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MACHINE LEARNING METHODS TO SUPPORT CATEGORY MANAGEMENT
DECISIONS IN THE RETAIL INDUSTRY

La introducción de herramientas de Machine Learning para resolver problemas de Big Data,
han creado diversas oportunidades, en particular en la industrial del retail. Esta tesis está
dividida en dos ensayos donde se usan herramientas de Maching Learning para resolver
problemas de Gestión de Retail de manera novedosa.

En el primer ensayo se analizan datos transaccionales para mejorar la formulación de
restricciones para el problema de optimización de precios en categorías. Usando un método
de Reglas de Asociación se identifica qué reglas han sido consistentemente aplicadas, y se
evalúan cuales están asociadas a mejores desempeños en la categoría. Basado en estas reglas
de precios, se construye un conjunto de precios factibles basados en datos, y se combinan
con rutinas de optimización para entender como esta información puede complementar el
análisis econométrico tradicional. Cuando combinamos nuestra metodología con distintos
métodos para estimar respuesta de clientes a cambios de precio, encontramos que modelos
de demanda simples como doble log, son muy sensibles a esta definición de factibilidad de
precios. Modelos más sofisticados como Lasso o Modelo Jerárquico Bayesiano son menos
sensibles a los cambios de restricciones, pero de igual forma son afectados por la definición
de precios factibles. Nuestros resultados numéricos muestran que la metodología propuesta
no solo lleva a soluciones de precio más realistas, sino que también son más robustas a
variabilidad en los datos, llevando mejores resultados para este problema de negocio.

El segundo ensayo presenta un enfoque de Machine Learning para estudiar interrelaciones
entre categorías de productos y detectar motivaciones latentes de compra. Este se basa en
un modelo llamado Latent Dirichlet Allocation (LDA), el cual ha sido ampliamente usado en
análisis de texto, para extraer tópicos de documentos, midiendo la probabilidad de coocur-
rencia entre palabras. En nuestro contexto de retail, se extraen motivaciones de compra en
vez de tópicos latentes de textos, analizando relaciones entre categorías de productos en vez
de palabras, usando una base de datos de transacciones en vez de documentos. La contribu-
ción de esta investigación es la aplicación de LDA en datos de supermercados, modificando el
modelo básico para lograr tres objetivos diferentes. Primero, se usa un modelo LDA estándar
para extraer y describir las motivaciones de compra. Segundo, el modelo de LDA se amplía
con un enfoque supervisado, para estimar conjuntamente las motivaciones de compra y la
relación de estas con el tamaño monetario de la canasta. Por último, el modelo LDA se
generaliza para permitir que cada motivación dependa de características demográficas y de
compra de los clientes. Estas motivaciones de compra identificadas son fundamentales para
mejorar decisiones de promociones y recomendación de productos.

En resumen, los resultados propuestos en esta tesis, entregan soluciones para entender el
comportamiento de compra de clientes y así apoyar decisiones de precio y promociones, y
mejorar la competitividad en la industria del retail.
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MACHINE LEARNING METHODS TO SUPPORT CATEGORY MANAGEMENT
DECISIONS IN THE RETAIL INDUSTRY

The introduction of machine learning to deal with big data problems have created several
business opportunities, in particular in the retail industry. This thesis is divided in two essays
where machine learning are used to deal with retail management problems in a novelty way.

In the first essay we analyze transactional data to improve the formulation of constraints
for multiproduct pricing optimization. Using an association rules approach we identify what
business rules have been consistently applied before and evaluate which ones are associated
to better business performance. Based on these pricing rules, we build a data-driven set
of feasible prices and combine it with standard price optimization routines to understand
how this information can complement the traditional econometric analysis of the demand.
When combining our methodology with different approaches to estimate customer responses
to price changes, we found that simple demand models such as the double log model are very
sensitive to the definition of the feasible set. More sophisticated approaches such as Lasso or
the Hierarchical Bayesian Model are less sensible to the addition of more linear constraints,
but still are affected by the definition of the feasible set. Adding more constraints to the
feasible set can only lead to smaller values of the profit function. Interestingly, our numerical
results indicate that the methodology does not only leads to more realistic price solutions,
but they are also more robust to data variations leading to better business performance.

The second essay presents a machine learning approach to study interrelationships among
product categories and to detect latent shopping motivations. We rely on Latent Dirich-
let Allocation (LDA), which has been widely used in text mining to extract topics from
documents, measuring the probability of co-occurrence of words. In our retail context, we
will extract latent shopping motivations instead of latent text topics, analyzing relationships
among product categories, instead of words, in a transaction instead of a document database.
The contribution of this research is then to apply LDA in a retailing setting, modifying the
basic model to achieve three different goals as follows. First, a standard LDA model will be
used to detect and describe motivations. Second, the basic LDA model will be extended to
jointly estimate the latent shopping motivations and the relationship between these motiva-
tions and basket size using a supervised approach. Finally, the LDA model will be generalized
to allow purchase motivations to depend on customer and shopping trip characteristics.

In sum, the results proposed in this thesis provide novelty solutions based on customer
preferences to support price and promotions decisions for practitioners and managers in the
retail industry.
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Introduction

The recent introduction of new technologies to deal with big data problems have created
several business opportunities across different industries (Agarwal and Dhar, 2014). In par-
ticular, retail companies register a huge amount of everyday decisions made by their cus-
tomers that face every product categories to make their shopping (Erevelles et al., 2016).
This information have been used to build statistical models to uncover consumer preferences
and support several marketing decisions for product category management, such as price,
promotions, assortment, layout, among others (Bradlow et al., 2017). Nevertheless, the ap-
plication of these statistical models are difficult to scale to industry problems and hard to
understand or apply by practitioners(Lilien et al., 2013; Lilien, 2011). On the other hand,
machine learning methods have been used in many applications to predict consumer behav-
ior like CRM, customer lifetime value prediction, churn detection, cross selling, customer
acquisition, among others (Ngai et al., 2009). Machine learning tools are becoming popular
because of their powerful capacity for handling great amount of cases (transactions, cus-
tomers) and considering many variables (attributes, products for example) to solve many
predictive problems. Recent literature in Marketing (Chintagunta et al., 2016; Desai et al.,
2012; Hauser et al., 2006) has pointed out there is a great opportunity to use these novelty
developments in machine learning to solve traditional marketing problems, improving the
scale, dealing with millions of customer transactions, and the capacity to be applied and
used for operational and tactical decisions by practitioners and business managers. This the-
sis consider two chapters about retail management problems covered with machine learning
approaches. Both methodologies use transactional data to discover consumer behavior and
complementary and substitution patters between products, brands and categories.

The first chapter is about pricing decisions. Multiproduct pricing is one of the key de-
cisions in retail management to improve category performance. Traditional approaches for
optimizing prices involve the use of transactional data to estimate a demand system as a
function of historical prices and then, conditional on the demand system, store managers can
decide all the product price levels in the assortment to maximize profits over the complete
product category.

Category pricing presents several challenges. For example, to capture cross-elasticities,
demand systems tend to be highly parameterized and potential endogeneity of prices might
lead to parameters with signs different than expected. Additionally, when solving for optimal
prices, first order conditions frequently suggest extreme solutions which are beyond of what
managers consider reasonable. Oftentimes, to find reasonable solutions, managers rely on
business rule to guide the solution and incorporate some tactical and strategic factors that
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cannot be explicitly included in the demand model. In this research we analyze transactional
data to identify what business rules have been consistently applied before and evaluate which
ones are associated to better business performance. Based on these pricing rules, we build a
data-driven set of desirable prices and combine it with standard price optimization routines
to understand how this information can complement traditional econometric analysis. To
deal with the computational burden of identifying a potentially large set of rules, we adopt
the Apriori algorithm developed in the context of market basket analysis.

When combining our methodology with different approaches to estimate customer re-
sponses to price changes, we found that simple demand models such as the double log model
are very sensitive to the definition of the feasible set. More sophisticated approaches such
as the L1 Regularization or the Hierarchical Bayesian Model are less sensible to the addition
of more linear constraints, but still are affected by the definition of the feasible set. While
more constraints can only lead to smaller values of the profit function. Our numerical results
indicate that the methodology does not only leads to more realistic price solutions, but they
are also more robust to data variations leading to better business performance. In summary,
in this research we present a novel approach to pricing optimization. This approach is easy
to implement and not only provide mangers with a reliable automatic mechanism to decide
about prices of multiple products, but also more consistent decisions.

The second chapter use machine learning to analyze consumer behavior and detect shop-
ping trip motivations. In this context,

Both essays give a novel use of popular machine learning methods to solve price and
promotions decisions in the retail industry. The proposed methodologies have two important
advantages: they are simple to understand for managers using rules and maps as tools to
show consumer behavior patterns to profit in the supermarket. Also, these methodologies are
based in popular machine learning methods implemented in most of the statistical software in
the industry, so their implementation should be easy for practitioners in the industry. Both
methods proposed give new approaches to apply machine learning algorithms in marketing
decisions, using transactional information to extract consumer preferences to support and
improve business results for category management.
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Chapter 1

Category Pricing Optimization Using
Data Driven Constraints

1.1 Introduction to Multiproduct Pricing

Pricing is one of the most relevant decisions in marketing and category management in the
retail industry (Roberts et al., 2014). Specifically, supermarket chains have to set prices for
many products over all the stores every week. Also, these prices change over time due to
promotions originated from suppliers as well as the retail chain itself to shift traffic and sales.
In this context, pricing decisions made by category managers are complex not only because
of the large number of decisions to make, but also because retailers want to use explicit
relationships between the products inside a category.

Price affects not only the demand of the product itself, but also the demand of comple-
mentary and substitute products. These “side effects” in product promotions, also described
in literature as cannibalization, can reduce profit performance in the total category (Wal-
ters, 1991). Cannibalization happens when a promotion is defined for a specific product
with average margin, increasing its sales, but changing and replacing consumer preferences
from high value products to this promoted average profit product. These promotions can
reduce overall performance of the category due to substitute patterns between competitive
brands. Similarly, price reduction at product level must consider substitution patterns with
other product prices with different format of the same brand. For example, products with
larger formats should have lower price per unit of weight of volume than smaller products
(e.g. orange juice of 500 ml should cost more per ml than the same orange juice brand of 1
Lt.). This case shows how individual promotions break consumer incentives for buying larger
formats, producing other sources of cannibalization in the category performance. This is a
good example of the operational complexity present when dealing with pricing changes in
every day price definition. Managers can easily fall in these pricing mistakes because retailers
deal with many products, stores and weeks to set prices. A typical supermarket chain must
deal with 60,000 different products (SKU’s) X 50 stores X 52 weeks = 156 millions of weekly
pricing decisions every year. This is a measure of the high complexity that category mangers
face in operational pricing decisions.
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To solve this pricing problem, research uses the vast amount of data available in retail
transactions. Scanner data has valuable transactional patterns that can lead to support
many category management decisions, specifically pricing (Bucklin and Gupta, 1999). In
particular, retail companies record a huge amount of shopping decisions made by their cus-
tomers. (Erevelles et al., 2016). This information has been used to build statistical models to
uncover consumer preferences and support several marketing decisions for product category
management, such as price, promotions, assortment, layout, among others (Bradlow et al.,
2017).

Most traditional researches about pricing use this data available to calibrate sophisticated
econometric models and measure how prices affect demand and therefore category profit.
The hard task is to construct an efficient and general model to include most relevant factors
that affects demand, especially own and cross price sensitivity effects. Using the expected
profit as an objective function into an optimization framework, we can find the optimal prices
that maximize the category performance.

1.1.1 Practical problems in pricing optimization

The application of these statistical models are difficult to scale to industry problems and
hard to understand or apply by practitioners (Lilien et al., 2013; Lilien, 2011). Multiproduct
pricing presents several challenges. To capture cross-elasticities, demand systems tend to be
highly parameterized and potential endogeneity of prices might lead to parameters with signs
different than expected. Additionally, when solving for optimal prices, first order conditions
frequently suggest extreme solutions which are beyond of what managers consider reasonable.

Oftentimes, to find reasonable solutions, managers rely on business rules to guide the
solution and incorporate some tactical and strategic factors that cannot be explicitly included
in the demand model. For example, decision makers can require that every price must remain
in a certain distance of its historical level or impose a maximum deviation from the weighted
price average. they add business rules and ad-hoc constraints to limit the movement of pricing
to stay in a vicinity the original price vector (10% for example). Nevertheless the optimal
solutions are very sensible to these restrictions because constraints are frequently binding.
An important and central problem of this research is how to define these constraints to use
in the optimization framework. Essentially, these rules are subjectively defined and as they
limit the price space they also restrict the maximal profit to achieve. It would be desirable
a data driven approach to define these constraints or rules that prices should respect and
improving the optimal solution.

A second problem is the robustness and stability of the solution proposed. Depending on
the values estimated in the cross elasticity matrix, the optimal price vector solution for the
category can be very different with limited perturbation in the elasticity matrix. An example
can be found in Figure 1.1 with simulations obtained from demand parameters estimated in
Montgomery (1997) for a subset of orange juice category products. Each point in the scatter
plot shows the optimal price solution using a draw of the probability distribution estimated
for the cross elasticity matrix in the Hierarchical Bayesian demand model. The optimization
was constrained using as bounds a 1% and 400% of the original prices. The diagonal of the
cross scatter plot shows the frequency distribution of the solution. As the reader can notice,
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an important fraction of the optimal solutions are bounded, so the optimal value depends on
how constraints are defined. This problem defines another performance criterion related to
how many of the optimal prices get a corner solution, especially conditioned to the constraints
already defined.

Figure 1.1: Optimal prices scatter plot using constraints between 40% from original prices.

To address these problems of uncertainty in the solution obtained, most relevant research
has focused on improving the estimation of the elasticity matrix or improving the formulation
of the demand models. For example, Montgomery (1997) uses hierarchical bayesian modeling
pooling information from all stores to strengthen the estimation of elasticity parameters.
Manchanda et al. (1999) uses a Multivariate Probit method to decompose the relationship
between two product of a category, identifying price effects, natural cross selling and others
consumer specific patterns. As we already mentioned, most of the commercial software of
pricing introduces the use of constraints to pricing decisions into the optimization framework
(Kopalle et al., 2009). These rules are known as pricing rules and work as a method from
practitioners to introduce business knowledge to avoid non sensical optimal solutions, very
far from actual values (Kunz and Crone, 2015).

Looking for a good set of constraints for this pricing optimization problem could be a
hard problem due to the large space of solutions. Also, there is an important problem when
evaluating millions of supermarket transactions to compare pricing between products to eval-
uate rule performance. Machine learning appears as a good solution for this problem because
of their powerful capacity for handling great amount of cases (transactions, customers) and
considering many variables (attributes, products for example) to solve many predictive and
search problems.

While almost all marketing and economics literature on retail pricing has focused on de-
riving precise estimates on the underlying demand system that determine the profit function
π, very little work has been conducted to discuss how constraints in the optimization setting
should be defined and what is its role in pricing decisions. The contribution of this article
goes exactly in this direction. We describe a data-driven methodology to help managers to
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identify business rules that are not only consistent with their strategic view of the market,
but that can also lead to better profits.

1.1.2 Machine Learning and data driven pricing rules

The recent introduction of new technologies to deal with big data problems have created
several business opportunities across different industries (Agarwal and Dhar, 2014).

Machine learning methods have been used in many applications to predict consumer be-
havior like CRM, customer lifetime value prediction, churn detection, cross selling, customer
acquisition, among others (Ngai et al., 2009). Machine learning tools are becoming popular
because of their powerful capacity to handle great amount of cases (transactions, customers)
and considering many variables (attributes, products for example) for solving many predic-
tive problems. Recent literature in marketing (Chintagunta et al., 2016; Desai et al., 2012;
Hauser et al., 2006) has pointed out that there is a great opportunity to use these novel de-
velopments in machine learning to solve traditional marketing problems, improving the scale,
dealing with millions of customer transactions, and the capacity to be applied and used for
operational and tactical decisions by practitioners and business managers.

