternalProcessed) modulo 2) indices to form b r−nbExternalProcessed

2 c pure internal nodes;
compute the parity of the number r− nbExternalProcessed of unpaired weights smaller than the



Algorithms 2020, 13, 12 10 of 21

first unpaired internal node; if it is odd, select the r-th weight through the operation select(r),
compute the weight of the first unpaired internal node, compare it with the next unpaired weight,
to form one mixed node by combining the minimal of the two with the extraneous weight.

3. Docking: Pair all internal nodes by batches (by Property 1, their weights are all within a factor
of two, so all internal nodes of a generation are processed before any internal node of the next
generation); after each batch, compare the weight of the largest such internal node (compute it
through partialSum on its range if it is a pure node, otherwise it is already computed) with the
first unpaired weight: if smaller, pair another batch, and if larger, the phase is finished.

4. Mixing: Rank the smallest unpaired weight among the weights of the available internal nodes,
by a doubling search starting from the beginning of the list of internal nodes. For each comparison,
if the internal node’s weight is not already known, compute it through a partialSum operation on
the corresponding range (if it is a mixed node, it is already known). If the number r of internal
nodes of weight smaller than the unpaired weight is odd, pair all but one, compute the weight of
the last one and pair it with the unpaired weight. If r is even, pair all of the r internal nodes of
weight smaller than the unpaired weight, compare the weight of the next unpaired internal node
with the weight of the next unpaired external node, and pair the minimum of the two with the
first unpaired weight. If there are some unpaired weights left, go back to the Grouping phase,
otherwise continue to the Conclusion phase.

5. Conclusion: There are only internal nodes left, and their weights are all within a factor of two
from each other. Pair the nodes two by two in batch as in the docking phase, computing the
weight of an internal node only when the number of internal nodes of a batch is odd.

The combination of those phases forms the GDM algorithm, which computes an optimal prefix
free code given an unsorted sets of positive integers.

Lemma 3. The tree returned by the GDM algorithm describes an optimal binary prefix free code for its input.

In the next section, we analyze the number q of rank, select and partialSum queries performed by
the GDM algorithm, and deduce from it the complexity of the algorithm in term of algebraic operations.

3. Analysis

The GDM algorithm runs in time within O(n log n) in the worst case over instances of size n
(which is optimal (if not a new result) in the algebraic decision tree computational model). However,
it runs much faster on instances with few blocks of consecutive Es in the EI signature of the instance.
We formalize this concept by defining the alternation α of the instance in Section 3.1. We then proceed
in Section 3.2 to show upper bounds on the number of queries to the deferred data structure and
algebraic operations on the data performed by the GDM algorithm in the worst case over instances of
fixed size n and alternation α. We finish in Section 3.3 with a matching lower bound for the number of
operations performed by any algorithm in the algebraical decision tree model.

3.1. Parameter Alternation α(W)

We suggested in Section 2.1 that the number |S|EI of blocks of consecutive Es in the EI signature
of an instance can be used to measure its difficulty. Indeed, some “easy” instances have few such
blocks, and the instance used to prove the Ω(n log n) lower bound on the computational complexity of
optimal prefix free codes in the algebraic decision tree computational model in the worst case over
instances of size n has n−1 such blocks (the maximum possible in an instance of size n). We formally
define this measure as the “alternation” of the instance (it measures how many times the algorithm
suggested by Huffman [1] or the van Leeuwen algorithm [14] “alternates” from an external node to
an internal node in its iterative selection process for nodes of minimum weight) and denote it by the
parameter α:



Algorithms 2020, 13, 12 11 of 21

Definition 3 (Alternation). Given an instance of the optimal binary prefix free code problem formed by n
positive weights W[1..n], its alternation α(W) ∈ [1..n− 1] is the number of occurrences of the substring “EI”
in its EI signature S(W).

In other words, the alternation α(W) ∈ [1..n− 1] of W is the number of times that the algorithm
suggested by Huffman [1] or the van Leeuwen’s algorithm [14] selects an internal node immediately
after selecting an internal node.

Note that counting the number of blocks of consecutive Es is equivalent to counting the number
of blocks of consecutive Is: they are the same, because the EI signature starts with two Es and finishes
with an I, and each new I-block ends an E-block and vice-versa. Also, the choice between measuring
the number of occurrences of “EI” or the number of occurrence of “IE” is arbitrary, as they are within
a term of 1 of each other (see Section 3.1): counting the number of occurrences of “EI” just gives a nicer
range of [1..n− 1] (as opposed to [0..n− 2]). This number is of particular interest as it measures the
number of iteration of the main loop in the GDM algorithm:

Lemma 4. Given an instance of the optimal prefix free code problem of alternation α, the GDM algorithm
performs α iterations of its main loop.

Proof. This is a direct consequence of the definition of the alternation α on one hand, and of the
definition of the algorithm GDM on the other hand.

The main loop consists in three phases, respectively named grouping, docking, and mixing.
The grouping phase corresponds to the detection and grouping of the weights smaller than the
smallest internal node: this corresponds to a run of consecutive E in the EI signature of the instance.
The docking phase corresponds to the pairing of the consecutive positions of those weights into
internal nodes, and of those internal nodes though produced, recusively until the weight of at least one
such internal node becomes equal or larger than the smallest remaining weight: this corresponds to a
run of consecutive I in the EI signature of the instance. The mixing phase corresponds to the ranking
of the smallest unpaired weight among the weights of the available internal nodes: this corresponds to
an occurrence of IE in the EI signature of the instance.

