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A B S T R A C T   

It is currently unknown in which city environments, automated vehicles could be deployed at reasonable speeds, 
given safety concerns. We analytically and numerically assess the impact of automation for optimal vehicle size, 
service frequency, fare, subsidy and degree of economies of scale, by developing a model that is applied for 
electric vehicles, with data from Chile and Germany, taken as illustrative examples of developed and developing 
countries. Automation scenarios include cases with partial driving cost savings and reduced running speed for 
automated vehicles. We find that a potential reduction in vehicle operating cost due to automation benefits 
operators, through a reduction of operator costs, and also benefits public transport users, through a reduction on 
waiting times and on the optimal fare per trip. The optimal subsidy per trip is also reduced. The benefits of 
vehicle automation are greater in countries where drivers’ salaries are larger.   

1. Introduction 

Almost 40 years ago, J.O. Jansson showed that crew costs were by far 
the largest cost item of local bus companies in Sweden, accounting for 
42% of the total operator cost, followed by bus capital costs, which 
represented 21% of the total costs (Jansson, 1980). The large role of 
driver wages within the cost structure of urban bus transport does not 
seem to have changed much over the years. Depending on bus type, 
driver cost accounts for between 40 and 70 per cent of total bus operator 
cost in Singapore (Ongel et al., 2019) and Australia (own calculation 
based on ATC, 2006). In Japan, driver salaries account for 53% and 70% 
of total operating costs of buses and taxis, respectively (Abe, 2019). In 
developing countries, where wages are relatively lower, driver cost is 
less significant but still sizeable, e.g., around 1/3 of total bus operator 
cost in Santiago de Chile (Librium, 2013). Therefore, it is expected that 
vehicle automation, where deployment is possible, could have profound 
impacts on the public transport industry and service in the next decades. 

In this context, automated vehicles have the potential to eliminate 
one of the main elements that cause economies of scale in public 
transport: drivers’ wages. The cost advantage of placing many travellers 
in large vehicles, such as buses or trams, will be reduced; thus, shared 

mobility services with smaller vehicles are expected to play a larger role 
in a future of highly or fully automated vehicles. Some empirical esti-
mations of the dramatic effects of automation on reducing the costs of 
motorised shared mobility have been made. For example, in Zurich 
automation is estimated to reduce the cost of taxi trips by 85% (B€osch 
et al., 2018) and in Singapore, total operator costs of an electric 6-m long 
shuttle bus are reduced by 70% if automated, as compared to its 
human-driven equivalent (Ongel et al., 2019). More conservative esti-
mations are provided by Wadud (2017) for the United Kingdom, who, 
after assuming that with automation a 40% of current driver costs will 
still be needed, estimates cost savings of 30% for the taxi industry and 
between 15% and 23% for the truck industry.1 

Given the large initial cost of the technology to provide full auto-
mation capabilities to vehicles, automation is expected to be firstly 
adopted in ride-hailing, shared mobility and commercial services, rather 
than for individual ownership and use (Wadud, 2017; Sterling, 2018). 
This issue has several key implications for the future of mobility, as 
current research shows that the energy consumption and environmental 
effects of the future deployment of automated vehicles crucially depend 
on whether the use of automated vehicles will be individual or mostly 
shared (Wadud et al., 2016). 

* Corresponding author. Transport Engineering Division, Civil Engineering Department, Universidad de Chile, Chile. 
E-mail addresses: alejandro.tirachini@ing.uchile.cl (A. Tirachini), c.antoniou@tum.de (C. Antoniou).   

1 Keeping a cost equivalent to the 40% of manpower is justified as to support loading and unloading of goods at origins and destinations in the case of trucks, and 
for additional back-office infrastructure and equipment to enhance security in the case of taxis (Wadud, 2017). 
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Pilot programmes with small scale public transport services have 
been operating in the past 3–4 years in the form of automated shuttle 
buses in several countries, such as Switzerland, France, The Netherlands, 
Sweden and Finland (for a review, see Ainsalu et al., 2018). The first full 
size 12-m automated buses are scheduled to start trials in 2019 in 
Singapore2 and 2020 in Sweden3 and Scotland,4 in all cases being 
electric vehicles. Parallel to the progress of pilots with automated ve-
hicles for shared use, there is a current debate among experts and re-
searchers on whether fully automated vehicles will ever operate at 
acceptable levels in urban environments (Kyriakidis et al., 2019). 
Presently, there is a larger consensus that highly automated vehicles will 
be able to operate under certain conditions, such as segregated roads 
and low-speed environments (Kyriakidis et al., 2019). 

Beyond operating cost savings, automation is expected to impact 
public transport in various ways. Several automation technologies will 
be introduced in public transport services, such as collision avoidance, 
lane-keeping, bus platooning, bus precision docking (i.e., having a 
narrow and stable gap between the vehicle and the platform at bus 
stops), cooperative adaptive cruise control (CACC) and automated 
emergency braking (Lazarus et al., 2018; Lutin, 2018). The expected 
benefits of such innovations include a reduction of collisions, injuries 
and liability costs, improved services for people with reduced mobility 
and an increase in transport capacity, especially in dedicated infra-
structure, such as bus lanes and segregated corridors (Lazarus et al., 
2018). Lutin (2018) predicts a great reduction in cost and improvement 
in service in the US paratransit industry, which caters for persons with 
reduced mobility, due to automation, even though a fully automated 
service for mobility-impaired passengers poses further challenges as, e. 
g., robotic assistance will be required for boarding and alighting. 

Three works closely related to the current paper are Abe (2019), 
Zhang et al. (2019) and Fielbaum (2019). In Abe (2019), the total cost 
savings due to automation are estimated for the taxi, bus and rail in-
dustry in Japan, including operator cost and travel time for users. The 
author assumes a waiting time, which is exogenously set and is used for 
both human-driven and automated vehicles; therefore, the effect of 
automation on optimal supply levels for a public transport service (e.g., 
service frequency) is not considered. On the other hand, Zhang et al. 
(2019) optimise a fleet of fully-automated and semi-automated buses on 
a hub-and-branch network. By semi-automated buses, the authors 
consider vehicles forming connected platoons in which only the leading 
bus has a driver. Bus frequency and size are optimised to minimise total 
operator plus user cost. Results show that automated services have a 
larger optimal bus frequency and a smaller vehicle size if the cost savings 
due to automation compensate for any reduction in speed from auto-
mated vehicles. Cost savings of semi-automated vehicles are less 
prominent than those of fully automated vehicles. Zhang et al. (2019) 
assume that the linear relationship between bus size and operator cost 
found by Jansson (1980) still holds with automated vehicles and their 
numerical application uses data from diesel buses from the previous 
decade (2000s) in Australia. Finally, Fielbaum (2019) optimise a 
network composed of a trunk system and feeder lines, in which different 
configurations of truck systems are compared, following Fielbaum et al. 
(2016). The author adapts the cost data of automated vehicles estimated 
in B€osch et al. (2018) to the case of Santiago and finds that automated 
vehicles provide more “direct” lines, with fewer transfers than 
human-driven public transport, due to the saving in operator costs. In 
Fielbaum (2019), only the case of full driving cost saving due to auto-
mation and the same running time of automated and human-driven 

vehicles is considered. 
We see that the current understanding of the economics of auto-

mated public transport is limited in a number of ways. None of the 
previous authors analyses the effects of vehicle automation on optimal 
pricing and subsidy decisions of public transport provision. In this paper, 
the effect of automation on public mobility services is addressed with a 
supply optimisation model that takes into account both user and oper-
ator costs (Mohring, 1972). Thus, we extend earlier cost models for 
automated vehicles that focus on operator costs only (e.g., Stephens 
et al., 2016; B€osch et al., 2018; Ongel et al., 2019), with the inclusion of 
users’ costs in the form of waiting and in-vehicle times. We go beyond 
the works of Fielbaum (2019) and Zhang et al. (2019) by analysing the 
effects of vehicle automation, not only on optimal vehicle size and ser-
vice frequency but also on optimal fare and subsidy. The degree of scale 
economies with and without automation is also calculated. Unlike 
Zhang et al. (2019), we use updated data from the operation of electric 
vehicles, given that all current public transport pilots of automated ve-
hicles utilise electric vehicles and this is the technology expected to 
prevail (over internal combustion motor vehicles) at least in the near 
future. 

