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ABSTRACT
In this paper, we present an automatic method, without human
supervision, for the detection and classification of blue whale voca-
lizations from passive acoustic monitoring (PAM) data using Hidden
Markov Model technology implemented with a state-of-the-art
machine learning platform, the Kaldi speech processing toolkit.
157.5 hours of PAM data were annotated for model training and
testing, selected from a dataset collected from the Corcovado Gulf,
Chilean Patagonia in 2016. The system obtained produced 85.3%
accuracy for detection and classification of a range of different blue
whale vocalizations. This system was then validated by comparing
its unsupervised detection and classification results with the pub-
lished results of southeast Pacific blue whale song phrase (‘SEP2’)
via spectrogram cross-correlation, involving a dataset collected with
a different hydrophone instrument. The proposed system led to
a reduction in the root mean square error relative to published
results as high as 80% when compared with comparable methods
employed elsewhere. This is a significant step in advancing the
monitoring of endangered whale populations in this region, which
remains poorly covered in terms of PAM and general ocean obser-
vation. With further training, testing and validation, this system can
be applied to other target signals and regions of the world ocean.
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1. Introduction

1.1. Conservation status

The conservation status of most baleen whale species remains of concern1 after popula-
tions were decimated by historical commercial whaling (Rocha et al. 2014). Today,
anthropogenic activities, such as collisions with ships (e.g. Laist et al. 2001; Vanderlaan
and Taggart 2007; Neilson et al. 2012), underwater noise (e.g. Clark et al. 2009; Hatch
et al. 2012; Rolland et al. 2012) and fishing (Trites et al. 1997; Read et al. 2006;
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Knowlton et al. 2012) continue to threaten populations via lethal and sub-lethal effects.
Determining the distribution and seasonal movements of baleen whales is fundamental
to understanding their ecology (e.g. Croll et al. 2005; Stafford et al. 2009; Buchan and
Quiñones 2016), monitoring population trends (e.g. Branch et al. 2007; Bejder et al.
2016) and temporal and spatial distribution (e.g. Samaran et al. 2013; Davis et al. 2017),
as well as overall ecosystem health (Moore 2008). This information is essential for
developing conservation strategies and marine spatial and soundscape planning that
ensure the continued protection of baleen whales (Redfern et al. 2013, 2017; Williams
et al. 2015; Van Opzeeland and Boebel 2018).

1.2. Passive acoustic monitoring

Passive Acoustic Monitoring (PAM) is a useful and widely used method for monitoring
the temporal and spatial presence of vocalizing whales and dolphins throughout the
world’s oceans (Mellinger et al. 2007; Van Parijs et al. 2009; Helble et al. 2015; Tripovich
et al. 2015; Au and Lammers 2016; Nieukirk et al. 2016; Thomisch et al. 2016). In the case
of baleen whales, their loud repetitive low-frequency vocalizations, often below 500 Hz,
can be detected by hydrophones tens of kilometres from their source (Širović et al. 2007).
Baleen whale vocalizations are distinct at species level and can also be distinct at sub-
species and/or regional level (McDonald et al. 2006; Delarue et al. 2009).

Male blue whales (Balaenoptera musculus), in different regions, are known to produce
one or more distinct stereotyped songs; monitoring these songs has revealed distinct
spatial and temporal distributions of acoustic groups, although overlap does occur
(McDonald et al. 2006; Stafford et al. 2011; Samaran et al. 2013; Buchan et al. 2014,
2015; Balcazar et al. 2017). Blue whale songs are made up of phrases, that are in turn made
up of units (individual sounds), and it is the frequency (Hz) and duration (s) character-
istics of song units and the pattern of song phrasing, e.g. A-B-A-B or A-B-C-A-B-C,
(labelled ABC according to standard nomenclature in the literature) that distinguishes
between regional song types (McDonald et al. 2006; Buchan et al. 2014). These songs can
be heard throughout the migratory range of a population (Stafford et al. 1999a, 2001).
Blue whale song is largely stable over time as shown for most blue whale song types
(McDonald et al. 2006, 2009) including the Chilean or Southeast Pacific song type
(comparing Stafford et al. 1999a with Buchan et al. 2014). There is however some intra-
annual variation in song production (Oleson et al. 2007a), as well as a decrease over
decadal timescales in the frequency of tonal song components (McDonald et al. 2009;
Gavrilov et al. 2012). Male and female blue whales are also known to produce highly
variable down-swept vocalizations known as ‘D-calls’, typically between approximately
40 and 75 Hz, that may be related to foraging (McDonald et al. 2001; Oleson et al. 2007a)
and have so far not been found to possess regional differences.