Using this motivation, this article proposes a methodology to analyze large scanner data
and extract pricing patterns in an inexpensive and efficient way adapting a machine learning
method called association rules. This approach extracts and represents demand patterns
that describe the effect of pricing in a profit category. This methodology, in a simple and
reliable way, discovers the interactions between products in order to detect high profit price
space, and also gives insights to the managers in the form of what-if scenarios with the overall
category assortment when they change a specific product price. The proposed methodology
will look for two types of pricing rules. First, a set of rules that are consistent with previous
decisions made by managers. In other words, we want rules with enough significance to
support valid relations and especially, to generalize demand patterns out of the training
dataset. Second, it identifies pricing rules that find a strong correlation between a price
structure and profit scenarios greater than the average. When we mention price structure we
are talking about rules for the category mean, or a specific product, or a constraint related
to the price difference between a couple of products of the category assortment.

The proposed methodology in this work extracts decision rules and constraints for prices
based on previous transactions. This method will define rules between product prices in order
to obtain profitable scenarios. The approach proposes a mechanism to systematically look for
a good set of constraints between prices that produced good performance in the transaction
history of the category. In other words, the methodology presented will get pricing rules to
avoid scenarios of bad performance in a category, like cannibalization or breaking incentives
for larger formats.

Some of the potential advantages of using pricing rules as a methodology to describe and
optimize pricing decisions are:

• Intuitive and easy to understand: Compared with own and cross elasticity matrix,
pricing rules provides a more simple, intuitive and comprehensive way to understand a
relation between prices and the category performance inside the category. Pricing rules
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works as price scenarios comparisons for individual products or pairs of products.

• Easy to implement and actionable: Pricing rules can be considered as constraints of
feasible prices in the category. They can be easily applied to a transactional database
using structured languages such as SQL, so they are simple to implement and to check
or validate with new data.

• Easy to validate and compare with business intuition: Pricing rules are easy to check
and confront with previous business rules inside the category in terms of what product,
brand, format are more valuable than other.

• Easy to extract from scanner data: Using the association rules framework, it is easy
and fast to extract thousands of pricing rules, sort them to select most relevant and
valuable rules to apply in a certain category.

• Robustness: Pricing rules are build analyzing millions of transactions comparing per-
formance category for different pricing scenarios in the historical database. Therefore,
pricing rules extracted are robust based on historical performance of different pricing
policies and their impact in the category demand.

When combining our methodology with different approaches to estimate customer re-
sponses to price changes, we found that simple demand models such as the double log model
are very sensitive to the definition of the feasible set. More sophisticated models such as the
LASSO or the Hierarchical Bayesian model, are less sensible to the addition of more linear
constraints, but still are affected by the definition of the feasible set. Adding more con-
straints to the feasible set can only lead to smaller values of the profit function. Therefore if
our construction of the feasible set is an accurate representation of what managers are really
willing to consider, then the reduction in profit derived from adding data-driven constraints
gives an estimate of the overestimation of optimal profits when using unconstrained profit
optimization. Interestingly, our numerical results indicate that the methodology does not
only lead to more realistic price solutions, but they are also more robust to data variations.

In essence, in this research we analyze transactional data to identify what business rules
have been consistently applied before and evaluate which ones are associated to better busi-
ness performance. Based on these evaluations, we build a data-driven set of feasible prices
and combine it with standard price optimization routines to understand how this information
can complement traditional econometric analysis of the demand.

The rest of the article is structured as follows. First, the paper describes in detail a
literature review focusing on the pricing approaches available and its limitations. We also
review bibliography related to pricing rules and the machine learning methods we will use to
extract data driven pricing rules. In the next chapter we describe the methodology proposed
adapting the market basket analysis framework to correlations between price structure and
profit performance. We apply the methodology proposed to a supermarket transactional
database analyzing a specific product category. The results maximizing profit performance
using different constraints and scenarios are evaluated. Finally we draw some conclusions
from the results and limitations about the proposed methodology.
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1.2 Literature Review

To organize the literature review, we revise previous research on three main topics. First,
we explore how other investigations have proposed different optimization methodologies to
solve the multi-product problem. Second, we explore how the concept of pricing rules has
been used in previous work. Finally, we explore the machine learning methodology and the
data driven approaches we will use to extract pricing rules.

1.2.1 Category Pricing Optimization

Pricing problem has been addressed from many perspectives and researches including dy-
namic pricing, psychological and consumer behavior motivations, long term and brand ef-
fects, among others Grewal et al. (2011). In this research we focus on multiproduct pricing
where there is an important interrelation effect between products inside a category. Accord-
ing to Manchanda et al. (1999), these effects have many different sources: the first one is
related to product prices affecting demand of other products inside the category (cross elas-
ticity effects). Second, there is some natural complementary effect between products inside
a category (e.g. mayonnaise and ketchup in the dressing category), and finally interrelation
effects related to consumer characteristics. This research also estimated that the relevant
cross price effects happen inside the category. In other words, other category promotions or
price reduction doesn’t have a significant impact into the category demand in study. The
typical setting where all these assumptions about demand behavior are found is in supermar-
ket product categories. We can assume there is an automatic replenishment and stock outs
don’t affect consumer choice. As these products are bought regularly, strategic consumer
behavior doesn’t play an important role affecting demand. All these elements are important
to consider when the demand model would be defined.

Several approaches have been proposed in the literature to solve pricing problems. Little
and Shapiro (1980) use a theoretical approach to suggest that optimal prices comes from an
equilibrium where consumers solve a short term utility maximization to decide which prod-
uct and how much to buy, and where stores maximize profits subject to utility constraints.
Reibstein and Gatignon (1984) solves the pricing problem for multiple brands showing the
importance of dealing with cross elasticities and substitute patterns between products. This
work has a two-step methodology: first, a product demand model based on the different
prices of the category in order to recover own and cross product elasticities. And second, the
definition of prices in a product category through a profit maximization setting as defined
by equation 1. This two step procedure is a standard in the pricing literature and applica-
tions related and we will also adopt it to solve the problem. Montgomery (1997) face the
pricing problem using a hierarchical bayesian approach for demand estimation, getting ro-
bust estimations of the sparse cross elasticity matrix. Finally, Montgomery and Goic (2010)
strengthen the formulation of the bayesian demand model, incorporating information into
the prior definitions.

1.2.2 Business Rules for Pricing

There are many examples in literature of the use of business rules as pricing constraints in
the optimization problem. Using the two step approach mentioned before, Vilcassim and
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Chintagunta (1995) works with scanner data to calibrate a Multinomial Logit model for the
yogurt category. This is one of the first papers using the concept of “pricing rules” defined
as rules of thumb for constant markup for each brand defined by the supermarket.

Hawtin (2003) discuss why different business rules are needed when solving practical
pricing problems and evaluate how the optimal solutions are affected by those rules. Kunz
and Crone (2015) extend the work of Hawtin highlighting two elements. First, a side benefit
of using business rules is the adherence of the optimal solution to business. And second, they
evaluate the economic impact of including business rules in a multi-objetive settings. Ferreira
et al. (2015) set pricing rules to further ensure the customer is getting a great deal, restricting
the upper bound to be no more than the maximum of $15 or 15% greater than the lower
bound. Natter et al. (2007) discuss the automatic use of pricing models requires additional
business rules. Their price recommendations, for instance, are restricted to a maximum of
15% price increases in each pricing round. Levy et al. (2004) discusses the use of pricing
rules in retailing and describe the limitations of its use, including the slow update to more
recent competitive scenarios and the substantial deviation from the optimal solution.

A common practice in the retail industry is to use heuristic rules to directly determine
prices. For example markup where prices directly track marginal costs, or competitive prices
where prices closely follow prices from competitors (Levy et al., 2004). It also describes that
optimization routines for pricing includes business rules to restrict the search space to price
solutions. Ma and Fildes (2017) describes another application using business rules. It is
conceptually similar to Cohen et al. (2017), but they claim that in the demand function they
use cross-product influences. From a methodological perspective, it is interesting that they
use a regularized estimators to ensure realistic promotional parameters. While not discussed
explicitly, they realize that price solutions are sensible to parameter estimates, which is one
of the motivations for using business rules. From a marketing perspective it is interesting to
note that they consider not only prices as decision variables, but also feature and display.
Beyond pricing, it is well established that managers learn from past experience and they
translate such knowledge into simple rules (Bingham and Eisenhardt, 2011).

Another good example of pricing rules is found in Cohen and Perakis (2018). They use
use (i) discrete price ladders, (ii) limited time of promotional discounts for a given time
and (iii) minimum separating periods between consecutive promotions. These rules are now
implemented in Oracle Retail Pricing Tools (Oracle, 2018). Cohen and Perakis (2018) extends
the set of business rules already considered by Cohen et al. (2017). For example this consider
a set of products that should be discounted together, spacing out promotions of sets of similar
items by a minimal number of separating periods.

The use of business rules is not confined to academic research and it is indeed a widespread
practice in the retail industry. In fact Rosenberg and Sills (2019) propose a method to identify
business rules that might be implicit in historical pricing (this is fairly similar in spirit to
this research but only looking price information, not its performance in profit). Here rules
are classified in bounded rules providing ranges for individual prices and comparative rules
imposing restrictions between families of products. Among the rules considered they include
how closely the retailer should match prices from the competitor and dynamic rules referred to
the maximum and minimum deviation from a current price to be considered. Also Rosenberg
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(2018) propose a revenue optimization approach to decide prices while complying with a set
of business rules. Moreover, they assign a monetary value to each business rule to decide
whether they should be considered in the decision process. Handorf et al. (2016) does not
deal with pricing rules, but with product design rules. It can be used to say that “while we
focus on pricing rules, the conceptual framework can be expanded to other types of business
rules (e.g. product and channel coordination)”.

1.2.3 Association Rules

The methodology proposed in this paper for extracting profitable pricing rules in a product
category is based on a machine learning approach called Association Rules. This framework
proposed by Agrawal and Srikant (1994) is one of the most popular and most cited data
mining algorithms and it can be used for describing relationships between attributes or char-
acteristics in a database. The most common application of this model is the use of association
rules in a retail transactional database or scanner data, to extract purchasing rules between
products which might be, useful for creating bundles of products or cross product promotions
(Han et al., 2011) . In the market basket analysis framework, the main idea is to extract
“interesting” rules between complementary products (e.g. if I by pasta, it is likely that I
will also buy tomato sauce). Association rules uses different statistical measures in order to
capture how interesting a product combination is. There are other applications of associa-
tion rules using spatial (Han et al., 1997), temporal (Han et al., 1999), intrusion detection
(Treinen and Thurimella, 2006) and web log databases (Mobasher et al., 2001). For a recent
survey of association rules and its applications see Kotsiantis and Kanellopoulos (2006).

The problem to evaluate complementarity between products in a supermarket is combina-
torial and computationally expensive as the number of products increase in the supermarket.
To identify importance and level of complementarity of each solution in the rule space,
Agrawal and Srikant (1994) and Brin et al. (1997) propose a set of performance metrics to
evaluate the predictive value of a rule as described in table 1.1. A, B, and Z are products.
Nz is the number of transactions with Product Z, and N is the total number of transactions.

Measure Expression
Support Supp(Z) = Nz

N

Confidence Conf(A→ B) = Supp(A∩B)
Supp(A)

Lift Lift(A→ B) = Conf(A→B)
Supp(B)

= Supp(A∩B)
Supp(A)Supp(B)

Table 1.1: Interesting measures for association rules

Support measures the purchase probability of a product given itemset. Confidence is the
conditional probability of buying product B given a purchase in product A. Lift measures
the increase in probability of buying one of the products, when the other is present in the
basket.

As previously mentioned, exploring and extract association rules between products is a
combinatorial and time consuming problem. Agrawal and Srikant (1994) proposed a fast
method to extract interesting rules condition to a minimal support. Years later, Han et al.
(2000) proposed FP-Growth, a tree exploration method to improve efficiency and time for
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extracting rules.

We will translate the traditional market basket analysis setting into the pricing optimiza-
tion, to extract instead of rules between products, rules between prices and profit performance
of the category.

Using association rules we can extract rules between specific price structure and profit
scenarios better than the average, and with enough data support to have significant and
robust results. These pricing rules can be used as constraints in the price optimization
setting in order to guide the search of optimal prices to good price spaces with good probable
solutions, and also avoiding or removing from feasible space, scenarios with lower profit than
the average.

1.3 Methodology

For simplicity, in our methodology we consider that the set of business rules Ω is a convex
polytope and therefore we restrict our attention to business rules that can be expressed as
linear inequalities. Moreover, we decompose the set of feasible prices in two subsets Ωo and
Ωp such that Ω = Ωo ∩ Ωp. Here, Ωo corresponds to the set or order rules that consider
relationships of prices that are consistently present in the transactional data, but that not
necessarily lead to better performance. For example, if a product category contains regular
and premium brands, we would observe that on most days the price of a regular brand pr is
lower than the price of a premium brand pp. In that case, we will consider that pr ≤ pp for
all p in Ωo. While most of these constraints might be already known by managers, some of
them might not be obvious and our methodology facilitates to organize a potentially large
number of such rules. The set Ωp contains what we label as performance rules. These rules
correspond to relations of prices that are only present in a fraction of cases, but when active
lead to better profits. For example, if we observe that when the average prices of brands A
and B exceed a certain threshold τ sales and profits of the category drops, then we include
the corresponding constraint and say that pA + pB ≤ 2τ for all p in Ωp. We will measure
separatelly the performance of this two kind of rules and also we will analyze how they are
selected to define feasible prices.

Given the large number of potential inequalities that can be added to the feasible set,
the problem of identifying and evaluating business rules can be computationally demanding.
However, a number of efficient methods such as the Apriori (Agrawal and Srikant, 1994)
and the Dynamic Itemset Counting algorithms have been developed to find such association
rules in the context of market basket analysis. In this article we apply such developments to
populate the feasible set and evaluate its impact in retail pricing. In this context, we search
for price rules of the form pi≤pj and its relationship with events of good profit performance.
In a general form, this pricing rule has form (a′P≤b) −→ (π(pi, pj) > π) and evaluate them
using metrics of support, confidence and lift. While we require that rules in the performance
set Ωp have relative high values for all three metrics, order rules in Ωo only requires support
being close to hundred percent of the cases. To evaluate the impact of using data-driven con-
straints in category pricing optimization, we apply the aforementioned methodology on two
years of transactional data for several categories in a supermarket chain. In all categories we
identified several order rules showing that the proposed methodology is effective in automati-
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cally identifying relevant facets of market structures. Similarly, the methodology also provide
numerous performance rules. Importantly, those rules have explanatory power in identifying
price solutions associated to larger profits. In fact, in a validation test, price solutions in Ωp

exhibit 30% more profits than solutions that violate those prescriptions. Moreover, in some
cases, the set of business rules derived from our methodology is dense enough to guarantee
that any feasible price solution is on average only 28% from the optimal solution.

1.3.1 Association Rules for Pricing

The idea is to explore interesting pricing rules between sets of products that compete with
each other in a certain category, which can produce a good or bad performance in terms of
revenue. The basic structure to explore price relations and get interesting measures is given
by:

(a′P≤b) −→ (π(pi, pj) > π)

The methodology will search across weekly observations of prices that produce a combined
profit greater than the historical average of profit of these two products. The interesting
association rule to obtain is a specific comparison between a couple of products inside a
category (price of product i greater than price of product j for example), with a profit
performance greater than the average for this couple of products. The intuition behind the
methodology proposed is shown in Figure 1.2. This illustrates a region of profit scenarios
across different prices for two products (P1 and P2). Each data-point represents scenarios
of low and high profit for different instances of P1 and P2. Blue lines represents the pricing
rules, reducing the feasible price space where high profit performance is more likely to happen.

Figure 1.2: Profit scenarios over price space and pricing rules as constraint to allocate better prices
to product category.