Unlike Fielbaum (2019) and Zhang et al. (2019), we make our own 
estimation of capital and operating costs of automated and 
human-driven vehicles from scratch (see Appendix), which proves to be 
relevant as we are able to numerically assess if assumptions made by 
previous authors, concerning the effect of automation on the marginal 
cost of increasing vehicle size, hold. We analyse alternative scenarios of 
deployment of automated vehicles, considering the cases in which not 
all driving costs are saved due to automation, and that running speed of 
automated vehicles might be lower than that of human-driven vehicles, 
due to safety concerns in cities (Zhang et al., 2019 also analyse this 
case). Furthermore, this is the first article to compare the effect of 
automation on the optimal design of a public transport service in 
developed and developing countries – for which Germany and Chile are 
chosen for illustration – specifically concerning differences in drivers’ 
salaries and values of time. We are able to show that, given a reasonable 
set of assumptions on operating and capital costs of human-driven and 
automated electric vehicles, Jansson’s linear relationship between 
vehicle capacity and cost (Jansson, 1980) holds with human-driven and 
automated electric vehicles, for a range of vehicle types from cars to 
articulated buses. 

We focus on fixed-route services. The service frequency (i.e., the 
inverse of the headway between vehicles) and the vehicle size are 
optimised to minimise total costs. Therefore, the choice of vehicle types, 
such that standard car, van, minibus and standard bus, is endogenous in 
the model, which is solved for increasing levels of demand. We also 
determine the effects of automation on the optimal (first best) fare, 
subsidy and on the degree of economies of scale of public transport 
provision. The increased capital cost of vehicles due to automation will 
be accounted for together with the reduction in operating cost due to 
automation. Sensitivity analyses on key parameters are performed to 
understand the main determinants of optimal shared or public transport 
supply levels. 

In terms of results, the contributions of this paper are the following. 
It is shown that automation will increase the demand threshold that 
justifies the adoption of bigger vehicles, and that the size of the effect of 
automation on reducing vehicle size and increasing frequency depends 
on the country where automation is applied and on the final conditions 
regarding cost savings and running speed with automated vehicles. 
Second, combinations of running speed and cost saving with automa-
tion, that determine if there is an effect of automation on optimal fre-
quency and vehicle size, are numerically established, which serve as a 
frontier for observable automation effects on supply outputs. Third, the 
relative cost saving due to automation is larger in Germany than in 
Chile, but in both countries, large savings are expected if full automation 
eventually materialises. Scenarios in which not all driving cost are saved 
and running speeds of automated vehicles are low can significantly 

2 https://www.bloomberg.com/news/articles/2019-03-05/volvo-to-start-tria 
ling-autonomous-full-sized-buses-in-singapore, accessed March 08th, 2019  

3 https://www.electrive.com/2019/02/21/scania-to-test-autonomous-e-bus 
es-in-sweden/, accessed March 08th, 2019  

4 https://www.sustainable-bus.com/news/autonomous-bus-fleet-pilot-in-sco 
tland-from-2020-by-stagecoach-and-adl/, accessed March 08th, 2019 
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reduce expected cost gains. Fourth, we show analytically and numeri-
cally that the reduction in vehicle operating cost due to automation 
benefits two parties: (i) operators, through a reduction of operator costs 
and (ii) public transport users, through a reduction on waiting times and 
on the fare to be paid for the service. Moreover, there is a reduction in 
the optimal subsidy per trip to be allocated to the public transport sys-
tem. The size of these savings in some cases is straightforwardly esti-
mated and in others depends on the parameters of the problem. 
Automation reduces the degree of economies of scale in public transport. 
Numerically, we find that for automation to have a noticeable effect on 
reducing optimal fares, a fraction larger than 50% of the current driving 
cost must be saved. 

The rest of the paper is organised as follows. Section 2 summarises 
current research on cost effects of vehicle automation and the use of 
electric vehicles for public transport. In Section 3, the supply optimi-
sation model is presented, together with the derivation of optimal price 
and subsidy rules, which are used as a base to theoretically analyse the 
effect of automation on optimal supply and pricing outputs. Section 4 
presents the estimation of relevant cost and operation parameters for the 
cities of Munich in Germany and Santiago in Chile, and the effect of 
automation on operator cost parameters is assessed. The full optimisa-
tion model is solved and applied in Section 5. Section 6 concludes. 

2. Electric vehicles and automation in public transport 

2.1. Cost-relevant effects of automation in public transport 

The estimation of the effects on costs, travel time, traffic safety and 
energy consumption introduced by the adoption of automated vehicles 
is an area of research that has received a steep increase of attention in 
the past few years. As identified by Wadud et al. (2016), there are 
several forms in which vehicle automation will either reduce or increase 
total energy consumption, including the introduction of eco-driving and 
eco-routing, platooning at motorways, an expected increase in the 
number of vehicle-kilometres travelled (VKT), vehicle rightsizing and 
lightweighting and changes in speed limits. In this paper, we focus on 
the mechanisms that introduce cost changes that need to be assumed by 
the fleet operators in an urban environment. These are (i) the increase in 
vehicle cost due to the introduction of automation equipment, and (ii) 
savings in operating costs due to not needing drivers to operate vehicles. 
In a sensitivity analysis performed at the end of Section 5, the case of 
reduced running cost due to a more balanced circulation of automated 
vehicles will also be introduced. 

As noted by Abe (2019), remote monitoring systems of fleets of 
automated vehicles could be made by humans or by computers; in the 
former case, even full vehicle automation does not mean a complete 
elimination of human-related costs for operation, as trained personnel 
may be required for monitoring and even taking control of the vehicle in 
case of an emergency. Moreover, additional hardware and software that 
vehicles need to have fully automated capabilities include high accuracy 
automatic location systems, video cameras, ultrasonic sensors, 
high-resolution maps, central processing units, devices to communicate 
with other vehicles (vehicle-to-vehicle V2V communication) and with 
the infrastructure (vehicle-to-infrastructure V2I communication) and 
odometry sensors (BCG, 2015; Wadud, 2017; Ainsalu et al., 2018). In the 
case of shared shuttles and buses, screens for human-machine interac-
tion (HMI) with passengers (indoor screens) and pedestrians (outdoor 
screens) can also be included (Ongel et al., 2019), together with an 
increased need of cleaning (B€osch et al., 2018), if some passengers 
misbehave due to not having a driver in control. 

Currently, there are a few estimations of the additional capital costs 
of vehicles due to full automation capabilities, either for cars only (IHS, 
2014; BCG, 2015; Stephens et al., 2016; Bansal and Kockelman, 2017), 
for small buses (Ongel et al., 2019) or for different types and sizes of 
vehicles, including commercial services and private use (Wadud, 2017; 
B€osch et al., 2018). As the technology matures, assembly costs go down 

and the scale of production increases, it is estimated that prices for 
automation capabilities will consistently decrease over the years, at an 
estimated annual rate with a lower bound around 5% and an upper 
bound around 10% (BCG, 2015; Bansal and Kockelman, 2017). This 
effect explains the trend in existing cost premiums estimated in the 
literature to have full automation capabilities, as summarised in Fig. 1. 

Regarding larger vehicles, such as trucks and buses, there are very 
few estimations in the literature, based on assumptions extrapolated 
from the car cost estimations. For example, given the larger size of 
trucks, Wadud (2017) estimates the extra cost of automated trucks to lie 
between 13,700 and 21,840 USD by 2020. As percentage of the purchase 
cost, Wadud (2017) estimates, by 2020, the extra cost of automated 
trucks to be between 37% for single-unit trucks and 24% for large 
trailers in his baseline scenario, being 47% and 32% the price marks ups 
in a “pessimistic” scenario of increased automation cost, respectively. 
On average, Wadud (2017) estimates that automation produces a pur-
chase price increase of 57% in cars and 29% in trucks. 

Regarding public transport, on their cost estimations for different 
automated services, B€osch et al. (2018) and Abe (2019) assume that the 
extra cost due to automation is not significant as compared to the pur-
chase price of a bus; consequently, a zero cost increase is assumed for 
buses. Fielbaum (2019), by following B€osch et al. (2018), makes the 
same assumption. The only current estimation for a price mark up for 
automation in public transport was found in Ongel et al. (2019) who 
estimate, for a 6-m electric minibus, that the price mark up for full 
automation today is around 36%, but it is expected to fall to 7% by 2030. 

To the extra cost due to technology, Litman (2018) claims that, for 
the maintenance of the technologies and usage fees of navigation and 
security services, “hundreds of dollars of annual fees” should be added to 
the purchase cost. However, these costs are at least partially offset if 
more considerate automatic driving reduces the need for maintenance of 
common vehicle components (B€osch et al., 2018). Regarding having a 
more balanced driving style as a benefit of automation, different esti-
mations on running cost savings have been provided in the literature 
with savings in fuel cost assumed to be, e.g., 5% by Wadud (2017) and 
10% by B€osch et al. (2018). 