As the iterations of the main loop of the GDM algorith are in bijection with the runs of consecutive
E in the EI signature of the instance, the number of such iteration is the number α of such runs.

In the next section, we refine this result to the number of data structure operations and algebraic
operations performed by the GDM algorithm.

3.2. Running Time Upper Bound

In order to measure the number of queries performed by the GDM algorithm, we detail how
many queries are performed in each phase of the algorithm.

• The initialization corresponds to a constant number of data structure operations: a select operation
to find the third smallest weight (and separate it from the two smallest ones), and a simple
partialSum operation to sum the two smallest weights of the input.

• Each grouping phase corresponds to a constant number of data structure operations: a partialSum
operation to compute the weight of the smallest internal node if needed, and a rank operation to
identify the unpaired weights which are smaller or equal to that of this node.

• The number of operations performed by each docking and mixing phase is better analyzed
together: if there are i “I” in the I-block corresponding to this phase in the EI signature, and if
the internal nodes are grouped on h levels before generating an internal node of weight larger
than the smallest unpaired weight, the docking phase corresponds to at most h partialSum
operations, whereas the mixing phase corresponds to at most log2(i/2h) partialSum operations,
which develops to log2(i)− h, for a total of h + log2(i)− h = log2 i data structure operations.



Algorithms 2020, 13, 12 12 of 21

• The conclusion phase corresponds to a number of data structure operations logarithmic in the size
of the last block of Is in the EI signature of the instance: in the worst case, the weight of one pure
internal node is computed for each batch, through one single partialSum operation each time.

Lemma 4 and the concavity of the logarithm function yields the total number of data structure
operations performed by the GDM algorithm:

Lemma 5. Given an instance of the optimal binary prefix free code problem of alternation α, the GDM algorithm
performs within O(α(1 + log n−1

α )) data structure operations on the deferred data structure given as input.

Proof. For i ∈ [1..α], let ni be the number of internal nodes at the beginning of the i-th docking phase.
According to Lemma 4 and the analysis of the number of data structure operations performed in
each phase, the GDM algorithm performs in total within O(α + ∑α

i=1 log ni) data structure operations.
Since there are at most n− 1 internal nodes and the sum ∑α

i=1 ni ≤ n− 1, by concavity of the logarithm
the number of queries is within O(α + α log n−1

α ) = O(α(1 + log n−1
α )).

Combining this result with the complexity of the partialSum deferred data structure from Lemma 2
directly yields the complexity of the GDM algorithm in algebraic operation (and running time):

Lemma 6. Given an instance of the optimal binary prefix free code problem of alternation α, the GDM
algorithm runs in time within O(n(1+ log α) + α(log n)(1 + log n−1

α )), all within the algebraic decision tree
computational model.

Proof. Let q be the number of queries performed by the GDM algorithm. Lemma 5 implies that
q ∈ O(α(1 + log n−1

α )). Plunging this into the expression O(n(1 + log q) + q log n) from Lemma 2
yields a complexity within O(n(1+ log α) + α(log n)(1 + log n−1

α )).

Some simple functional analysis further simplifies the expression to our final upper bound:

Lemma 7. Given two positive integers n > 0 and α ∈ [1..n− 1],

O
(

α(log n)(log
n
α
)
)
⊆ O (n(1 + log α))

Proof. Given two positive integers n > 0 and α ∈ [1..n − 1], α < n
log n and α

log α < n. A simple

rewriting yields α
log α < n

log2 n
and α log2 n > n log α. Then, n/α < n implies α× log n× log n

α < n log α,

which yields the result.

In the next section, we show that this complexity is indeed optimal in the algebraic decision tree
computational model, in the worst case over instances of fixed size n and alternation α.

3.3. Lower Bound

A complexity within O(n(1 + log α)) is exactly what one could expect, by analogy with multiset
sorting: there are α groups of weights, so that the order within each groups does not matter much,
but the order between weights from different groups does matter. We combine two results:

1. a linear time reduction from multiset sorting to the computation of optimal prefix free codes; and
2. the lower bound within Ω(n log α) (tight in the comparison model) suggested by information

theory for the computational complexity of multiset sorting in the worst case over multisets of
size n with at most α distinct elements.

This yields a lower bound within Ω(n log α) on the computational complexity of computing
optimal binary prefix free codes in the worst case over instances of size n and alternation α.



Algorithms 2020, 13, 12 13 of 21

Lemma 8. Given the integers n ≤ 2 and α ∈ [1..n−1], for any correct algorithm A computing optimal binary
prefix free codes in the algebraic decision tree computational model, there is a set W[1..n] of n positive weights of
alternation α such that A performs within Ω(n log α) algebraic operations.

Proof. For any Multiset A[1..n] = {x1, . . . , xn} of n values from an alphabet of α distinct values, define
the instance WA = {2x1 , . . . , 2xn} of size n, so that computing an optimal prefix free code for W, sorted
by code length, provides an ordering for A. W has alternation α: for any two distinct values x and y
from A, the algorithm suggested by Huffman [1] as well as van Leeuwen’s algorithm [14] pair all the
weights of value 2x before pairing any weight of value 2y, so that the EI signature of WA has α blocks
of consecutive Es. The lower bound then results from the classical lower bound on sorting mmultisets
in the comparison model in the worst case over multisets of size n with α distinct values [25], itself
based on the number αn of possible such multisets.