The approach needs a couple of considerations and constraints for comparing product
prices. First, to compare prices of different product formats, prices will be normalized by
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the size of each product. Second, we consider as a product category, the most desegregated
group of products available in the product category aggregation levels.

The evaluation of pricing rules requires and adaptation of the typical measures used in
market basket analysis (Tan et al., 2002). In this case we will measure support, confidence
and lift as follow:

Pricing Rule Measure Expression

Supp(PricePi ≤ PricePj)
Card(PricePi≤PricePj)

Card(Totalweeks)

Conf(PricePi ≤ PricePj −→ πij > π)
Card((PricePi≤PricePj)∩(πij>π))

Card(PricePi≤PricePj)

Lift(PricePi ≤ PricePj −→ πij > π)
Conf(PricePi≤PricePj)

Supp(πij>π)

Table 1.2: Interesting Measures for Pricing Rules

Please observe that πij is the profit obtained when Price i is lower or equal than Price
j. Support measures the percentage of weeks where the price rule between products is met
in the total number of weeks where both products were traded together. This measure will
only consider weeks where both products were sold in the transactional historical database.
Confidence will measure the probability of having a weekly profit of both products greater
than historical average, conditioning that the price rule between products is met, this is
Pi > Pj. Lift measures the times that the probability of having piij > π increases, when
Pi ≤ Pj happens.

1.3.2 Pricing Rule Taxonomy

Any price constraint could be evaluated, but we require an explicit definition of the pricing
rule space. We focus on creating rules for single prices, comparing differences between prod-
ucts, not only if Pi > Pj, and rules for the average of all prices of the category assortment.
Rules for average price are interesting to keep under control category prices as a group. Single
product price rules help to measure performance of ranges of different prices. At last, ranges
for differences of prices between two products give a sense of prices of some brand should be
larger than others.

We consider the following taxonomy of linear pricing constraints described in table 1.3.

Ranges for average prices γL ≤
∑

i pi ≤ γU

Ranges for individual prices αL ≤ pi ≤ αU

Ranges for differences of prices βL ≤ pi − pj ≤ βU

Table 1.3: Taxonomy of pricing rules to extract using association rules

We perform a grid search for tuning the parameters γL, γU , αL, αU , βL and βU , evaluating
support and lift measures in thousands of rule combinations. We discard Order rules with
pricing scenarios that have not been used before, and also discard Performance rules related
to low profit combination of prices.

The pseudo code of the procedure methodology is in detailed in appendix.
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Figure 1.3 shows some example of the pricing rules extracted in the three forms we explore.
Two kind of charts represent first, a scatter plot of product category profit versus prices, with
each data point corresponds a weekly profit and the observed price. Second row is a density
plot of the observed prices. The three columns graph average category price, single product
prices and difference between two product prices. For example, let’s focus in the two graphs
of the middle of the figure. Lower chart represents the density plot of the price of SKU
7027. This give us information about what is the dominion of the observed prices in the
transactional history. Depending on that, two pricing rules are defined to define as feasible
set, where the 95% density plot is located. The upper graph shows a scatter plot with each
point representing a week with the observed price of the product 7027, and the profit obtained
that week. The constraints defined the price space where better profits are obtained. These
are the performance rules defined for this product.

Figure 1.3: Examples of Order and Performance rules for Pricing Optimization

1.3.3 Other alternative methodologies to extract rules

We choose a non supervised approach to extract association rules between price structure
and its relation with category profit. If the objective of the project should be to identify
and extract rules to detect and predict good profit scenarios, a supervised approach should
satisfy and probably get better solutions. There are many decision trees approaches (CART,
C5.0, Chaid) (Han et al., 2011) that also can extract robust rules between predictors (product
prices in our case) and a supervised label variable (category profit performance). An example
of a decision tree is in figure 1.4.

The problem with this solution is that each leaf node in the tree that predicts expected
profit, is a result of different sets of simultaneous pricing rules defining different disjoint
feasible scenarios. It is clear that the implementation of this kind of pricing feasible solution
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Figure 1.4: Supervised decision tree example. Source: Han et al. 2011.

into the price optimization setting is more complex and needs auxiliary variables. Also, our
method delivers not only pricing rules correlated with category profit, but also order rules
extracting previous decisions and implicit knowledge of pricing management for brands and
formats. This is an important advantage of our non supervised approach compared with
decision trees.

The association rules methodology is an efficient method to search for correlation in a
high dimensional space. We use this method to find what price ranges and combinations
of prices are correlated with profit scenarios greater than the average. The problem is this
correlation is not enough. Maybe the high correlation scenario is produced due to many
other factors beside prices. For example: apparel promotions, stock outs, store competitor
promotions, holidays or seasonality, among others. The main goal is to identify the true
causality of how prices affects the demand and therefore, the overall profit of the product
category. Also, prices are decisions that are inducted by other information, so can this
decision is an endogenous variable that makes it hard to find a causal relationship between
prices and profit. This is certainly a limitation of our model and also for any structural model
that tries to find the true relationship between prices and profit. One of the most popular
approaches to find the true causality (Arora et al., 2008) is to perform a experimental design
procedure to explore randomly different price structures and measure its effect into demand
and total category performance. In this sense, these pricing rules are a good starting point
to perform experimental design. There were pricing rules discarded with good lift indicating
good profit scenarios, but didn’t have enough support or information to be a reliable pricing
rule. This set of pricing rules are a good starting point to explore or conduct experimental
design in order to confirm whether the rules have enough support to validate a good profit
scenario.

1.4 Empirical Application
Here we describe the results obtained applying the proposed methodology to extract pricing
rules and optimal prices for a specific category of a supermarket chain. First, we describe
the data available and some descriptive statistics about prices and demand of the category
analyzed. Then we apply the methodology and we extract different types of order and per-
formance rules. We evaluate characteristics of them and their generalization capability into
a test dataset. Finally, we apply sensitivity analysis of the optimization results conditioned
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to threshold parameters and also evaluating robustness for the optimal solution obtained.

1.4.1 Data description summary

Our approach uses aggregated sale data which is easy available for most of retailers. To
illustrate that we apply the methodology to a supermarket transactional database provided
by Dunnuhumby1. The total database has information about 79 different stores during three
years (156 weeks). We focus our analysis on the Pretzels category and a single store, but can
be easily extended to more stores. The database contains also information about unit sales,
household visits, aggregated at weekly and store level. It also includes information about
temporary price discounts and promotions.

SKU ID Product Description Share Normalized price per unit
Mean Min Max

1111009477 PL MINI TWIST PRETZELS 16.5% 0.10 0.08 0.11
1111009497 PL PRETZEL STICKS 13.9% 0.10 0.08 0.11
1111009507 PL TWIST PRETZELS 5.3% 0.10 0.08 0.11
2840002333 RLDGLD BRAIDED HONEY WHT 6.7% 0.29 0.20 0.33
2840004768 RLDGLD TINY TWISTS PRTZL 5.4% 0.18 0.12 0.21
2840004770 RLDGLD PRETZEL STICKS 3.5% 0.18 0.12 0.21
7027312504 SHURGD PRETZEL RODS 6.4% 0.15 0.12 0.19
7027316204 SHURGD MINI PRETZELS 5.8% 0.11 0.08 0.13
7027316404 SHURGD PRETZEL STICKS 5.9% 0.11 0.09 0.14
7110410455 MKSL MINI TWIST PRETZELS 2.2% 0.14 0.13 0.17
7110410470 MKSL DUTCH PRETZELS 1.7% 0.14 0.12 0.17
7110410471 MKSL PRETZEL STICKS 1.7% 0.14 0.13 0.17
7797502248 SNYDR PRETZEL RODS 9.7% 0.24 0.15 0.25
7797508004 SNYDR SOURDOUGH NIBBLERS 8.5% 0.18 0.15 0.21
7797508006 SNYDR FF MINI PRETZELS 6.9% 0.18 0.15 0.21

Table 1.4: Descriptive statistics of Pretzels product category.

Using this information we calibrate different demand models in order to estimate price
elasticity for each product of the category.

1.4.2 Extracted pricing rules

The apriori algorithm searches for relevant rules in terms of support, confidence and lift. To
do that, we apply some thresholds to select interesting rules. First, we want some minimum
support to obtain reliable and significant relationships between prices and category profit.
To do so, we will discard rules that happen less than 5% of the total time. The second filter
we apply is for the profit lift. We want pricing scenarios that improve the category profit by
at least a certain threshold. An example of selected and non-selected rules are described in
table 1.5.

1https://www.dunnhumby.com/careers/engineering/sourcefiles
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Each row represents a rule related to the difference in price comparing a specific pair of
products. βL is the price cut value in the domain of price difference where the rule will be
evaluated. With this value, the continuous variable (price difference) is transformed into a
price event (whether the price difference is greater than the cutting point βL has happened
or not). Support measures the percentage of weeks where the pricing rule happens, in this
case 95% of the weeks in the calibration set. The fourth column reports the average profit
of the category when the pricing rule happens. Lift represents the times the profit increase
compared with the overall profit. The last column shows which rules were selected or not
depending on whether the value of lift is greater than the threshold set. For this base case
scenario the lift threshold was 1.02.

Table 1.6 shows the number of performance rules evaluated and selected for each type
(sum, individual and pair comparison between prices). We also report the average profit of
the rule.

For example, the fourth row in table 1.5 describes the difference in price between products
’2840004770 - (RLDGLD PRETZEL STICKS)’ and ’7027316404 - (SHURGD PRETZEL
STICKS)’, comparing two brands of pretzel sticks. The rule evaluated is the difference of
this two products is greater than 0.1 (βL). This rule happens in 95% of the weeks analyzed.
The overall category profit when the rule happened was 35.09, and it is 25% greater than
the average weekly profit observed in the transaction database.

Pricing rules not only help the pricing optimization to get a more robust solution, but
also provide meaningful information about product features and comparison between them.
Using the same example, it is providing information that there is a good profit scenario when
the subtraction between RLDGLD PRETZEL STICKS and SHURGD PRETZEL STICKS
prices, is greater than 0.1. This rule gives intuition about brand preferences and up selling
patterns that can lead to improve profit scenario.

One important question to answer related to the pricing rules extracted is about the
generalization capacity to find the same structure between prices and profit performance, in
other datasets, stores or time frames. To evaluate this we calculate the average profit for the
performance rules selected in a train dataset based of 80% of the weeks and compare it with
the profit in a test set with the 20% remaining weeks. Results are in table 1.7. Performance

Prodi - Prodj βL Sup(Pi − Pj > βL) Π(Pi − Pj > βL) CONF((Pi − Pj > βL → Π ≥ Π) Lift(Π(Pi − Pj > βL)) Selected
1111009497 - 7110410455 -0.02 0.95 46.24 1.00 1.64 1.00
1111009497 - 7110410471 -0.02 0.95 46.24 1.00 1.64 1.00
1111009497 - 7110410470 -0.02 0.95 37.41 0.33 1.33 1.00
2840004770 - 7027316404 0.10 0.95 35.09 0.11 1.25 1.00
2840004770 - 7110410470 0.08 0.95 34.72 1.00 1.23 1.00
7797502248 - 7110410470 0.12 0.95 34.72 1.00 1.23 1.00
7797508004 - 7110410470 0.08 0.95 34.72 1.00 1.23 1.00
1111009477 - 7110410455 -0.02 0.95 34.30 0.11 1.22 1.00
2840004768 - 7797502248 0.00 0.95 22.98 0.02 0.82 0.00
2840004770 - 7797502248 0.00 0.95 22.98 0.02 0.82 0.00
7797508004 - 7797502248 0.01 0.95 22.98 0.02 0.82 0.00
7797508006 - 7797502248 0.01 0.95 22.98 0.02 0.82 0.00
7110410455 - 7797502248 -0.04 0.95 22.87 0.02 0.81 0.00
7110410470 - 7797502248 -0.04 0.95 22.87 0.02 0.81 0.00
7110410471 - 7797502248 -0.04 0.95 22.87 0.02 0.81 0.00

Table 1.5: Selected rules for differences between products
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Performance rules # rules extracted # rules selected % selected Average Profit extracted Average Profit selected
Price Mean 8 2 25% 28.34 31.407

Individual Prices 150 14 9.3% 29.16 30.23
Pairwise difference 2250 78 3.5% 28.05 29.46

Total 2408 94 3.9%

Table 1.6: Descriptive statistics of performance rules selected

rules selected seems to have consistent correlations between prices and category profit, even
in a dataset out of the training set.

Profit mean (est. dev) Train Test % Difference
Selected Performance rules 29.22 (0.79) 30.44 (1.26) 4.16%

All dataset 28.12 (4.95) 28.39 (4.66) 0.96%

Table 1.7: Optimal profit for scenarios considering different sets of Order and Performance Rules.

1.4.3 Pricing Optimization

Now, we use the order and performance rules as constraints for different optimization sce-
narios. First, we describe different demand models used as inputs in the objective function.
Second, we describe and analyze the optimization results obtained using the pricing rules.
Finally, we perform some sensitivity analysis changing threshold parameters.

Demand models to evaluate

To evaluate the impact of using business rules, we need to calibrate a demand model to
include in the objective function. We calibrate a double log weekly aggregated demand to
capture price elasticities. The model and their parameters to estimate will be as follows:

ln(Qi(Pj)) = αi +
∑
j

βijln(Pj) + F eaturei +Displayi + TPRi (1.1)

Where Feature, Display and TPR are dummy variables to indicate if a certain week,
the product i appeared in store circular, a store promotion display, and a temporary price
reduction respectively. This demand function Q(Pi) estimated feed the objective function of
the following optimization problem:

MaxP∈ΩΠ(P ) =
∑

i

(Pi − ci)Qi(P ) (1.2)

Where the feasible space Ω is defined by order and performance pricing rules extracted.

We use three different approaches to estimate the βij cross elasticity matrix:

• Ordinary Least Square - OLS: We use OLS to estimate all the cross elasticity matrix
parameters.
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• Hierchical Bayesian Model - HBM: This model use a pool of information from all the
stores to improve the elasticity estimation of the store analyzed.

• Regularization methods with LASSO regression: We add L1 regularization to OLS
to include only the most relevant elements in the elasticity matrix. We select the λ
parameter using λmin minimizing the cross validation mean square error.

Profit optimization results

Calibrated demand models are the input to estimate the total profit of the product category,
conditioned to a specific set of prices. To find the optimal price vector for this multi-product
setting, maximize the expected total category profit. Table 1.8 shows the optimal profit
results, considering different demand models and different sets of pricing rules used as con-
straints for the optimization problem. We add as a baseline value the average expected profit
obtained for each demand model in the last four weeks of the dataset. We also report the
comparison percentage between this profit baseline and each expected profit obtained for
each optimization scenario.

To select a specific number of selected rules we need to define some thresholds. For order
rules, we choose as initial parameter threshold the [0%-100%] of the domain of observed
prices. This means that the feasible price space will be only in a combination of previous
observed prices. As we already mention, for performance rules we choose a minimum support
as 80% and minimum lift as 1.2.

Thus, we define four scenarios of constraint sets compared in the table. The first two
sets represents order rules, these are constraints to reduce the space only where previous
prices were observed. The second couple of scenarios add performance rules, these are sets
to indicate that the price vector is correlated with a better profit performance than the
average. The first scenario considers 30 pricing rules associated to, lower and upper bound
for individual order rules. The second scenario adds upper and lower bounds for pairwise
differences and also constraints for the observed mean of the category price. This results in
a total of 452 rules. In the third scenario 14 performance rules are added to the global set of
constraints, restricting individual prices depending on the better scenarios of profit observed
in the past weekly category performance. The fourth and last scenario adds performance
rules constraining the difference between products and also the total price average of the
product category. The total number of constraints or pricing rules for each is also reported.