2.2. The use of electric vehicles for public transport 

Based on the current tendency of automated vehicles that are being 
used for public transport, for the numerical application of our model, we 
assume that automated vehicles are electric, and therefore, need to be 
compared against human-driven electric vehicles. Presently, we are 
observing a fast-paced transition towards electric buses for urban public 
transport services, with China being the leader in both production and 
use of electric buses. By the end of 2017, an estimated 385,000 electric 
buses were operating around the world, 99% of them in China, while in 
Europe the largest fleets are found in the United Kingdom, Germany and 
the Netherlands, with around 300 vehicles each (Bloomberg, 2018).5 In 
early 2019, 200 new electric buses were deployed in Santiago, Chile. 
The purchase price of electric vehicles varies amply depending on the 
size of the battery and manufacturer (Chinese vehicles are typically 
much cheaper than European ones). Grütter (2014) shows that by 2012, 
prices of electric buses were roughly double in Europe and North 
America, compared to China. Current data shows that the price differ-
ence might be even larger. Without including shipping costs, current 
price ranges for electric vehicles manufactured in China are USD 

5 Main drivers for the adoption of electric buses include high levels of local 
air pollution, savings in operational costs and maintenance and less noise, 
whilst barriers for the adoption of electric buses include high upfront costs, 
reduced flexibility (e.g., inability to operate 24 h, dependence on recharging 
infrastructure and availability), concerns about energy supply reliability, lack 
of operational experience and the certainty that the cost of technology will 
decline in the coming years (Bloomberg, 2018). 
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8000–30,000 for sedan cars, USD 60,000–70,000 for vans (6-m long), 
USD 70,000–100,000 for minibuses (8-m long), USD 120,000–250,000 
for standard rigid buses (12-m long) and USD 420,000–800,000 for ar-
ticulated buses (18-m long).6 On the other hand, a standard 12-m long 
electric bus from European manufacturers cost around USD 500,000 in 
2018 (Bloomberg, 2018). 

A large driver of the price of an electric bus is the battery cost. The 
average price of lithium-ion batteries sharply reduced from 1000 USD/ 
kWh in 2010 to 209 USD/kWh in 2017 and is expected to reach around 
100 USD/kWh by 2025 (Bloomberg, 2018). Current battery sizes in 
buses are between 70 and 350 kWh, depending on bus size (from 8 to 18 
m) and desired autonomy range. Nominal energy consumption rates are 
between 0.7 and 1.3 kWh/km for 8-m and 12-m long buses.7 This in-
formation will be used for the estimation of cost parameters, as 
explained in the Appendix. 

3. The economics of public transport: total cost minimisation 

3.1. Optimal headway and vehicle size on a single line 

We model 1 h of operation. The total cost of a public transport service 
is comprised of operator and user cost as follows: 

Ctot ¼ c Bþ Pata þ Pwtw þ Pvtv (1)  

where c is the cost per bus unit [€/veh-h], B is the number of vehicles 
[veh], ta, tw and tv are total access, waiting and in-vehicle times of users 
and Pa, Pw and Pv are the values of access, waiting and in-vehicle time 
savings. Vehicle cost c can be modelled as a linear function of vehicle 
capacity K, as estimated, e.g., for Sweden (Jansson, 1980) and Australia 
(Tirachini and Hensher, 2011): 

c¼ c0 þ c1K (2) 

Fleet size B is the total cycle time tc times the bus service frequency f 
[vex/h]. Cycle time is composed of running time R (including acceler-
ation and deceleration time at stops and intersection delays) plus pas-
senger boarding and alighting time at stops. If q is total demand [trips/ 
h] and tb is the average boarding and alighting time per passenger, then 
cycle time is: 

tc¼Rþ tb
q
f

(3)  

where q=f is the average number of passengers per vehicle. Therefore, 
the operator cost is: 

Cop¼ðc0þ c1KÞ
�

Rþ tb
q
f

�

f (4) 

If a1 is the ratio between the average waiting time and the service 
headway and a2 is the ratio of the average trip length to the total route 
length, then user cost is: 

Cu¼Pwa1
q
f
þ Pva2

�

Rþ tb
q
f

�

q (5) 

Some particular cases of bus operation and passenger behaviour can 
be analysed for their impact on the value of a1 . For the case of pas-
sengers arriving randomly at bus stops at a constant rate and equally 
spaced buses (regular headways), a1 ¼ 0:5; if poor bus headway control 
leads to bunching and buses arrive following a Poisson process, then 
a1 ¼ 1. On the other hand, if headways are large and a timetable of bus 
schedule is published, then passengers adjust their behaviour and arrive 
at bus stops a few minutes before scheduled bus arrival, therefore 
a1 < 0:5. In (5), we did not include access time costs as the distance 
between stops is not an optimisation variable in this model (bus stop 
location is assumed fixed). Finally, if θ is the ratio between the maximum 
passenger load of the route and the total passenger demand along the 
route, we can impose that vehicle capacity is directly obtained from 
service frequency as follows: 

K¼φ θ
q
f

(6) 

In (6), for the determination of vehicle size, parameter φ is intro-
duced to have spare capacity to absorb random variations on demand, e. 
g., φ ¼ 1.1 means that vehicles have a 10% extra capacity on top of the 
passenger occupancy at the point of maximum load along the route 
(Tirachini et al., 2010). All in all, total cost has the following form: 

Ctot ¼

�

c0þ c1φθ
q
f

��

Rþ tb
q
f

�

f þ Pwa1
q
f
þ Pva2

�

Rþ tb
q
f

�

q (7) 

By minimising (7) with respect to frequency f, we obtain a version of 
the well-known square root formula for optimal service frequency: 

Fig. 1. Estimations of additional vehicle cost to have full automation capabilities. Own elaboration based on sources cited.  

6 As extracted from www.alibaba.com, accessed March 8th, 2019.  
7 Own estimation based on Bloomberg (2018). 
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f *¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pwa1qþ tbq2ðc1φθ þ Pva2 Þ

c0R

s

(8)  

and optimal vehicle capacity is given by 

K*¼φ θ
q

f * (9) 

Introducing (8) into (7), we obtain the minimum level of the total 
cost as follows: 

Ctot� min¼ ½Ctot�f¼f * ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0R½Pwa1qþ tbq2ðc1φθ þ Pva2 Þ�

p

þ q½c0tbþRðc1φθþPva2 Þ� (10) 

Optimal frequency (equation (8)) follows the square root rule first 
introduced by Mohring (1972) and extended by Jansson (1980) and 
Jara-Díaz and Gschwender (2003), among others. It states that optimal 
service frequency increases as a function of demand q and of the value of 
waiting and in-vehicle times (Pw and Pv). Moreover, optimal frequency 
increases with the marginal cost of vehicle capacity (c1 from expression 
2) and decreases with the base parameter of the unit operator cost c0. 
Both c0 and c1 are to be affected by automation, hence, understanding 
their role in the optimal design of bus services is particularly relevant. 
On the one hand, reducing driving costs due to automation directly re-
duces the value of c0, consequently it increases optimal frequency. On 
the other hand, the cost of technology to have automation capabilities 
increases operator cost c, therefore it partially offsets the effect of a 
driving cost reduction through c0, but it also pushes to increase fre-
quency through c1. 

3.2. Optimal pricing and subsidy 

Optimal public transport pricing has been studied in first-best and 
second-best environments (Small and Verhoef, 2007; Tirachini and 
Hensher, 2012). The first-best public transport fare is set to maximise 
social welfare, defined as the sum of user and operator benefits, without 
any restriction. The maximisation of social welfare is consistent with the 
minimisation of operator plus users costs in a parametric demand model 
as the one presented in Section 3.1. It has been shown that the optimal 
public transport fare P* [€/pax] in a first-best environment is equal to 
the total marginal cost (including user and operator marginal costs) 
minus the average user cost (e.g., Else, 1985; Tisato, 1998): 

P*¼

�
dCtot

dq
�

Cu

q

�

f¼f *
(11) 

After introducing optimal frequency (8) into total cost (7), we derive 
the first-best rule (12) in our model as follows: 

P*¼

ffiffiffiffiffiffiffi
c0R
p

tbqð2c1φθ þ Pva2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pwa1qþ tbq2ðc1φθ þ Pva2 Þ

p þ c0tb þ c1φθR (12) 

As shown by Mohring (1972), because increasing the service fre-
quency (reducing the service headway) reduces waiting time for users 
(and to a lower extent it reduces in-vehicle time as well through a 
reduction on the time at bus stops), there are economies of scale in this 
framework, therefore it is optimal to provide a subsidy s* [€/pax] on 
first-best grounds, derived as the difference between the average oper-
ator cost and the optimal fare, 

s*¼

�
Cop

q

�

f¼f *
� P* (13)  

which, in this model, turns out to be: 

s*¼

ffiffiffiffiffiffiffiffiffi
c0R
p

Pwa1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pwa1qþ tbq2ðc1φθ þ Pva2 Þ

p (14) 

Optimal fare and subsidy are sensitive to the effect of vehicle 

automation on the operator cost structure, as equations (12) and (14) 
show the dependency of P* and s* of cost parameters c0 and c1. The size 
of these effects is analytically assessed in Section 3.3 and numerically 
assessed in Sections 4 and 5. 

