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when the Gauss map of the theta divisor is only generically 
finite and not finite. That is, the Gauss map in these cases 
has at least one positive-dimensional fiber. We also obtain 
lower-bounds on the dimension of Andreotti-Mayer loci.
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1. Introduction

In this note we construct indecomposable principally polarized abelian varieties 
(ppavs) of any dimension g > 3 whose theta divisors contain translates of non-trivial 
abelian subvarieties (Theorem 1.1). We show that in some of our examples, the Gauss 
map has positive-dimensional fibers and we also obtain lower bounds on the dimension 
of the singular locus of the theta divisor. This then allows us to give lower bounds on the 
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dimensions of some Andreotti-Mayer loci. Our construction is inspired by a paper of G. 
Kempf [18], where the author provides an example of a three-dimensional ppav whose 
theta divisor contains an elliptic curve; his argument is slightly different from ours, so we 
do not recover his example. An argument related both to ours and Kempf’s also appears 
in O. Debarre’s note [12].

Let (A, Θ) be a principally polarized abelian variety over an algebraically closed field 
of characteristic different from 2, and denote by 0 the identity in A. The Gauss map of 
Θ is the rational map

G : Θ ��� P (T0A
∨) ∼= P g−1

which maps a smooth point p of Θ to the tangent hyperplane TpΘ translated to the 
identity. We will always assume that Θ is irreducible. We refer the reader to [6, Section 
4.4] and [3,8,9] for generalities about the Gauss map over the complex numbers, and to 
[1,22] for a characteristic-free approach.

The Gauss map is regular if and only if Θ is smooth; in the other cases, it is generically 
finite and dominant. The case of Jacobians is as usual quite special; indeed the Gauss 
map is not regular, but it is surjective and finite. We are not aware of any previously 
known examples where G is not finite, and one of the objectives of this paper is to show 
that many such examples exist. We still do not know examples where the Gauss map is 
not surjective.

Let us now describe our result in detail. Given an abelian subvariety X of a principally 
polarized abelian variety (A, Θ), we say that the degree of X is δ if h0(X, Θ|X) = δ. Let 
Aδ

n,g−n be the moduli space of principally polarized abelian varieties of dimension g that 
contain an abelian subvariety of dimension n and degree δ. Note that we can assume 
without loss of generality that 2n ≤ g. We recall that Θ is irreducible if and only if (A, Θ)
is not isomorphic to a non-trivial product of principally polarized abelian varieties (see 
for example [6, Decomposition Theorem 4.3.1], the arguments there can be easily adapted 
to work over an arbitrary algebraically closed field).

Our main theorem is:

Theorem 1.1. Let (A, Θ) ∈ Aδ
n,g−n, and assume that 2 ≤ δ ≤ n ≤ g/2. If X ⊆ A is an 

abelian subvariety of A of dimension n and degree δ and Y ⊆ A is its complementary 
abelian subvariety with respect to Θ, then

(a) If X and Y are simple and non-isogenous, then Θ is irreducible
(b) Θ contains a translate of X and a translate of Y
(c) dim Sing(Θ) ≥ dim g − 2 dimH0(X, LX) = g − 2δ ≥ g − 2n
(d) If either n = 2, or no translate of Y is contained in Sing(Θ), then the Gauss map 

of Θ has at least one geometric fiber of dimension at least g − 2n + 1.
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For g ≤ 5, all ppavs are Prym varieties, so, in contrast with the Jacobian case, the 
Gauss map of a Prym variety can have positive dimensional fibers (the Gauss map in 
the Prym case has been investigated in [24]). Let us also observe that the hypotheses of 
Theorem 1.1 imply g ≥ 4.

We do not know if item (d) of Theorem 1.1 holds true for more refined versions of the 
Gauss map, such as the one discussed in [19].

In Section 2.1 we give a proof of the well-known result that if an abelian variety with 
a principal polarization is simple, then the Gauss map cannot have positive-dimensional 
fibers. We then give a refinement of this result (Proposition 2.5) that describes what 
happens when we vary such a fiber over an irreducible base.