Northern Chilean Patagonia is a known baleen whale feeding ground, primarily for blue
whales (Hucke-Gaete et al. 2004; Buchan and Quiñones 2016; Galletti-Vernazzani et al.
2017), but also for humpback (Megaptera novaeangliae), sei whales (Balaenoptera borealis)
and other cetaceans (Hucke-Gaete et al. 2010; Viddi et al. 2010). Previous passive acoustic
studies have shown that the blue whales that feed in Chilean Patagonia have two unique
song types known as Southeast Pacific 1 (SEP1) and Southeast Pacific 2 (SEP2), both
described in detail in Section 2.2, and the latter being the dominant song type (Cummings
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and Thompson 1971; Buchan et al. 2014, 2015). Both are also heard in the eastern Tropical
Pacific (Stafford et al. 1999a; Buchan et al. 2014, 2015). SEP2 songs are heard in this area
between November and July, and singing peaks during April, in the austral autumn
(Buchan et al. 2015). Antarctic (AA) blue whales songs (Buchan et al. 2018) and humpback
whale songs (Español-Jiménez and van der Schaar 2018) have also been reported in this
area, with singing reported mostly during the austral summer and autumn, respectively.

1.3. The importance of unsupervised detection and classification of whale
vocalizations

The use of bottom-mounted hydrophones to monitor baleen whales allows year-round
data collection without the economic and logistical constraints of boat-based data
collection, which is particularly valuable in remote regions like Chilean Patagonia.
PAM over years or decades generates large passive acoustic datasets that cannot be
analysed manually in a timely manner but require automatic methods to detect and
classify whale vocalizations (e.g. Mellinger et al. 2007). Ideally, these methods would be
without human supervision to reduce to a minimum the amount of time a human
analyst spends on the analysis. Also, the more variable the vocalization type, the more
challenging it is to achieve a robust automatic detection method that neither misses (0
false negatives) nor confuses target signals (0 false positives). Noise in the marine
environment from wind, marine traffic, seismic surveys, underwater earthquakes, and
other sources (Hildebrand 2009) makes successful detection of vocalizations all the
more difficult when target signal-to-noise ratio is low. At present almost all analytical
methods for the detection and classification of whale vocalizations require some human
supervision, and many methods require a significant amount of supervision, which is
both time consuming and introduces human bias and error. This is the case, for
example, of widely used spectrogram cross-correlation which measures the similarity
between an input acoustic signal and a kernel of the target signal, both of which are
represented as a spectrogram, and detection occurs when the time-frequency features of
the input signal closely matches those of the template (Mellinger and Clark 2000). This
is widely used for detecting stereotyped signals of baleen whales (Stafford et al. 1999a;
Mellinger and Clark 2000; Samaran et al. 2013; Buchan et al. 2015) but does require
significant analyst time to assess error (false and true negative and positive detections).

1.4. Kaldi speech recognition toolkit

Machine learning applied to the detection and classification of whale vocalizations in
PAM data offers a promising solution to this problem that can reduce to zero the
amount of time required by human supervision after the models have been trained
using an annotated dataset (Brown and Smaragdis 2009; Dugan et al. 2010; Shamir et al.
2014). A Hidden Markov Model (HMM) is a machine learning technique that provides
probabilistic models for sequences of data. HMM allows to model time varying pro-
cesses as a sequence of states where each state represents stationary or quasi-stationary
subprocesses. The variability of observed features within a given state is modelled with
observation probabilities (see Section 2.3.2). HMM has been the most successful
approach for solving very complex problems, such as speech recognition. HMM has
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been previously used in bioacoustics (Ren et al. 2009; Ranjard et al. 2017), including the
identification of bird species (Potamitis et al. 2014), and classification of mammal
vocalizations (Agranat 2013; Scheifele et al. 2015; Putland et al. 2018). The Kaldi2

speech recognition toolkit (Povey et al. 2011) provides a state-of-the-art platform to
run HMM and deep learning experiments that has been widely employed by the speech
recognition community worldwide, but to our knowledge has not been used for the
detection and classification of whale vocalizations, or indeed any other non-human
vocalization. This toolkit is open source and highly customizable, and allows replicable
results. Kaldi runs on any Linux distribution, or on Cygwin or Mac OsX.

1.5. Objective

In this study, an automatic method for the detection and classification of blue whale
vocalizations from passive acoustic data was developed with HMM technology using the
Kaldi toolkit.Other low-frequency signalswere alsomodelled and targeted, such as humpback
whale vocalizations, ship noise, seismic events and platform noise due to mooring line
strumming.

2. Materials and methodology

2.1. Study site and data collection

Two separate passive acoustic databases were used for a) model training/testing and b)
detection and classification validation. The training/testing database was taken from passive
acoustic data that were collected between January 2016 and February 2017 with a bottom-
mounted SM3M Deepwater Song Meter hydrophone3 deployed in the Corcovado Gulf,
Northern Chilean Patagonia (43°52S, 73°31W) at a depth of 170 m (with an acoustic
release). Data collection was continuous in 30 min consecutive sound files, recorded at
a sample rate of 4000 Hz. 157.5 hours (corresponding to 315 30-min sound files), were
selected for annotation from this database. Selection and annotation of files is described in
Section 2.2. From here on, we will refer to this annotated data as ‘Corcovado-Songmeter’.