3.3. The effect of vehicle automation 

In this section, we analyse the effect of introducing automated ve-
hicles in our total cost framework. We assume that automation has 
chiefly two effects for operator cost: a reduction in operating cost due to 
not having to pay (at least a fraction of) drivers and an increase in capital 
cost due to the inclusion of automation technology in vehicles. For 
automated vehicles, we assume a unit operator cost, c, as follows: 

c¼ c0þ c1K¼αc0 þ βc1K (15)  

where α ¼ c0=c0 is the relative change in the fixed or base parameter of 
the unit operator cost and β ¼ c1=c1 is the relative change in the mar-
ginal cost of providing increased vehicle capacity, per vehicle-hour. If 
the saving of driving cost is larger than the increased capital cost of 
vehicles, then 0 < α < 1. If the marginal cost of vehicle capacity in-
creases with vehicle automation, then β > 1. In spite of the estimations 
of increased capital cost due to automation capabilities (see Fig. 1), 
previous studies on automated vehicles including buses, such as B€osch 
et al. (2018) and Abe (2019), have assumed no increased cost due to bus 
automation, which in our framework is equivalent to imposing β ¼ 1. 
On the other hand, Zhang et al. (2019) assume an extra capital cost due 
to automation that increases only the fixed unit cost c0 in equation (15), 
and no effect is assumed on the marginal cost parameter c1, which again 
in our framework is equivalent to imposing β ¼ 1. Furthermore, in a 
numerical application using data from Australian diesel buses, Zhang 
et al. (2019) suppose a 50% increase in capital cost due to automation, 
regardless of vehicle size. In Section 4 we will test the plausibility of the 
assumption β ¼ 1 as done in the literature, by estimating parameters c0, 
c1, c0 and c1 for different scenarios with alternative assumptions 
regarding the effects of automation on the cost structure of public 
transport, using updated data from electric buses in Germany and Chile. 
We will show that, under our assumptions, α is clearly lower than 1 and 
that β is slightly larger than 1. Thus, assuming β ¼ 1 as a first approxi-
mation to the problem is plausible. 

Another relevant point to discuss is if automated public transport 
services will have longer or shorter travel times than conventional 
human-driven services. Even though it has been anticipated that in 
highways and environments without pedestrians and cyclists, travel 
times of automated vehicles can be reduced due to having shorter 
headways between vehicles and the possibility of circulating in pla-
toons, in cities it is unclear that these advantages can be exploited, if 
vehicles share the space with, e.g. children, pedestrians and people on 
bicycles and scooters. Maximum speed could be set low to avoid any 
major traffic safety risk from automated vehicles. In current experiences 
with automated shuttle vehicles in Switzerland, Finland and Sweden, 
maximum running speed is set between 14 and 20 km/h. In Stockholm, 
the shuttle running in the district of Kista had a maximum speed of 12 
km/h on its first four months, which was increased to 15 km/h after-
wards (Pernestål et al., 2018). Such a tendency to start with very low 
speeds and incrementally increase it is to be expected, due to safety 
reasons and learning about the operating environments in which auto-
mated vehicles are to be deployed. However, at this stage, it is unknown 
in which type of urban settings, automated vehicles will be able to 
operate at a speed comparable to current human-driven vehicles. So, for 
modelling purposes, we can distinguish the following cases: 

a) Equal average running speed of automated and human-driven ve-
hicles: this scenario takes place if the reduction on travel times due to 
the technology of automation, vehicle-to-vehicle (V2V) and vehicle- 
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to-infrastructure (V2I) connectivity, is fully matched by a reduction 
of running speed set on automated vehicles on traffic safety grounds.  

b) Different speed (possibly lower) of automated vehicles in urban 
settings: This scenario resembles all current pilot programs of auto-
mated shuttle buses and may happen in the future in those areas in 
which, due to safety concerns, low speed limits are imposed on 
automated vehicles (Kyriakidis et al., 2019), in a way to more than 
compensate any potential reduction in travel time enabled by the 
technology of automation and V2V and V2I communications. 

Let R ¼ γR be the running time of automated vehicles, expressed as a 
fraction γ of the running time with human-driven vehicles (γ ¼ 1 in the 
case of equal running times). Therefore, if f and K are optimal frequency 
and vehicle size for automated vehicles and we further assume β ¼ 1, 
introducing (15) into (8) and (9) we obtain: 

f ¼
f *

ffiffiffiffiffiffiαγp ; K ¼
ffiffiffiffiffiffiαγ
p

K* (16) 

In Sections 4 and 5, we show that αγ < 1 for a range of alternative 
assumptions regarding increased cost of automation technology, 
drivers’ salaries and difference in speed between automated and human- 
driven vehicles in cities. Therefore, we find that, if the objective is 
minimising the total cost of the public transport service, it is optimal to 
provide the service with smaller vehicles and larger frequencies (smaller 
headways between vehicles), increasing service frequency by a factor 1=
ffiffiffiffiffiαγp (equivalent to reducing headways by a factor ffiffiffiffiffiαγp ) and reducing 

vehicle size by a factor ffiffiffiffiffiαγp , in a way that total transport capacity, ob-
tained as fK, is kept constant. For the particular case of γ ¼ 1, the in-
crease in frequency and the reduction in vehicle size is less than 
proportional than the reduction in unit operator cost α, because 

ffiffiffi
α
p

> α 
for α < 1. 

Concerning financial effects, we find that both the optimal fare and 
optimal subsidy per trip are reduced. For illustrative purposes, we show 
the case of β ¼ 1. If P and S are the optimal fare and subsidy with 
automated public vehicles, from equations (12) and (14) we find that 

s¼
ffiffiffiffiffiαγ
p

s* but P 6¼
ffiffiffiffiffiαγ
p

P* (17) 

Moreover, P < P* if γ ¼ 1. That is, the optimal subsidy per trip is 
reduced by a factor ffiffiffiffiffiαγp , whereas the fare is reduced by a factor different 
from ffiffiffiffiffiαγp , owing to the terms c0tb þ c1θR in equation (12). Therefore, 
the effect of automation in optimal fare must be found numerically, as it 
depends on the parameters of the problem. 

To summarise, if αγ < 1, we obtain that the reduction in vehicle 
operating cost due to automation, in an optimal price and transport 
supply environment, benefits two parties: operators, through a reduc-
tion of operator costs, and public transport users, through a reduction on 
waiting times and on the fare to be paid for the service (the latter effect 
only if travel time with automated vehicles is not too low). We also find a 
reduction in the optimal subsidy per trip to be allocated to the public 
transport system. The size of these savings in some cases is straightfor-
wardly estimated ( ffiffiffiffiffiαγp ) and in others depends on the parameters of the 
problem; therefore a numerical application needs to be implemented to 
quantify these effects, as done in Section 5. 

4. Operator cost 

4.1. Cost input parameters 

The model is applied using input data from Munich in Germany and 
from Santiago in Chile. Regarding operator cost, we consider three 
components:  

(a) Vehicle capital costs;  
(b) Driver costs;  

(c) Running costs, e.g., fuel or energy consumption, lubricants, tyres, 
maintenance. 

In the literature, it is usual to express (a) and (b) on a temporal basis 
(€/veh-h or €/veh-day) and running costs on a spatial basis (€/veh-km). 
In our setting, we assume all costs are expressed on a temporal basis (per 
hour); therefore, running costs must be converted to a temporal basis by 
using the average vehicle speeds. Parameter values for the cities of 
Munich and Santiago are shown in Tables 1 and 2. For operator cost 
calculations, five vehicle sizes are included based on current vehicle 
types including cars, vans and buses. The procedure to obtain the 
parameter values, data sources and assumptions for the estimations is 
explained in the Appendix. 

For the case of the driver cost, monthly gross salaries of €2700 and 
€1194 are used for Munich and Santiago, respectively (see Appendix). 
For the case of Germany, we also include Berlin (monthly gross salary of 
€2300) for the estimation of cost parameters α and β, to assess the effect 
of differences in drivers’ salaries within the country. 