Relation with the Andreotti-Mayer loci and the Schottky problem

The Andreotti-Mayer loci, introduced in [2] over the complex numbers and in [23]
over any algebraically closed field, are defined as

Nk = {(A,Θ) such that dim Sing(Θ) ≥ k} ⊆ Ag ,

where Ag is the moduli space of principally polarized abelian g-folds. We refer the reader 
to [5] and [15, Section 3] for a survey about the geometry of the Andreotti-Mayer loci 
and the Schottky problem. Theorem 1.1 gives a lower bound on the dimension of some 
irreducible components of these loci; namely, it shows that there exists a component V
of Nk, for k = g − 2δ, such that

dimV ≥ dimAδ
n,g−n = n(n + 1)

2 + (g − n)(g − n + 1)
2 .

We do not know if this lower bound on dimNk are sharp for some values of g, n and δ.
The moduli spaces we study in Theorem 1.1 are contained in the locus of non-simple 

ppavs, see [7, Remark 7.4]. In [7], C. Ciliberto and G. van der Geer conjecture an upper 
bound for the dimension of components of Nk which are not contained in the locus of 
non-simple ppavs. Our dimensional bounds do not respect this conjecture, confirming 
that the hypothesis about simplicity is needed.

In relation to the Andreotti-Mayer approach to the Schottky problem we obtain the 
following corollary of Theorem 1.1 with n = 2:

Corollary 1.2. For any g ≥ 4, the image of A2
2,g−2 in Ag is contained in Ng−4, but it 

does not intersect the locus of Jacobians of smooth curves.

The second statement follows from the fact that the Gauss map of a Jacobian is 
finite. In [11], it is shown with different methods and over the complex numbers that, 
for g ≥ 5, A2

2,g−2 is an irreducible component of Ng−4 distinct from the closure of 
the Jacobian locus. We discuss the case g = 4 in Example 2.2. We are not able to 
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produce components of Ng−3, so we cannot show that the Andreotti-Mayer solution to 
the hyperelliptic Schottky problem [2,23] is weak, cf [15, Conjecture 3.15].
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2. Proof of the main theorem

We will first prove Theorem 1.1, and we will start by showing that the general element 
in Aδ

n,g−n has an irreducible theta divisor.
We use the Poincaré Irreducibility Theorem and its corollaries [20, Section IV.19], 

see also [4, Theorem 3.5] and [11, Section 9]. Take (A, Θ) in Aδ
n,g−n. Given an abelian 

subvariety X of A of dimension n and degree δ, there exists another abelian subvariety 
Y (uniquely determined by X and Θ) of degree δ such that the addition morphism 
π : X × Y → A is an isogeny and such that π∗Θ = LX � LY , where LX := Θ|X and 
LY := Θ|Y . One says that X and Y are complementary subvarieties with respect to Θ. 
The following lemma proves item (a) of Theorem 1.1.

Lemma 2.1. With the above notations, if X and Y are simple and non-isogenous, then 
Θ is irreducible.

Proof. First, we show that X and Y are the unique non-trivial abelian subvarieties of 
A. Since A is isogenous to X × Y and any isogeny gives a bijection between abelian 
subvarieties of the two abelian varieties, we will prove that X and Y are the unique 
non-trivial abelian subvarieties of X×Y . Let B be a proper abelian subvariety of X×Y , 
and let f ∈ End(X × Y ) be such that B = im(f). Since X and Y are simple and not 
isogenous to each other,

End(X × Y ) = End(X) ⊕ End(Y ),

and so f splits as g⊕ h, where g ∈ End(X) and h ∈ End(Y ). Since X and Y are simple, 
this implies that B = im(f) ∈ {0, X, Y, X × Y }.

We now prove the actual lemma. Assume by contradiction that Θ is reducible, then 
(A, Θ) splits as a product of two non-trivial principally polarized abelian varieties. Since 
X and Y are the only non-trivial abelian subvarieties, we must have that π : X×Y → A
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is an isomorphism and Θ = LX � LY . We conclude that Θ does not give a principal 
polarization as h0(X, LX) = δ ≥ 2, so we get the desired contradiction. �

We will now proceed to prove item (b) of Theorem 1.1. Let θ be a non-zero section in 
H0(A, OA(Θ)), and write

π∗θ =
r∑

i=1
τi ⊗ μi,

with τi ∈ H0(X, LX) and μi ∈ H0(Y, LY ). Since dimH0(X, LX) = δ ≤ n by assumption, 
the base locus Bs |LX | is not empty. The restriction of π∗θ to Bs |LX | × Y is identically 
zero, so

π(Bs |LX | × Y ) ⊆ Θ.