Having shown that the GDM algorithm takes optimally advantage of α, we are left to check
whether values of α in practice are small enough for GDM’s improvements to be worth of notice.
We show in the next section that, at least for one application, it does not seem to be the case.

4. Preliminary Experimentations

There are many mature implementations [5,18] to compute optimal prefix free codes: Huffman’s
solution [1] to the problem of optimal prefix free codes is not only ancient (67 years from 1952 to 2019),
but also one still in wide use: In 1991, Gary Stix stated that “products that use Huffman code might
fill a consumer electronics store” [26]. In 2010, the answer to the question “what are the real-world
applications of Huffman coding?” on the website Stacks Exchange [27] stated that “Huffman is
widely used in all the mainstream compression formats that you might encounter—from GZIP, PKZIP
(winzip etc.) and BZIP2, to image formats such as JPEG and PNG.” In 2019, the Wikipedia website
on Huffman coding still states that “ prefix codes nevertheless remain in wide use because of their
simplicity, high speed, and lack of patent coverage. They are often used as a “back-end” to other
compression methods. DEFLATE (PKZIP’s algorithm) and multimedia codecs such as JPEG and MP3
have a front-end model and quantization followed by the use of prefix codes (...).” [28]. Presenting an
implementation competitive with industrial ones is well beyond the scope of this (theoretical) work,
but it is possible to perform some preliminary experimental work in order to predict the potential
practical impact of algorithms taking advantage of various difficulty measures introduced so far. We
realized such an implementation (which sources are publicly available, see Supplementary Materials)
and present preliminary experimental results using such an implementation.

Albeit the computation of optimal prefix free codes occurs in many applications (In several
applications, optimal prefix free codes are fixed once for all, but there are still many applications for
which such codes are computed again for each instance) (e.g., BZIP2 [6], JPEG [7], etc.), the alphabet
size is not necessarily increasing with the size of the data to be compressed. In order to evaluate
the potential improvement of adaptive techniques such as presented in this work and others [16,17],
we consider the application of optimal prefix free codes to the word-based compression of natural
languague texts, cited as an example of “large alphabet” application by Moffat [3], and studied by
Moura et al. [29]. As for the natural language texts themselves, we considered a random selection of
nine texts from the Gutenberg project [30], listed in Table 2.



Algorithms 2020, 13, 12 14 of 21

Table 2. Data sets used for the experimentation measures, all from the Project Gutenberg.

File Name Description

14529-0.txt The Old English Physiologus, EBook #14529
32575-0.txt The Head Girl at the Gables, EBook #32575
pg12944.txt Punch, Or The London Charivari, EBook #12944
pg24742.txt Mary, Mary, EBook #24742
pg25373.txt Woodward’s Graperies and Horticultural Buildings, EBook #25373
pg31471.txt The Girl in the Mirror, EBook #31471
pg4545.txt An American Papyrus: 25 Poems, EBook #4545
pg7925.txt Expositions of Holy Scripture, EBook #7925

shakespeare.txt The Complete Works of William Shakespeare, EBook #100

Compared to the many difficulty measures known for sorting [31,32], there are only a few ones
for the computation of optimal prefix free codes, respectively introduced by Moffat and Turpin [15],
Milidiu et al. [19], Belal and Elmasry [16,17], and ourselves in this work: Table 3 describes those measures
of difficulty, and the experimental values of the most relevant ones on the texts listed in Table 2. Even if
optimized implementations might shave some constant factor of the running time (in particular
concerning the computation of the median of a set of values), studying the ratio between theoretical
complexities yields an idea of how big such a constant factor must be to make a difference.

Table 3. Experimental values of various difficulty factors on the data sets listed in Table 2, sorted by n,
along with their logarithms (truncated to one decimal) and relevant combinations. |T| denotes the
number of words in the document (i.e., the sum of the frequencies); n denotes the number of distinct
words (i.e., the number of frequencies in the input); k denotes the number of distinct codelengths, a
notation introduced by Belal and Elmasry [16]; α denotes the alternation of the instance, introduced
in this work. The experimental values of k (number of distinct code code lengths) are much smaller
than that of α (the alternation of the instance), themselves much smaller than that of n (the number of
frequencies in the input). A more interesting comparison of k with log2 α and log2 n is given in Figure 3.

Filename |T| n α k

14529-0.txt 7944 3099 40 10
pg4545.txt 11,887 4011 49 11

pg25373.txt 24,075 4944 72 12
pg12944.txt 13,930 5639 51 11
pg24742.txt 48,039 10,323 103 13
pg31471.txt 64,959 11,398 121 13
32575-0.txt 68,849 13,575 115 13
pg7925.txt 247,215 24,208 228 15

shakespeare.txt 904,061 67,780 440 16



Algorithms 2020, 13, 12 15 of 21

 0

 2

 4

 6

 8

 10

 12

 14

 16

10,000 20,000 30,000 40,000 50,000 60,000 70,000

v
a
lu

e

n

Comparison of experimental measures of difficulty measures

lg(n)
lg(alpha)

k

Figure 3. Plots comparing the experimental values of log n, log α and k from Table 3: log α is roughly
half of log n, itself roughly half of k. This implies that the experimental values of the alternation α

are only polynomially smaller than the number n of weights, and that experimental values of k are
exponentially smaller than both the number n of weights and the alternation α. The consequences on
preducted running times are described more explicitly in Figure 4.