Validation experiments were done with a second dataset so that results could be
compared with the published results in Buchan et al. (2015). In this case, continuous
passive acoustic data collected in 2012 (from February to June) slightly north of the Song
Meter deployment site but within the same general study area (43°31S, 74°26W) using
a different instrument (Marine Autonomous Recording Unit, MARU4) recording at
a different sample rate of 2000 Hz over a 5-month deployment due to battery constraints
(Buchan et al. 2015). From here on, we will refer to this database as ‘Corcovado-MARU’.

2.2. Data annotation for training and testing

For model training/testing, the annotated ‘Corcovado-Songmeter’ database was used as input
to train and test the HMM-based system. The files that were chosen were selected by an
experienced bioacoustic analyst to obtain files with clear examples of noise (12% of all files)
and whale vocalizations (88% of files). Files were selected from almost all months of the
dataset, except for October and November because the analyst found no examples of whale
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vocalizations or noise that were useful for training. The principal sources of noise identified
were: diffuse background noise, ship noise, earthquakes, andmooring line strumming. In the
selected files there were: 474 SEP1 phrases (adding up 4.5 hours of vocalizations); 4028 SEP2
phrases (39.7 hours); 192 AA phrases (0.6 hours); 2760 D-calls (2.3 hours); and 18 sequences
of HB whale songs (0.9 hours considering inter-unit intervals). In numerous files, whale
vocalizations were overlapped.

Annotation of sound files was carried out by two bioacoustic analysts as follows: Files
were viewed as spectrograms in Raven Pro 1.5 (Bioacoustics Research Program 2012)
using the following parameters: 8192 FFT, 80% overlap, Hann window, with a window
set to view 100 Hz/120 s. Noise and whale vocalizations were marked with a box drawn
around the target sound to include the entire sound in both frequency and time.
A Raven ‘Selection Table’ was compiled to include the following data: ‘Begin Time’
(start time of signal), ‘End Time’ (end time of signal), ‘Begin File’ (the name of the file
where the signal begins), ‘End File’ (the name of the file where the signal ends), ‘Type’
(see Table 1(a,b)), and ‘Comments’ (any other relevant observations).

SEP1 and SEP2 phrase and unit were identified based on song spectral descriptions by
Buchan et al. (2014, 2015). SEP1 is a three-unit phrase (A-B-C) with an average total duration
of approximately 34 s. Unit A has amean peak frequency of 21Hz and an average duration of
11.4 s; unit B, a mean peak frequency of 49 Hz and average duration of 9.2 s; and unit C,
a mean peak frequency of 25 Hz and average duration of 9.5 s (Figure 1). SEP2 is a four-unit
phrase (A-B-C-D) lasting on average 60s (Figure 2). Unit A has a mean peak frequency of
24 Hz and an average duration of 9.5 s; unit B, a mean peak frequency of 24 Hz and average
duration of 13 s; unit C, amean peak frequency of 26Hz and average duration of 5 s; and unit
D, a mean peak frequency of 24 Hz and average duration of 13 s (Figure 2). Exclusively for
modelling purposes, each unit was annotated separately, except for SEP2 units B and C that
were annotated together because there is no pause between them. AA phrases were identified
as those described by Ljungblad et al. (1998) and Širović et al. (2004) and annotated as the
complete Z-note with a duration of approximately 18 s and a mean peak frequency of 27 Hz
(Figure 3). D-calls were identified as those described by McDonald et al. (2001) and Oleson
et al. (2007a), ranging in frequency between 40 Hz and 75 Hz (Figure 4).

Other signals were also annotated: sequences of humpback whale song units,
earthquakes, ship noise, mooring line strumming, and diffuse background noise.
Humpback song sequences were identified based on visual comparison with pub-
lished spectrograms from Chile (Español-Jiménez and van der Schaar 2018) and
Brazil (Sousa-Lima et al. 2018), and via personal communications with Dr. Sousa-
Lima. Identification of earthquakes, ship noise and strumming were based on
published spectrograms, (Erbe et al. 2015; McKenna et al. 2012; Dziak et al. 2015,
respectively). Annotation types are listed in Table 1(a,b), and examples of annota-
tions can be seen in Figures 1–4.

Each type of annotated event (Table 1) was modelled with a three-state left-to-
right without state skip transition HMM, Figure 5(a). In the case of humpback
whale vocalizations, the vocalization type ‘HB’ in Table 1 denotes an entire sequence
or cluster of humpback song units and was modelled as such with the HMM in
Figure 5(a). This was because individual units of humpback whale song show
a highly variable nature. In effect, humpback whale vocalizations vary between
20 Hz (Thompson et al. 1986) and 6 kHz (Stimpert et al. 2011), with harmonics
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that can extend beyond 24 kHz (Au et al. 2006). In addition, song units appear in
sequences that lack regularity. By modelling complete sequences, the HMM obser-
vation probability (Section 2.3.2) is expected to model the variability within the
clusters. Blue whale D-calls also display frequency variability, but less so than for
humpback vocalizations, i.e. between 40 Hz and 75 Hz (Oleson et al. 2007a). In
addition, D-calls do not necessarily always appear in sequences and therefore were
modelled individually with the three-state left-to-right without state skip transition
HMM shown in Figure 5(a).

