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A B S T R A C T

The accurate representation of spatio-temporal patterns of precipitation is an essential input for numerous en-
vironmental applications. However, the estimation of precipitation patterns derived solely from rain gauges is
subject to large uncertainties. We present the Random Forest based MErging Procedure (RF-MEP), which
combines information from ground-based measurements, state-of-the-art precipitation products, and topo-
graphy-related features to improve the representation of the spatio-temporal distribution of precipitation,
especially in data-scarce regions. RF-MEP is applied over Chile for 2000—2016, using daily measurements from
258 rain gauges for model training and 111 stations for validation. Two merged datasets were computed: RF-
MEP3P (based on PERSIANN-CDR, ERA-Interim, and CHIRPSv2) and RF-MEP5P (which additionally includes
CMORPHv1 and TRMM 3B42v7). The performances of the two merged products and those used in their com-
putation were compared against MSWEPv2.2, which is a state-of-the-art global merged product. A validation
using ground-based measurements was applied at different temporal scales using both continuous and catego-
rical indices of performance. RF-MEP3P and RF-MEP5P outperformed all the precipitation datasets used in their
computation, the products derived using other merging techniques, and generally outperformed MSWEPv2.2.
The merged P products showed improvements in the linear correlation, bias, and variability of precipitation at
different temporal scales, as well as in the probability of detection, the false alarm ratio, the frequency bias, and
the critical success index for different precipitation intensities. RF-MEP performed well even when the training
dataset was reduced to 10% of the available rain gauges. Our results suggest that RF-MEP could be successfully
applied to any other region and to correct other climatological variables, assuming that ground-based data are
available. An R package to implement RF-MEP is freely available online at https://github.com/hzambran/
RFmerge.

1. Introduction

Precipitation (P) is a key parameter in the hydrological cycle and an
accurate estimation of its spatio-temporal variability is therefore crucial

for numerous hydrological, agricultural, and ecological purposes. P is
commonly measured with rain gauge stations, with a high accuracy at
specific locations (Villarini et al., 2008). If only ground-based mea-
surements are used, the accuracy of the representation of spatial P
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patterns relies on the density and configuration of the gauge network
(Adhikary et al., 2015; Borga and Vizzaccaro, 1997; Chen et al., 2008;
Garcia et al., 2008; Goudenhoofdt and Delobbe, 2009; Villarini and
Krajewski, 2008). In particular, a high network density is of most im-
portance to capture the spatial distribution of convective events (Garcia
et al., 2008).

In many developing countries the network of rain gauges is sparsely
distributed; therefore, the use of only ground-based measurements to
estimate the spatial distribution of P is subject to large uncertainties
(Woldemeskel et al., 2013). Elevation must be considered because of
the important role it plays in the P process. In general, higher elevation
causes more P (Jaagus et al., 2010), an effect that can be extremely
pronounced even over small elevation changes. For example, Bergeron
(1960) reported that precipitation rates over small hills were twice the
value of the lower areas in a flat region of 30 km2, with approximately
50 m elevation difference. In regions with complex topography, P is
typically under-represented at higher elevations because most rain
gauges are located in lowlands due to accessibility and economical
considerations (Derin and Yilmaz, 2014).

Satellite and reanalysis-based P estimates (hereafter P products)
provide an unprecedented opportunity to estimate the spatio-temporal
distribution of P in regions with a sparse network of rain gauge stations.
However, the evaluation of these products has shown that multiple
sources of errors are still present (e.g., false detection, systematic, and
random errors) and that these products tend to perform worse at shorter
time scales (e.g., daily and sub-daily) than at longer time scales (e.g.,
monthly, seasonal, and annual), making their application difficult for
hydrological modelling (Maggioni and Massari, 2018). Therefore, a
need remains to improve the spatio-temporal distribution of P by
combining different data sources such as P products and ground-based
information (Xie and Xiong, 2011).

Several approaches have been implemented to derive gridded P and
other climatological variables using point-based information and
gridded products. These include optimal interpolation (OI) (Xie and
Xiong, 2011), the linearised weighting procedure (Woldemeskel et al.,
2013), non-parametric kernel smoothing (Li and Shao, 2010), Kriging-
based methods (Seo et al., 1990; Grimes et al., 1999; 1990; Verdin
et al., 2016), conditional merging (Sinclair and Pegram, 2005), partial
thin plate splines (Hutchinson, 1995; McKenney et al., 2006; McVicar
et al., 2007), among others. Table 1 lists merging studies used to im-
prove the characterisation of P, with a more detailed description of the
steps employed in each method included in the Table A1 from
Appendix A.

Despite the improvements in the spatio-temporal representation of P
achieved by these methods, many studies only merge the ground ob-
servations with a single P product (e.g., Li and Shao, 2010, Rozante
et al., 2010, Shi et al., 2017, Verdin et al., 2016, Xie et al., 2017, Yang
et al., 2017). Therefore, valuable information that is better captured by
other products is not considered. Averaging P products (e.g., Shen et al.,
2014) has negative effects in the detection of P intensities at daily
temporal scale. The assumption of a Gaussian distribution is invalid for
daily scales; therefore, the daily P data must be first transformed when
using Bayesian model averaging Ma et al. (2018) or Kriging-based ap-
proaches. Furthermore, these merging methods are generally complex
and difficult to implement.

Random Forest (RF; Biau and Scornet, 2016, Breiman, 2001, Prasad
et al., 2006) is an ensemble learning method that can be used for su-
pervised classification and regression tasks by constructing numerous
decision trees using the relationship between independent and depen-
dent variables. This technique is recognised for being accurate and able
to deal with small sample sizes and high-dimensional feature spaces
(Biau and Scornet, 2016). RF also performs well even when some ex-
planatory variables do not add information to the prediction and when
several covariates are used, mainly because it does not produce biased
estimates or lead to overfitting (Biau and Scornet, 2016; Díaz-Uriarte
and Alvarez de Andrés, 2006; Hengl et al., 2018). Although RF is a non-

spatial technique, it can indirectly consider geographical covariates
(e.g., coordinates, Euclidean distances to sampling locations, or down-
slope distances) and process-based covariates (e.g., elevation, rate of
elevation change, or aspect).

Recently, Hengl et al. (2018) compared RF and several Kriging-
based methods to evaluate whether RF was suitable for deriving spatial
predictions of daily P. Although the performances of both methods were
similar, they described several advantages in applying RF: i) there is no
need to define an initial variogram; ii) the trend model is built auto-
matically; iii) there is no need to define a search radius; iv) there are
built-in protections against overfitting; and v) the method shows which
individual observations and parameters are most influential. Therefore,
RF is identified as an appropriate technique for merging P products
with ground-based information, especially because different P products
exhibit distinct performances and errors (e.g., under/overestimation,
correlation with ground-based measurements, or detection of P events)
depending on the region (Baez-Villanueva et al., 2018; Maggioni and
Massari, 2018; Zambrano-Bigiarini et al., 2017).

In this study, the RF-based MErging Procedure (RF-MEP) is pre-
sented with the aim of improving the characterisation of the spatio-
temporal distribution of P in data-scarce regions at any temporal scale.
RF-MEP takes advantage of combining information from different P
products, topography-related datasets, and P time series from rain
gauges.