The experimental measures listed in Table 3 suggest that the advantage potentially won by the
GDM algorithm, by taking advantage of the alternation of the input (at the cost repeated regular
median computations), will be only of a constant factor (see Figures 3 and 4 for how n log2 α is never
less than half of n log2 n). Concerning the number k of distinct codelengths, the proven complexity of
n16k is completely unpractical (The values for n16k are not shown in Table 3 for lack of space), and even
the claimed complexity of nk would yield at best a constant factor improvement, as nk ≤ 2n log n on
the data tested. In the next section we discuss, among other things, how such results affect research
perspectives on this topic.

200,000

400,000

600,000

800,000

1,000,000

1,200,000

10,000 20,000 30,000 40,000 50,000 60,000 70,000

v
a
lu

e

n

Comparison of theoretical running times

n lg(n)
n lg(alpha)

n k

Figure 4. Plots comparing the experimental values of n log n, n log α and nk from the array of Table 3:
n log α is roughly half of n log n, itself roughly half of nk.The experimental values of n log n, n log α and
nk are all within a constant factor of each other.



Algorithms 2020, 13, 12 16 of 21

5. Discussion

We described an algorithm computing an optimal prefix free code for n unsorted positive weights
in time within O(n(1+ log α)) ⊆ O(n log n), where the alternation α ∈ [1..n−1] roughly measures
the amount of sorting required by the computation of such an optimal prefix free code. This result
is a combination of a new algorithm inspired by van Leeuwen’s 1976 algorithm [14], and of a minor
extension of Karp et al.’s 1988 results about deferred data structures supporting rank and select queries
on multisets [23]. In theory, such a result has the potential to improve over previous results, whether
the Θ(n log n) complexity suggested by Huffman in 1952 or more recent improvements for specific
classes of instances [16,17]. In practice, it does not seem to be very promising, at least when computing
optimal binary prefix free codes for mere texts: on such data, preliminary experiments show the
alternation α to be polynomial in the input size, the number n of weights (their logarithms are within a
constant factor of each other). The situation might be different for some other practical application,
but in any application, the alternation α would have to be asymptotically bounded by any polynomial
of the input size n, in order for the GDM algorithm to yield an improvement in running time by more
than a constant factor.

The results described above yield many new questions, of which we discuss only a few in the
following sections: how those results relate to previous results (Section 5.1); about the potential
(lack of) practical applications of our results on the practical computation of optimal binary prefix free
codes (Section 5.2); and about problems similar in essence to the computation of optimal prefix free
codes, but where optimizing the computational complexity might have more of a practical impact
(Section 5.3).

5.1. Relation to Previous Work

The work presented here present similarities with various previous work, which we discuss here:
Belal and Elmasry’s work [16], which inspired ours (Section 5.1.1), the definition of other deferred data
structures obtained since 1988 (Sections 5.1.2 and 5.1.3), and the potentiality for instance optimality
results for the computation of of optimal binary prefix free codes (Section 5.1.4).

5.1.1. Previous Work on Optimal Prefix Free Codes

In 2006, Belal and Elmasry [16] described a variant of Milidiú et al.’s algorithm [19,33] to compute
optimal prefix free codes, potentially performing O(kn) algebraic operations when the weights are not
sorted, where k is the number of distinct code lengths in the optimal prefix free code computed by
the algorithm suggested by Huffman [1]. They describe an algorithm running in time within O(16kn)
when the weights are unsorted, and propose to improve the complexity to O(kn) by partitioning the
weights into smaller groups, each corresponding to disjoint intervals of weights value. The claimed
complexity of O(kn) is asymptotically better than the one suggested by Huffman when k ∈ o(log n).

Like the GDM algorithm, the algorithm suggested by Belal and Elmasry [16,17] for the unsorted
case is based on several computations of the median of the weights within a given interval, in particular,
in order to select the weights smaller than some well chosen value. The essential difference between
both works is the use of a deferred data structure in the GDM algorithm, which simplifies both the
algorithm and the analysis of its complexity.

While an algorithm running in time within O(n log k) would improve over the running time
within O(n(1 + log α)) of our proposed solution, such an algorithm has not been defined yet, and for
α < 2k any complexity within O(n(1 + log α)) is a strong improvement over the complexity class
O(nk) suggested by Belal and Elmasry [16,17], in addition to be a much more formal statement of the
algorithm and of the analysis of its running time on a dynamically changing set of weights.



Algorithms 2020, 13, 12 17 of 21

5.1.2. Applicability of Dynamic Results on Deferred Data Structures

Karp et al. [23], when they defined the first deferred data structures, supporting rank and select on
multisets and other queries on convex hull, left as an open problem the support of dynamic operators
such as insert and delete: Ching et al. [34] quickly demonstrated how to add such support in good
amortized time.

The dynamic addition and deletion of elements in a deferred data structure (added by Ching et al. [34]
to Karp et al. [23]’s results) does not seem to have any application to the computation of optimal prefix
free codes: even if the list of weights was dynamic such as in an online version of the computation of
optimal prefix free codes, extensive additional work would be required in order to build a deferred
data structure supporting something like “prefix free code queries”.

5.1.3. Applicability of Refined Results on Deferred Data Structures

Karp et al.’s analysis [23] of the complexity of the deferred data structure is in function of the
total number q of queries and operators, while Kaligosi et al. [35] analyzed the complexity of an offline
version in function of the size of the gaps between the positions of the queries. Barbay et al. [24]
combined the three results into a single deferred data structure for multisets which supports the
operators rank and select in amortized time proportional to the entropy of the distribution of the sizes
of the gaps between the positions of the queries.