Two or more simultaneous whale vocalization types were observed in the ‘Corcovado-
Songmeter’ database. Since the number of superimpositions of three ormore units was very
low (i.e. 0.14% of the total duration of data containing whale vocalizations in the
‘Corcovado-Songmeter’ database), we modelled the superimpositions of up to two song
units (see Table 1(c)). Themodels of individual units (94.66%) and superimpositions of two
units (5.20%) made up 99.86% of the total duration of data containing whale vocalizations

Table 1. Labels of events modelled with HMMs: (a) single whale vocaliza-
tions types, (b) noise and other acoustic events, and (c) overlapping whale
vocalizations.

(a) Single whale vocalization types.

Label Description

‘AA’ Antarctic blue whale song
‘D’ Blue whale D-call
‘S1.1’ Blue whale song SEP 1 unit A
‘S1.2’ Blue whale song SEP 1 unit B
‘S1.3’ Blue whale song SEP 1 unit C
‘S2.1’ Blue whale song SEP 2 unit A
‘S2.2’ Blue whale song SEP 2 units B and C
‘S2.3’ Blue whale song SEP 2 unit D
‘SEP’ Unidentified SEP blue whale song
‘HB’ Humpback whale song unit

(b) Noise and other acoustic events.

Label Description

‘SIL’ Silence
‘UND’ Noise of undefined origin, including earthquakes
‘SHIP’ Ship noise
‘ST’ Strumming (platform noise)

(c) Overlapping whale vocalizations.

Label Description Label Description

‘AAD’ ‘AA’ and ‘D’ ‘S12S23’ ‘S1.2’ and ‘S2.3’
‘AAS21’ ‘AA’ and ‘S2.1’ ‘S13S21’ ‘S1.3’ and ‘S2.1’
‘AAS22’ ‘AA’ and ‘S2.2’ ‘S13S22’ ‘S1.3’ and ‘S2.2’
‘AAS23’ ‘AA’ and ‘S2.3’ ‘S13S23’ ‘S1.3’ and ‘S2.3’
‘AASEP’ ‘AA’ and ‘SEP’ ‘S13SEP’ ‘S1.3’ and ‘SEP’
‘DS13’ ‘D’ and ‘S1.3’ ‘S21S22’ ‘S2.1’ and ‘S2.2’
‘DS21’ ‘D’ and ‘S2.1’ ‘S21S23’ ‘S2.1’ and ‘S2.3’
‘DS22’ ‘D’ and ‘S2.2’ ‘S21SEP’ ‘S2.1’ and ‘SEP’
‘DS23’ ‘D’ and ‘S2.3’ ‘S21HB’ ‘S2.1’ and ‘HB’
‘DSEP’ ‘D’ and ‘SEP’ ‘S22S23’ ‘S2.2’ and ‘S2.3’
‘S11S12’ ‘S1.1’ and ‘S1.2’ ‘S22SEP’ ‘S2.2’ and ‘SEP’
‘S11S22’ ‘S1.1’ and ‘S2.2’ ‘S22HB’ ‘S2.2’ and ‘HB’
‘S11S23’ ‘S1.1’ and ‘S2.3’ ‘S23SEP’ ‘S2.3’ and ‘SEP’
‘S12S13’ ‘S1.2’ and ‘S1.3’ ‘S23HB’ ‘S2.3’ and ‘HB’
‘S12S22’ ‘S1.2’ and ‘S2.2’
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present in the data. Modelling the remaining 0.14% of events would increase the number of
vocalization types and the amount of training data would not be enough for their HMMs.

The HMM training procedure is composed of alignment-model estimation sequences.
The alignment allocates a given interval of the signal to a model, and then this model is
adapted according to the interval that was assigned to it. As a result, this corresponds to

Figure 1. Example of annotation for SEP1.

Figure 2. Example of annotation for SEP2.
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a gradient basedmethod and is highly dependent on the initial model in the first alignment of
the training algorithm. In this paper, our strategy was to generate initial models trained with
a set of annotated signals, making sure that these initial models would be as accurate as
possible.

Figure 3. Example of annotation for Antarctic blue whale.

Figure 4. Example of annotation for blue whale D-calls.
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2.3. Introduction to Hidden Markov Models

An HMM is composed of a sequence of states that can model non-stationary signals as
a sequence of pseudo stationary events. HMMs are a finite state machine defined by
three sets of parameters: a) transition probabilities between states; b) observation
probabilities in each state; and, c) initial probabilities for each state (Huang et al.
1990). In this study, whale vocalizations that were labelled according to Table 1(a,c)
were modelled using the three-state left-to-right without state skip transition HMM
topology (Figure 5(a)) to represent their dynamics. The first, second and third states
modelled the beginning, middle and end of a whale vocalization, respectively. As
explained in more detail later, the recorded signal was divided into short-term win-
dows, and within each window a set of features was estimated (i.e. feature extraction).
The set of features estimated for each window is denominated frame. Consequently,
each frame t is represented by a feature vector denoted as Ot that is allocated to one of
the corresponding states.