There are important findings comparing the optimal profit results for each scenario. Let’s
focus first on the optimal results using the OLS method. As it can noticed the optimized
expected profit is far better than actual values represented in the baseline. It seems very
unlikely to have this kind of improvement in profit as a result of the price optimization policy.
This result is even constrained using only prices that have been previously observed. This
is a good example of the hard work that pricing managers have in practice obtaining results
weekly, mainly because of the uncertainty related to the estimation of elasticity matrix, and
thus, the expected profit. The results have exactly the same problems for different estimation
procedures (Hierarchical Bayesian Modelling and L1 regularization). Even though these
alternative methods reduce the uncertainty compared with the OLS and get expected profit
in the right direction, the incremental percentage of profit is still far from real values, getting
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unreliable profit and optimal price results.

Looking back the OLS column, the second scenario including all the order rules (mean
and pairwise product difference rules) shows an important reduction in the optimal profit
obtained. The optimal solution for this scenario is 51.5% better than the previous profit
obtained. This result means that the addition of 422 rules are constraining the optimal price
solution and getting a more robust solution. Nevertheless, the distance with real profit values
of the baseline gives us some intuition that the solution is not sufficiently robust and is using
unreliable elasticity parameters in order to get an unrealistic profit solution, even in this
constrained price space.

The third scenario evaluated includes 14 performance rules for individual prices added
to the previous set. These few rules get a tighter solution reducing the gap with respect
the baseline to only 33.2%. The last scenario includes the previous constraints plus 79 new
performance rules for category price mean and difference between products. This reduces
the gap obtaining a more realistic and reliable solution for the product category profit. More
robust solutions are obtained using Hierarchical Bayes Modeling and L1 regression. The gap
is only 5% with respect the baseline of last profit values.

Robustness analysis

One of the capabilities of using pricing rules as constraints in the price optimization problem is
to obtain a more reliable and robust solution, even when the elasticity matrix parameters are
not well estimated. To evaluate that we will conduct a simulation optimizing different pricing
problems considering different elasticity matrices. We will sample the elasticity matrices using
a multivariate normal distribution considering the mean and the variance-covariance matrix
estimated with the OLS model (both OLS matrices are included in the appendix). For each
draw of the elasticity matrix, we will conduct a price optimization considering four scenarios
of pricing constraints:

• Prod[0-100]: Individual order rules using from 0% to 100% the domain of previous
prices
• Initial Price box: rules for individual prices considering a lower and upper bound at

Scenarios #Rules OLS HBM LASSO
Average last 4 weeks (baseline) 31.26 27.41 31.47

Order Rules

(+) Individual Prices 30 199222.4 160.782 204.564
(>1000%) (486,6%) (550.0%)

(+) Individual Prices, Pairwise Differences and Mean 452 64.48 47.75 46.5
(51.5%) (42.6%) (32.3%)

Performance Rules

(+) Individual Prices 466 46.78 35.47 37.64
(33.2%) (22.7%) (16.4%)

(+) Individual Prices, Pairwise Differences and Mean 545 40.15 32.89 34.58
(22.1%) (16.7%) (9.0%)

Table 1.8: Optimal profit for scenarios considering different sets of Order and Performance Rules.
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30% of increase or decrease from the last value registered for the category.
• All-order: Consider the set of 452 order rules for individual, pairwise difference and

price mean.
• All-rules: Consider the set of 545 order and performance rules for individual, pairwise

difference and price mean.

Figure 1.5 reports box plot charts of percentage deviation of each optimal price obtained
from each elasticity matrix sampled, compared with the optimal price from the original
solution with no variance. The idea is to measure how the uncertainty in the elasticity
parameters change the optimal solution obtained. We perform this analysis for the OLS
estimation procedure. The individual price report is included in the appendix, as well as the
results using HBM.

Figure 1.5: Normalized price solutions using different set of constraints. OLS Model

As the reader can notice the interquartile distance of the optimal prices distribution is con-
siderable. Price variations are exceeding the 20% ranges, even for the first three constrained
scenarios using some variation of order rules. When the constraint set includes performance
rules, the deviation is reduced considerably giving a robust optimal price solution. This is
an important contribution from pricing rules, especially the performance rules set. They
constrain the problem giving a robust price solution, even for different values of the elasticity
matrix.

Worst case scenario: Minimizing Performance

Another valuable results of including data driven pricing rules to profit category optimization
is that they allow to avoid bad pricing decisions that practitioners can take in a myopic way.
One of the problems to avoid in pricing decisions are the cannibalization of category profit, as
we mention in 1.1. Pricing rules also can work as cutting planes to avoid this bad performance
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price space and cannibalization scenarios. To explore the worst result we won’t evaluate the
maximization of category profit, but rather the minimization of the profit. This result will
be the worst possible solution of profit performance, for a constraint set and price space
given. We can compare the minimum profit obtained with and without the pricing rules
to understand the contribution of using this data driven set of constraints. Results are in
table 1.9. We include the maximizing results already presented in table 1.8 as a contrast to
compare.

Pricing Rules Scenarios #Rules OLS-Max (Profit Opt) OLS-Min (Worst Case Scenario)
Last 4 weeks (baseline) 31.26 (Avg) 26.38 (Min)

Order Rules

(+) Individual Prices 30 199222.4 3.36
(>1000%) (-87.2%)

(+) Individual Prices, Pairwise Differences and Mean 452 64.48 17.5
(51.5%) (-33.7%)

Performance Rules

(+) Individual Prices 466 46.78 27.45
(33.2%) (4.0%)

(+) Individual Prices, Pairwise Differences and Mean 545 40.15 28.2
(22.1%) (6.8%)

Table 1.9: Evaluating worst case scenario minimizing profit, considering different set of pricing
rules.

It is clear in the table how the use of order and performance rules reduces the feasible
price space improving the minimum category profit obtained. It is interesting to see that the
minimum profit solution using all order and performance rules has a better profit solution
than the minimum profit obtained in the last four weeks (6.8% better). This result gives
the intuition that in the last weeks of the pricing solution there were some specific prices
with bad performance reducing profit of other substitute products. If pricing rules have been
applied just as a control for actual pricing decisions, expected profit would be higher, without
using any optimization tool. This is an interesting side benefit of pricing rules. They can
work as control and check of feasibility of actual pricing decisions. It is not a must to use
optimization tools to get profit from the application of these data driven pricing rules.

Threshold sensitivity analysis

It is interesting to analyze how the threshold parameters (minimum lift to select performance
rules and price domain for order rules), can constrain or relax the final optimal solution
obtained in the price optimization problem. To do that, we evaluated different scenarios
of price optimization using different sets of pricing rules considering the OLS estimation
procedure for elasticities.

Table 1.10 shows different optimization results considering two directions of changes in
pricing rule thresholds. First, order rules change with the percentage of the original price
domain observed constraining the original space ([0%-100%]) in two other more restricted
spaces ([5%-95%] and [25%-75%]). Second, we also apply a different threshold to select less
or more performance rules depending on their lift value. We add a more constrained scenario
(Lift > 1.1) and a more relaxed scenario (Lift > 1.0), compared the original one (Lift > 1.02).

The results in table 1.10 show how the optimal profit is more constrained when more

22



Price constraint set # rules

Order scenario
1: Price domain

[0%-100%]

Order scenario
2: Price domain

[5%-95%]

Order scenario
3: Price domain

[25%-75%]
Base
performance
scenario: Lift >
1.02

Individual Order rules 30 19222.4 17980.61 288.966
All Order rules 452 64.48 44.69 33.32

Ind Performance rules 466 46.78 40.58 28.79
All perf & order rules 545 40.15 (*) 35.38 INFEASIBLE

Constr perfor.
scenario 1: Lift
> 1.1

Individual Order rules 30 19222.4 17980.61 288.966
All Order rules 452 64.48 44.69 33.32

Ind Performance rules 459 54.18 42.00 30.46
All perf & order rules 477 35.89 (*) 35.79 INFEASIBLE

Unconstr
Performance
Scenario: Lift >
1.0

Individual Order rules 30 19222.4 17980.61 288.966
All Order rules 452 64.48 44.69 33.32

Ind Performance rules 469 45.82 42.05 (*) 32.3
All perf & order rules 612 36.001 35.89 (*) INFEASIBLE

Table 1.10: Optimal profit results considering different constraint sets using different thresholds
for pricing rules.

pricing rules are applied. It seems that constraining the price domain space using a tight
scenario of order rules, reduces more dramatically the optimal profit. This result is to some
extend expected given that the performance rules we are adding to the constraint set have
lower lift. This means that they are probably not active constraints in the final optimal
solution because they don’t lead to better profit scenarios than previous constraints with
more lift.

1.5 Conclusions

This project entails the development of a novel data driven methodology to extract rules from
transactional data, to get more robust solutions to the multi-product price optimization
setting. The methodology proposed explores the transactional data of product category
demand and prices to extract two different types of rules: order rules to formalize how prices
have been decided in the past, and performance rules to indicate conditions that lead, on
average, to better profit solutions.

We use the pricing rule set as constraints for the pricing optimization problem. To es-
timate the category profit conditioned to price decision, a double log demand model was
calibrated using three different elasticity matrix estimation procedures (OLS, HBM and L1
regularization). When only order rules are applied as constraints, the profit solution obtained
is still far from the actual values, giving intuition of an unrealistic solution and improving
profit using uncertainty in the estimation of the elasticity matrix in the objective function.
When both performance and order rules are applied, the solution is close to the previous
values of profit. More robust estimations such as with the Hierarchical Bayesian Model and
L1 regularization results in improvements of 16.7% and 9.0% respectively.

There is an additional value of pricing rules for practitioners and managers that is the
interpretability. Order rules works as a structured method to recover previous managerial
decision making about price categories. It is a way to extract from data what managers
consistently decided in the past for the category price vector. We think that there is an
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important implicit knowledge hidden in previous decisions. For example, that a certain
premium brand is consistently more expensive than the private label brand. Or bigger formats
charge cheaper per size than smaller formats of the same brand. This kind of knowledge is
extracted and converted into explicit knowledge in order pricing rules.

In the same way, performance rules give a structured way to understand where good profit
scenarios are located in the price space solution. More than a cross elasticity term, it gives
intuition about what happens with the expected profit if a certain distance in prices for a
couple of products is decided upon.

The implementation of pricing rules also seems to be easier. For traditional SQL database
servers, applying pricing rules as queries seems very practical to understand if a specific
alternative price vector is feasible or not, and also evaluate what-if scenarios if some prices
do not respect a specific rule. Using the methodology proposed, it is easy and fast to extract
thousands of pricing rules, sort them to select the most relevant and valuable rules to apply
in a certain category.

Pricing rules are built analyzing a database with millions of transactions comparing cate-
gory performance for different historical pricing scenarios. In that sense, the most important
contribution of this methodology is that pricing rules extracted provide a robust solution
to price optimization based on historical performance of different pricing policies and their
impact in the category demand.

1.5.1 Limitations and Future Work

This methodology provides a fast and robust approach to get reliable solutions for multi-
product price optimization. There are some limitations and alternative approaches that are
interesting to discuss.

There are some extensions we can do to the multi-product price optimization setting. The
demand model and the definition of the price category can be modified adding other inter-
esting controls and decision variables. For example, if we would have available information
about past prices of competitors we can add this information not only into the cross elasticity
matrix, but also into the pricing rules extracted. For example we can create rules about the
correlation between our category performance and a specific popular product price of the
competitor store. Using the same approach we can understand how a specific distance of a
product of our portfolio and the competitor price, can affect our product performance.

Another way to extend the actual model is to include in the price optimization (and also
into the constraints), all the information regarding promotions, extending the setting to a
price and promotion optimization. The data analyzed includes information about in store
promotional display, application of special shelf tag prices or if the product was included in
the retail catalog. We can use our methodology to extend the pricing rules to promotional
rules to correlate promotional actions and profit scenarios. Also, we can extract rules and
understand how a mix of actions (price reduction and product catalog) can affect demand
and therefore category profit. These rules can improve the robustness of the pricing and
promotion optimization results.
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Our pricing rule setting is applied to a specific problem in the supermarket industry
to define prices for a multi-product category considering substitution and complementarity
patterns between products. This setting can be extended to similar problems in the retail
industry considering other kind of substitutions between products. For example we can
extract pricing rules to constrain the dynamic pricing problem in the fashion goods categories
where seasonality and timing is one of the most important variables to explain the demand
and results. In the same way as we did with consumer goods, we can extract rules and
understand how the price distance between weeks can affect the demand and the overall
performance.

As a summary, in this research we analyzed transactional data to identify what business
rules have been consistently applied before and evaluate which ones are associated to better
business performance. Based on these pricing rules, we build a data-driven set of feasible
prices and combine it with standard price optimization routines to understand how this
information can complement the traditional econometric analysis of the demand. This novel
approach for pricing optimization is easy to implement and not only provides managers with
a reliable automatic mechanism to decide about prices of multiple products, but also enables
more consistent decisions.

25



Chapter 2

Analyzing Shopping Behavior Using
LDA in Transactional Data

2.1 Introduction

Retailers face the challenge of making frequent decisions for a large numbers of products.
For example, retailers have to make frequent decisions about promotions, prices, replenish-
ment, layout and assortment. Category management is a popular approach to deal with
this complex problem (Nielsen, 1998). It separates the product portfolio and their decisions
into independent and isolated business units, trying to replicate the concept of divide and
conquer ("divide et impera"). This popular approach implicitly makes strong assumptions
because it considers categories as fully independent from each other. This also implies that
an important problem is how to partition the set of products offered by a retailer into product
categories.

Going beyond the limitations of category management requires us to evaluate how product
categories are related to each other. One approach for understanding these interrelationships
is to use transactional data. It is clear that an important fraction of supermarket transactions
include products from more than a single product category.

At the same time, shoppers can have different motivations to buy and make a trip to
a retail store. For example, some customers make monthly grocery re-stocking purchases
of groceries. Other motivations include buying fresh products for immediate consumption
(Walters and Jamil, 2003). These different drivers for creating supermarket transactions
are called "shopping trip missions" or "motivations" (ECR-Europe, 2011). Each of these
motivations is associated with a different set for product categories, so studying the joint
incidence of product purchases can give us an opportunity to uncover these latent drivers of
shopping trips.

Knowledge and prediction of these shopping trip motivations should help retailers to make
better decisions for each product category. For example, retailers could implement targeted
marketing actions and promotions based on the predicted shopping trip motivations for each
customer. Consequently, our research is focused on detecting shopping trip motivations and
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then using this information to predict consumer behavior.

The marketing literature offers some approaches to measure category interrelationships
and detect shopping motivations behind transactions. One approach is by Manchanda et al.
(1999) using Multivariate Probit models, who analyze a small number of product categories.
Other methods rely on distance metrics such as K-means (Sarantopoulos et al., 2016) or mul-
tidimensional scaling (Musalem et al., 2018) in order to detect clusters of product categories.

Multidimensionality is a problem for most of these methods. A typical retailer has
more than 400 product categories so it somewhat restrictive to reduce the analysis of inter-
dependencies across categories to a Cartesian distance or make comparison of categories only
pairwise, without explicitly modeling the overall distribution of joint purchase.

Another important element to consider is the probabilistic assignment of a specific trans-
action to a particular purchase motivation. With distance-based models it is not obvious how
to estimate these membership probabilities. Instead, it would be useful to rely on statistical
theory to estimate the assignment of transactions to purchase motivations. Similarly, we are
also interested in using statistical theory based methods to related product categories and
shopping motivations.

This essay presents a machine learning approach to study interrelationships among product
categories and to detect latent shopping trip motivations. Machine learning has experienced
a major growth in research and applications in the last years. Specifically in retailing, there
are many opportunities to use the vast information generated in transactions and loyalty
clubs to calibrate different supervised and unsupervised models (Bradlow et al., 2017). In
particular, we propose both supervised and unsupervised methods to model the interrela-
tionship among product categories. We rely on Latent Dirichlet Allocation (LDA) created
by Blei et al. (2003), which has been widely used in text mining to extract topics from
documents, measuring the probability of co-occurrence of words. In our retail context, we
will extract latent shopping motivations instead of latent text topics, analyzing relationships
among product categories, instead of words, in a transaction instead of a document database.
Table 2.1 represents the transformation from one problem to another.