At first view, one could hope to generalize the refined entropy analysis (introduced by
Kaligosi et al. [35] on the static version and applied by Barbay et al. [24] to the online version) of
multisets deferred data structures supporting rank and select to the computational complexity of
optimal prefix free codes: a complexity proportional to the entropy of the distribution of codelengths in
the output would nicely match the lower bound of Ω(k(1 +H(n1, . . . , nk))) suggested by information
theory, where the output contains ni codes of length li, for some integer vector (l1, . . . , lk) of distinct
codelengths and some integer k measuring the number of distinct codelengths. Our current analysis
does not yield such a result: the gap lengths in the list of weights between the position hit by the
queries generated by the GDM algorithm are not as regular as (n1, . . . , nk), so that the entropy of such
gaps seems unrelated to the entropy of the number ni of codes of a given length li for each i ∈ [1..k].

5.1.4. Instance Optimality

The refinement of analysis techniques from the worst case over instances of fixed size to the
worst case over more restricted classes of instances has yield interesting results on a multitude of
problems, from sorting permutation [31], sorting multisets [25] and computing convex hulls and
maxima sets [36], etc. Afshani et al. [37] described how minor variants of Kirkpatrick and Seidel’s
algorithms [36] to compute convex hulls and maxima sets in two dimensions take optimally advantage
of the positions of the input points, to the point that those algorithms are actually instance optimal
among algorithms ignoring the input order (Formally, those are “input order oblivious instance
optimal” in the algebraical decision tree model).

As we refined the analysis of the computation of optimal binary prefix free codes from the worst
case over instances of fixed size n to the worst case over instances of fixed size n and alternation α, it is
natural to ask whether further refinements are possible, or if the GDM algorithm is instance optimal.
There are two parts to the answer: one about the input order, and one about the input structure.
While the GDM algorithm does not take into account the input order (and hence cannot be truly
instance optimal), replacing Karp et al.’s deferred data structure [23] by one which does take optimally
advantage of the input order [38] in the extension described in Section 2.2 does yield a solution taking
advantage of some measure of input order. The tougher issue is that of taking optimally advantage
of the input structure, in this case the values of the input frequencies. In order to simplify both its
expression and the analysis of its running time, the GDM algorithm immediately computes the weights
of “mixed” nodes (pairing a pure internal node with an external node, or two pure internal nodes



Algorithms 2020, 13, 12 18 of 21

produced at distinct phases of the algorithm, see Section 2.3 for the formal definition). This might not
be necessary on some instances, making the GDM algorithm non competitive compared to others.
Designing another algorithm which postpone the computation of the weights of mixed nodes would
be a prerequisite to instance optimality.

5.2. Potential (Lack of) Practical Impact

We expect the impact of our faster algorithm on the execution time of optimal prefix free code
based techniques to be of little importance in most cases: compressing a sequence S of |S|messages
from an input alphabet of size n requires not only computing the code (in time within O(n(1 + log α))

using our solution), but also computing the weights of the messages (in time linear in |S|), and encoding
the sequence S itself using the computed code (in time linear in |S|)), where the later usually dominates
the total running time.

5.2.1. In Classical Computational Models and Applications

Improving the code computation time will improve on the compression time only in cases
where the number n of distinct messages in the input S is very large compared to the length |S|
of such input. One such application is the compression of texts in natural language, where the
input alphabet is composed of all the natural words [29] (which we partially explored in Section 4
with relatively disappointing results). Another potential application is the boosting technique from
Ferragina et al. [39], which divides the input sequence into very short subsequences and computes a
prefix free code for each subsequences on the input alphabet of the whole sequence.

A logical step would be to study, among the communication solutions using an optimal prefix
free code computed offline, which can now afford to compute a new optimal prefix free code more
frequently and see their compression performance improved by a faster prefix free code algorithm.
Another logical step would be to study, among the compression algorithms computing an optimal
prefix free code on each new instance (e.g., JPEG [7], BZIP [6], MP3, MPEG), which ones get a better
time performance by using a faster algorithm to compute optimal prefix free codes.

Another argument for the potential lack of practical impact of our result is that there exist
algorithms computing optimal prefix free codes in time within O(n log log n) within the RAM model
(The algorithm proposed by van Leeuwen [14] reduces, in time linear in the number of messages of the
alphabet, the computation of an optimal prefix free code to their sorting, and Han [40] described how
to sort a set of n integers (which message frequencies are) in time within O(n log log n) in the RAM
model): a time complexity within O(n(1 + log α)) is an improvement only for values of α substantially
smaller than log n, which does not seem to be the case in practice according to the experimentations
described in Section 2.

5.2.2. Generalisation to Non Binary Output Alphabets

Huffman [1] described both how to compute optimal prefix free codes in the case of two output
symbols, and how to generalize this method to more output symbols. Moura et al. [29] showed that
compressing to 256 output symbols (encoded un bytes) provides some advantages in terms of indexing
the compressed output, with a relatively minor cost in terms of the compression ratio.

Keeping the same definition of the EI signature and alternation α of an instance, the GDM
algorithm described in Section 2.3 (and its analysis) can be extended to the case of D output symbols
with very minor changes, and will result in an algorithm which running time is already adaptive to α,
with the same running time as if there were only D = 2 output symbols. Yet this would not be optimal
for large values of D: on instances where D = n, the optimal d-ary prefix free code is uniform and
returned in time at most linear in the input size, whereas an algorithm ignoring the value of D could
spend time within O(n log n).