2.3.1. Transition probabilities
In an HMM, the current state may change from one frame to the following one, and the
probability for changing to state j from state i is given by the transition probability aij.
Allowed state transitions were drawn as arcs in the model (Figure 5(a,b)). For instance,
in the HMM of Figure 5(a), given a state i, only state transitions to the same state i or
state i + 1 were possible.

Figure 5. (a) Three-state left-to-right without state skip transition HMM topology employed to represent
single and overlapping whale vocalizations according to Table 1(a,c). (b) Three state left-to-right with
state skip transition HMM to model noise.
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2.3.2. Observation probabilities
Given an HMM λ and a feature vector Ot , to each state Si corresponds an observation
probability, Pr OtjSi; λð Þ. Here, the observation probability was modelled with
a probability density function represented by a Gaussian Mixture Model (GMM) com-
posed of G Gaussians. The observation probability can be defined as (Huang et al. 1990):

Pr OtjSi; λð Þ ¼ �
G
g¼1 φg;i;λ �� Ot; μg;i;λ;�g;i;λ

� �
(1)

where λ denotes a given HMM corresponding to a specific whale vocalization or, as
explained later, to a type of event (see Table 1); G is the number of Gaussians per state;
� �; μ;�ð Þ is a multivariate Gaussian with mean vector μ and covariance matrix �:

� Ot; μ;�ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þn �j j

p e�
1
2 Ot�μð ÞT��1 Ot�μð Þ (2)

where n is the dimensionality of vector Ot, and φg;i;λ are the weights of the Gaussians.

2.3.3. Initial probabilities
Another parameter that defines an HMM is the vector of initial probabilities for each
state π = (π1, π2,. . . πNS), where NS is the number of states within the HMM (Rabiner
and Juang 1986). Vector π represents the probability distribution of the initial state, i.e.
the probability of a given state being assigned to the first frame of an event (i.e. whale
vocalization or noise). Here, the first frame within an event was allocated to the first
state in the corresponding HMM, i.e. π = (1,0,0).

2.3.4. Feature extraction
The goal of the feature extraction process is to reduce the data dimensionality by
converting the sampled waveform into a sequence of parameter vectors with less
redundant information. The feature extraction process is carried out by arranging the
signal into frames, usually overlapping, by employing a Hamming window. For each
frame, different features can be extracted to compose the observation vector of each
frame. Accordingly, a recorded continuous signal, whose length is equal to T frames, is
represented by a sequence of observation vectors O1; O2; . . .Ot . . .OT , where each
vector is composed of features that characterize the corresponding process. Examples
of popular parameters are cepstral (Huang et al. 1990) and linear prediction filter (LPC)
(Esposito et al. 2013) coefficients. These kinds of features are called static because they
represent information from a given frame.

Delta (Δ) and delta-delta (ΔΔ), known as differential and acceleration coefficients,
are usually included to account for the temporal evolution of the static features
described above. This time evolution is established on the basis of the first
and second derivatives of the corresponding static features. Δ and ΔΔ for the static
features in frame t can be as defined as follows (Gold et al. 2011):

Δ tð Þ ¼
2�static features t þ 2ð Þ þ static features t þ 1ð Þ � static features t � 1ð Þ � 2�static features t � 2ð Þ

10
(3)
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Δ tð Þ ¼ 2Δ t þ 2ð Þ þ Δ t þ 1ð Þ � Δ t � 1ð Þ � 2Δ t � 2ð Þ
10

(4)

where static_features(t) denotes the corresponding static feature vector in frame t.
Mean and variance normalization (MVN) (Li et al. 2015) of the coefficients can also

be employed. MVN reduces the distortion brought by additive noise and convolutive
channel, and it is applied to all the feature vectors along each event signal.

2.3.5. Training and decoding
Following feature extraction, the HMM parameters for each whale vocalization and noise
event were estimated from a set of recorded signals, i.e. the training dataset. Trained
HMMs were employed in a decoding algorithm, called the Viterbi algorithm (Viterbi
1967; Rabiner 1989; Huang et al. 1990; Rabiner and Juang 1993), that processes a given
testing signal to both detect and classify the type of events modelled here (Table 1).
Consequently, given an input audio signal, the Viterbi algorithm allocates each frame to
one of the HMMs and states that makes up the entire HMM network (see Section 3). This
network was defined by the interconnection of all the HMMs that represent the whale
vocalizations and noise event types in Table 1. In other words, each sequence of whale
vocalizations and noise observed in the database can be generated by the HMM network
in Figure 7. The training and testing datasets were generated by dividing the annotated
‘Corcovado-Songmeter’ database into two disjoint subsets, where the training dataset
contained all the modelled event types (Table 1). The decoding procedure is both
a detection and a classification procedure because it delivers the most likely sequence
of whale vocalizations and noise in an input signal.