LDA for text analysis Words Documents Text Topics
⇓ ⇓ ⇓ ⇓

LDA for transactional analysis Products Transactions Shopping motivations

Table 2.1: Relation between traditional LDA used for text analysis and LDA for transactional
analysis

The contribution of this research is then to apply LDA in a retailing setting, modifying
the basic model to achieve three different goals as follows. First, a standard LDA model will
be used to detect and describe shopping motivations. Second, the basic LDA model will be
extended to jointly estimate the latent shopping motivations and the relationship between
these motivations and basket size using a supervised approach. Finally, the LDA model
will be generalized to allow purchase motivations to depend on customer and shopping trip
characteristics.

The rest of this essay is organized as follows. First, we review the relevant literature,
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particularly in terms of articles related to the detection of shopping trip motivations, machine
learning and LDA, and latent models used in transactional settings. Second we describe how
the basic LDA framework is extended to model shopping trip motivations, purchase incidence
within each product category and purchase amount. We apply these latent models using a
Bayesian framework calibrated with transactional data from a US supermarket chain. Finally,
we compare the results, insights and limitations of the proposed methods.

2.2 Related Research

In this section we review the relevant literature for this paper. First, we discuss research
about shopping trip motivations and analytical methods to estimate these motivations from
transactional data. Second, the review focuses on the LDA and some applications in mar-
keting. Finally, this review describes in detail some applications of LDA with transactional
data.

2.2.1 Shopping trip motivations

Kollat and Willett (1967) is one of the first articles about shopping motivations. They used
surveys to uncover shopping trip motivations. Buying motivations were primarily related to
buying products that the customer forgot to purchase in previous period or products for which
the customer ran out of inventory at home. Kahn and Schmittlein (1989) analyzed panel data
and classified shopping motivations into quick and regular trips, describing them in terms of
their basket size, frequency and purchase amount, among other features. Walters and Jamil
(2003) use surveys to study how different metrics of consumer behavior (e.g., the number
of promotions they are searching, the profitability of the shopping basket and store choice)
depend on the purchase motivations. This study detects three types of motivations: weekly
grocery shopping, replenishment, and special purchases motivated by specific categories or
promotions. Bell et al. (2011) focus their research how unplanned category purchase depends
on the shopping trip goals. They classified shopping motivations as concrete type (to take
advantage of specific promotions) or as abstract type (to fill up on weekly needs).

Most of the traditional research about shopping trip motivations infers them applying
questionnaires. However, to detect interrelationships between product categories and the
latent drivers that produce these shopping trips it is also useful to consider data approaches
based on transactional data.

In particular, the traditional approach to discover interactions between categories is based
on econometric modeling and, more specifically, discrete choice models that rely on random
utility theory. Manchanda et al. (1999) analyzed cross category effect using a multivariate
probit model. This article focuses on detecting and measuring different source of cross-
category effects: cross-price elasticities across categories leading to either complementarity
or substitution between two categories; other non-price interrelationships among categories.
Increasing the scope of categories analyzed, Russell and Petersen (2000) studies cross-category
effects calibrating a multinomial logit model based on supermarket transactions. Both models
are computationally expensive and would face an important challenge if they were escalated
to the complete assortment of categories of a retailer.
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An more scalable approach to estimate relationships between categories, is based on clus-
tering techniques. Sarantopoulos et al. (2016) detects shopping missions using K-means. It
uncovers seven different clusters with different proportions depending on store format. A sim-
ilar work is done by Griva et al. (2018) generating a customer visit segmentation estimating
ten different clusters for shopping missions. One of the challenges of using K-means is that
its results come from a heuristic method providing only a local minimum solution depending
on the starting point. There is no guarantee of a global minimum solution. Also, in high
dimensional spaces, such as the multi-category problem we are facing, there is an important
issue of using euclidean distance. As the number of dimensions (i.e., product categories) in-
crease, the sparsity of the space also increases reducing the relative difference in the distances
between pairs of observations (curse of dimensionality) Beyer et al. (1999). Other approaches
to study interrelationships between product categories include models based on distance met-
rics. For example, Videla-Cavieres and Rios (2014) use market basket analysis and graph
mining techniques to uncover groups of product categories. In a similar way, Musalem et al.
(2018) uses multidimensional scaling to map, and clustering, to uncover and describe shop-
ping motivations. This work detects four different motivations: groceries, hygiene products,
fresh and immediate consumption products, and hedonic products.

2.2.2 Latent Dirichlet Allocation (LDA) and Marketing Applica-
tions

As mentioned in the introduction, this paper uses LDA to model latent shopping motivations.
In this subsection, we briefly introduce the basic LDA model (Blei et al. (2003)) and review
applications in marketing. This method, originally developed for text mining, detects latent
topics in a document by focusing on the co-occurrence of words in a set of documents.

Latent Dirichlet Allocation model considers every document as a collection of words. Each
word belongs to a certain topic with a given probability. Conditioning on a specific topic,
some values for a word are more probable than others. Hence, each document contains a
mixture of topics and the presence of each word in the document depends on these topics.

Previous research has used LDA for a variety of applications such as linguistics, political
science, biomedicine, geography, software engineering, social networks, crime prediction and
marketing (Jelodar et al., 2019). Focusing on this last field, Tirunillai and Tellis (2014)
uses LDA to extract latent dimensions of product quality from different product reviews.
Christidis and Mentzas (2013) builds a product recommendation system based on topics
estimated by LDA. Büschken and Allenby (2016) uses an extension of the LDA model to
extract topics from text restaurants and hotel reviews, in order to predict consumer ratings.
Schröder et al. (2019) use LDA to create web usage profiles from Internet browsing histories
and purchases, and then use these profiles to perform a customer segmentation via K-means.
For a recent survey of LDA applications in Marketing see Reisenbichler and Reutterer (2019).

One possible disadvantage of the LDA model is its inability to model correlations among
topics. The proportion of one topic cannot be correlated with another topic because the use
of the Dirichlet prior. To address this drawback, Blei and Lafferty (2006) proposed the use
of CTM (Correlated Topic Modeling), which is similar to LDA but requires more parameters
to explicitly consider correlations among topics.
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2.2.3 Transactional applications using LDA

In terms of of LDA applied to retail transactions, Hruschka (2014) translates LDA for text
mining setting to extract consumer profile from supermarket data. This paper extracts
latent shopping motivations instead of text topics, analyzing relationships among product
categories, instead of words, in a transaction database instead of a set of documents. Its
particular application to a supermarket data finds ten different topics, and then uses these
topics to generate product recommendations for some specific baskets.

Jacobs et al. (2016) use LDA to predict product demand for SKUs with low purchase
frequency. To do that, they propose an extension of LDA using a hierarchical approach that
accommodates demographic characteristics in the probabilities of topics. They calibrate this
LDA model aggregating the information of all shopping trips for each customer.

An important difference of our work with respect to Jacobs et al. (2016) is that our
approach individually models each shopping trip from each customer. This allows us to
consider that the same customer can have different motivations across different shopping
trips.

This is important because the same customer, or customer with same demographics, can
have different shopping trip motivations depending on certain features of a shopping occasion
(e.g., time of the day). For example, a customer making a shopping trip on a Friday night,
might be more likely to have a hedonic shopping motivation compared with a transaction on
a Sunday afternoon, where the customer might be more likely to visit the store to replenish
her stock of groceries at home.

Our analysis can also accommodate dynamic behavior, including dependency among trips
for the same customer. For example, recency information such as the time since the last
shopping trip or the mix of latent motivations of the last shopping trip. If a customer made
its last grocery shopping only a couple of days ago, the probability that a new transaction
might once again be characterized by a grocery shopping motivations might be lower. With
these examples we suggest it is valuable to consider an analysis at a transaction as opposed
to a customer level.

One more difference between our approach and the existing literature is that we will
proposed a supervised version of the LDA model to model the relationship between shopping
trip motivations and variables of interest related to the shopping trip, such as basket size.

2.3 Methodology
This section details the LDA models formulated to analyze shopping behavior from transac-
tional data. In particular, this essay will accomplish three key goals related to shopping trip
motivations:

• Use traditional LDA models to estimate and describe shopping trip motivations from
a supermarket transaction database.
• Model and explain shopping basket characteristics of interest (e.g., purchase amount)

as a function of the latent purchase motivations.
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• Relate purchase motivations to customer and shopping trip characteristics.

2.3.1 LDA for detecting shopping trip motivations

As we mentioned in the previous section, under an LDA model, every document is a collection
of words, where each word belongs to a certain topic with a given probability. Conditioning
on a specific topic, some values for a word are more probable than others. Figure 2.1 describes
the model and its parameters. We use the following notation: M is the number of documents,
N the total word instances in a document, K is the number of latent topics and V represents
the set of words available or dictionary. In addition, the LDA model uses two prior hyper
parameters, α and β, to specify Dirichlet distributions. The data generation process is as
follows:

• Sample Φkv ∼ Dir(β), where Φkv represents the probability of word v if the latent topic
is k.
• For each document m, sample θm ∼ Dir(α), where θmk represents the probability of

latent topic k = 1, .., K within document m.
• For each word instance n = 1, .., N in document m:

– Sample Topic Znm ∼Multinom(θm)
– Sample word from dictionary conditional on the topic for the word instance
Wnm ∼Multinom(Φk|Znm)

Figure 2.1: Model description and parameters used in Latent Dirichlet Allocation (Blei et al.,
2003)

LDA estimates topic probabilistic distributions in a parsimonious manner, from word
co-occurrence patterns observed across different documents. In our retail application, we
will extract latent shopping motivations instead of latent text topics, analyzing relationships
among product categories, instead of words. The LDAmodel will use a transactional database
as an input specifying the the product categories purchased in each transaction. Note that in
a retailing context, the interpretation of the output matrices of LDA has a differing meaning
compared to text analysis. First, θmk represents the probability of latent shopping motivation
k for transaction m. Φkv represents the probability of product category v under latent
shopping motivation k.

Another model parameter that merits discussion is α, which is a vector of size K that
controls the Dirichlet distribution for θmk, i.e. the probability of latent motivation k for
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transaction m. Typically, researchers choose symmetric values for this vector, such as 1/K.
Figure 2.2 shows how different alpha values produces different results for θmk sampling.

Figure 2.2: Variation of θmk sampling using different values of Alpha hyper-parameter of Dirichlet
distribution. Source: (https://tinyurl.com/slhvr2o)

There are two main effects of the value of α on the resulting LDA model. First, the scale
of the sum of the elements affects the fuzziness of the θmk output matrix. If all values of
α are greater, the values of θmk for the same transaction m become more similar, which is
consistent with each transaction containing a more even mix of purchase motivations. If,
however, α is close to zero, the θmk probabilities become more extreme, which is consistent
with each transaction being associated with a single purchase motivation. The second effect
is related to the relative magnitude of the different components of α. The greater the value
of a component, the greater the probability for that motivation, compared with the others.

In the estimation of our LDA model, α won’t be fixed to a specific value, but instead it
will be estimated from the data. Details about the estimation code used can be found in the
Appendix.

Another relevant parameter is the number K of topics or shopping motivations to be
extracted from the analysis. There is an important trade-off between complexity of the
solution and capability to fit the data. A higher K will yield a more complex solution with
more parameters to be estimated (K*(M+D+α)). Deveaud et al. (2014) propose a method
to determine the optimal number of topics maximizing an information divergence criterion.

2.3.2 Supervised LDA for modeling shopping basket characteristics
of interest

The second model implemented uses LDA motivations as a data embedding of the multi cate-
gory information, in order to build a supervised LDA model for any feature of interest related
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to the shopping basket (e.g., purchase amount). Accordingly, we formulate a linear model of
the variable of interest with the motivation probabilities θmk as independent variables. We
define the following additional notation:

• Yct shopping basket characteristic of interest for transaction t for customer c. This
variable is mean-centered to facilitate the estimation of the model parameters.
• ρk the importance of shopping motivation k as a predictor of Yct.
• σ the estimator of the standard deviation of the residuals of Yct.

With these definitions, we add the following modeling assumption to the basic LDA spec-
ification: Yct ∼ N (ρkθmk, σ

2).

In terms of the possible variables of interest, we can for example consider the number
of product categories purchase or the contribution margin of the transaction. Our research
will focus on using LDA to predict purchase amount. This KPI is relevant for the design
of targeted promotional campaigns (1:1 marketing). If the retailer can anticipate and esti-
mate the purchase amount of a particular transaction, they can focus different marketing
actions depending on that prediction. For example, the retailer can recommend products to
a customer with the goal of increasing basket size.

For identification purposes we will normalize ρ1 to zero. Thus, when predicting the variable
of interest, ρk needs to be interpreted in relation to the first motivation.

2.3.3 Hierarchical LDA for predicting shopping trip motivation

The objective of the third model is to model shopping trip motivations as a function of
customer and shopping trip information. In the basic LDA model, the purchase motiva-
tion probabilities θm for all documents are drawn from the same Dirichlet distribution with
parameter α. In the hierarchical model in this subsection, the purchase motivation proba-
bilities for each document may change depending on the customer characteristics and other
variables. This is similar to Jacobs et al. (2016), although in our application we model each
trip separately so the purchase motivation probabilities for the same customer may differ
across shopping trips.

Consider the following notation:

• D is the number of covariables used to predict shopping trip motivations.
• Xctd is the value of covariate d for customer c in shopping trip t.
• δdk is the coefficient of covariate d for estimating the probability of purchase motivation
k.
• αctk is a Dirichlet parameter for predicting the probability of purchase motivation k

for customer c during trip t. This parameter is in turn specified as follows: αctk =

λ
exp(

D∑
d=1

Xctdδdk)

K∑
k=1

exp(
D∑

d=1
Xctdδdk)

, where λ is a scaling factor to modulate the magnitude of the sum of

all the components of α.

In our setting, predictors of purchase motivations can be obtained from loyalty club in-
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formation. For example, we can include customer demographics such as age, gender, family
characteristics, income and occupation.

All these models described in this section were estimated using Bayesian methods and
were coded in Stan. Details about the codes implemented can be found in the Appendix.

2.4 Empirical Application
We apply the proposed methodology to a supermarket transactional database provided by
Dunnuhumby1. In the remainder of this section we present summary statistics of the data
and then present the results of three alternative LDA models.

2.4.1 Data descriptive summary

LDA models will be calibrated using a sample observations in terms of customers, periods
and products. Descriptive statistics are provided in the next table comparing the full data
set and the sample we used. We note that the average basket size, both in dollar value and
number of products is similar across the two columns.

Full Sample Subsample
Transactions 139,876 1,295
Households 801 50

Weeks 102 24
Stores 354 79

Categories 308 36
Products 67,904 949

Average amount spent ($) (st dev) 32.15 (38.32) 29.13 (36.31)
Average number of prod per ticket (st dev) 10.12 (13.03) 9.37 (12.65)

Table 2.2: Summary descriptive statistics for the transactional data set.

We note that the product hierarchy has four levels. At the more disaggregate level there
are 67,904 stock keeping units (SKUs), which belong to 2,883 product subcategories. These
subcategories in turn belong to 308 product categories which belong to 44 different depart-
ments. Our analysis will be done at the category level using the 36 most frequently purchased
product categories and a sample of the total transactions considering a panel of 50 customers.
Table 2.2 shows a statistics summary of the sample vs the complete dataset. Table 2.16 in
the Appendix displays for each of the category the fraction of transactions in which they
were purchased and the fraction of the total spending attributed to each category.

2.4.2 LDA to extract shopping trip motivations

We now present the results of applying the basic LDA model to the transactional data set.
One difference with most applications is that rather fixing the values of the α parameter at
a particular constant, we will estimate them from the data. Recall that these relative size

1https://www.dunnhumby.com/careers/engineering/sourcefiles
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of the α components measure the frequency of these motivations in our data. In addition,
the magnitude of these parameters characterizes the degree to which shopping trips are
associated with a single (low values) or multiple motivations (high values). In our application
we consider:

• V = 36 product categories in the product dictionary.