2. RF-MEP

RF-MEP is based on three key assumptions: i) P measurements from
rain gauge stations are accurate at the point scale; ii) P products are
generally biased but contain useful information about the spatio-tem-
poral patterns of P; and iii) the combination of different P products and
rain gauge data can provide a better representation of the spatio-tem-
poral variability of P than any single product.

RF-MEP uses RF to predict the spatial distribution of P by merging
information from different gridded products (known as covariates) and
quality-controlled ground-based information at a selected temporal
scale (e.g., daily, monthly, or annual). Individual predictions are gen-
erated from a user-defined number of decision trees based on bootstrap
samples using the covariates as predictors. The final prediction is cal-
culated as the average of the individual predictions (Biau and Scornet,
2016; Breiman, 2001; Hengl et al., 2018; Prasad et al., 2006; Roy and
Larocque, 2012). Fig. 1 summarises the four steps involved in this
method.

2.1. Data acquisition

First, the selected covariates and ground-based measurements are
acquired. The spatial covariates are: i) the selected P products, and ii)
topography-related datasets such as digital elevation model (DEM),
aspect, rate of elevation change, or slope, which are used to account for
the P gradient related to elevation (not to be mistaken with altitude, see
McVicar and Körner, 2013). The ground-based measurements are
quality controlled and checked for homogeneity.

2.2. Data processing

The selected rain gauge stations are divided into two groups: a
training set (to train the RF model) and a validation set (to assess the
performance of the merged product). The selected P products and to-
pography-related datasets are resampled to a selected spatial resolution
to ensure identical raster geometry (spatial resolution, spatial extent,
and origin).

The traditional RF algorithm ignores sampling locations which
could lead to sub-optimal predictions (Hengl et al., 2018); therefore,
covariates that account for geographical proximity are incorporated.
The use of only geographical coordinates as spatial predictors can cause
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unnatural surfaces in the merged product (Behrens et al., 2018; Hengl
et al., 2018). Instead, RF-MEP uses gridded layers of Euclidean dis-
tances from each rain gauge in the training set to the centroid of all the
grid-cells in the selected study area.

2.3. Merging procedure

For each time step a single RF regression model is derived to com-
pute a single P prediction at the desired temporal resolution. The RF
model is trained using the ground-based observations in the training set
as the dependent variable, while the grid-cell values of the selected
covariates at the corresponding locations are used as predictors. To
improve the accuracy and stability, and to reduce the variance and

overfitting of the RF predictions, they are generated as an ensemble
estimate from the numerous decision trees (Díaz-Uriarte and Alvarez de
Andrés, 2006; Hengl et al., 2018) as observed in Eq. (1):
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where ^B
is the final prediction; b is the individual bootstrap sample; B

is the total number of trees; and t*b is the individual decision tree. This
process is repeated for each time step, implying that the RF model will
vary temporally. Fig. 2 illustrates an example of the merging procedure
process using two P products, a digital surface model (DSM), three rain
gauge stations, and the three correspondent Euclidean distance layers
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Fig. 1. Flow chart summarising RF-MEP, which is used to derive a better representation of the spatio-temporal distribution of P from the combination of P products,
topography-related datasets, and ground-based data.
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(ED(a), ED(b), and ED(c)). An R package to implement RF-MEP is freely
available online at https://github.com/hzambran/RFmerge.

2.4. Validation process

The validation set of rain gauge stations is used to assess the per-
formance of the merged product using a point-to-pixel analysis, where
the rain gauge station measurements are compared against the corre-
sponding grid-cell values of the P products under the assumption that
the rain gauge measurements are representative values at their re-
spective grid-cells. However, this assumption may introduce bias in the
comparison because: i) during winter, some rain gauges located at high
elevation are not able to incorporate snow into the P measurement; and
ii) during summer, a more dense network of rain gauges is required to
capture the spatial patterns of small-scale convective events. Despite
this, the point-to-pixel analysis is widely used to assess the performance
of P products (e.g., Baez-Villanueva et al., 2018, Dinku et al., 2007, Gao
and Liu, 2013, Hirpa et al., 2010, Li et al., 2013, Thiemig et al., 2012,
Zambrano-Bigiarini et al., 2017). Among the plethora of indices avail-
able to assess the performance of P products, we selected the modified
Kling-Gupta efficiency (KGE’; Gupta et al., 2009, Kling et al., 2012) over
the traditional root mean squared error (RMSE) because the latter as-
signs disproportional weights to different P intensities at the daily scale
(Baez-Villanueva et al., 2018). This is due to the high skewness of the
precipitation distribution at the daily scale and the prevalence of

temporal mismatches between estimated and observed precipitation
peaks. The KGE’ (Eq. 2) compares observed data with estimations, de-
composing the total performance into three components: the linear
correlation (r), the bias ratio (β), and the variability ratio (γ), presented
in Eqs. (3), (4), and (5), respectively:
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where n is the number of observations; Oi and Si are the observed and
simulated values of the corresponding P product at day i; and and S̄
are the arithmetic means of the observations and the P product, re-
spectively. r measures the temporal P dynamics; β measures the total P
volume compared to ground-based observations indicating the average
tendency of the P products to underestimate (β< 1) or overestimate
(β> 1); and γ measures the relative dispersion between the gridded
product and the ground-based measurements (Gupta et al., 2009; Kling
et al., 2012). The optimal value for the KGE’ and all its components is

Fig. 2. Illustration of the merging procedure using two P products (P1 and P2), a DSM (to account for the topography-related datasets), three rain gauge stations (Sa,
Sb, and Sc), and the three Euclidean distance layers (ED(a), ED(b), and ED(c)).
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one. The KGE’ is a useful evaluation index because: i) it does not assign
disproportional weights to mismatches in high precipitation values
(contrary to squared-difference indices; e.g., the RMSE); ii) it decom-
poses the total performance into three components, thus allowing a
better understanding of the origin of mismatches (Baez-Villanueva
et al., 2018; Zambrano-Bigiarini et al., 2017); and iii) it allows a fair
comparison of regions with different mean annual P. The KGE’ has been
widely used in hydrological applications and to evaluate the perfor-
mance of P products (e.g., Baez-Villanueva et al., 2018, Beck et al.,
2016, 2017b, Chen et al., 2014, Lievens et al., 2015, Thiemig et al.,
2013, Wang et al., 2018, Zambrano-Bigiarini et al., 2017).

To evaluate the performance of P products in capturing different P
intensities we used several categorical indices of performance: the
probability of detection (POD; Eq. (6)), frequency bias (fbias; Eq. (7)),
false alarm ratio (FAR; Eq. (8)), and critical success index (CSI; Eq. (9)).
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where H indicates a hit (an event recorded by both the rain gauge and
the P product); M indicates a miss (an event only identified by the rain
gauge); and F indicates a false alarm (an event recorded only by the P
product). The POD calculates how often the product correctly estimates
the precipitation intensity observed at the rain gauge. The fbias com-
pares the number of events identified by the P product to the number of
events registered by the gauge station. If fbias > 1, the number of oc-
currences of the respective P intensity is overestimated by the product,
while fbias < 1 indicates underestimation. The FAR measures the
fraction of events that were not correctly identified by the P product.
Finally, the CSI combines the POD and FAR to describe the overall
ability of the products to correctly detect different P intensities. The
POD, fbias, and CSI present their optimal value at one, while FAR
presents it at zero.