This implies that Θ contains at least as many translates of Y as the number of elements 
in π(Bs |LX | × {0}). We also note that this argument is symmetric in X and Y , since 
h0(X, LX) = h0(Y, LY ) = δ. Therefore we can conclude that Θ contains a translate of 
X as well, by using an analogous argument.

For item (c), Since 2n ≤ g, we have that Bs |LY | is not empty, and

dim (Bs |LX | × Bs |LY |) ≥ g − 2δ.

We now note that π (Bs |LX | × Bs |LY |) ⊂ Sing(Θ), since for every point p in Bs |LX | ×
Bs |LY |, the pull-back π∗θ is inside the second power of the maximal ideal of p in A.

We now finish the proof of Theorem 1.1 by proving item (d).
Recall that an irreducible Theta divisor over an ordinary abelian variety is smooth 

in codimension one, see [14] and [16,17,21], so dim Sing(Θ) ≤ g − 3. If n = 2, then 
dimY > dim Sing(Θ) and hence no translate of Y can be contained in Sing(Θ).

Take a point p in Bs |LX | × Y such that Θ is smooth at p. We have TpY ⊂ TpΘ. 
The Gauss map is well-defined at p, and G(p) is a hyperplane containing T0Y . We 
conclude that the image of the Gauss map restricted to Bs |LX | × Y is contained in the 
projectivization of the annihilator of T0Y ; i.e. G(Y ) ⊂ P Ann(T0Y ) ⊂ P (T0A)∨. The 
projective space P Ann(T0Y ) has dimension n − 1, so the claim about the fibers of the 
Gauss map follows from a dimension argument.

Example 2.2. We describe the case g = 4 and n = δ = 2 over the complex numbers. In 
this case, A2

2,2 is irreducible and 6-dimensional.
We affirm that for each (A, Θ) ∈ A2

2,2 with Θ irreducible, Sing(Θ) ⊂ A[2], and consists 
of at least 4 points. For the first claim, recall that (A, Θ) is not a Jacobian because the 
Gauss map is not finite, and the singular locus of an irreducible ppav of dimension 4
which is not a Jacobian is a subset of A[2], see e.g. [15, Theorem 3.13]. For the second 
claim, we have that
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π(Bs|LX | × Bs|LY |) ⊆ Sing(Θ) .

Now Bs|LX | and Bs|LY | each consist of four points, see [6, Lemma 10.1.2], and all of 
them are of order 4, [6, Example 10.1.4]. The map π is an isogeny, and the action of its 
kernel on A preserves Bs|LX | ×Bs|LY | and has no fixed points. This kernel is a maximal 
isotropic subgroup of K(LX) ⊕K(LY ), where

K(LX) := {x ∈ X : t∗xL � L}

(and similarly for K(LY )). We conclude that π(Bs|LX | × Bs|LY |) consists of 16/4 = 4
points which are 2-torsion.

Let θknull be the closed subset of A4 parametrizing ppavs such that Sing(Θ) ∩ A[2]
consists of at least k even points. By the main result of [10], θknull is empty if k > 10, 
and it is a single point if k = 10. Around this point, for k < 10, θknull is defined by 
the vanishing of 10 − k thetanulls, in particular it is 10 − k dimensional (recall that 
dimA4 = 10). We claim that A2

2,2 contains θ10
null, hence A2

2,2 is an irreducible component 
of θ4

null.
We can prove the claim as follows: as explained in [10, Section 5], the unique point 

(A0, Θ0) ∈ θ4
null has a lattice given by the root lattice of E8, and a simple calculation 

shows that there exists a basis e1, . . . , e8 of this lattice such that the alternating Riemann 
form with respect to this basis is given by the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 −2 0 0 0 0 1
−2 0 1 0 0 0 0 −1