• M = 1, 295 transactions.

• N = 4, 167 product purchases.

• K = 2 purchase motivations

In addition, we set the V = 36 components of the β hyper-parameter to 0.01 and use
a Uniform(0,3) prior distribution for each of the K = 2 components of α. The Bayesian
estimation procedure was implemented running 4 chains for 5,000 iterations each, using the
first half as the warm-up period. Convergence was assessed using the R̂ statistic which
measures the degree to which parallel chains with different starting values have converged to
the same distribution. Values close to 1 of this statistic are consistent with the the Markov
Chain achieving convergence. We note from our results that most of the model parameters
have a value below 1.1 (see Table 2.3).

Min. 1st Qu. Median Mean 3rd Max. Qu.
1.000 1.006 1.012 1.019 1.022 1.656

Table 2.3: R̂ distribution for the basic LDA model parameters.

In terms of the results, we begin by discussing the Φ matrix (see Table 2.17 in the Ap-
pendix), which describes the probability of each product category under each motivation. A
useful approach to interpret this parameter is to identify the most likely product categories
for each shopping motivation. Table 2.4 shows the top ten product categories with higher
probability of purchase under each motivation. From this table, we observe some differences
between the two motivations. Product categories most likely to be purchased under motiva-
tion 1 seem related to hedonic goals or to (almost) ready to eat products. In addition, several
product categories most likely to be purchased under motivation 2 are related to breakfast
consumption.

The second matrix obtained from the basic LDA model is Θ, which indicates the prob-
ability of each motivation being present for each transaction. Table 2.5 shows summary
statistics of the model results, including the posterior mean, standard deviation and R̂ for
the θ parameters for both motivations. The breakfast motivation has on average a 52.5%
probability, while the hedonic motivation has a slightly lower prevalence of 47.4%. These
results are consistent with the estimated values of α (see Table 2.6). Note that the estimated
value for motivation 2 is slightly greater than that of motivation 1. Also, both components
of α are estimated as being significantly greater than one, meaning that the probabilities for
an specific transaction are very fuzzy between motivations. In other words, both motivations
are likely to be present in each transaction.
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Motivation 1:Hedonic φ1 Motivation 2:Breakfast φ2

soft_drinks 16,94% fluid_milk_products 8,14%
bag_snacks 7,32% tropical_fruit 7,80%
fluid_milk_products 7,03% baked_breadbuns 7,38%
candy_-_checklane 6,74% cold_cereal 5,32%
couponmisc_items 6,55% eggs 4,97%
frozen_pizza 5,88% cheese 4,86%
beers_ales 5,52% deli_meats 4,68%
candy_-_packaged 5,47% vegetables_-_shelf_stable 4,46%
lunchmeat 5,24% refrgratd_juicesdrnks 4,25%
ice_creammilksherbts 5,22% canned_juices 4,04%

Table 2.4: Most likely product categories for each purchase motivation using LDA.

Mean_M1 SD_M1 R̂_M1 Mean_M2 SD_M2 R̂_M2
Min 0.1032 0.07658 1.000 0.2084 0.07658 1.000
1st Qu. 0.3941 0.17631 1.006 0.4282 0.17631 1.006
Median 0.4799 0.20361 1.012 0.5201 0.20361 1.012
Mean 0.4743 0.19566 1.017 0.5257 0.19566 1.017
3r Qu. 0.5718 0.22125 1.021 0.6059 0.22125 1.021
Ma 0.7916 0.25118 1.129 0.8968 0.25118 1.129

Table 2.5: Estimation results for θ using LDA.

2.4.3 LDA to predict shopping basket size

The second model we consider corresponds to a supervised LDA model where purchase moti-
vations are used to predict basket size (dollar amount). This LDA model uses as independent
variables, the motivation probabilities for each transaction estimated by the LDA. The model
jointly estimates the purchase motivations and the degree to which they predict basket size.

We apply a log transformation to the basket size to reduce the skewness of the original
distribution. Figure 2.3 shows the histogram and the box plot of the log transformation of
the purchase amount. The estimation of the model for the log of purchase amount is given by
Log(Amount) = ρ1 + ρ2θm2 + ε. Finally, the dependent variable was normalized subtracting
its mean and dividing it by its standard deviation.

Results are based on three parallel chains with 10,000 iterations each. In terms of estima-
tion convergence, Table 2.7 shows summary statistics of the R̂ statistic.

To characterize the estimated motivations, we show in Table 2.8 the ten product categories
most likely to be purchased under each motivation. Detailed results about the Φ parameters
are available in Table 2.18 in the Appendix.

The results are substantially different from the ones obtained with the basic LDA model.
Here the motivations and baskets are more fuzzy. Also motivation 1 includes food products
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Mean SD 2.5% 97.5% R̂
α1 1.71 0.16 1.39 1.96 1.32
α2 1.87 0.10 1.61 2.00 1.03

Table 2.6: Posterior mean and standard deviation for Alpha

Figure 2.3: Histogram and Box Plot for the log of basket size amount

that can consumed with little effort. Motivation 2 includes ethnic and fresh products.

Table 2.9 shows the estimated distribution of the α parameters. The values of both
components are significantly different, representing a bigger prevalence of motivation 1. These
values are consistent with those for θ. The average θ value is estimated at 65.7% and 34.22%
for motivations 1 and 2, respectively. Detailed results for the distribution of θ are shown in
table 2.19 in the Appendix.

We now consider the results for ρ, which measures the association between motivation 2
and the purchase amount of each transaction. Table 2.10 shows the estimation results for this
parameter, where ρ1 is an intercept to predict purchase amount and ρ2 is the coefficient for
the probability of motivation 2. Both parameters are significant at the 95% level. Negative
values of ρ2 indicate an inverse relationship between purchase amount and motivation 2. A
possible explanation about this is that low effort food tends to be expensive leading to bigger
purchase amounts compared with products prevalent for Motivation 2.

In terms of the ability of the model to predict purchase amount, Figure 2.4 shows a
comparison between actual and estimated values of amount spent, which reveals a 97.5%
correlation between both sets of values.

2.4.4 Hierarchical LDA to predict shopping trip motivation

The third model aims to explain and predict shopping motivations as a function of cus-
tomer and shopping trip characteristics. In our dataset we will use five different consumer
characteristics: age, Income, household size. We add two dynamic characteristics related to
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Min. 1st Qu. Median Mean 3rd Qu. Max. Qu.
0.9998 1.0014 1.0035 1.0058 1.0073 1.4599

Table 2.7: R̂ distribution for LDA regression posterior parameters

Motivation 1: Low Effort Food φ1 Motivation 2: Ethnic & Fresh φ2

deli_specialties_(retail_pk) 12.86% hispanic 26.43%
sald_drsng_sndwch_sprd 12.48% baked_sweet_goods 12.06%
crackers_misc_bkd_fd 10.11% deli_specialties_(retail_pk) 7.67%
candy_-_packaged 6.30% baked_bread_buns_ 6.48%
candy_-_checklane 6.21% refrgratd_juices_drnks 4.75%

frozen_pizza 6.19% sald_drsng_sndwch_sprd 3.90%
eggs 5.59% baby_foods 3.69%
beef 5.42% soft_drinks 3.32%

cold_cereal 5.18% candy_-_checklane 3.13%
frzn_meat_meat_dinners 3.92% tropical_fruit 3.12%

Table 2.8: Most likely product categories for each purchase motivation using LDA Regression.

shopping behavior for each customer. In particular we also include the last purchase amount
and recency (i.e., the number of days since the last shopping trip). Descriptive statistics of
these variables are shown in Table 2.11. All these variables were standarized substracting
their means and dividing them by their standard deviations.

The estimation is based on 3 parallel chains with 15,000 iterations each. The distribution
of the R̂ statistic of all the estimated parameters is shown in Table 2.12. Most of the estimated
parameters converged with an R̂ < 1.1.

In terms of the latent purchase motivations detected from the data, estimation results for
the Φ matrix can be found in table 2.20 in the Appendix. The most likely categories for
each motivation are shown in Table 2.13. If we compare this solution with the one obtained
using the basic LDA model, the motivations present some changes in terms of the products.
Although motivation 1 is also related to hedonic products, there are only 4 product categories
among the 10 most likely under motivation 1 for both models. The second motivation is even
more different from the one obtained under the basic LDA model. Only two categories belong
to the ten most likely to be purchased for both models (baked bread and refrigerated Juices).
The products related to this motivation are more diverse and are not as strongly related to
breakfast consumption.

In terms of the prevalence of each motivation, Table 2.14 shows summary statistics of the
posterior mean, standard deviation and R̂ of the θ matrix. As before, both motivations are
approximately equally prevalent. If we compare these values with those obtained under the
basic LDA model, the distribution is more sparse than with the basic LDA solution. Intu-
itively, the covariates allow the motivation probabilities to become more extreme. Therefore,
the values of θ are more extreme compared with the basic LDA approach.

We now discuss the δ parameters, which measure the importance of each transactional
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Mean SD 2.5% 97.5% R̂
α1 2.83 0.14 2.47 3.00 1.02
α2 1.49 0.15 1.23 1.85 1.08

Table 2.9: Posterior mean and distribution for alpha estimation using LDA Regression.

mean sd 2.5% 97.5% R̂
ρ1 1.36 0.10 1.19 1.58 1.05
ρ2 -3.97 0.19 -4.33 -3.59 1.01

Table 2.10: Posterior mean and distribution for ρ estimation using LDA Regression.

characteristic to predict a shopping motivation k. For identification and without loss of
generality we impose that the all the delta values related to the last motivation are equal
to zero. This means that the estimated parameters will describe the relative importance of
transactional characteristics as predictors of the first purchase motivation.

Table 2.15 describes the posterior mean, deviation and R̂ of the values estimated. The
mean estimators for all the five customer characteristics are significantly positive. This im-
plies that greater levels of age, income, household size, recency and last amount are associated
with a greater probability of the hedonic purchase motivation.

2.5 Conclusions

This work uses a Latent Dirichlet Allocation framework to analyze shopping behavior based
on transactional data. In our retail context, we extract latent shopping motivations analyzing
relationships among product categories. The contribution of this research is then to apply
LDA in a retailing setting to achieve three different goals as follows. First, we apply a
standard LDA model to detect and describe shopping motivations. Second, the basic LDA
model is extended to jointly estimate the latent shopping motivations and the relationship
between these motivations and basket size using a supervised approach. Finally, the LDA
model is generalized to allow purchase motivations to depend on customer and shopping trip
characteristics.

We applied this methodology to a supermarket transactional database focusing on 36
different product categories. We extract two shopping motivations. The first motivation is
related to hedonic products that represents 48% of the total purchased products. The second
motivation extracted is related to breakfast product categories accounting for 52% of the
total purchases.

The second model proposed is a supervised LDA approach using the motivation prob-
abilities as independent variables to predict a variable of interest, in our application this
corresponds to the dollar value of the basket. The motivations extracted changed with re-
spect to the motivations obtained in LDA detecting shopping patterns related to Low Effort
Food and Ethnic and Fresh products. The regression of amount spent shows a good fit of
the data using only the motivations extracted with LDA.
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Figure 2.4: Scatter Plot of Real vs Predicted Normalized Log of Basket Amount using LDA
Regression.

Age Income Household Size Recency Last Amount
Min. :22.00 Min. : 7.00 Min. :1.000 Min. : 0.000 Min. : 0.000
1st Qu.:30.00 1st Qu.: 30.00 1st Qu.:1.000 1st Qu.: 1.000 1st Qu.: 6.365
Median :40.00 Median : 62.00 Median :2.000 Median : 2.000 Median : 16.290
Mean :44.72 Mean : 68.73 Mean :2.284 Mean : 3.571 Mean : 27.891
3rd Qu.:50.00 3rd Qu.: 87.00 3rd Qu.:3.000 3rd Qu.: 5.000 3rd Qu.: 34.450
Max. :70.00 Max. :225.00 Max. :5.000 Max. :74.000 Max. :321.190

Table 2.11: Summary statistics for customer variable used to adapt LDA prior

The third model calibrated in this paper allows shopping motivations to depend on cus-
tomer and shopping trip characteristics. In our setting we used age, income, family size,
recency and the last purchase amount. These characteristics are positively associated with
the first motivation (Hedonic products). Motivations extracted were different than results
obtained with LDA. We also note that the distribution of motivation probabilities was more
extreme than in the basic LDA, because of the use of customer demographics.

2.5.1 Limitation and Further Research

There are some limitations about these methods to analyze shopping behavior. We discuss
them and propose further research to extend it.

The Hierarchical LDA used demographic and transactional characteristics of consumers to
adapt the prior hyper parameter and obtain more flexibility to the model. We could improve
this analysis using more sources of transactional and customer information. For example:

• Specific characteristics of the transaction: There is contextual information related to
each transaction that can be useful to improve shopping behavior prediction. For ex-
ample, temporal information about the transaction can be correlated with motivations.
For instance, hedonic shopping motivations might be more likely during Friday nights.
Particular example variables in this sense can be: time of the day, day of the week or
day of the month.
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Min. 1st Qu. Median Mean 3rd Qu. Max. Qu.
0.9999 1.0018 1.0054 1.0131 1.0126 2.073

Table 2.12: Summary statistics for R̂ of posterior mean estimated with hierarchical LDA

Motivation 1 φ1 Motivation 2 φ2

refrgratd_juices_drnks 7,17% frzn_meat_meat_dinners 14,90%
deli_meats 6,42% baked_bread_buns_ 8,12%

candy_-_packaged 6,32% baked_sweet_goods 7,44%
candy_-_checklane 6,16% sald_drsng_sndwch_sprd 5,41%
coupon_misc_items 6,10% bag_snacks 4,62%

beef 6,04% deli_meats 3,84%
frozen_pizza 5,28% candy_-_checklane 3,78%

hispanic 4,86% soup 3,74%
fruit_-_shelf_stable 4,72% hispanic 3,65%

cold_cereal 4,61% _sauces 3,29%

Table 2.13: Top 10 categories for each motivation using Hierarchical LDA.

• Previous motivation preferences per customer: Another relevant source of information
is related to the historical preferences of each customer. In particular, it would be
relevant to store the average probability for each shopping motivation. For example,
if a certain customer historically has more transactions related to healthy products,
it would make sense to use this information to adapt the motivation probability for
following transactions.
• Dynamic customer characteristics: A potentially useful source of information might be

a transactional summary about previous shopping trips in terms of recency, frequency
and monetary value (Bult and Wansbeek, 1995). This information would be useful
to predict the motivations of future shopping baskets. For example, if a customer on
average makes large purchases every 30 days, we may anticipate that in the next 30
days the customer will have a similar motivation. If instead a customer recently made
a large purchase, this also gives information implying that a shopping trip a few days
later are less likely to be again a large groceries replenishment basket.

It is also interesting to note that both extensions of the LDA method tried to predict
shopping behavior (either basket size or shopping trip motivations). One important risk in
the evaluation procedure of these methods is overfitting. This is the risk of over training
machine learning models, fitting very well to the calibrated data, but loosing generalization
capability and under performing in out of sample datasets. It would be useful to evaluate this
prediction in a validation set and compare it with competitive prediction models built from
other machine learning techniques, such as random forests or boosting trees. The benefit
of LDA, is that it yields a parsimonious probability model that is easy to interpret. For
example, we know that Motivation 1 is more important to predict basket size.