3. Case study

The Chilean territory was selected as the case study to test the
performance of the proposed RF-MEP due to the notable heterogeneity
in topography, climate and land cover.

3.1. Study

Chile is a South American country with nearly 4300 km of latitu-
dinal extension (from 17.5°S to 56.0°S) and an average longitudinal
extension of around 180 km (from 76.0°W to 66.0°W). Chile is bounded
to the north by Peru, to the east by Bolivia and Argentina, and to the
west by the Pacific Ocean. The geography of the country is dominated
by mountainous terrains, with an elevation profile ranging from 0 to
6891 m a.s.l. Morphologically, Chile exhibits four major geographical
units distributed from east to west: the Andes Mountains, the
Intermediate Depression, the Coastal Mountains, and the Coastal Plains
(Valdés-Pineda et al., 2014). The four seasons of the southern hemi-
sphere are present: autumn (MAM), winter (JJA), spring (SON), and
summer (DJF). P tends to increase with latitude (in the southern di-
rection) and elevation (Montecinos and Aceituno, 2003). The inter-
annual variability of P is mostly related to the El Niño-Southern Os-
cillation (ENSO), which strongly impacts winter P patterns, generating
positive anomalies during El Niño events and negative anomalies
during La Niña events (Robertson et al., 2014; Verbist et al., 2010).

Fig. 3 shows the elevation (Jarvis et al., 2008), the Köppen-Geiger

climate zones (Beck et al., 2018), and the most updated Chilean land
cover classification (Zhao et al., 2016), dividing the country according
to the five major macroclimatic zones defined in Zambrano-Bigiarini
et al. (2017). A variety of climates are observed throughout Chile: arid
and semi-arid climates in the north with extremely low P (≤ 50 mm
yr−1) and high temperatures; temperate climates in Central Chile; and
humid climates in the southern regions, with P values reaching up to
5000 mm yr−1. Furthermore, polar and tundra climates are observed in
the highest elevations of the Andes Mountains. Land cover is char-
acterised by barren land in the Far North, which transitions to forest in
the Near North. Forest, grasslands, and croplands are present in Central
Chile and the two southern regions, while grassland, forest, and snow/
ice areas are predominantly observed in the Far South.

3.2. Datasets

3.2.1. Ground-based precipitation
Time series of ground-based daily P for 1900–2018 were down-

loaded from a database of 816 rain gauges from the Center of Climate
and Resilience Research (CR2; http://www.cr2.cl/recursos_y_
publicaciones/bases-de-datos/). These data are provided by Dirección
General de Aguas (DGA) and Dirección Meteorológica de Chile (DMC),
the Chilean water and meteorological agencies, respectively. In Chile,
daily P is recorded at 08:00 local time (11:00–10:59 UTC).

3.2.2. SRTM-v4
We used the Shuttle Radar Topography Mission version 4 (SRTM-

v4) DSM, which incorporates offsets due to vegetation height (Gallant
et al., 2012), and has a reported vertical error of less than 16 m (Jarvis
et al., 2008). We used the gap-filled SRTM-v4 product at a spatial re-
solution of 250 m.

3.2.3. Precipitation products
We selected six global or quasi-global state-of-the-art P products

with at least 15 years of daily estimates (Table 2). These products were
selected because: i) RF-MEP can be transferred to any selected study
area using the same P products (or others) if ground-based data are
available; and ii) the selected P products perform well in the study area
(Baez-Villanueva et al., 2018; Zambrano-Bigiarini, 2018; Zambrano-
Bigiarini et al., 2017).

The selected P products used in RF-MEP were: ERA-Interim (Dee
et al., 2011); the Climate Hazards InfraRed Precipitation with Stations
data version 2.0 (CHIRPSv2; Funk et al., 2015); the TRMM Multi-
satellite Precipitation Analysis (TRMM 3B42v7; Huffman et al., 2010,
2007); the Precipitation Estimation from Remotely Sensed Information
Using Artificial Neural Networks - Climate Data Record (PERSI-
ANN-CDR; Ashouri et al., 2015, Sorooshian et al., 2000); and the Cli-
mate Prediction Center (CPC) Morphing technique version 1.0-BLD,
gauge-satellite blended precipitation product (CMORPHv1; Joyce et al.,
2004, Xie et al., 2017). The Multi-Source Weighted-Ensemble Pre-
cipitation (MSWEPv2.2; Beck et al., 2017a, 2019) was only used in the
validation step as a benchmark product because: i) it is the first fully
global P dataset derived by optimally merging a range of gauge, sa-
tellite, and reanalysis estimates (Beck et al., 2019); ii) it has shown
more realistic spatial P patterns in mean, magnitude, and frequency
than other state-of-the-art global precipitation products at the global
scale (Beck et al., 2017b, 2019); iii) it uses the same rain gauge dataset
within Chile; and iv) it recently outperformed other state-of-the art P
products over Chile (Zambrano-Bigiarini, 2018). Detailed descriptions
of the algorithms used by each P product can be found in their corre-
sponding literature (see Table 2).

It is important to note that several P products use ground-based P
data from the Global Precipitation Climatology Centre (GPCC;
Schneider et al., 2008) to reduce bias (see Table 2). The number of
operational GPCC rain gauge stations in Chile has fluctuated between
seven and twenty over 1986–2018. This low density of GPCC stations
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within Chile is clearly insufficient to adequately represent the spatio-
temporal variability of P over the country.

3.2.4. Covariates
In addition to the selected P products and the DSM, other spatial

covariates (slope, aspect, Köppen-Geiger climate classification, land
cover type) were exhaustively evaluated using the KGE’ and its com-
ponents to ascertain whether an improvement could be obtained. Only
the DSM was selected because the inclusion of the other covariates did
not improve the performance of the final product.

3.3. Application of RF-MEP to the study area

RF-MEP was applied to the Chilean territory from 17.5° to 46.0°S for
2000–2016. The southern boundary was set due to the sparse network
of gauge stations in the Far South. We used the R environment 3.5.0 (R
Core Team, 2018) and the raster (Hijmans, 2018), hydroGOF
(Zambrano-Bigiarini, 2017a), hydroTSM (Zambrano-Bigiarini, 2017b),

GSIF (Hengl, 2019), and randomForest (Liaw and Wiener, 2002) R
packages.

3.3.1. Data processing
All selected P products that are sub-daily (Table 2) were aggregated

to the daily scale. MSWEPv2.2 was obtained at daily temporal scale
because the 3-hourly version is not freely available. We downscaled
PERSIANN-CDR, ERA-Interim, CMORPHv1 and TRMM 3B42v7 to the
same spatial resolution as CHIRPSv2 (0.05°) using the nearest neigh-
bour method (to avoid any improvements in the products performance
prior to the merging procedure), while the DSM was upscaled from its
original spatial resolution (250 m) to 0.05° using bilinear interpolation.
The reason for resampling all the covariates to 0.05° (the highest spatial
resolution of the selected P products) was to obtain a merged product
that can be fairly compared to all selected P products.

We selected the 369 rain gauge stations that had < 5% of missing
values and showed consistency when evaluated using the double-mass
curve method to identify abnormalities comparing each station with the

Table 2
P products used in the case study.