Figure 6 shows the system architecture employed here. Representative features from
the whole dataset were extracted and the HMMs were trained: the transition probabil-
ities and the Gaussian distributions for the observation probabilities were estimated
from the training data by using an iterative procedure. The annotated training database
was employed to define an accurate starting condition or initial models for the GMM
training. In the decoding process, for a test signal, the optimal alignment was deter-
mined with the Viterbi algorithm. The optimal alignment is the most likely sequence of
HMMs and states that can be assigned to the sequence of frames.

3. HMM network

All whale vocalization and noise event types in the annotated data were modelled in this
study. The absence of whale vocalizations was represented by background noise. In this
paper, the background noise was modelled by making use of a three-state left-to-right
HMM with state skip transition according to Figure 5(b). This model allows the
separation between contiguous whale vocalization units to be as short as one frame.
Additionally, in order to examine the benefits of the proposed noise model, experiments
were also carried out using the three-state left-to-right without state skip transition
HMM topology shown in Figure 5(a).

Each acoustic event type (i.e. whale vocalization and noise) was associated with an
HMM, and all the defined HMMs made up a network that represents all possible
sequences of acoustic events, as shown in Figure 7. According to the proposed HMM
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Figure 6. System architecture employed in this research.

Figure 7. HMM network for the detection and classification of acoustic events. The network in this
figure considers that noise is modelled with the three state left-to-right HMM with state skip
transition. Where: Si

W,λ and Si
N,λ denote states within whale and noise models, respectively; and, λ

and i correspond to the model and state indexes, respectively.
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network, any whale vocalization can be preceded and followed by either another whale
vocalization or a noise event. Two consecutive whale vocalizations can be observed
without noise frames between them. The transition from one state to the next one is
defined in such a way that after the first state of a whale vocalization or noise model, the
following frames are allocated to the first or second state of the corresponding HMM
according to the left-to-right without state skip transition topology (Figure 5(a)).
Similarly, the transition from the third state within an HMM can be to the same state
or towards the first state of any of the models that compose the network. By using the
state skip transition topology (Figure 5(b)) to model noise, an additional transition is
allowed from the first state of a noise model to the first state of any of the models that
compose the network. For instance, after a noise event, a single or overlapped whale
vocalization (Table 1(a,c)) can be detected. After that, a new noise event or whale
vocalization can take place again.

4. Experimental setup and system description

Initial training/testing experiments were carried out with the ‘Corcovado-Songmeter’
database to evaluate different detection and classification platform configurations in
terms of accuracy and sensitivity. They were performed with two Subsets (1 and 2) of the
database. First, experiments were carried out with Subset 1 that contained 157 sound files
for training and included all themodels present in the annotated database (see Table 1), and
the remaining 158 sound files (Subset 2) were used for testing. Then, experiments were
performed with Subset 2 for training and Subset 1 for testing. In the latter case, five sound
files were moved from Subset 1 to Subset 2 because they contained the only examples for
‘AAS11’, ‘AASEP’, ‘S12SEP’, ‘S21HB’, and ‘S22HB’ event types.

Once the detection and classification platforms were obtained, validation experiments
were done by: 1) training the resulting platforms with the entire annotated ‘Corcovado-
Songmeter’ database; 2) testing with the ‘Corcovado-MARU’ database; and 3) comparing
the published results by Buchan et al. (2015) of the automatic detection of SEP2 phrases in
the ‘Corcovado-MARU’ database using spectrogram cross-correlation. Buchan et al.
(2015) analyzed acoustic data as follows: spectrograms were made using XBAT
(Extensible Bioacoustic Tool; Bioacoustics Research Program 2012) with FFT: 4096
samples, 25% overlap, Hann window. Automatic detection in XBAT was carried out
via spectrogram correlation, which quantifies the similarity between a signal and
a template or kernel of a target sound (Mellinger and Clark 2000). The kernel used was
units C and D from an SEP2 exemplar taken from the dataset. To assess true positives and
true negatives, where the number of detections per month was fewer than 500, each
detection was scanned visually and deleted if a false positive (incorrect detection).
Otherwise, the first 48 h of data of every month were scanned visually to determine the
number of false positives and false negatives (missed target sounds) as a percentage of the
total number of detections. 3% of detections by the SEP2 detector were false positives and
28% of the SEP2 detections were false negatives. The number of corrected detections was
calculated by subtracting the percent of false positive detections from initial detections
(except for thosemonths with 500 detections or fewer where all detections were reviewed)
and adding the percent of false negatives on to all months.
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Here, published results by Buchan et al. (2015) as average number of corrected
detections per day of monitoring effort for each month of data were used as a ground
truth of SEP2 detection and classification for platform validation.