With automation, it is not clear that all human driving cost will be 
saved, as humans will still be needed for some activities related to 
automated vehicles. For example, the monitoring of fleets of automated 
vehicles could be remotely made by humans or by computers (Abe, 
2019); in the former case, new employees need to be hired or former 
drivers need to be re-trained. Extra costs of cleaning are also expectable 
(B€osch et al., 2018). There might also be a preference from users to have 
employees inside vehicles to monitor operations and provide informa-
tion (Dong et al., 2019). Wadud (2017) assumes that for a fleet of fully 
automated taxis, 40% of driver salaries will still be required, for 
back-office personnel and new safety devices in vehicles. In our frame-
work, we accommodate the possibility of new costs by defining δ as the 
percentage of current human driving cost that is still required under 
automation. For instance, δ ¼ 0 means all human driving cost can be 
saved with automation and δ ¼ 0.5 means that 50% of salaries can be 
saved with a system of automated buses (Wadud, 2017, assumes δ ¼ 0.6 
for the case of automated taxis). Numerically, it is found that α is a linear 
function of δ, 

α¼ α0 þ α1δ (18)  

where α0 and α1 are parameters to be estimated, as presented in Section 
4.2; α0 is the value of α when all driving cost is saved. All in all, Table 1 
shows that for the case of Munich, total operator cost for human-driven 
vehicles goes from 18.9 [€/veh-h] for cars to 36.3 and 45.1 [€/veh-h] for 
standard and articulated buses, respectively, whilst for the case of 
automated vehicles with 50% of driving cost saving, total operator cost 
is 12.1 [€/veh-h] for cars and 23.9 and 41.5 [€/veh-h] for standard and 
articulated buses, respectively. 

In Fig. 2, we show the ratio between driver cost and unit operator 
cost for increasing asset life values ranging from 4 to 8 years for cars and 
vans and from 8 to 15 years for buses, for the case of Munich (a lower 
useful lifetime is used for car-size vehicles compared to buses, as 
explained in the Appendix). We find that even though asset life has an 
influence on the relative weight of capital vs operating cost of public 
transport service provision, in all scenarios driver costs is a large fraction 
of the total unit operator cost: driver cost is in the range 78%–82% of 
total cost for cars, 73–78% for vans, 48–56% for minibuses, 38–44% for 
standard buses and 30–36% for articulated buses. The larger the useful 
life of vehicles, the larger will be the savings due to automation. 

4.2. Estimation of parameters α and β 

The total operator costs as estimated in Tables 1 and 2 for five 
alternative vehicles sizes, are used in linear regression models to esti-
mate the value operator cost parameters co and c1 for human-driven and 
automated vehicles, in the latter case considering different levels of 
driving costs that can be saved due to automation (parameter δ). Then, 
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the values of α and β are estimated as the ratios of the cost parameters co 
and c1 with and without automation, as shown in equation (15). 
Furthermore, for the case of α, parameters α0 and α1 are estimated using 

Table 1 
Operator cost parameters, Munich.  

Parameter Unit Car Van Mini bus Standard bus Articulated bus 

Vehicle length [m] 4 5 8 12 18 
Vehicle capacity [pax/veh] 5 8 44 70 110 
Vehicle price [€/veh] 29490 43433 281234 419429 627696 
Energy consumption [KWh/km] 0.14 0.15 0.64 0.90 1.30 
Cost of energy [€/kwh] 0.23 0.23 0.23 0.23 0.23 
Average speed [km/h] 18.1 18.1 18.1 18.1 18.1 
Energy cost [€/veh-h] 0.6 0.6 2.6 3.7 5.3 
Driver cost [€/veh-h] 15.3 15.3 15.3 15.3 15.3 
Vehicle capital cost [€/veh-h] 1.4 2.1 7.7 11.5 17.2 
Vehicle maintenance cost [€/veh-h] 0.8 1.0 1.6 3.5 3.5 
Charging infrastructure cost [€/veh-h] 0.8 1.0 1.5 2.3 3.8 
Increased capital cost automation [%] 57 57 37 25 24 
Capital cost automated vehicle [€/veh-h] 2.3 3.3 10.5 14.3 21.3 
Total cost human-driven vehicle [€/veh-h] 18.9 20.0 28.7 36.3 45.1 
Total cost automated vehicle, δ ¼ 0 [€/veh-h] 4.4 5.9 16.2 23.8 33.9 
Total cost automated vehicle, δ ¼ 0.5 [€/veh-h] 12.1 13.6 23.9 31.5 41.5  

Table 2 
Operator cost parameters, Santiago.  

Parameter Unit Car Van Mini bus Standard bus Articulated bus 

Vehicle length [m] 4 5 7.7 12 18 
Vehicle capacity [pax/veh] 5 8 50 90 140 
Vehicle price [€/veh] 29490 43433 189881 283186 423802 
Energy consumption [KWh/km] 0.14 0.15 0.64 0.90 1.30 
Cost of energy [€/kwh] 0.13 0.13 0.13 0.13 0.13 
Average speed [km/h] 19.3 19.3 19.3 19.3 19.3 
Energy cost [€/veh-h] 0.4 0.4 1.6 2.2 3.2 
Driver cost [€/veh-h] 6.2 6.2 6.2 6.2 6.2 
Vehicle capital cost [€/veh-h] 1.4 2.1 5.2 7.7 11.6 
Vehicle maintenance cost [€/veh-h] 0.8 1.0 1.6 3.5 3.5 
Charging infrastructure cost [€/veh-h] 0.8 1.0 1.6 2.5 4.0 
Increased capital cost automation [%] 57 57 37 25 24 
Capital cost automated vehicle [€/veh-h] 2.3 3.3 7.1 9.7 14.4 
Total cost human-driven vehicle [€/veh-h] 9.6 10.7 16.1 22.1 28.5 
Total cost automated vehicle, δ ¼ 0 [€/veh-h] 4.3 5.7 11.8 17.9 25.1 
Total cost automated vehicle, δ ¼ 0.5 [€/veh-h] 7.3 8.8 14.9 21.0 28.2  

Fig. 2. Driver cost as a proportion of the total cost automated vehicles, Munich values.  
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(18). 
In Table 3 we show the estimation of parameters α0, α1 and β for 

Munich, Berlin8 and Santiago. First, regarding the value of the cost 
reduction parameter α, if automation saves the cost of driving 
completely (δ ¼ 0), then α is 0.20, 0.23 and 0.44 in Munich, Berlin and 
Santiago, respectively. In other words, the larger the value of driver cost 
today, the larger the saving in the unit cost parameter of vehicles. In 
Chile, α is roughly double the value found in Germany, which reflects 
that the current driver wage in Chile is roughly half of that in Germany. 
The case in which part of the driving cost has to be maintained after 
automation depends on the percentage of the driving cost being needed. 
For example, when δ ¼ 0.5, α is 0.63, 0.64 and 0.77 in Munich, Berlin 
and Santiago, respectively. 

Interestingly, the value of β moves between 1.09 and 1.12, i.e., with 
the assumed increase in capital cost due to automation (see Tables 1 and 
2), the marginal cost of vehicle capacity increases by 9%–12%. There-
fore, we numerically estimate that β is larger than 1, but it is close to 1 as 
assumed by all previous studies on automation that include bus costs 
(B€osch et al., 2018; Abe, 2019; Zhang et al., 2019). 

In all cases shown in Table 3, R2 is 0.995 or larger. For illustration, 
Fig. 3 shows the cases of human-driven vehicles and automated vehicles 
with γ ¼ 0 and γ ¼ 0.5 for Munich. 

In Table 4 we show values of α for different levels of driving cost to 
be maintained with automation, from γ ¼ 0 (full driving cost saving) to γ 
¼ 0.75 (only 25% of the current driving cost to be saved). For each city, 
we also show the values of 

ffiffiffi
α
p

and 1=
ffiffiffi
α
p

, which correspond to the 
reduction in optimal vehicle size and the increase in optimal frequency, 
respectively, for the case of automated vehicles, under the assumptions 
β ¼ 1 (no increase in marginal cost of capacity due to automation) and γ 
¼ 1 (running time is equal with automated and human-driven vehicles), 
as shown in Section 3.3. 

In the scenario of full cost saving, the value of α is 0.20 in Munich, 
0.23 in Berlin and 0.44 in Santiago, optimal vehicle sizes are roughly 
halved in Germany and reduced to 2/3 of the optimal size of human- 
driven vehicles in Chile (

ffiffiffi
α
p
Þ. Optimal frequency is consequently 

doubled in Germany and increased by 50% in Chile, with full automa-
tion and full driving cost saving, versus the case of human-driven ve-
hicles (1=

ffiffiffi
α
p

). The larger the current driver cost (Munich), the larger is 
the reduction of vehicles sizes and the increase in optimal frequencies. If 
the driving cost savings due to automation are not full and a fraction of 
driving cost is still needed, we see that the smaller the driving cost 
saving due to automation, the smaller is the vehicle size reduction, as 
expected. Moreover, for values of δ larger than zero, we see that the 
vehicle size reduction due to automation gets closer between cities with 
smaller and larger driving wages. For example, for δ ¼ 0.5, optimal 
vehicle size is reduced between 12% (Santiago) and 21% (Munich), and 

for δ ¼ 0.75, the effect of automation is negligible in Santiago (optimal 
vehicle size is 3% smaller than that of human-driven vehicles). 