Product Spatial res. Temporal res. Period Spatial coverage Source(s) Reference(s)

ERA-Interim 0.75° 3 hourly 1979–present Global Reanalysis Dee et al. (2011)
CHIRPSv2★ 0.05° Daily 1981–present 50°N – 50°S Satellite, gauge, and reanalysis Funk et al. (2015)
TRMM 3B42v7★ 0.25° 3 hourly 1998–present 50°N – 50°S Satellite and gauge Huffman et al. (2010, 2007)
PERSIANN-CDR★ 0.25° 6 hourly 1983–2017 (April) 60°N – 60°S Satellite and gauge Ashouri et al. (2015), Sorooshian et al. (2000)
CMORPHv1★ 0.25° 30 min 1998–present 60°N – 60°S Satellite and gauge Joyce et al. (2004), Xie et al. (2017)
MSWEPv2.2★ 0.10° 3 hourly 1979–present Global Satellite, gauge, and reanalysis Beck et al. (2017a, 2019)

★ Products that use GPCC data.

a) b) c)

Far North

Near North

Central Chile

South

Far South

Fig. 3. Study area. (a) Elevation (Jarvis et al., 2008), including the rain gauge stations used in this case study; (b) land cover classification (Zhao et al., 2016); and (c)
climate zones based on the Köppen-Geiger classification (Beck et al., 2018).
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neighbouring stations, assuming homogeneity (Weiss and Wilson,
1953). The period 2000–2016 was chosen because of ground-based
data availability over the period of record of the selected P products. A
random sample of 70% of the selected rain gauge stations (258) were
used as ground truth data to train the RF model (training set), while the
remaining 30% of the stations (111) were used to assess the perfor-
mance of the merged products (validation set). Past studies have typi-
cally selected 80% or more stations for training purposes (e.g., Li and
Shao, 2010, Ma et al., 2018, Rozante et al., 2010, Woldemeskel et al.,
2013, Yang et al., 2017); however, we selected 70% to be more thor-
ough in the evaluation of the method. We computed the 258 layers of
Euclidean distances using the GSIF R package (Hengl, 2019).

3.3.2. Merging procedure
Two merged P products were computed at the daily scale for

2000–2016. The first product (hereafter, RF-MEP3P) used CHIRPSv2,
PERSIANN-CDR, ERA-Interim, the DSM, and the 258 layers of
Euclidean distances, while the second product (hereafter, RF-MEP5P)
added CMORPHv1 and TRMM 3B42v7 to the aforementioned covari-
ates. The reason for computing two different merged products was to
evaluate whether the addition of CMORPHv1 and TRMM 3B42v7, both
of which have a shorter period of temporal coverage, would improve
the final merged product. Although RF-MEP3P and RF-MEP5P were
produced and compared over the same period (2000–2016), RF-MEP3P

can be generated over a longer period of record (1983–2016), while RF-
MEP5P can only be generated from 1998 onwards.

First, we obtained the values of the covariates at the grid-cell lo-
cations of the training set. Second, for each day, an RF model was
trained using the ground-based P values as the dependent variable, and
the respective values from the covariates as predictors. Third, the
trained RF model was used with the gridded covariates to predict daily
P values for each grid-cell of the study area. This process was repeated
for each day for 2000–2016. RF regression models have three para-
meters to specify: i) the number of regression trees (set at 2000); ii) the
number of variables randomly sampled at each decision split (set at one
third of the number of covariates); and iii) the node size (i.e., the
minimum number of observations per node; set at 5).

3.3.3. Performance evaluation
We evaluated the performance of both merged products,

MSWEPv2.2, and the individual P products used as covariates, through
a point-to-pixel analysis with the indices of performance described in
Section 2.4, applied for the stations included in the validation set. The
evaluation process was performed at multiple temporal scales: 3-day,
monthly, annual, DJF, MAM, JJA, and SON.

Because no sub-daily measurements are available to transform the
ground-based P dataset (see Section 3.2.1) to the 0:00–23:59 UTC daily
period used by all the P products, we used 3-day accumulations as a
proxy for evaluating daily performance. This approach reduces likely
biases in the performance of the P products at this temporal scale by
considering the influence of reporting times.

The categorical indices were evaluated using P intensities (Table 3;
Zambrano-Bigiarini et al., 2017) recommended specifically for Chile.

Because the aim of RF-MEP is to improve the characterisation of P in
data-scarce regions, we investigated the influence of the amount of rain

gauge stations included in the training set. We computed the RF-MEP5P

product with varying percentages of rain gauge stations in the training
set to evaluate the performance of RF-MEP under different data-scarcity
scenarios. We computed the RF-MEP5P product using 50%, 30%, and
10% of the stations, representing 184, 111, and 37 rain gauges, re-
spectively.

To test the influence of the different spatial resolutions of the se-
lected P products, we computed RF-MEP5P at 0.05°, 0.10°, and 0.25°.
For this purpose, all covariates were resampled to these spatial re-
solutions before the application of the merging procedure. Finally, we
applied two additional merging methods to compare RF-MEP against
established and proven precipitation merging procedures. We com-
puted Kriging with external drift (KED) using ERA-Interim (the best-
performing product used to derive RF-MEP5P) and the one-outlier-re-
moved (OOR) arithmetic mean described in Shen et al. (2014). For a
detailed explanation of KED please refer to Ly et al. (2011), Oliver and
Webster (2014), and Hengl et al. (2018). We also compared the RF-
MEP5P against MSWEPv2.2 because it is a state-of-the-art merged P
product.

4. Results

4.1. Temporal assessment of the merged products

Fig. 4 plots the KGE’ values at the seven assessed temporal scales for
the existing and merged P products using the ground-based validation
set. Both merged products (RF-MEP3P and RF-MEP5P) performed simi-
larly well, with median KGE’ values of 0.83, 084 and 0.78 at the 3-day,
monthly, and annual scale, respectively. The P products used in the
merging method presented median KGE’ values between 0.20 and 0.60
at the 3-day scale, which increased to between 0.35 and 0.70 at the
monthly and annual scales. Both merged products outperformed the P
products used in the merging procedure at all temporal scales, de-
monstrating that the combination of P products and ground-based
measurements generates a better representation of the spatio-temporal
variability of P.

The merged products performed better than MSWEPv2.2 at all
temporal scales except DJF (summer), where all P products showed a
reduced performance and a greater dispersion in the KGE’ values. This
low performance in summer is the reason why the P products exhibit
lower KGE’ values at the annual scale compared to the monthly scale.

Fig. 5 shows boxplots with the individual KGE’ components (r, β,
and γ) at all temporal scales. Both merged products present a median r
value of 0.94 at the 3-day temporal scale, which is consistent with the
improvements in r obtained by Xie and Xiong (2011) and Yang et al.
(2017). Of the existing P products, MSWEPv2.2 performed best with a
median value of 0.89, highlighting the advantage of merging gauge,
satellite, and reanalysis products. At all time scales, RF-MEP3P and RF-
MEP5P performed considerably better than the products used in their
computation. This demonstrates that the method is able to substantially
improve the correlation of the P products for the Chilean case study.