2 −1 0 1 −1 0 0 1
0 0 −1 0 1 0 0 −1
0 0 1 −1 0 1 −1 1
0 0 0 0 −1 0 1 −1
0 0 0 0 1 −1 0 1

−1 1 −1 1 −1 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The E8 lattice has a natural multiplication by i =
√
−1, and a quick calculation shows 

that with this multiplication, the submodule S := 〈e1, e2, e3, e4〉 is stable by i, and the 
restriction of E to S is an alternating form of type (1, 2). Indeed, if we consider the basis 
v1 = e4, v2 = e1, v3 = −e1 − e2 − e3 and v4 = e2 − e4, we have that the restriction of E
takes the form (

0 D

−D 0

)

where D = diag(1, 2). This implies that S induces an abelian surface on A0 of type 
(1, 2) with respect to Θ0, and therefore (A0, Θ0) ∈ A2

2,2. Therefore A2
2,2 is an irreducible 

component of θ4
null.
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2.1. The Gauss map and simplicity

We will now briefly look at abelian subvarieties of an abelian variety whose Gauss 
map has a positive-dimensional fiber.

Definition 2.3. If A is an abelian variety and S ⊆ A is a non-empty subset, we let 〈S〉 be 
the intersection of all abelian subvarieties of A that contain the connected component 
of S − S := {s − s′ : s, s′ ∈ S} that contains 0. It will be called the abelian subvariety 
generated by S.

We start with the following well-known complementary result (cf. [7, Lemma 11.1]).

Proposition 2.4. If A is simple, the Gauss map does not have positive-dimensional fibers.

Proof. We argue by contradiction. Let F be a positive dimensional irreducible component 
of a fiber of the Gauss map. Write H = G(F ), so that H is a hyperplane in the tangent 
space at the identity 0 of A. Let B be the abelian subvariety generated by F . Looking at 
the differential of the addition morphism, we can show that T0B ⊆ H, so B is a proper 
abelian subvariety of A, and A is not simple. �

Now assume that (A, Θ) is a principally polarized abelian variety with Θ irreducible. 
We can be more specific as to what happens when the Gauss map does have positive-
dimensional fibers: we will associate a proper abelian subvariety of A to every irreducible 
component of the locus in P g−1 over which the Gauss map has positive-dimensional 
fibers.

Proposition 2.5. Let W ⊆ P g−1 be an irreducible scheme and Z an irreducible component 
of G−1(W ) such that the Gauss map restricts to a surjective morphism G : Z → W and 
the dimension of the fiber of Z → W over any point in W is positive. Assume moreover 
that the base field is uncountable. Then there exists a proper abelian subvariety Y ⊆ A

such that for every fiber F of G over W , there exists a point x = x(F ) of A such that F
is contained in Y + x. In particular, W ⊆ P Ann(T0Y ).

Proof. Let B ⊆ A be an abelian subvariety of A, and consider the variety

WB := {(z, w) ∈ A×W : z + G−1(w) ⊆ B}.

The second projection gives a proper morphism πB : WB → W , and therefore πB(WB)
is either empty or a closed subset of W . Moreover, πB(Wb) ⊆ P Ann(T0B).

Now Proposition 2.4 implies that for every w ∈ W , G−1(w) is contained in the trans-
late of some proper abelian subvariety of A. This implies that

W =
⋃

πB(WB)

B
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where B runs over all proper abelian subvarieties of A. Now this is a countable union of 
closed subvarieties of W , and by the irreducibility of W and the uncountability of the base 
field, there must exist a proper abelian subvariety Y ⊆ A such that W = πY (WY ). �

Let P ⊂ P g−1 be the locus over which the Gauss map has positive dimensional fibers. 
It is still not clear what relation exists between the irreducible components of P and the 
abelian subvarieties associated to these via Proposition 2.5. For example, what does it 
mean in terms of the irreducible components for the associated abelian subvarieties to 
be complementary? Under what circumstances are these components linear subspace of 
the form P Ann(T0Y )? Are there examples of positive dimensional fibers different from 
the ones provided in Theorem 1.1? These are questions that we wish to pursue in future 
work.
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