Further improvements could be achieved by extending the concepts described in this work to take
into account the value of D, such as to D-ary-EI signature and D-ary alternation. Such improvements in



Algorithms 2020, 13, 12 19 of 21

running time would be at most by a multiplicative factor of log2 D, and seem theoretically interesting,
if probably of limited interest in practice.

5.2.3. External Memory

Sibeyn [41] described an efficient algorithm to support select queries on a multiset in external
memory. Barbay et al. [42] described an efficient deferred data structure supporting rank and select
queries on a multiset in external memory with a competitive ratio in the number of external memory
accesses performed within 1+ o(1) (i.e., it asymptotically performs within 1+ o(1) times of the number
of memory accesses performed by the best offline solution). In Section 2.2, we described how to add
support for partialSum queries to Karp et al.’s data structure [23], at the only cost of an additional
constant factor in the complexity.

The same technique as that described in Section 2.2, if applied to Barbay et al.’s deferred data
structure [42], yields a deferred data structure supporting rank, select and partialSum queries in external
memory, of competitive ratio in the number of external memory accesses within O(1), and hence an
efficient algorithm to compute optimal binary prefix free codes in external memory. Further work
would be required to properly analize and optimize the behavior of the GTD algorithm to take into
account caching of external memory. It is not clear whether the computation of optimal prefix free
codes in external memory has practical applications.

5.3. Variants of the Optimal Prefix Free Code Problem

Another promising line of research is given by variants of the original problem, such as optimal
bounded length prefix free codes [43–45], where the maximal length of each word of the prefix free
code must be less than or equal to a parameter l, while still minimizing the entropy of the code; or such
as the order constrained prefix free codes, where the order of the words of the codes is constrained
to be the same as the order of the weights: this problem is equivalent to the computation of optimal
alphabetical search trees [46,47]. Both problems have complexity O(n log n) in the worst case over
instances of fixed input size n, while having linear complexity when all the weights are within a factor
of two of each other, exactly as for the computation of optimal prefix free codes.

Supplementary Materials: Sources and Data Sets are available at https://gitlab.com/FineGrainedAnalysis/
PrefixFreeCodes.

Funding: This research was partially funded by the Millennium Nucleus RC130003 “Information and
Coordination in Networks”.

Acknowledgments: The author would like to thank Peyman Afshani and Seth Pettie for interesting discussions
during the author’s visit to the center MADALGO in January 2014; Jouni Siren for detecting a central error in a
previous version of this work; Gonzalo Navarro for suggesting the application to the boosting technique from
Ferragina et al. [39]; Charlie Clarke, Gordon Cormack, and J. Ian Munro for helping to clarify the history of the
van Leeuwen’s algorithm [14]; Renato Cerro for various English corrections; various people who have reviewed
and commented on various preliminary drafts and presentations of related work: Carlos Ochoa, Francisco
Claude-Faust, Javiel Rojas, Peyman Afshani, Roberto Konow, Seth Pettie, Timothy Chan, and Travis Gagie.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Huffman, D.A. A Method for the Construction of Minimum-Redundancy Codes. Proc. Inst. Radio Eng. (IRE)
1952, 40, 1098–1101. [CrossRef]

2. Chen, C.; Pai, Y.; Ruan, S. Low power Huffman coding for high performance data transmission. In Proceedings of
the International Conference on Hybrid Information Technology ICHIT, Cheju Island, Korea, 9–11 November
2006; Volume 1, pp. 71–77.

3. Moffat, A. Huffman Coding. ACM Comput. Surv. 2019, 52, 85:1–85:35. doi:10.1145/3342555. [CrossRef]
4. Chandrasekaran, M.N. Discrete Mathematics; PHI Learning Pvt. Ltd.: Delhi, India, 2010.
5. Moffat, A.; Turpin, A. On the implementation of minimum redundancy prefix codes. ACM Trans. Commun.

TCOM 1997, 45, 1200–1207. [CrossRef]

https://gitlab.com/FineGrainedAnalysis/PrefixFreeCodes
https://gitlab.com/FineGrainedAnalysis/PrefixFreeCodes
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1145/3342555
http://dx.doi.org/10.1109/26.634683


Algorithms 2020, 13, 12 20 of 21

6. Wikipedia. bzip2. Available online: https://en.wikipedia.org/wiki/Bzip2 (accessed on 20 December 2019).
7. Wikipedia. JPEG. Available online: https://en.wikipedia.org/wiki/JPEG#Entropy_coding (accessed on 20

December 2019).
8. Takaoka, T.; Nakagawa, Y. Entropy as Computational Complexity. J. Inf. Process. JIP 2010, 18, 227–241.

[CrossRef]
9. Takaoka, T. Partial Solution and Entropy. In Proceedings of the 34th International Symposium on Mathematical

Foundations of Computer Science 2009 (MFCS 2009), Novy Smokovec, High Tatras, Slovakia, 24–28 August
2009; Královič, R., Niwiński, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 700–711.

10. Takaoka, T. Minimal Mergesort. Technical Report, University of Canterbury, 1997. Available online: http:
//ir.canterbury.ac.nz/handle/10092/9676 (accessed on 23 August 2016).