Fig. 5b plots the performance of the β component of the KGE’,
showing that RF-MEP5P, RF-MEP3P, MSWEPv2.2, and CHIRPSv2 were
close to exhibiting no bias. Both merged datasets present lower dis-
persion than MSWEPv2.2 and CHIRPSv2 for all temporal scales except
DJF. This result shows that the evaluated products are generally biased
but contain useful information that can be combined with ground-based
measurements to derive improved P estimates. In DJF, both merged
products presented a β> 1 and were outperformed by MSWEPv2.2.

Fig. 5c shows the γ component of the KGE’, highlighting that all
datasets underestimated the variability of P at all temporal scales.
MSWEPv2.2 best represented the variability of the ground-based mea-
surements, followed closely by both merged datasets. The high values
of γ obtained for MSWEPv2.2 were expected because this product uses
the same daily ground-based Chilean dataset in its computation and
accounts for the difference in reporting times. Both merged products

Table 3
Classification of P events in Chile based on daily intensity (i) ac-
cording to Zambrano-Bigiarini et al. (2017).

Precipitation event Intensity (i) in mm d−1

No rain [0, 1)
Light rain [1, 5)
Moderate rain [5, 20)
Heavy rain [20, 40)
Violent rain ≥ 40
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showed a reduced dispersion of the KGE’ components at the 3-day,
monthly, MAM, JJA, and SON scales; however, the dispersion at the
annual scale increases due to the reduced performance in DJF.

4.2. Spatial assessment of the merged products

Fig. 6 summarises the KGE’ of the 3-day P products over the four
analysed macroclimatic zones, while Fig. 7 presents its spatial dis-
tribution. All products show median KGE’ values lower than 0.5 and
high dispersion in the Far North. These regions are classified as arid
according to the Köppen-Geiger classification (see Fig. 3), demon-
strating that the performance of the evaluated products over the arid
regions of Chile remains low. MSWEPv2.2 and both merged products
perform considerably better than the products used as covariates,
highlighting the benefit of combining data from P products and ground-
based measurements. The performance of all the products increased
over Central Chile and South, where annual P volumes are much higher
than in the Far North and Near North.

Fig. 7 shows that for both merged products, more than 80% of the
stations in the validation set yielded KGE’ values higher than 0.60. Both
merged products performed best in the Near North, Central, and
Southern Chile, with median KGE’ values of 0.84, 0.86, and 0.81, re-
spectively. However, in the Far North, MSWEPv2.2 performed the best
(0.61), followed by RF-MEP3P (0.35) and RF-MEP5P (0.28). These re-
sults in the Far North show that the inclusion of more P products does
not necessarily improve the median performance of the merged pro-
duct; however, the inclusion of the additional two products reduced the
dispersion in the KGE’ values of RF-MEP5P. Despite the poor perfor-
mance of the P products used as covariates in the Far North, RF-MEP3P

and RF-MEP5P were able to extract useful information from these pro-
ducts to obtain a better performance. RF-MEP5P and RF-MEP3P per-
formed better in the high elevations of the Far North region compared
to the low elevations (see Figs. 3 and 7). These high elevations

correspond to the alpine tundra climate (ET), while the cold and arid
desert climate (BWk) dominates the lower areas of the Far North, where
the P datasets presented their worst performance. This suggests that
arid climates present a great challenge for existing P products.

4.3. Assessment of precipitation intensities

Fig. 8 plots the median values of the four categorical indices for the
five classes of daily P intensity described in Table 3. All datasets, with
the exception of RF-MEP3P and RF-MEP5P, obtained POD values lower
than 0.45 for P events higher than 1 mm, while the no-rain events were
well captured by all products. Similar results were observed for the FAR
and CSI, where RF-MEP3P and RF-MEP5P presented the best perfor-
mance of the evaluated products. FAR values were consistently the
worst for the light rain intensities ([1, 5) mm d−1), highlighting that the
products remain unable to adequately capture low P values. The CSI
presents the best performance for no-rain events followed by extreme
events (≥ 40 mm d−1), as a result of the decreased FAR compared to
the other P intensities.

Finally, the median values of the fbias showed that all P products
overestimated the number of light rain ([1, 5) mm d−1) and moderate
rain events ([5, 20) mm d−1). RF-MEP3P and RF-MEP5P performed the
best in terms of fbias for the heavy rain events ([20, 40) mm d−1), while
MSWEPv2.2 performed the best for the other P intensities, followed by
the merged products. All products underestimated the occurrence of
violent rain events (≥ 40 mm d−1).

4.4. Impact of gauge density and spatial resolution of covariates

Fig. 9 shows the performance of RF-MEP5P with a varying number of
stations used in the training set. The red line in the bottom left panel of
Fig. 9 represents the median KGE’ of the best-performing product used
in the computation of RF-MEP5P (see Fig. 4), illustrating the
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Fig. 4. KGE’ values for all P products using the ground-based validation set. From left to right and top to bottom: 3-day, monthly, annual, DJF, MAM, JJA, and SON.
The solid line represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which
is no more than 1.5 times the interquartile range from the box. The blue line indicates the optimal value for the KGE’.
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improvement obtained even when only 10% (37) of stations are used in
the training set. Also, Fig. 9 indicates that the inclusion of more stations
improves the product performance in comparison to the best product
available, which is consistent with other studies (Borga and Vizzaccaro,
1997; Chen et al., 2008; Goudenhoofdt and Delobbe, 2009). This sug-
gests that the application of this method in other data-scarce regions is
expected to improve the representation of P. The results of the CSI and
fbias show that the RF-MEP5P increases the detection of different P
intensities in comparison to the single P products (see Fig. 8). Similar to
the KGE’, there is a visible improvement in the detection of these events
when more stations are used.

Fig. 10 plots the KGE’ values of RF-MEP5P at all evaluated timescales
for varying spatial resolutions of the covariates. It shows that resam-
pling all the P products into a unified grid has a negligible impact on the
performance of the final merged product.

The SRTM-v4 contains offsets in vegetated areas because the SRTM
radar signal scatters from the woody structure within the canopy
(Gallant et al., 2012). Although we did not remove the impacts of ve-
getation height to calculate a bare-earth DEM (~40 m over the South
and Far South forests of Chile), we do not expect substantial changes
because these elevation offsets become negligible at such a spatial re-
solution (0.05°).

4.5. Comparison between RF-MEP and different merging methods

Fig. 11 shows the performance of RF-MEP5P compared to KED, OOR
arithmetic mean, and MSWEPv2.2. The performance of ERA-Interim is
also plotted because it is the best-performing P product used in the
merging procedure. RF-MEP5P showed the best performance at the 3-
day temporal scale, followed by KED and MSWEPv2.2. The OOR ar-
ithmetic mean product shows the lowest KGE’, γ, and r; however, it is
able to accurately represent the total P volume at the 3-day scale. This
product also shows the lowest performance when evaluated at different
P intensities. Shen et al. (2014) concluded that the categorical perfor-
mance of the OOR arithmetic mean product improved compared to the
selected P products; however, they evaluated the categorical perfor-
mance only for rain and no-rain events. The distribution of daily P is
heavily skewed; and therefore, the performance of the product over
different intensities can be masked by the no-rain events. As observed in
the lower panel of Fig. 11, averaging different P products reduces the
performance at all P intensities because all these products have errors in
detection (i.e., the products may estimate different P intensities for a
particular day). This analysis suggests that P products should not be
averaged to attempt to improve daily P patterns.