5. Full model solution 

5.1. Munich 

For the Munich and Santiago case studies, we solve and analyse five 
scenarios, one of human-driven vehicles and four alternative scenarios 
of automated vehicles. The definition of scenarios is the following:  

I. Human-driven vehicles.  
II. Automated vehicles with full driving cost saving (δ ¼ 0) and no 

change in running time with respect to human-driven vehicles 
(γ ¼ 1).  

III. Automated vehicles with driving cost saving accounting for 50% 
of human-driven vehicles (δ ¼ 0.5) and no change in running time 
with respect to human-driven vehicles (γ ¼ 1).  

IV. Automated vehicles with full driving cost saving (δ ¼ 0) and 
doubling of running time with respect to human-driven vehicles 
(γ ¼ 2).  

V. Automated vehicles with driving cost saving accounting for 50% 
of human-driven vehicles (δ ¼ 0.5) and doubling of running time 
with respect to human-driven vehicles (γ ¼ 2). 

User cost parameters and route characteristics are shown in Table 5. 
Details on parameter imputation and sources of information are shown 
in the Appendix. 

Fig. 4 depicts the optimal value of service frequency [veh/h], vehicle 
capacity [pax/veh], fare [€/trip] and subsidy [€/trip] for the five sce-
narios under study. Fig. 4 a shows the increase in optimal frequency with 
automation for scenarios II, III and IV. Frequency increases 2.2, 1.3 and 
1.6 times, respectively, while optimal vehicle size (Fig. 4b) is reduced to 
45%, 79% and 63% of the size with human-driven vehicles, respectively, 
along the demand range under analysis (from 100 to 4000 trips/h). With 
human-driven vehicles, minimum vehicle capacity is 8 pax/veh for 100 
pax/h and a vehicle with capacity for 23 passengers is optimal with 1000 
pax/h. 

A vehicle with capacity for 12 passengers (similar to the current 
automated shuttles that are piloted in several cities), is optimal for 300 
pax/h with human-driven vehicles, for 2500 pax/h for automated ve-
hicles with full driving cost saving and no increase in running time, and 
for 900 pax/h if running time is doubled, but all driving cost is saved. In 
Scenario IV (only 50% of driving cost reduction), a 12-pax vehicle is 
optimal for 500 pax/h. Therefore, we conclude that automation in-
creases the demand range for which smaller vehicles are optimal, and 
the larger the cost saving, the larger the demand for which small vehicles 
are optimal. Scenario V, however, presents a reduction of frequency and 
an increase in vehicle size, owing to the fact that the doubling of running 
time with automated vehicles more than compensates for the 50% 
reduction of driving cost that was assumed. 

Regarding optimal fare (Fig. 4c), it is reduced in all scenarios in 
which there is no increase in running time (II and III). If full running cost 
reduction and no increase in running time is assumed, optimal fare is 
reduced to 69–85% of the original optimal fare with human-driven ve-
hicles, which is larger than 

ffiffiffi
α
p
¼ 0:45 for δ ¼ 0 in Table 4, a result that is 

explained by the term c1φθR in optimal fare (12). As the marginal cost of 
increasing vehicle capacity is not reduced with automation (actually c1 
is increased by 12% with automation), total fare reduction, in relative 
terms, is lower than 

ffiffiffi
α
p

. In Scenario III, optimal fare is 91–99% of that of 
Scenario I, which shows that for automation to have a significant effect 
on reducing optimal fares, a large fraction (larger than 50%) of current 
driving cost must be saved. On the other side, Scenarios IV and V have 
increases in optimal fare, between 21% and 63% in Scenario IV and 
between 51% and 79% in Scenario V. Therefore, we find that saving half 

Table 3 
Estimation of operator cost parameters α and β.  

Case Munich Berlin Santiago 

co 

[€/veh- 
h] 

c1 

[€/veh- 
h-pax] 

co 

[€/veh- 
h] 

c1 

[€/veh- 
h-pax] 

co 

[€/veh- 
h] 

c1 

[€/veh- 
h-pax] 

Human- 
driven 

17.93 0.25 15.66 0.25 9.26 0.14 

Automated 
(δ ¼ 0) 

3.56 0.28 3.66 0.28 4.09 0.15 

Automated 
(δ ¼ 0.5) 

11.24 0.28 10.10 0.28 7.18 0.15 

α0  0.20 0.23 0.44 
α1  0.86 0.82 0.66 
β 1.12 1.12 1.09  

8 For Berlin, the only difference in operator cost with respect to Munich is the 
drivers’ salary. 
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of the driving cost, but doubling running time (Scenario IV) still in-
creases optimal frequency, but is not enough to reduce optimal fare, 
whereas in Scenario V users would unmistakably be worse off with 
automation, as they experience larger waiting times and fares than with 
human-driven vehicles. 

Fig. 4 d shows that in all automation scenarios except V there is a 
reduction in the optimal subsidy per passenger, and the larger the cost 
savings due to automation, the larger the reduction in optimal subsidy. 
Relative subsidy reduction is the same as relative vehicle size reduction 
and equal to 

ffiffiffi
α
p

in Scenario II, as predicted by equations (12) and (13), i. 
e., the estimated increase in c1 due to automation is not significant 
enough to materially influence the values of optimal frequency, vehicle 
size and subsidy, relative to the case in which it was assumed that c1 is 
the same for human-driven and automated vehicles. 

With optimal solutions, as in Fig. 4, we can compute average user 
costs (waiting time plus in-vehicle time), operator costs and total cost for 

all scenarios, plus the degree of economies of scale (calculated as 
Ctot=ðq∂Ctot =∂qÞ) in each case, as shown in Fig. 5. Users’ cost is reduced 
in Scenarios III and IV, owing to the reduction in waiting time due to the 
increase of service frequency. For operator cost, an interesting case is 
Scenario IV, as Fig. 5 b shows that for demand levels lower than 1800 
pax/h, operation is cheaper with automated vehicles, but the opposite 
holds for demands larger than 1800 pax/h. Therefore, for low demand, 
saving all driving cost outweighs the increase in cost due to doubling 
running time, however, as demand increase, the rise in cost due to the 
larger fleet size requirement that stems from doubling the running time, 
is larger than the reduction in unit operator cost c0 due to automation. 
Interestingly, all automation scenarios, even after doubling running 
times, have a lower degree of economies of scale (Fig. 5d), which show 
the large effect of driving cost in the degree of scale economies in public 
transport. The difference in scale economies is only noticeable for lower 
demand ranges, as for a demand larger than 3000 pax/h, the degree of 
scale economies is 1.03 or lower in all five scenarios. 

5.2. Santiago 

When analysing the effects of automation, the case of Santiago has 
some interesting differences relative to the case of Munich that deserve 
scrutiny. First, automation scenarios II, III and IV do present larger 
frequencies (Fig. 6a) and smaller vehicle sizes (Fig. 6b) relative to 
operating with human-driven vehicles, but the differences between 
automated and human operation are much smaller than in the Munich 
case, as expected from the analysis of α in Table 4. The optimal fare 
(Fig. 6c) is smaller with automation only in Scenario II, whereas in 
Scenario III optimal fare is roughly equal with automation and human- 
driven vehicles, and in Scenarios IV and V optimal fare is larger with 
automated vehicles. Finally, in the Santiago case, there is even one 

Fig. 3. Operator cost of human-driven versus automated vehicles, Munich values.  

Table 4 
Parameter α for different levels (γ) of current driving cost to be kept with automation.  

δ α  ffiffiffi
α
p

1=
ffiffiffi
α
p

Munich Berlin Santiago Munich Berlin Santiago Munich Berlin Santiago 

0 0.20 0.23 0.44 0.45 0.48 0.66 2.24 2.07 1.50 
0.25 0.41 0.44 0.61 0.64 0.66 0.78 1.56 1.51 1.28 
0.5 0.63 0.64 0.77 0.79 0.80 0.88 1.26 1.25 1.14 
0.75 0.84 0.85 0.94 0.92 0.92 0.97 1.09 1.08 1.03  

Table 5 
Parameters for model application.  

Parameter Unit Munich Santiago 

Value of waiting time savings Pw  [€/h] 11.4 3.5 
Value of in-vehicle time savings Pv  [€/h] 5.2 2.9 
Ratio waiting time to headway a1   0.6 0.6 
Ratio trip length to route length a2   0.34 0.31 
Boarding and alighting time tb  [s/pax] 4 4 
Ratio maximum load to total demand θ   0.5 0.5 
Route running time R [h] 0.7 1.25 
Route length L [km] 13.5 25.9 
Average speed [km/h] 18.1 19.3 
Factor to increase vehicle size φ   1.1 1.1  
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scenario (V) in which a larger subsidy would be required with auto-
mation, as shown in Fig. 6 d, something that is not observed in the 
Munich case (Fig. 4d). We clearly see that the level of current drivers’ 
wages has a relevant impact on the future cost savings and increase in 
quality of service that can be attained with automation in public 
transport, with richer nations having more to gain than developing and 
underdeveloped countries. The analysis performed in this paper is a 
quantification under optimality conditions of such intuitive conclusions. 