Another interesting analysis that could be performed in future research is related to the
source of information used to extract shopping motivations. Some researches use polls or
customer surveys to infer shopping motivations from customers. Our approach estimates
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Mean_M1 SD_M1 R̂_M1 Mean_M2 SD_M2 R̂_M2
Min. :0.04386 Min. :0.06021 Min. :0.9999 Min. :0.1213 Min. :0.06021 Min. :0.9999
1st Qu.:0.34320 1st Qu.:0.24420 1st Qu.:1.0018 1st Qu.:0.3464 1st Qu.:0.24420 1st Qu.:1.0018
Median :0.50776 Median :0.29620 Median :1.0048 Median :0.4922 Median :0.29620 Median :1.0048
Mean :0.49183 Mean :0.28476 Mean :1.0135 Mean :0.5082 Mean :0.28476 Mean :1.0135
3rd Qu.:0.65361 3rd Qu.:0.34633 3rd Qu.:1.0112 3rd Qu.:0.6568 3rd Qu.:0.34633 3rd Qu.:1.0112
Max. :0.87875 Max. :0.36702 Max. :1.3463 Max. :0.9561 Max. :0.36702 Max. :1.3463

Table 2.14: Theta posterior distribution using Hierarchical LDA.

Variable Parameter Mean sd 2.5% 97.5% R̂
Age δ11 0.0889 0.0562 0.0057 0.2204 1.0026

Income δ21 0.0694 0.0487 0.0030 0.1847 1.0036
Household Size δ31 0.0482 0.0358 0.0020 0.1322 1.0131

Recency δ41 0.0385 0.0310 0.0015 0.1149 1.0102
Last Amount δ51 0.0422 0.0348 0.0015 0.1270 1.0745
Intercept δ61 0.0257 0.0233 0.0007 0.0865 1.0002

Table 2.15: Posterior mean for δ parameter using HLDA.

shopping motivations based on transactional data. An opportunity to improve the predictions
can appear if we mix both sources: customer survey and transactional data. If customers
declare their shopping motivation, we can use this information into a supervised classification
model. There is an extension of LDA that does this mix of sources, called Labeled-LDA
(Ramage et al., 2009). If we could get that customer information about what they declare as
shopping motivation, we can calibrate the Labeled-LDA in order to improve our predictions.

2.5.2 Managerial Implications

From a managerial perspective, the output of these models delivers important can be valuable
to retailers. For example, it could be help in the process of creating targeted promotion
campaigns in several ways:

• Recommendation Systems. In the absence of a recommendation system implementa-
tion, the LDA output can be used as a recommendation tool using the information
estimated in the φ matrix. With a prediction of a particular motivation, this matrix
provides the most likely products to be purchased. This information can be a good
starting point as recommendation system. Second, if a recommendation system is al-
ready in use by a retailer, the LDA output may potentially improve the quality of the
recommendations. These tools work based on collaborative filtering of previous trans-
actions analyzing historical records. Using the LDA ouptut we can filter this historical
clustering of records using the motivations detected. Hence, recommendations could be
improved by conditioning on the purchase motivations predicted for each transaction.
• Promotions depending on Basket Size. Using the LDA regression model we can esti-

mate more precisely the basket size conditional on a shopping motivation. Using this
information retailers can design in-store marketing campaigns to increase the basket
value via cross- and up-selling.
• Cross Category Promotions. An important value of detecting shopping motivations is

42



that we estimate category purchase probability, conditioned on a certain motivation.
This information is important for category management. In this context, decisions such
as price, promotion, assortment for a product category, are typically made indepen-
dently from decisions for other product categories. LDA gives information about what
are the most relevant categories for a particular shopping motivation. This information
could be used to coordinate cross category initiatives and cross selling promotions.

In conclusion, LDA is a powerful and parsimonious tool that can be used not only for text
analysis, but as shown in this paper for the analysis of shopping baskets from transactional
data. In particular, the application of these models can help a researcher to detect shopping
motivations and how they are related to customer or shopping trip characteristics. This
information can be used to support cross-category management initiatives.

43



Conclusions

This thesis consider two essays about retail management problems covered with machine
learning approaches. Both methodologies use transactional data to discover consumer be-
havior and complementary and substitution patters between products, brands and categories.

The first research entails the development of a novel data driven methodology to extract
rules from transactional data, to get more robust solutions to the multi-product price op-
timization setting. The methodology proposed explores the transactional data of product
category demand and prices to extract two different types of rules: order rules to formalize
how prices have been decided in the past, and performance rules to indicate conditions that
lead, on average, to better profit solutions.

We use the pricing rule set as constraints for the pricing optimization problem. To es-
timate the category profit conditioned to price decision, a double log demand model was
calibrated using three different elasticity matrix estimation procedures (OLS, HBM and L1
regularization). When only order rules are applied as constraints, the profit solution obtained
is still far from the actual values, giving intuition of an unrealistic solution and improving
profit using uncertainty in the estimation of the elasticity matrix in the objective function.
When both performance and order rules are applied, the solution is close to the previous
values of profit. More robust estimations such as with the Hierarchical Bayesian Model and
L1 regularization results in improvements of 16.7% and 9.0% respectively.

There is an additional value of pricing rules for practitioners and managers that is the
interpretability. Order rules works as a structured method to recover previous managerial
decision making about price categories. It is a way to extract from data what managers
consistently decided in the past for the category price vector. We think that there is an
important implicit knowledge hidden in previous decisions.

In the same way, performance rules give a structured way to understand where good profit
scenarios are located in the price space solution. More than a cross elasticity term, it gives
intuition about what happens with the expected profit if a certain distance in prices for a
couple of products is decided upon.

The implementation of pricing rules also seems to be easier. For traditional SQL database
servers, applying pricing rules as queries seems very practical to understand if a specific
alternative price vector is feasible or not, and also evaluate what-if scenarios if some prices
do not respect a specific rule. Using the methodology proposed, it is easy and fast to extract
thousands of pricing rules, sort them to select the most relevant and valuable rules to apply
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in a certain category.

Pricing rules are built analyzing a database with millions of transactions comparing cate-
gory performance for different historical pricing scenarios. In that sense, the most important
contribution of this methodology is that pricing rules extracted provide a robust solution
to price optimization based on historical performance of different pricing policies and their
impact in the category demand.

As a summary, in the first research we analyzed transactional data to identify what busi-
ness rules have been consistently applied before and evaluate which ones are associated to
better business performance. Based on these pricing rules, we build a data-driven set of
feasible prices and combine it with standard price optimization routines to understand how
this information can complement the traditional econometric analysis of the demand. This
novel approach for pricing optimization is easy to implement and not only provides managers
with a reliable automatic mechanism to decide about prices of multiple products, but also
enables more consistent decisions.

The second essay uses a Latent Dirichlet Allocation framework to analyze shopping behav-
ior based on transactional data. In our retail context, we extract latent shopping motivations
analyzing relationships among product categories. The contribution of this research is then
to apply LDA in a retailing setting to achieve three different goals as follows. First, we apply
a standard LDA model to detect and describe shopping motivations. Second, the basic LDA
model is extended to jointly estimate the latent shopping motivations and the relationship
between these motivations and basket size using a supervised approach. Finally, the LDA
model is generalized to allow purchase motivations to depend on customer and shopping trip
characteristics.

We applied this methodology to a supermarket transactional database focusing on 36
different product categories. We extract two shopping motivations. The first motivation is
related to hedonic products that represents 48% of the total purchased products. The second
motivation extracted is related to breakfast product categories accounting for 52% of the total
purchases. The second model proposed is a supervised LDA approach using the motivation
probabilities as independent variables to predict a variable of interest, in our application
this corresponds to the dollar value of the basket. The motivations extracted changed with
respect to the motivations obtained in LDA detecting shopping patterns related to Low Effort
Food and Ethnic and Fresh products. The regression of amount spent shows a good fit of
the data using only the motivations extracted with LDA.

The third model calibrated in this paper allows shopping motivations to depend on cus-
tomer and shopping trip characteristics. In our setting we used age, income, family size,
recency and the last purchase amount. These characteristics are positively associated with
the first motivation (Hedonic products). Motivations extracted were different than results
obtained with LDA. We also note that the distribution of motivation probabilities was more
extreme than in the basic LDA, because of the use of customer demographics. In conclusion,
LDA is a powerful and parsimonious tool that can be used not only for text analysis, but as
shown in this paper for the analysis of shopping baskets from transactional data. In partic-
ular, the application of these models can help a researcher to detect shopping motivations
and how they are related to customer or shopping trip characteristics. This information can
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be used to support cross-category management initiatives.

Both approaches contribute to solve retail problems with novelty approaches of Machine
Learning. The use of these methods can lead to retailers to improve their pricing and pro-
motion decisions, learning from consumer behavior and improving their performance in this
competitive industry.
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2.6 Appendix

2.6.1 Pricing rules extract procedure

Algorithm 1: Pricing Rules Extract Procedure
Input : Aggregate transactional data at product - weekly level
Input : Support and Lift threshold to select relevant rules
Output: Set of Pricing Rules for optimization: Order Rules Ωo and Performance

Rules Ωp

1 foreach Product Pi in the Product Category Set do

2 Normalize prices using product formats.
3 Create Pricing features (absolute, differences and mean) for every week.
4 Create price events per week discretizing continuous price features using

parameters γL, γU , αL, αU , βL and βU .
5 end foreach
6 Calculate total category profit for each week
7 Use Apriori algorithm over price events and profits per week, calculating support,

confidence and lift measures
8 Use Lift threshold to select Performance Rules Ωp

9 Use Support threshold to select Order Rules Ωo

2.6.2 Robustness Analysis of optimal prices

Figure 2.5: Normalized price solutions using different set of constraints. HBM Model
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2.6.3 Robustness Analysis of optimal prices desegregated

2.6.4 Stan code for LDA

data {
int<lower=2> K; // Num mot ivat ions
int<lower=2> V; // Product category l i s t
int<lower=1> M; // num t r an s a c t i on s
int<lower=1> N; // Total products i n s t an c e s
int<lower=1,upper=V> w[N ] ; // Product category n
int<lower=1,upper=M> doc [N ] ; // Transact ion ID for product n
vector<lower=0>[V] beta ; // Product hyperparameter p r i o r

}
parameters {

vector<lower=0>[K] alpha ; // Motivation p r i o r
s implex [K] theta [M] ; // Motiv d i s t for t rx m
simplex [V] phi [K ] ; // Product d i s t for mot k

}
model {

for ( k in 1 :K)
alpha [ k ] ∼ uniform ( 0 , 3 ) ;

for ( k in 1 :K)
phi [ k ] ∼ d i r i c h l e t ( beta ) ; // p r i o r

for (m in 1 :M)
theta [m] ∼ d i r i c h l e t ( alpha ) ; // p r i o r

for (n in 1 :N) {
r e a l gamma[K] ;
for ( k in 1 :K)

gamma[ k ] = log ( theta [ doc [ n ] , k ] ) + log ( phi [ k , w[ n ] ] ) ;
t a r g e t += log_sum_exp (gamma) ; // l i k e l i h o o d ;

}
}

2.6.5 Stan code for LDA regression of basket amount spend

data {
int<lower=2> K; // Num mot ivat ions
int<lower=2> V; // Product category l i s t
int<lower=1> M; // Num t r an s a c t i on s
int<lower=1> N; // Total products i n s t an c e s
int<lower=1,upper=V> w[N ] ; // Product category n
int<lower=1,upper=M> doc [N ] ; // Transact ion ID for product n
vector<lower=0>[V] beta ; // Product hyperparameter p r i o r
vec to r [M] amount ;

}
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parameters {
vector<lower=0>[K] alpha ; // Motivation p r i o r
s implex [K] theta [M] ; // Motiv d i s t for t rx m
simplex [V] phi [K ] ; // Product d i s t for mot k
vec to r [K] rho2 ; // Amount importance parameter
r e a l sigma ; // Amount dev i a t i on parameter

}

transformed parameters {
vec to r [K] rho ; // Amount parameters
rho [ 1 ]=0 ;
rho [ 2 :K]=rho2 [ 2 :K] ;
}

model {
sigma ∼ uniform ( 0 , 2 ) ;
rho2∼normal ( 0 , 1 ) ;
for ( k in 1 :K)

alpha [ k ] ∼ uniform ( 0 , 3 ) ;
for ( k in 1 :K)

phi [ k ] ∼ d i r i c h l e t ( beta ) ; // p r i o r
for (m in 1 :M){

amount [m] ∼ normal ( rho ’∗ theta [m]+rho2 [ 1 ] , sigma ) ;
theta [m] ∼ d i r i c h l e t ( alpha ) ; // p r i o r

}
for (n in 1 :N) {

r e a l gamma[K] ;

for ( k in 1 :K)
gamma[ k ] = log ( theta [ doc [ n ] , k ] ) + log ( phi [ k , w[ n ] ] ) ;

t a r g e t += log_sum_exp (gamma) ; // l i k e l i h o o d ;
}

}

2.6.6 Stan code for Hierarchical LDA to predict shopping trip mo-
tivation

// ve r s i on 2
// lambda=1 and f i x i n g one o f the i n t e r c e p t s to z e r o .
data {

int<lower=2> K; // num mot ivat ions
int<lower=2> V; // num product c a t e g o r i e s
int<lower=1> M; // num t r an s a c t i on s
int<lower=1> N; // t o t a l product i n s t an c e s
int<lower=1,upper=V> w[N ] ; // product n
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int<lower=1,upper=M> doc [N ] ; // t rx ID for prod n
vector<lower=0>[V] beta ; // Product p r i o r
int<lower = 1> D; // num of c ova r i a b l e s to p r ed i c t Alpha
matrix [M, D] x ; // c ova r i a b l e s data for each trx M

}
parameters {

// vector<lower=0>[K] alpha ; // Alpha for each trx
matrix [D, K−1] d e l t a ; // importance o f v a r i a b l e D in mot K
simplex [K] theta [M] ; // Motiv d i s t for t rx m
simplex [V] phi [K ] ; // Product d i s t for mot k

// vec to r [K−1] i n t e r ; // In t e r c ep t
// r e a l lambda ;
}

transformed parameters {
//matrix [M, K] x_delta ;
vector<lower=0>[K] alpha [M] ; // Alpha for each trx
matrix [D, K] de l t a2 ; // importance o f v a r i ab l e D in mot K
matrix [M, K] x_delta ;
// r e a l x2 [M, D+1] ; // c ova r i a b l e s data for each trx M
de l ta2 [ 1 :D, 1 :K−1]=de l t a ;
for (d in 1 :D)
de l t a2 [ d ,K]=0;
// de l t a2 [D,K]=0;

x_delta = x ∗ de l ta2 ;

for (m in 1 :M)
// for ( k in 1 :K)
// alpha [m, k ] = lambda∗ i nv_log i t ( x_delta [m, k ] ) ; ;
// alpha [m] = lambda∗ softmax ( x_delta [m] ’ ) ;
alpha [m] = softmax ( x_delta [m] ’ ) ;

}

model {
// lambda ∼ uniform (0 .1 , 1 5 ) ;
for ( k in 1 :K−1)

de l t a [ , k ] ∼ uniform ( 0 , 5 ) ;
for ( k in 1 :K)

phi [ k ] ∼ d i r i c h l e t ( beta ) ;
// for ( k in 1 :K)

for (m in 1 :M)
theta [m] ∼ d i r i c h l e t ( alpha [m] ) ; // p r i o r

for (n in 1 :N) {
r e a l gamma[K] ;
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for ( k in 1 :K)
gamma[ k ] = log ( theta [ doc [ n ] , k ] ) + log ( phi [ k , w[ n ] ] ) ;

t a r g e t += log_sum_exp (gamma) ; // l i k e l i h o o d ;
}

}
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Categories % Ticket presence % Dollar Value
SOFT_DRINKS 38,0% 3,5%
FLUID_MILK_PRODUCTS 33,4% 2,8%
BAKED_BREAD/BUNS/ROLLS 29,8% 1,8%
CHEESE 25,6% 2,2%
BAG_SNACKS 23,1% 1,7%
BABY_FOODS 18,2% 0,7%
BEEF 17,4% 3,7%
TROPICAL_FRUIT 16,3% 0,7%
CANDY_-_CHECKLANE 15,6% 0,4%
YOGURT 14,7% 0,8%
COLD_CEREAL 14,7% 1,5%
CANDY_-_PACKAGED 13,6% 1,0%
VEGETABLES_-_SHELF_STABLE 12,8% 0,5%
SOUP 12,7% 0,7%
DELI_MEATS 12,7% 1,8%
FROZEN_PIZZA 12,1% 1,3%
WATER_-_CARBONATED/FLVRD_DRINK 11,4% 1,3%
FRZN_MEAT/MEAT_DINNERS 11,4% 1,0%
CANNED_JUICES 10,4% 1,0%
FRUIT_-_SHELF_STABLE 10,1% 0,7%
COOKIES/CONES 9,8% 0,9%
CRACKERS/MISC_BKD_FD 9,7% 0,7%
LUNCHMEAT 9,7% 0,9%
EGGS 9,5% 0,4%
ICE_CREAM/MILK/SHERBTS 9,2% 0,9%
DRY_BN/VEG/POTATO/RICE 8,9% 0,5%
COUPON/MISC_ITEMS 8,8% 6,8%
SALD_DRSNG/SNDWCH_SPRD 8,6% 0,6%
REFRGRATD_JUICES/DRNKS 8,6% 0,7%
CONVENIENT_BRKFST/WHLSM_SNACKS 8,6% 0,7%
CONDIMENTS/SAUCES 8,3% 0,5%
BEERS/ALES 8,3% 2,6%
BAKED_SWEET_GOODS 8,0% 0,6%
HISPANIC 7,8% 0,5%
BAKING_MIXES 7,4% 0,4%
FRZN_NOVELTIES/WTR_ICE 7,3% 0,7%