KED performed similarly to RF-MEP5P; however, RF-MEP5P showed
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Fig. 5. The r (a), β (b), and γ (c) components of the KGE’ for all P products using the ground-based validation dataset. The solid line represents the median value, the
edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile
range from the box. The blue line indicates the optimal value for each component.
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less dispersion in the KGE’ and its components, suggesting that RF-MEP
is a robust method to merge P products and ground-based data. Ly et al.
(2011) obtained poor results when using KED with few sample points,
which indicates that the performance of KED is highly influenced by the
number of ground stations. Conversely, RF-MEP performed relatively
well when the training set was dramatically reduced. The performance
of RF-MEP5P is also the highest at monthly, annual and seasonal tem-
poral scales, except in DJF where MSWEPv2.2 performs the best (see

Fig. S1 in the supplementary material).

5. Discussion

5.1. Performance of the merged products

RF-MEP was applied at the daily temporal scale to derive two
merged products (RF-MEP5P and RF-MEP3P), which outperformed those

−1.5 −1.0 −0.5 0.0 0.5 1.0
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Fig. 6. 3-day KGE’ values for the P products at the
corresponding grid-cells of the validation set for the
four analysed macroclimate zones: Far North, Near
North, Central Chile, and South (see Fig. 3). The solid
line represents the median value, the edges of the
boxes represent the first and third quartiles, and the
whiskers extend to the most extreme data point which
is no more than 1.5 times the interquartile range from
the box. The vertical blue line indicates the optimal
value for KGE’.

Fig. 7. Spatial distribution of the 3-day KGE’ for all P products using ground-based measurements. The dotplots in the bottom of the figure show the number of
stations from the validation set (111 stations in total) within each KGE’ range.
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used in their computation at all evaluated temporal scales (see Figs. 4,
5, and Table 4). RF-MEP was able to improve the spatio-temporal re-
presentation of P (see Figs. 4–8) by combining multiple sources of in-
formation. Both merged products showed increased r, β, and γ values at
all temporal scales, which indicates that this method is able to represent
the total volume and distribution of P by providing a better re-
presentation of daily P patterns. Comparable improvements in β were
obtained by Manz et al. (2016) and Yang et al. (2017), although Ma
et al. (2018) reported a higher bias in their merged product. Also, the
reduction in the dispersion of the KGE’ and its components

demonstrates that the merged products show good performance over
most of the study area. The KGE’ has proven to be a useful performance
index because of its ability to decompose the performance into r, β, and
γ, which can be used to understand the different sources of mismatches.

The evaluated P products showed higher performances at the
monthly, seasonal and annual scales in comparison to shorter temporal
scales (Fig. 4), similar to the results reported by Jiang et al. (2012) and
Zambrano-Bigiarini et al. (2017). This indicates that despite systematic,
random, and detection errors present in P products at the daily scale,
they are still able to represent P patterns when aggregated at longer
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temporal scales. On the other hand, Maggioni and Massari (2018)
concluded that spatial sampling uncertainties tend to decrease for
higher temporal resolutions, which means that the point-to-pixel eva-
luation tends to be more reliable for increasing accumulation periods.

All products showed the lowest performance in summer (DJF),
which is consistent with the results obtained by Rabiei and Haberlandt
(2015) and Zambrano-Bigiarini et al. (2017). This could be because: i)
small-scale convective precipitation events dominate in summer in the

Far North region (Prein and Gobiet, 2017); ii) in warm months, the
evaporation of hydrometeors before they reach the ground leads to
overestimation and false alarms (Maggioni and Massari, 2018); and iii)
passive microwave radiometers overestimate and underestimate P
during summer and winter, respectively (Tang et al., 2014).

Both merged products presented their lowest performance over the
arid Far North region as a consequence of the low performance of all P
products used as covariates (see Fig. 7). This is in agreement with Manz

RF-MEP5P [0.25°]
RF-MEP5P [0.10°]
RF-MEP5P [0.05°]

Fig. 10. KGE’ values of the RF-MEP5P computed at three spatial resolutions (0.25°, 0.10°, and 0.05°). The solid line represents the median value, the edges of the
boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the
box. The blue line shows the optimal value for the KGE’.
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et al. (2016), where the merged products presented high uncertainty
and low performances predominantly over regions with low and in-
termittent P regimes. The mismatches of the P products are more evi-
dent in arid and semi-arid climates because over low P regimes, any
overestimation or underestimation will have a greater impact on the
performance evaluation. Despite this, the RF-MEP5P and RF-MEP3P

products were able to adequately represent the P patterns of the higher
elevations of the Far North, showing that RF-MEP is able to improve the
spatio-temporal estimation of P through the inclusion of com-
plementary information, even in regions where the selected products
exhibit low performance.

Because both merged products were computed using daily gauge
data from the national water agencies they represent daily accumula-
tions from 11:00–10:59 UTC, whereas all other selected P products
represent daily P accumulations from 0:00 to 23:59 UTC (~11 h dif-
ference; for discussion, see Beck et al., 2019). This time difference must
be considered for the evaluation of the P products at the daily temporal
scale. Among the evaluated P products, only MSWEPv2.2 incorporates
daily gauge data and applies corrections to account for the reporting
times of the rain gauges. Fig. 12 shows the evaluation of the P products
for 1-day and 3-day periods. Both merged products performed similarly
well with a median KGE’ of 0.83 because they use the Chilean rain
gauges; however, the five P products used in their computation per-
formed slightly worse in the 1-day evaluation due to the 11 h difference
in the reporting times. The 3-day temporal scale was considered suffi-
cient to render the difference in reporting times negligible.

5.2. Correction of mismatches of the original P products

Our results showed that the blending of multiple P estimates, to-
pography-related information, and ground-based measurements, can
improve the spatio-temporal characterisation of P, which is consistent
with the results obtained by Verdin et al. (2016) and Manz et al. (2016).
The r, β, and γ components improved at all temporal scales. The γ of
both merged products showed a systematic underestimation (γ ~ 0.9,
see Fig. 5) at all temporal scales as a consequence of averaging the
predictions of the different trees from the RF model. Despite this, Fig. 5c
demonstrates that the γ values of the merged products are higher than
those shown by the products used as covariates.

Recently, Alvarez-Garreton et al. (2018) derived runoff coefficients
larger than 1, mainly over Central Chile and in the Far-South, with
increasing coefficient values towards the Andes. This finding is con-
sistent with those of Beck et al. (2017a), indicating that more water is
leaving the catchments than the total amount entering as P. This sug-
gests that the P products systematically underestimate P at high ele-
vations throughout Chile, which may be due to the inability of satellite-
based products to accurately estimate P over snow and ice-covered
surfaces (Beck et al., 2017a). Also, during winter, most Chilean rain
gauges located at high elevations are not able to correctly incorporate
snow into the P measurement, leading to an underestimation of P.
Therefore, even considering the good performance of the two merged
products at different temporal scales, it is likely that the real amount of
P is underestimated at high elevations due to the absence of ground-
based information. To reduce the possible underestimation of P over
high elevation and snow-driven catchments, the incorporation of rain
gauges able to measure both liquid and solid precipitation at high
elevations is recommended, along with the use of P products that ac-
count for solid P (such as MSWEPv2.2 and reanalysis products).