11. Barbay, J.; Navarro, G. On Compressing Permutations and Adaptive Sorting. Theor. Comput. Sci. TCS
2013, 513, 109–123. [CrossRef]

12. Even, S.; Even, G. Graph Algorithms, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; pp. 1–189.
13. Alfred V. Aho, Jeffrey D. Ullman, J.E.H. Data Structures and Algorithms; Addison-Wesley Longman Publishing

Company: Massachusetts, MA, USA, 1983.
14. van Leeuwen, J. On the construction of Huffman trees. In Proceedings of the International Colloquium on

Automata, Languages and Programming ICALP, Edinburgh, UK, 20–23 July 1976; pp. 382–410.
15. Moffat, A.; Turpin, A. Efficient Construction of Minimum-Redundancy Codes for Large Alphabets.

IEEE Trans. Inf. Theory TIT 1998, 44, 1650–1657. [CrossRef]
16. Belal, A.A.; Elmasry, A. Distribution-Sensitive Construction of Minimum-Redundancy Prefix Codes.

In Proceedings of the International Symposium on Theoretical Aspects of Computer Science STACS,
Marseille, France, 23–25 February 2006; Lecture Notes in Computer Science; Durand, B.; Thomas, W.,
Eds.; Springer: Berlin, Germany, 2006; Volume 3884, pp. 92–103.

17. Belal, A.A.; Elmasry, A. Distribution-Sensitive Construction of Minimum-Redundancy Prefix Codes. arXiv
2010, arXiv:cs/0509015v4. Available online: https://arxiv.org/pdf/cs/0509015.pdf (accessed on 29
June 2012).

18. Moffat, A.; Katajainen, J. In-Place Calculation of Minimum-Redundancy Codes. In Proceedings of the
International Workshop on Algorithms and Data Structures WADS, Kingston, ON, Canada, 16–18 August
1995; Lecture Notes in Computer Science; Springer: London, UK, 1995; Volume 955, pp. 393–402.

19. Milidiú, R.L.; Pessoa, A.A.; Laber, E.S. Three space-economical algorithms for calculating minimum-
redundancy prefix codes. IEEE Trans. Inf. Theory TIT 2001, 47, 2185–2198. [CrossRef]

20. Kirkpatrick, D. Hyperbolic dovetailing. In Proceedings of the Annual European Symposium on Algorithms
ESA, Copenhagen, Denmark, 7–9 September 2009; pp. 516–527.

21. Barbay, J. Optimal Prefix Free Codes with Partial Sorting. In Proceedings of the Annual Symposium on
Combinatorial Pattern Matching CPM, Tel Aviv, Israel, 27–29 June 2016; LIPIcs; Grossi, R., Lewenstein, M.,
Eds.; Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Wadern, Germany, 2016; Volume 54, pp. 29:1–29:13.

22. Bentley, J.L.; Yao, A.C.C. An almost optimal algorithm for unbounded searching. Inf. Process. Lett. IPL 1976,
5, 82–87. [CrossRef]

23. Karp, R.; Motwani, R.; Raghavan, P. Deferred Data Structuring. SIAM J. Comput. SJC 1988, 17, 883–902.
[CrossRef]

24. Barbay, J.; Gupta, A.; Jo, S.; Rao, S.S.; Sorenson, J. Theory and Implementation of Online Multiselection
Algorithms. In Proceedings of the Annual European Symposium on Algorithms ESA, Sophia Antipolis,
France, 2–4 September 2013.

25. Munro, J.I.; Spira, P.M. Sorting and Searching in Multisets. SIAM J. Comput. SICOMP 1976, 5, 1–8. [CrossRef]
26. Stix, G. Profile: David A. Huffman. Sci. Am. SA 1991, 54–58. Available online: http://www.huffmancoding.

com/my-uncle/scientific-american (accessed on 29 June 2012). [CrossRef]
27. Website TCS Stack Exchange. What Are the Real-World Applications of Huffman Coding? 2010. Available

online: http://stackoverflow.com/questions/2199383/what-are-the-real-world-applications-of-huffman-
coding (accessed on 25 October 2012).

28. Wikipedia. Huffman Coding. Available online: https://en.wikipedia.org/wiki/Huffman_coding (accessed
on 26 December 2019).

29. Moura, E.; Navarro, G.; Ziviani, N.; Baeza-Yates, R. Fast and Flexible Word Searching on Compressed Text.
ACM Trans. Inf. Syst. TOIS 2000, 18, 113–139. [CrossRef]

https://en.wikipedia.org/wiki/Bzip2
https://en.wikipedia.org/wiki/JPEG#Entropy_coding
http://dx.doi.org/10.2197/ipsjjip.18.227
http://ir.canterbury.ac.nz/handle/10092/9676
http://ir.canterbury.ac.nz/handle/10092/9676
http://dx.doi.org/10.1016/j.tcs.2013.10.019
http://dx.doi.org/10.1109/18.681345
https://arxiv.org/pdf/cs/0509015.pdf
http://dx.doi.org/10.1109/18.945242
http://dx.doi.org/10.1016/0020-0190(76)90071-5
http://dx.doi.org/10.1137/0217055
http://dx.doi.org/10.1137/0205001
http://www.huffmancoding.com/my-uncle/scientific-american
http://www.huffmancoding.com/my-uncle/scientific-american
http://dx.doi.org/10.1038/scientificamerican0991-54
http://stackoverflow.com/questions/2199383/what-are-the-real-world-applications-of-huffman-coding
http://stackoverflow.com/questions/2199383/what-are-the-real-world-applications-of-huffman-coding
https://en.wikipedia.org/wiki/Huffman_coding
http://dx.doi.org/10.1145/348751.348754