4.1. Feature extraction and a new frequency compression curve

A feature extraction procedure was performed as mentioned in Section 2.3.4. For model
training/testing experiments, each signal of the ‘Corcovado-Songmeter’ database was
divided into 8192 sample frames with 50% overlap using a Hamming window. For each
frame, the Fourier power spectrum was obtained by computing an 8192-point discrete
Fourier transform. Given the sample rate of 4000 Hz, the frequency resolution of the
discrete Fourier transform was equal to 0.4883 Hz. Because the blue whale vocalizations
targeted in this study were below 200 Hz, we studied the effect of truncating the high
frequency portion of the spectrum. The power spectrum was truncated to its first
N samples, limiting the maximum frequency observable in the truncated spectrum.
The optimal number of spectrum samples to be considered was determined empirically.
Features were extracted from the truncated spectrum by employing a filterbank com-
posed of different triangular filters similar to the one shown in Figure 8. Each filter gain
Fi had central frequency fci and bandwidth Bi, and can be expressed as:

Fi ¼ � 2
Bi

f � f ci
�� ��þ 1 when f � f ci

�� �� � Bi
2

0 otherwise

�
(5)

The triangular filters were arranged in the target frequency range so that the lowest
frequency f lowesti at each filter gain Fi corresponded to the central frequency fci�1 of the
previous filter gain Fi-1. Consequently, the filterbank shown in Figure 8 was obtained.
The number of filters that composes a filterbank depends on the bandwidth of each
triangular filter and on the bandwidth of interest in the truncated spectrum.

Here, the bandwidth of the filters was chosen to provide higher resolution at low
frequencies than at higher frequencies. This is the rationale behind the Mel scale
(Stevens and Volkmann 1940), based on psychoacoustic experiments that are widely
employed in speech processing. In effect, the Mel scale has been previously employed in
bioacoustics, including bird vocalization analyses (Ranjard et al. 2015), classification of
anurans (Noda et al. 2016), individual identification of Bornean male orangutans
(Spillmann et al. 2017), and detection of whale vocalizations (Putland et al. 2018).

Figure 8. Filterbank composed of N triangular filters.

BIOACOUSTICS 153



However, there is no reason to believe that the processing of whale vocalizations and
human speech should share the same optimum frequency compression curve. In this
paper the bandwidth for all the filters with fci�1 below a threshold frequency fth was
kept constant and equal to B, while the bandwidth for filters with fci�1 above fth
increased linearly according to fci�1. For the first filter, bandwidth B1 and central
frequency fc1 are given by:

B1 ¼ B (6)

fc1 ¼ B
2

(7)

For i > 1, given that the lowest frequency of filter Fi corresponds to the central
frequency of filter Fi-1, Bi and fci can be described recursively as follows:

Bi ¼ B if fci�1 � fth
Bþ fci�1 � fthð Þ tan α otherwise

�
(8)

fci ¼ fci�1 þ Bi

2
(9)

where fth is the frequency over which the bandwidth begins to increase linearly with fci;
and, α is the constant that controls the frequency compression rate above fci. The
bandwidth B was made equal to 0.98 Hz, which corresponds to two FFT samples. The
proposed parametrization had three parameters that need to be tuned: N, the number
of points (or bandwidth) of the truncated power spectrum; fth, the frequency over which
the bandwidth begins to increase linearly with respect to the filter central frequency;
and α, the constant that controls the frequency compression curve above fth. The
optimal values for N, fth and α were tuned with the ‘Corcovado-Songmeter’ database.

By applying the filterbank to the truncated power spectrogram, a set of static features
was obtained corresponding to the log-energy at each filter by making use of the
frequency compression curve described by Equations (8) and (9). Finally, the first (Δ)
and second (ΔΔ) derivatives of the static features, as defined in Equations (3) and (4),
were also estimated. MVN was applied to all the feature vectors along each recording.
This parametrization will be referred to as ‘Non-linear-param’.

To compare the effect of the frequency compression curve, a special case of the
previous parametrization was considered with α ¼ 0, i.e. suppressing the frequency
compression curve and making all the filter bandwidths equal to B. This parametriza-
tion will be referred to as ‘Linear-param’ and depended exclusively on N. Additionally,
a third set of features based on the Mel scale was estimated as in Putland et al. (2018):
24 static cepstral parameters plus Δ and ΔΔ features per frame provided a final feature
vector of 72 coefficients. MVN was applied to all the feature vectors along each
recording. This parametrization will be referred to as ‘Mel-cepstral’.

For validation, models obtained with the ‘Corcovado-Songmeter’ database were
applied to analyse the ‘Corcovado-MARU’ database. However, these databases were
not recorded at the same sample rate (4000 Hz for the ‘Corcovado-Songmeter’ and
2000 Hz for the ‘Corcovado-MARU’). In order to keep the same frequency resolution of
the discrete Fourier transform in both databases parametrization, each signal of the
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‘Corcovado-MARU’ database was divided into 4096 sample frames with 50% overlap
using a Hamming window. For each frame, the Fourier power spectrum was obtained
by computing a 4096-point discrete Fourier transform. In this way, the frequency
resolution of the discrete Fourier transform was equal to 0.4883 Hz, the same resolution
employed in the ‘Corcovado-Songmeter’ database. Additionally, both databases were
recorded with different hydrophones. This incorporates a channel mismatch that is
reduced by applying MVN.