The inclusion of different P products improved the detection of
different P intensities at the daily scale, as observed in the improved
categorical performance of the merged products compared to that of the
covariates (see Fig. 8 and Table 5). The categorical performance of both
merged products showed an improved detection of the selected P in-
tensities and a reduction in the amount of days that are incorrectly
classified. These results, in combination with the improved values of r
and β, show that RF-MEP is capable of correcting P events at the daily

Table 4
Median values of the continuous indices used in the evaluation of P products.

P product KGE’ r β γ

CMORPHv1 0.43 0.67 1.03 0.82
PERSIANN-CDR 0.23 0.62 1.34 0.50
TRMM 3B42v7 0.47 0.69 1.05 0.88
CHIRPSv2 0.48 0.62 1.04 0.71
ERA-Interim 0.58 0.82 1.31 0.84
MSWEPv2.2 0.74 0.89 1.00 0.97
RF-MEP3P 0.83 0.94 1.03 0.93
RF-MEP5P 0.83 0.94 1.04 0.94
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Fig. 12. KGE’ values calculated using the ground-based validation dataset at the 1-day time scale (left) and the 3-day time scale (right). The solid line represents the
median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times
the interquartile range from the box. The vertical blue line indicates the optimal value for KGE’.
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scale, assigning more accurate P amounts to each day, and preserving
the total volume of P at larger scales; consequently improving the
spatial representation of P patterns.

The analysis of the P products at different intensities is affected by
the difference in reporting times between the products and the ground-
based measurements (see Fig. 12). All the products used as covariates,
with the exception of CHIRPSv2 and TRMM 3B42v7, presented statis-
tically significant differences at the 95% confidence interval between
the daily and 3-day values. This issue is unfortunately ignored in the
majority of P evaluation studies and constitutes a major limitation of
most evaluations carried out in time zones far from 0:00 UTC.

Fig. 13 shows the relative difference of mean annual P (2000–2016)
between each product and the values observed at the rain gauges of the
validation set. These values are in agreement with the spatial perfor-
mance assessment (Fig. 7), where the P products presented the lowest
performance in the Far North. The blue colours indicate overestimation
of the products, while the red colours indicate underestimation. P is
overestimated in the Far North by CMORPHv1, PERSIANN-CDR, TRMM
3B42v7, CHIRPSv2, and ERA-Interim; and as a consequence, both
merged products overestimate P over this region (except for the high
elevated areas). These results are in agreement with Dinku et al. (2011)
and Zambrano-Bigiarini et al. (2017), where the products

overestimated P over the arid regions of Africa and Chile, respectively.
MSWEPv2.2 and the merged products were able to capture the P vo-
lume over the mountainous area in the Far North, despite the chal-
lenges presented by climate variability caused by extreme topography
and by a lack of ground-based measurements (Maggioni and Massari,
2018).

The merged products show lower relative difference, i.e. good
performance, for almost all stations in the Near South, Central Chile,
South, and elevated areas in the Far North. The improved performance
of the merged products can be observed in the lower panel of Fig. 13,
which highlights that the majority of the P products presented relative
differences between −0.2 and 0.2 compared to rain gauges. This sug-
gests that RF-MEP is capable of representing the mean annual P patterns
when applied at daily temporal scale. The overestimation over the Far
North is expected because all products used to derive both merged
products tend to overestimate P over this region.

5.3. Impact of network density, spatial resolution, and limitations

A high number of rain gauge stations in the training set leads to
higher performance and higher detection of P intensities, as observed in
Fig. 9. When we reduced the training sample to 10% (37) of the total

Table 5
Median values of POD, FAR, fbias, and CSI for the different P intensities (see Table 3) for ERA-Interim, MSWEPv2.2, and RF-MEP5P.

Intensity ERA-Interim MSWEPv2.2 RF-MEP5P

(mm) POD FAR fbias CSI POD FAR fbias CSI POD FAR fbias CSI

[0, 1) 0.92 0.02 0.95 0.91 0.97 0.02 1.00 0.95 0.96 0.02 0.98 0.95
[1, 5) 0.26 0.88 2.40 0.08 0.30 0.76 1.22 0.15 0.48 0.64 1.31 0.26
[5, 20) 0.37 0.75 1.38 0.17 0.40 0.60 1.00 0.25 0.69 0.38 1.10 0.48
[20, 40) 0.24 0.77 1.00 0.14 0.29 0.68 0.91 0.18 0.58 0.42 1.00 0.40
≥ 40 0.23 0.70 0.83 0.16 0.35 0.61 1.00 0.22 0.59 0.20 0.77 0.53

Fig. 13. Mean annual relative difference for the P products for 2000–2016. The points with negative values (red colours) are underestimated by the respective
product, while the points with positive values (blue colours) are overestimated.
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available stations, RF-MEP5P was still able to outperform the products
used as covariates, showing the effectiveness of the proposed RF-MEP
method.

The products RF-MEP5P and RF-MEP3P performed similarly, as ob-
served in Figs. 4–8. The median values and the interquantile ranges of
the KGE’, r, β, and γ are similar for both merged products, except over
the Far North, where RF-MEP5P shows less dispersion in the KGE’ and
its components than RF-MEP3P, despite the slight decrease in the
median performance. This indicates that the inclusion of more P pro-
ducts could reduce the dispersion in areas where the selected products
show low performance. The similar performance of RF-MEP5P and RF-
MEP3P indicates that the method is able to extract useful information
from the P products. Similar results were obtained when RF-MEP3P used
ERA-Interim, CMORPHv1, and TRMM 3B42v7 instead of ERA-Interim,
CHIRPSv2, and PERSIANN-CDR (please see Figs. S2 and S3 from the
supplementary material), demonstrating that RF-MEP is a robust mer-
ging method. Although the P products must be resampled to the same
spatial resolution to generate the merged product, the effect of in-
cluding P products generated at different spatial resolutions is negli-
gible (see Fig. 10).

RF-MEP5P includes CMORPHv1 and TRMM 3B42v7, which reduces
the potential temporal coverage by 15 years (RF-MEP3P can be gener-
ated from 1983 onwards, while RF-MEP5P can only be generated from
1998). Therefore, based on the similar strong performances of both
merged products (see Section 5.1), we prefer RF-MEP3P for the Chilean
case study, as the benefits of including CMORPHv1 and TRMM 3B42v7
to generate RF-MEP5P are outweighed by the loss of 15 years of record.

Although RF-MEP was only applied over Chile, we are confident
that this method could be successfully applied over other areas, due to
its outstanding performance in a region with notable heterogeneity in
topography and climate, and because it was able to improve the spatio-
temporal characterisation of P even when the training set was largely
reduced. However, some limitations apply to this method: i) since
ground-based data are necessary, it would be difficult to apply the
proposed method globally and in near-real time; ii) it can be compu-
tationally intensive when applied to large areas; and iii) it has problems
predicting values that are completely out from the training range.