The Santiago and Munich cases demonstrate the relevance of two 
variables in determining the size of the effects of automation in costs for 
users and operators: the total driving cost reduction (reflected as a 
reduction of c0) and whether or not running time R increases with 
automation in urban environments. As shown in equations (8) and (9), 
what actually matters is the product of c0 and R to determine if there is a 
change in optimal frequency and vehicle size. As a generalisation of the 
previous analysis, using the relationship between the relative unit 
operator cost saving due to automation (α) and the percentage of current 
driving cost that is necessary with automation (δ) as shown in Equation 
(18), we are able to find the envelope of pairs (γ, δ), where δ is the 
relative increase in running time with automation, for which there is no 
change in optimal frequency and capacity in human-driven vehicles vs 
automated vehicles. The result, for Munich and Santiago, is depicted in 
Fig. 7. For all combinations of γ and δ that are under the curves, there is 
an increase in frequency and reduction in vehicle size, due to 

automation. The opposite occurs for combinations of γ and δ over the 
curves. This simple plot shows, once again, that the margin of action for 
automation to actually have an impact on optimal service outputs is 
larger in Munich than in Santiago. For example, if 30% of current 
driving cost are still required with automation (δ ¼ 0.3), Fig. 7 shows 
that automated running time could increase up to 120% in Munich (γ ¼
2.2), but only up to 60% in Santiago (γ ¼ 1.6), in order to have a 
reduction in optimal vehicle size and an increase in optimal service 
frequency with automated vehicle operation. 

5.3. Sensitivity analysis: alternative modelling assumptions 

In this section we calculate the effects of a number of alternative 
assumptions, given the uncertainty behind some of the parameters of the 
problem as presented in Tables 1 and 2. 

5.3.1. Larger increase in vehicle cost due to automation 
As shown in the cost estimations presented in Fig. 1, there is large 

uncertainty in the costs of automation technology in the future, once the 
current pilot phase of development is over. In Tables 1 and 2, vehicle 
capital cost was increased between 24% and 57% due to automation, 
based on Wadud (2017). In this section, we increase by 50% those cost 
mark-ups due to automation, to values between 36% (articulated buses) 
to 86% (cars). Results are computed for the cases of full and 50% driving 

  (a)                                                                                        (b)

  (c)                                                                                        (d)
Fig. 4. Solution of optimisation model, Munich case study.  

A. Tirachini and C. Antoniou                                                                                                                                                                                                                



Economics of Transportation 21 (2020) 100151

11

cost saving. Fig. 8a shows that when there is full driving cost reduction, 
the effect of a larger automation cost is noticeable as reducing optimal 
frequency (compare curves with δ ¼ 0 in Fig. 8a), but even in this case, 
optimal frequency is far larger than with human-driven vehicles. How-
ever, when 50% of driving cost is still necessary with automation, the 
difference in optimal frequency when increasing automation cost by 
50% is negligible (compare the curves with δ ¼ 0.5 in Fig. 8a), the latter 
result explained by the much larger effect of driving cost than that of 
automation cost in total operator cost, even after 50% of driving cost is 
assumed to be required with automation. 

5.3.2. Increased service reliability due to automation 
Automated vehicles may provide a more reliable operation in terms 

of more stable travel times and headways, therefore increasing general 
service reliability. A lower headway variance reduces waiting time 
(Osuna and Newell, 1972) and more stable travel times also have a 
benefit for users that are willing to pay for reductions in in-vehicle time 
variability (see, e.g., B€orjesson et al., 2012). In this section, we model 
the case in which automation reduces headway variability, which in our 

model is expressed as a reduction in waiting time through the parameter 
a1 .9 We do so in Scenario III, driving cost saving accounting for 50% of 
human-driven vehicles and no change in running time (δ ¼ 0.5, γ ¼ 1). 
In the base case, we assumed a1 ¼ 0:6 for both automated and 
human-driven vehicles (justification is provided in the Appendix). In 
this section, we include the case of a1 ¼ 0:5 for automation and compare 
it also against the case a1 ¼ 1 with human-driven vehicles. Fig. 8 b 
shows that the difference in optimal frequency in both scenarios with 
automation is small, given that the assumed difference in reliability is 
small (a1 ¼ 0:5 vs 0.6), but the reduction in waiting time cost is between 
9% and 14% (depending on demand level) if a1 ¼ 0:5, with respect to 
a1 ¼ 0:6. The comparison of reliable automated operation ða1 ¼ 0:5) vs 
unreliable human driving operation (a1 ¼ 1) shows optimal frequencies 
that are closer together than when human-driving operation is also 
reliable. This is because under unreliable operation, the model increases 
optimal frequency in order to reduce waiting times (Tirachini et al., 
2014). 

  (a)                                                                                        (b)

  (c)                                                                                        (d)
Fig. 5. Average costs and degree of scale economies, Munich case study.  

9 An analysis of the effect of travel time variability in optimal bus frequency, 
capacity and fare is shown in Tirachini et al. (2014). 

A. Tirachini and C. Antoniou                                                                                                                                                                                                                



Economics of Transportation 21 (2020) 100151

12

  (a)                                                                                        (b)

  (c)                                                                                        (d)
Fig. 6. Solution of optimisation model, Santiago case study.  

Fig. 7. Envelope for increase in optimal frequency and reduction in optimal vehicle size and optimal subsidy, due to vehicle automation.  
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5.3.3. Reduction in energy consumption due to automation 
Automation may result in a lower energy consumption per veh-km, 

due to a more balanced vehicle driving and efficiency gains due to 
V2V and V2I communications. In Scenario II, we model the case in 
which energy consumption per kilometre is reduced by 25% due to 
automation. We find a negligible numerical difference between optimal 
service frequency in both cases (0.4%), and the operator cost saving goes 
between 0.9% from 100 pax/h to 1.9% for 4000 veh/h. Actual savings 
might be even lower given current estimations of running cost in the 
range 5%–10% only (Wadud, 2017; B€osch et al., 2018). Therefore, the 
effect in total cost operator saving, even when present, is minor, and 
there is no effect on users cost. 

6. Concluding remarks 

In this paper, we have presented an optimisation model to analyse 
the effects of vehicle automation on public transport provision. Service 
supply, comprising vehicle size and service frequency, plus pricing de-
cisions (fare and subsidy), are optimised for human-driven vehicles and 
under different scenarios of automation, depending on the final level of 
driving cost saving due to automation and the speed at which automated 
vehicles will be allowed to circulate in cities. A general model is 
developed for one single route, which is then applied assuming an 
operation with electric vehicles. Databases for two countries, Chile and 
Germany, are constructed and used for the numerical application of the 
model (using Munich, Berlin and Santiago for city applications), as 
illustrative of the situation of developed and developing countries. We 
theoretically and numerically analyse the effects of several factors that 
intervene in the deployment of public transport services. 

We find a wide range of scenarios for which the driving cost saving 
due to automation is expected to be larger than the increased capital cost 
of automated vehicles, and that the relative cost saving due to auto-
mation is much larger in Germany than in Chile due to present differ-
ences in labour cost. We find a frontier curve of the value of increased 
running time (in urban environments) and the percentage of driving cost 
that is saved with automation, that sets the conditions for automation to 
increase optimal frequency, reduce optimal vehicle size and reduce 
optimal subsidy. In such a case, there are benefits from automation for 
users, operators and the public sector. Automation causes smaller ve-
hicles to be optimal for public transport services across a large spectrum 
of demand. Automation reduces the degree of economies of scale in 
public transport. Numerically, we find that for automation to have a 
significant effect on reducing optimal fares, a large fraction (larger than 

50%) of current driving cost must be saved. 
Our research findings provide some insights about the future value of 

automation in public transport. The question that remains is which en-
vironments are suitable for automated public transport in cities. Current 
wisdom suggests that dedicated roads that eliminate or largely reduce 
interactions between automated vehicles and pedestrians, cyclists and 
other vehicles, are better suited for the deployment of automated ve-
hicles (Kyriakidis et al., 2019). Then, our findings could apply to 
large-capacity dedicated corridors such as current Bus Rapid Transit 
(BRT) systems. On the other side of the spectrum, using small automated 
vehicles for last-mile solutions at reasonable speeds is also likely to be 
constrained by the presence of other users on the public space. Mixed 
solutions in which human-driven vehicles are deployed in complex city 
roads, as feeders to automated trunk services running along dedicated 
roads, are also plausible. 