Algorithms 2020, 13, 12 21 of 21

30. Hart, M. Gutenberg Project. Available online: https://www.gutenberg.org/ (accessed on 27 May 2018).
31. Moffat, A.; Petersson, O. An Overview of Adaptive Sorting. Aust. Comput J ACJ 1992, 24, 70–77.
32. Estivill-Castro, V.; Wood, D. A Survey of Adaptive Sorting Algorithms. ACM Comput. Surv. ACMCS

1992, 24, 441–476. [CrossRef]
33. Milidiú, R.L.; Pessoa, A.A.; Laber, E.S. A Space-Economical Algorithm for Minimum-Redundancy Coding;

Technical Report; Departamento de Informática, PUC-RJ: Rio de Janeiro, Brazil, 1998.
34. Ching, Y.T.; Mehlhorn, K.; Smid, M.H. Dynamic deferred data structuring. Inf. Process. Lett. IPL 1990, 35, 37–40.

[CrossRef]
35. Kaligosi, K.; Mehlhorn, K.; Munro, J.I.; Sanders, P. Towards Optimal Multiple Selection. In Proceedings

of the International Colloquium on Automata, Languages and Programming ICALP, Lisbon, Portugal,
11–15 July 2005; pp. 103–114.

36. Kirkpatrick, D.G.; Seidel, R. The Ultimate Planar Convex Hull Algorithm? SIAM J. Comput. SJC 1986, 15, 287–299.
[CrossRef]

37. Afshani, P.; Barbay, J.; Chan, T.M. Instance-Optimal Geometric Algorithms. J. ACM 2017, 64, 3:1–3:38.
[CrossRef]

38. Barbay, J.; Ochoa, C.; Satti, S.R. Synergistic Solutions on MultiSets. In Proceedings of the Annual Symposium
on Combinatorial Pattern Matching CPM, Warsaw, Poland, 4–6 July 2017; Leibniz International Proceedings
in Informatics (LIPIcs); Kärkkäinen, J., Radoszewski, J., Rytter, W., Eds.; Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik: Dagstuhl, Germany, 2017; Volume 78, pp. 31:1–31:14.

39. Ferragina, P.; Giancarlo, R.; Manzini, G.; Sciortino, M. Boosting textual compression in optimal linear time.
J. ACM 2005, 52, 688–713. [CrossRef]

40. Han, Y. Deterministic sorting in O(n log log n) time and linear space. J. Algorithms JALG 2004, 50, 96–105.
[CrossRef]

41. Sibeyn, J.F. External selection. J. Algorithms JALG 2006, 58, 104–117. [CrossRef]
42. Barbay, J.; Gupta, A.; Rao, S.S.; Sorenson, J. Dynamic Online Multiselection in Internal and External Memory.

In Proceedings of the International Workshop on Algorithms and Computation WALCOM, Chennai, India,
13–15 February 2014.

43. Milidiú, R.L.; Pessoa, A.A.; Laber, E.S. Efficient Implementation of the WARM-UP Algorithm for the
Construction of Length-Restricted Prefix Codes. In Proceedings of the Workshop on Algorithm Engineering
and Experiments ALENEX, Baltimore, MD, USA, 15–16 January 1999; Lecture Notes in Computer Science;
Goodrich, M.T., McGeoch, C.C., Eds.; Springer: Berlin, Germany, 1999; Volume 1619, pp. 1–17.

44. Milidiú, R.L.; Pessoa, A.A.; Laber, E.S. In-Place Length-Restricted Prefix Coding. In Proceedings of the 11th
Symposium on String Processing and Information Retrieval SPIRE, Santa Cruz de la Sierra, Bolivia, 9–11
September 1998; pp. 50–59.

45. Milidiú, R.L.; Laber, E.S. The WARM-UP Algorithm: A Lagrangean Construction of Length Restricted Huffman
Codes; Technical Report; Departamento de Informática, PUC-RJ: Rio de Janeiro, Brazil, 1996.

46. Knuth, D.E. Art of Computer Programming, Volume 3: Sorting and Searching, 2nd ed.; Addison-Wesley
Professional: Massachusetts, MA, USA, 1998.

47. Hu, T.; Tucker, P. Optimal alphabetic trees for binary search. Inf. Process. Lett. IPL 1998, 67, 137–140.
[CrossRef]

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.gutenberg.org/
http://dx.doi.org/10.1145/146370.146381
http://dx.doi.org/10.1016/0020-0190(90)90171-S
http://dx.doi.org/10.1137/0215021
http://dx.doi.org/10.1145/3046673
http://dx.doi.org/10.1145/1082036.1082043
http://dx.doi.org/10.1016/j.jalgor.2003.09.001
http://dx.doi.org/10.1016/j.jalgor.2005.02.002
http://dx.doi.org/10.1016/S0020-0190(98)00101-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Question
	Contributions

	Solution
	General Intuition
	Partial Sum Deferred Data Structure
	Algorithm ``Group–Dock–Mix'' (GDM) for the Binary Case

	Analysis
	Parameter Alternation (W)
	Running Time Upper Bound
	Lower Bound

	Preliminary Experimentations
	Discussion
	Relation to Previous Work
	 Previous Work on Optimal Prefix Free Codes
	Applicability of Dynamic Results on Deferred Data Structures
	Applicability of Refined Results on Deferred Data Structures
	Instance Optimality

	Potential (Lack of) Practical Impact
	In Classical Computational Models and Applications
	Generalisation to Non Binary Output Alphabets
	External Memory

	Variants of the Optimal Prefix Free Code Problem

	References