6. Conclusion

Satellite and reanalysis-based P estimates provide an unprecedented
opportunity for numerous hydrological, meteorological, and other en-
vironmental applications. Despite the continuous improvements of P
products, different types of mismatches still exist in most of them. Here
we present RF-MEP, a novel method capable of deriving improved P
estimates by merging information from (near-)global and publicly
available P products, rain gauge stations, and topography-related data.
Two merged products (RF-MEP3P and RF-MEP5P) obtained with the
proposed method showed improved r, β, and γ values at all temporal
scales compared to all the individual P products used as covariates.
Furthermore, both merged datasets exhibited improved POD, FAR,
fbias, and CSI for different P intensities. Finally, both merged products
performed better than the benchmark dataset MSWEPv2.2, except
during summer (DJF). The key findings of the application of this
method to the Chilean case study are as follows:

(a) RF-MEP can be applied at different temporal scales (e.g., daily,
monthly, or annually) to obtain an improved spatio-temporal re-
presentation of P patterns.

(b) The different P products used in this study performed better at
longer timescales than at short timescales, while both merged
products performed well at all timescales.

(c) RF-MEP3P and RF-MEP5P outperformed all the evaluated P products

at the 3-day, monthly, annual, MAM, JJA, and SON temporal scales.
However, the benchmark MSWEPv2.2 outperformed the merged
products during summer (DJF).

(d) RF-MEP3P (which uses CHIRPSv2, PERSIANN-CDR, and ERA-
Interim) showed a similar performance to RF-MEP5P (which also
included CMORPHv1 and TRMM 3B42v7). Therefore, including
CMORPHv1 and TRMM 3B42v7 as covariates in the merging pro-
cedure only led to a minor increase in the overall performance of
the final merged product. Consequently, for the Chilean case study,
it is preferable to use RF-MEP3P and gain 15 years of data (1983 as
the starting date instead of 1998).

(e) The performance of RF-MEP increases when more rain gauge sta-
tions are used to train the model; however, it is still able to improve
P characteristics even with relatively few stations in the training
set.

(f) RF-MEP showed better performance than the results obtained using
Kriging with external drift and one-outlier-removed arithmetic
mean.

(g) The difference in reporting times between the P products and the
ground-based measurements must be taken into account when as-
sessing the performance of P products at the daily temporal scale so
that their performance is not underestimated. This issue constitutes
a major limitation of most P evaluation studies carried out far from
0:00 UTC.

(h) The KGE’ proved to be a versatile performance index because of its
ability to decompose the performance of the P products into r, β,
and γ. Therefore, the KGE’ helps us understand the sources of
mismatches between the P products and ground-based observa-
tions. In addition, the use of categorical indices provides crucial
information about the performance of these P datasets for capturing
different P intensities.

RF-MEP was developed to improve the characterisation of the
spatio-temporal variability of P by merging multiple P products, topo-
graphy-related datasets, and ground-based information. The P products
used in this study are publicly available and have a (quasi-)global
spatial coverage. This method was validated over Chile, a country
which exhibits notable heterogeneity in topography, climate, and land
cover. For this reason, we are confident that RF-MEP can be successfully
applied in different regions and catchments worldwide, and could also
be used to improve other climatological variables when ground-based
data are available.
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Appendix A. Literature review table

Table A1
Main steps in the methodology of different studies that have applied merging algorithms to improve the spatio-temporal characterisation of P at different temporal
scales.

Study Merging method(s) Spatio-temporal resolu-
tion of the merged pro-
duct(s)

Description of the approach

Li and Shao (2010) Nonparametric kernel smoothing Daily (0.25°) 1. Calculation of residual values; 2. Background error estimation using a kernel
smoothing method (double smoothing); 3. Removal of the estimated error from the
background field

Rozante et al. (2010) Barnes objective analysis method Daily (0.25°) 1. Only the rain gauge observations are considered over the 5 by 5 square of cells
centred around every grid-cell with a rain gauge station; 2. Interpolation using the
Barnes objective analysis method for the remaining grid-cells

Xie and Xiong (2011) Optimal Interpolation Daily (0.25°) 1. Bias correction through a probability density function matching of satellite and rain
gauge data; 2. Optimal interpolation

Gebregiorgis and Hossain
(2011)

Linear weights based on hydro-
logic model predictability

Daily (0.125°) 1. Calculation of the mean squared error (MSE) of soil moisture and runoff using each
P product to force a distributed hydrological model; 2. Inversion of MSEs to be used as
weights; 3. Merging of the P products using linear weighting

Woldemeskel et al. (2013) Linearised weighting procedure Monthly (0.05) 1. P interpolation using thin plate smoothing splines (TPSS) with standardised rain
gauge data followed by a back-transformation; 2. Merging using a linearised
weighting procedure

Shen et al. (2014) Arithmetic mean and inverse-
error-square weighting methods

Daily (0.25°) Three methods: M1. Arithmetic mean; M2. Inverse-error-square weighting; M3. One-
outlier removed arithmetic mean (i.e., one product removed)

Nie et al. (2015) Optimal interpolation Daily (0.25°) 1. Bias correction through a cumulative distribution function matching procedure; 2.
Quantification of background and observation errors; 3. Application of the optimal
interpolation technique

Fu et al. (2016) Bayesian model averaging Annual mean (0.1°) 1. Non-linear spatial interpolation of P products; 2. Merging using the Bayesian model
averaging technique

Manz et al. (2016) Linear modelling, residual IDW,
and Kriging-based methods

Monthly mean (5 km ~
0.05°)

Five methods: M1. Linear Modeling; M2. Residual IDW; M3. Ordinary Kriging (only
gauge-based); M4. Residual ordinary Kriging; M5. Kriging with external drift

Verdin et al. (2016) Ordinary Kriging and k-nearest
neighbour local polynomials

Monthly (0.05°) Two methods: M1. Ordinary Kriging; M2. A local regression is fitted considering data
from within a small neighbourhood, and the weighted least squares are used to fit the
local polynomials

Shi et al. (2017) Merging weights based on the ef-
fective influence radius of rain
gauges

Hourly (1 km) 1. Selection of the P product; 2. Downscaling of the P product using a DEM; 3.
Determination of weighted differences between the downscaled product and rain
gauge data; 4. Merging the downscaled product and the weighted differences
considering the number of gauges in the effective influence radius

Yang et al. (2017) Inverse-root-mean-square-error
weighting

Daily (0.04°) 1. Bias correction of the P product using a quantile mapping technique and a Gaussian
weighting interpolation scheme; 2. Interpolation of rain gauge data using a Gaussian
weighting function; 3. Data merging using inverse-mean-square-error weighting

Ma et al. (2018) Bayesian Model Averaging Daily (0.25°) 1. A BMA scheme is used to adjust the PDF of the satellite estimates with the
expectation-maximisation method used for each member for each day at the gauge
locations; 2. Interpolation using OK

Beck et al. (2019) Weighted averaging with CDF
matching

3-hourly (0.10°) 1. Gauge data quality control; 2. Inferring gauge reporting times; 3. Rainfall
estimation using thermal infrared imagery; 4. Gauge-based assessment of satellite and
reanalysis P datasets; 5. Global maps of weights and wet-day biases; 6. Determination
of long-term mean P; 7. P frequency correction and dataset harmonisation; 8.
Reference P distributions; 9. Merging of satellite and reanalysis P datasets; 10. Gauge
correction scheme

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2019.111606. These data include the Google maps of the
most important areas described in this article.
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