Table 2.16: Summary descriptive statistics 2

57



Mean_M1 SD_M1 2.5%M1 97.5%M1 Rhat_M1 Mean_M2 SD_M2 2.5%M2 97.5%M2 Rhat_M2
_cones 0.02 0.01 0.00 0.04 1.10 0.02 0.01 0.01 0.04 1.10
_sauces 0.00 0.00 0.00 0.00 1.00 0.04 0.00 0.03 0.05 1.06

baby_foods 0.02 0.01 0.01 0.03 1.59 0.00 0.00 0.00 0.01 1.66
bag_snacks 0.07 0.01 0.05 0.10 1.07 0.02 0.01 0.01 0.04 1.09

baked_bread_buns_ 0.05 0.01 0.02 0.07 1.01 0.07 0.01 0.05 0.09 1.01
baked_sweet_goods 0.04 0.01 0.03 0.06 1.00 0.00 0.00 0.00 0.01 1.07

beef 0.05 0.01 0.03 0.07 1.07 0.03 0.01 0.02 0.05 1.08
beers_ales 0.06 0.01 0.04 0.07 1.10 0.00 0.00 0.00 0.00 1.00

candy_-_checklane 0.07 0.01 0.06 0.08 1.12 0.00 0.00 0.00 0.00 1.00
candy_-_packaged 0.05 0.01 0.03 0.08 1.21 0.01 0.01 0.00 0.02 1.39

canned_juices 0.00 0.00 0.00 0.00 1.01 0.04 0.00 0.03 0.05 1.04
cheese 0.05 0.01 0.03 0.07 1.05 0.05 0.01 0.03 0.07 1.05

cold_cereal 0.00 0.00 0.00 0.00 1.00 0.05 0.01 0.04 0.06 1.09
convenient_brkfst_whlsm_snacks 0.00 0.00 0.00 0.00 1.00 0.03 0.00 0.02 0.04 1.02

coupon_misc_items 0.07 0.01 0.05 0.08 1.09 0.00 0.00 0.00 0.00 1.01
crackers_misc_bkd_fd 0.00 0.00 0.00 0.01 1.01 0.04 0.00 0.03 0.05 1.02

deli_meats 0.00 0.00 0.00 0.01 1.01 0.05 0.00 0.04 0.06 1.08
deli_specialties_(retail_pk) 0.00 0.00 0.00 0.00 1.53 0.00 0.00 0.00 0.00 1.32
dry_bn_veg_potato_rice 0.00 0.00 0.00 0.01 1.03 0.03 0.00 0.03 0.04 1.04

eggs 0.00 0.00 0.00 0.00 1.00 0.05 0.00 0.04 0.06 1.10
fluid_milk_products 0.07 0.01 0.04 0.10 1.03 0.08 0.01 0.06 0.10 1.02

frozen_-_boxed(grocery) 0.00 0.00 0.00 0.00 1.56 0.00 0.00 0.00 0.00 1.36
frozen_pizza 0.06 0.01 0.05 0.07 1.07 0.00 0.00 0.00 0.00 1.00

fruit_-_shelf_stable 0.00 0.00 0.00 0.00 1.00 0.03 0.00 0.02 0.04 1.04
frzn_meat_meat_dinners 0.04 0.01 0.03 0.05 1.08 0.00 0.00 0.00 0.00 1.01

hispanic 0.00 0.00 0.00 0.00 1.00 0.03 0.00 0.02 0.03 1.04
ice_cream_milk_sherbts 0.05 0.01 0.04 0.07 1.05 0.00 0.00 0.00 0.01 1.03

lunchmeat 0.05 0.01 0.04 0.06 1.07 0.00 0.00 0.00 0.00 1.02
refrgratd_juices_drnks 0.00 0.00 0.00 0.00 1.00 0.04 0.00 0.03 0.05 1.04

sald_drsng_sndwch_sprd 0.00 0.00 0.00 0.00 1.00 0.04 0.00 0.03 0.05 1.10
soft_drinks 0.17 0.01 0.14 0.20 1.07 0.01 0.01 0.00 0.03 1.44

soup 0.00 0.00 0.00 0.00 1.00 0.03 0.00 0.03 0.04 1.06
tropical_fruit 0.00 0.00 0.00 0.01 1.02 0.08 0.01 0.06 0.09 1.12

vegetables_-_shelf_stable 0.00 0.00 0.00 0.00 1.00 0.04 0.00 0.04 0.05 1.05
water_-_carbonated_flvrd_drink 0.01 0.01 0.00 0.03 1.48 0.04 0.01 0.02 0.05 1.36

yogurt 0.00 0.00 0.00 0.00 1.00 0.03 0.00 0.02 0.04 1.06

Table 2.17: Phi posterior mean, standard deviation and Rhat for LDA.

Figure 2.6: Normalized price solutions using different set of constraints. OLS Model
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Figure 2.7: Normalized price solutions using different set of constraints. HBM Model

Mean_M1 SD_M1 2.5%M1 97.5%M1 Rhat_M1 Mean_M2 SD_M2 2.5%M2 97.5%M2 Rhat_M2
_cones 0.03 0.00 0.02 0.04 1.00 0.03 0.00 0.02 0.03 1.00
_sauces 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00

baby_foods 0.03 0.00 0.02 0.03 1.00 0.04 0.00 0.03 0.04 1.01
bag_snacks 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00

baked_bread_buns_ 0.01 0.00 0.01 0.02 1.00 0.06 0.01 0.05 0.08 1.00
baked_sweet_goods 0.00 0.00 0.00 0.01 1.00 0.12 0.03 0.07 0.17 1.01

beef 0.05 0.01 0.04 0.06 1.02 0.00 0.00 0.00 0.00 1.00
beers_ales 0.01 0.02 0.00 0.05 1.02 0.00 0.00 0.00 0.00 1.00

candy_-_checklane 0.06 0.01 0.05 0.08 1.00 0.03 0.00 0.03 0.04 1.00
candy_-_packaged 0.06 0.02 0.02 0.10 1.01 0.00 0.00 0.00 0.01 1.00

canned_juices 0.02 0.00 0.02 0.03 1.00 0.02 0.00 0.02 0.03 1.01
cheese 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00

cold_cereal 0.05 0.00 0.04 0.06 1.02 0.02 0.00 0.01 0.03 1.01
convenient_brkfst_whlsm_snacks 0.00 0.00 0.00 0.00 1.00 0.00 0.01 0.00 0.03 1.01

coupon_misc_items 0.00 0.00 0.00 0.01 1.04 0.02 0.00 0.01 0.02 1.00
crackers_misc_bkd_fd 0.10 0.02 0.07 0.13 1.03 0.00 0.00 0.00 0.00 1.00

deli_meats 0.00 0.00 0.00 0.00 1.02 0.01 0.01 0.00 0.02 1.09
deli_specialties_(retail_pk) 0.13 0.01 0.10 0.16 1.03 0.08 0.02 0.04 0.11 1.06
dry_bn_veg_potato_rice 0.02 0.00 0.01 0.03 1.02 0.03 0.00 0.01 0.03 1.01

eggs 0.06 0.02 0.03 0.09 1.01 0.00 0.01 0.00 0.04 1.02
fluid_milk_products 0.03 0.00 0.02 0.04 1.01 0.03 0.00 0.02 0.04 1.02

frozen_-_boxed(grocery) 0.00 0.00 0.00 0.00 1.00 0.00 0.01 0.00 0.03 1.03
frozen_pizza 0.06 0.00 0.05 0.07 1.00 0.03 0.00 0.02 0.03 1.01

fruit_-_shelf_stable 0.00 0.01 0.00 0.04 1.01 0.00 0.00 0.00 0.00 1.00
frzn_meat_meat_dinners 0.04 0.00 0.03 0.05 1.00 0.03 0.01 0.01 0.04 1.02

hispanic 0.00 0.00 0.00 0.00 1.00 0.26 0.03 0.21 0.32 1.00
ice_cream_milk_sherbts 0.02 0.00 0.02 0.03 1.01 0.03 0.00 0.02 0.03 1.00

lunchmeat 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
refrgratd_juices_drnks 0.00 0.00 0.00 0.00 1.00 0.05 0.01 0.04 0.06 1.03

sald_drsng_sndwch_sprd 0.12 0.02 0.10 0.16 1.05 0.04 0.02 0.00 0.08 1.05
soft_drinks 0.03 0.00 0.02 0.03 1.00 0.03 0.00 0.03 0.04 1.00

soup 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
tropical_fruit 0.03 0.00 0.03 0.04 1.01 0.03 0.00 0.03 0.04 1.03

vegetables_-_shelf_stable 0.00 0.00 0.00 0.02 1.01 0.00 0.00 0.00 0.01 1.00
water_-_carbonated_flvrd_drink 0.00 0.00 0.00 0.00 1.46 0.02 0.00 0.02 0.03 1.00

yogurt 0.00 0.00 0.00 0.01 1.46 0.00 0.00 0.00 0.00 1.00

Table 2.18: Phi posterior mean, standard deviation and Rhat for LDA Regression.
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Mean_M1 SD_M1 Rhat_M1 Mean_M2 SD_M2 Rhat_M2
Min. :0.1478 Min. :0.04302 Min. :0.9998 Min. :0.05435 Min. :0.04302 Min. :0.9998
1st Qu.:0.5549 1st Qu.:0.10194 1st Qu.:1.0014 1st Qu.:0.21319 1st Qu.:0.10194 1st Qu.:1.0014
Median :0.6870 Median :0.11689 Median :1.0035 Median :0.31300 Median :0.11689 Median :1.0035
Mean :0.6577 Mean :0.11086 Mean :1.0052 Mean :0.34228 Mean :0.11086 Mean :1.0052
3rd Qu.:0.7868 3rd Qu.:0.12572 3rd Qu.:1.0072 3rd Qu.:0.44512 3rd Qu.:0.12572 3rd Qu.:1.0072
Max. :0.9456 Max. :0.14472 Max. :1.0695 Max. :0.85223 Max. :0.14472 Max. :1.0695

Table 2.19: Theta posterior summary statistics obtained using LDA Regression.

Mean_M1 SD_M1 2.5%M1 97.5%M1 Rhat_M1 Mean_M2 SD_M2 2.5%M2 97.5%M2 Rhat_M2
_cones 0.02 0.01 0.01 0.04 1.10 0.00 0.00 0.00 0.01 1.01
_sauces 0.02 0.01 0.01 0.03 1.09 0.03 0.00 0.03 0.04 1.02

baby_foods 0.02 0.01 0.01 0.03 1.07 0.00 0.00 0.00 0.01 1.02
bag_snacks 0.02 0.00 0.02 0.03 1.03 0.05 0.00 0.04 0.06 1.01

baked_bread_buns_ 0.01 0.01 0.00 0.03 1.68 0.08 0.01 0.06 0.11 1.06
baked_sweet_goods 0.01 0.01 0.00 0.02 1.64 0.07 0.01 0.06 0.09 1.06

beef 0.06 0.01 0.04 0.08 1.02 0.00 0.00 0.00 0.00 2.07
beers_ales 0.03 0.01 0.02 0.04 1.01 0.00 0.00 0.00 0.00 1.59

candy_-_checklane 0.06 0.01 0.04 0.08 1.02 0.04 0.01 0.02 0.05 1.07
candy_-_packaged 0.06 0.01 0.05 0.08 1.01 0.02 0.00 0.01 0.03 1.07

canned_juices 0.02 0.01 0.01 0.04 1.02 0.00 0.00 0.00 0.00 1.01
cheese 0.02 0.00 0.01 0.03 1.01 0.03 0.00 0.02 0.03 1.01

cold_cereal 0.05 0.01 0.03 0.06 1.00 0.02 0.01 0.00 0.03 1.06
convenient_brkfst_whlsm_snacks 0.04 0.01 0.03 0.05 1.01 0.01 0.00 0.01 0.02 1.08

coupon_misc_items 0.06 0.01 0.05 0.07 1.03 0.00 0.00 0.00 0.00 1.02
crackers_misc_bkd_fd 0.00 0.00 0.00 0.00 1.01 0.02 0.00 0.02 0.03 1.00

deli_meats 0.06 0.01 0.04 0.08 1.31 0.04 0.01 0.02 0.05 1.03
deli_specialties_(retail_pk) 0.01 0.01 0.00 0.02 1.72 0.01 0.00 0.00 0.02 1.04
dry_bn_veg_potato_rice 0.04 0.01 0.03 0.06 1.04 0.03 0.01 0.01 0.04 1.01

eggs 0.02 0.00 0.01 0.03 1.04 0.02 0.00 0.01 0.03 1.01
fluid_milk_products 0.00 0.00 0.00 0.02 1.03 0.01 0.01 0.00 0.03 1.17

frozen_-_boxed(grocery) 0.04 0.00 0.03 0.05 1.02 0.03 0.01 0.02 0.04 1.15
frozen_pizza 0.05 0.01 0.04 0.07 1.01 0.00 0.01 0.00 0.02 1.17

fruit_-_shelf_stable 0.05 0.01 0.04 0.06 1.01 0.03 0.00 0.02 0.04 1.07
frzn_meat_meat_dinners 0.00 0.00 0.00 0.02 1.02 0.15 0.01 0.12 0.18 1.05

hispanic 0.05 0.01 0.04 0.06 1.04 0.04 0.01 0.02 0.05 1.05
ice_cream_milk_sherbts 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.04

lunchmeat 0.03 0.00 0.02 0.03 1.01 0.03 0.00 0.03 0.04 1.01
refrgratd_juices_drnks 0.07 0.01 0.06 0.09 1.01 0.03 0.01 0.01 0.05 1.21

sald_drsng_sndwch_sprd 0.00 0.00 0.00 0.00 1.00 0.05 0.01 0.04 0.07 1.16
soft_drinks 0.01 0.01 0.00 0.02 1.03 0.01 0.01 0.00 0.02 1.56

soup 0.03 0.00 0.02 0.04 1.02 0.04 0.01 0.03 0.05 1.29
tropical_fruit 0.02 0.01 0.00 0.04 1.10 0.02 0.01 0.00 0.04 1.28

vegetables_-_shelf_stable 0.03 0.01 0.02 0.04 1.08 0.03 0.01 0.02 0.04 1.24
water_-_carbonated_flvrd_drink 0.00 0.00 0.00 0.01 1.00 0.00 0.00 0.00 0.00 1.01

yogurt 0.00 0.00 0.00 0.00 1.01 0.03 0.00 0.02 0.03 1.02

Table 2.20: Phi posterior mean and standard deviation for Hierarchical LDA model
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