The analysis presented in this paper on the effects of automation on 
public transport provision could be extended in several ways, for 
example including a crowding externality as increasing the value of 
travel time savings, which is known to increase optimal frequency and 
vehicle size (Jara-Díaz and Gschwender, 2003). Including congestion in 
the form of queuing delays in bus stops reduces optimal service fre-
quency (Tirachini and Hensher, 2011) Bus stop spacing was fixed in our 
model, future research should analyse how the location of bus stops 
should be adjusted with automated vehicles and what is the effect of this 
variable on optimal frequency and pricing rules, and on the degree of 
scale economies. The effect of vehicle automation on the design of 
real-world public transport networks is also a promising avenue of 
further research. Differences in travel time variability due to automation 
should also be incorporated, provided empirical data on the matter 
become available. With our model, we have shown that the optimal 
subsidy per trip goes down if there is an operator cost reduction due to 
vehicle automation, but to study the effect of automation on the total 
subsidy it would be appropriate to have an elastic demand model, that 
takes into account the effect of automation on public transport demand 
levels. 
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Appendix. Data sources and assumptions for the estimation of parameters in Tables 1, 2 and 5 

Five vehicle types are considered for the operator cost estimation, based on current sizes of vehicles for private and public transport. Capacity of 
each vehicle is assumed to be different for buses in Santiago and Munich, as explained in Section 4. 

For Munich (Table 1), car and van prices and energy consumption are those of an electric Kia Soul and an electric van Nissan E-NV200, as 
advertised in the corporate website of vehicle manufacturers in Germany. Very limited updated cost data on electric buses are available in Europe in 
general, and in Germany in particular, we rely mainly on information from the European Union’s Horizon 2020 ‘Eliptic’ Project on electrification of 
public transport (Meishner et al., 2018), regarding vehicle costs, energy consumption rates, electricity cost and maintenance cost for standard (12-m 
long) and articulated (18-m long) buses. The mini-bus of 8 m with a capacity for 44 people is based on Vienna’s electric bus.10 Buses without including 
the cost of batteries are assumed to cost €300,000 (standard bus) and €532,000 (articulated bus), based on recent deployments of electric buses in 
Germany and Spain (Meishner et al., 2018). Their cost of batteries is calculated as €119,429 and €95,696 using current battery prices per kWh as 
estimated by Bloomberg (2018). The current average speed of buses in Munich is 18.1 km/h (MVG, 2018). The average energy cost per 
vehicle-kilometre, is obtained as the product between energy consumption rate, the cost of energy and the average speed. Table 1 shows that estimated 
energy cost goes from 0.6 €/veh-h for car to 3.7 and 5.3 €/veh-h for standard and articulated buses. The gross salary of bus drivers in Munich currently 
is 2700 €/month (based on the current official bus driver recruitment information), which translates into 15.3 €/h. 

Concerning vehicle capital cost per hour, annualised capital cost Cannual is obtained through (19), assuming a discount rate r ¼ 7%, a residual value 
Vr ¼ 5% of the initial purchase price Ccap, and an asset life of n years. 

Cannual¼Ccapð1 � VrÞ
r

1 � 1
ð1þrÞn

(19) 

In general, the useful life of vehicles depends on several factors including road quality, intensity of vehicle use and level of maintenance. The effect 
of shorter or longer asset life durations on the relationship between driving cost and total operator cost was assessed in Fig. 2. 

For Santiago, based on official data from the public transport authority (DTPM, 2017), we estimate that an average bus operates for 3700 h per 
year, at an average speed of 19.3 km/h, totalling 71410 km/year. No data of hours of operation are available for Munich. To have a common base for 
both cities, we assume 12 years as asset life for buses in both Munich and Santiago, which is the lifetime of electric buses in the business cases of 
Meishner et al. (2018). Assuming 3700 h of operation for Munich as well and current bus speed (18.1 km/h), total useful life for buses is approximately 
804,000 km in Munich and 856.000 km in Santiago. Current bus concessions assume a nominal useful life of 1,000,000 km per bus. In Santiago, 
however, given a faster than expected depreciation of buses (due to a number of factors including low quality of some roads, poor maintenance and 
vandalism), a discussion to reduce such nominal duration in the next concession contracts is underway, therefore the value assumed in this paper is 
reasonable. 

For taxis, useful lifetime is much shorter than for buses. For example, B€osch et al. (2018) use 300,000 km for Switzerland, Abe (2019) use 431,760 
km for Japan, which with our assumptions on hours of operation per year and speed, yield useful lifetimes of 4.2–4.5 years (300,000 km) or 6.0–6.4 
years (431,760 km). We assume 6 years as a reasonable useful life for cars and vans in our calculations for both cities. With these assumptions, vehicle 
capital costs in €/veh-h are obtained as in Tables 1 and 2. Maintenance costs for buses are based on Meishner et al. (2018), bus values are scaled down 
proportional to vehicle length for an estimation of maintenance costs of cars and vans. Electricity charging infrastructure cost are 0.12 €/km for 
standard buses and 0.21 €/km for articulated buses (Meishner et al., 2018), these values are scaled down for smaller vehicles proportional to vehicle 
length. For the increased capital cost due to automation in vehicle, percentage values between 57% for cars and vans, and 24% for large buses are used 
for both cities, based on Wadud (2017). 

For Santiago, several other cost parameters are different from those in Munich, given the local context. First, the capacity of buses has been 
increased, to reflect that larger crowding levels are observed and socially accepted in public transport in Santiago, relative to Germany. Thus, for 
example, nominal capacity of a standard 12-m long bus is estimated to be 70 passengers in Germany (Meishner et al., 2018) and 90 passengers in Chile 
(Espinoza, 2017). 

With respect to vehicle capital costs, Grütter (2014) reported that in 2012 an electric bus was around 30% cheaper in Latin America than in Europe. 
This figure is similar today, as the fleet of 100 electric 12-m long buses acquired in Santiago in 2018 from the Chinese manufacturer BYD, had a cost of 
around €283.000 per vehicle, which is 32.5% cheaper than the corresponding 12-m long bus in Germany (€420,000). In order to make the operator 
cost regression for Chile, we assume that this 32.5% difference to apply to all bus-size vehicles, whereas for cars and vans, the same price is assumed in 
Chile and in Germany, as current prices show.11 Driver cost represents average gross salary for bus drivers in Santiago (Librium, 2013), updated to 
2018. Cost of electricity is based on current electricity prices as informed by the electricity provider. Cost of maintenance and cost of charging 
infrastructure are assumed to be the same as in Munich, given lack of local data for electric vehicles. 

Finally, for Table 5, values of time are based on Steck et al. (2018) for Germany and Navarrete and Ortúzar (2013), the latter values are updated to 
2018 using the accumulated inflation rate. For parameter a1, in Santiago we use Guevara et al. (2014) who estimated average scheduled waiting time 
to be 5.44 min while average actual waiting time is 6.86 min, which translates into an excess waiting time of 1.42 min on average. We use these values 
to estimate a1 as 6.86/5.44/2 ¼ 0.63. For London, we estimate a1 to be 0.59, based on scheduled and actual waiting times reported by TfL (2019). 
Given the similarity of Santiago and London values and that there is no local data for Munich, we assume a1 to be 0.6 in both Santiago and Munich in 
Table 5. The calculation of a2 ¼ 0.31 for Santiago is based on route lengths reported in DTPM (2016) and average bus trip length from SECTRA (2014). 
For Munich, we obtain route length from MVG (2018) considering 2-direction routes. There is no information available of average bus trip length for 

10 https://wien.orf.at/v2/news/stories/2549394/, accessed 30 July 2019.  
11 For example, as of March 2019, a Nissan Leaf electric car cost around € 37.000 in both Chile and Germany, as advertised online by official country retailers. 
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Munich; however, Moovit estimates average trip length by all public transport modes (bus, trams, subway and commuter trains) to be 9.2 km in 
Munich.12 Bus trips are in average shorter than those of rail modes, if we assume bus trips 50% shorter than that average (that is, 4.6 km), we obtain a2 
to be 0.34, which is used in Table 5. Boarding and alighting times in general depend on vehicle size. In this paper, for simplicity we use 4 s per 
passenger for all vehicle sizes (for an optimisation that considers different boarding and alighting times based on vehicle size, see Jara-Díaz and 
Tirachini, 2013). Given average route length L, running time R is chosen to closely reproduce average observed speeds of 18.1 km/h in Munich (MVG, 
2018) and 19.3 km/h in Santiago (DTPM, 2017). Parameter θ depends on spatial demand patterns, we assume that half of total route passengers 
travels along the most loaded section of a route, in average. Finally, following Tirachini et al. (2010), we assume that vehicle size is estimated as to 
having a 10% spare capacity (φ ¼ 1.1) over average maximum demand. 
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