4.2. Training procedure and the initial models

As mentioned above, all the signals from the ‘Corcovado-Songmeter’ database were
annotated by analysts. For training, all whale vocalizations and noise events were uni-
formly divided into three non-overlapping segments of feature vectors that were allocated
to states 1, 2, and 3 sequentially within their corresponding HMM. The Gaussian
distributions for the observation probabilities for each model were initially estimated
by using the frames allocated in each state.

The initial transition probabilities for the whale models were a11 = 0.75, a12 = 0.25, a22
= 0.75, a23 = 0.25, a33 = 0.75 and a3N = 0.25, and the transition probabilities for the noise
models were a11 = 0.45, a12 = 0.45, a1N = 0.10, a22 = 0.5, a23 = 0.5, a33 = 0.75 and a3N = 0.25
(a1N and a3N denote the transition to another HMM in Figure 7). The forced Viterbi
algorithm was used to assign each frame to a state in a given sequence of models. After this
assignment, the HMMs parameters were updated with the frames in each state. The forced
Viterbi algorithm and HMM update was repeated 40 times by default. At the start of the
training procedure in Kaldi, all observation probabilities were composed of a single
Gaussian. As the training procedure iterated, the number of Gaussians in each state
could increase with respect to the number of frames allocated to the state, then the frames
were reassigned within the GMM and the Gaussian parameters were re-estimated. In the
default Kaldi GMM initialization procedure, Gaussians are initialized by uniformly dis-
tributing the frames to each model and state present in the audio transcription (i.e. the
sequence of vocalizations and noise in the signal). As proposed here, a better initial frame-
to-state assignment can be obtained by using the start and end time of each event type
from the labelled training database. The two model initializations, i.e. the standard Kaldi
GMM initialization (Semi-supervised-initialization) and the one proposed here (Fully-
supervised-initialization) were compared.

4.3. Performance metric

In the testing procedure, the optimal alignment was estimated by applying the decoding
Viterbi algorithm to each testing signal. The performance of the proposed HMM-based
whale vocalization detection and classification system in the ‘Corcovado-Songmeter’
database was evaluated using frame level classification accuracy and sensitivity. The
classification accuracy is the ratio between the number of frames with correct detection
and classification of labelled events, and the total number of frames in the testing data.
Consequently, error rate is 1 minus classification accuracy. Sensitivity is defined as

True Positive
True PositiveþFalse Negativeð Þ (Putland et al. 2018) and was estimated with respect to SEP2 for
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compatibility with the validation results on the ‘Corcovado-MARU’ database. In our
HMM-based decoding system, according to Table 1, a true positive event was defined as
the coincidence of a detected ‘S2.3’ event with one of the annotated reference labels
‘S2.1’, ‘S2.2’ or ‘S2.3’. For comparison reasons, classification accuracy or relative error
rate difference were adopted because they provide a more complete description of the
system performance and are widely employed in the literature. The validation experi-
ments were carried out on the ‘Corcovado-MARU’ database. The average daily number
of SEP2 detections per month were compared among the three different system con-
figurations and the ‘reference’, i.e. the results published in Buchan et al. (2015). The
system performance was evaluated in terms of the root mean square error (RMSE)
between the bars of the reference results and each one of the evaluated configurations.
The number of SEP2 phrase detections for each system configuration evaluated here
was computed by counting the detected S2.3 events (Table 1(a)).

5. Results and discussion

From training and testing experiments with the ‘Corcovado-Songmeter’, the proposed
fully-supervised HMM initialization with the non-linear parametrization in combination
with the three-state left-to-right with state skip transition HMM to model noise achieved
the highest classification accuracy and sensitivity (85.3% and 79.8%, respectively). The
fully-supervised HMM initialization alone was able to lead to a reduction in error rate
equal to 58.9% relative when compared to the ordinary semi-supervised HMM initializa-
tion provided by Kaldi. The optimal non-linear parametrization provided an error
reduction of 8.7% relative when compared to the optimal linear-param. It is worth
emphasizing that Mel-cepstral, which has been employed in several bioacoustic tasks,
led to an increase in classification error of 169% compared to the optimal non-linear
parametrization. In terms of the noise models, the three-state left-to-right with state skip
transition HMMprovided a reduction in error rate equal to 3.3% relative when compared
to the topology without state skip transition. Finally, in the validation experiments with
the ‘Corcovado-MARU’ database, the proposed system led a RMSE that is at least 76%
lower than all the systems evaluated here. We discuss these results below.

5.1. Parametrization evaluation

The three parametrizations were evaluated on Subsets 1 and 2 from the ‘Corcovado-
Songmeter’ database (see Section 4.1). The training method employed here is the proposed
Fully-supervised-initialization. First, the optimal set of parameters of the Non-linear-param
(i.e. N, fth and α) was determined by a grid search with: N = [300, 400, 500], which
corresponds to 146 Hz, 195 Hz and 244 Hz, respectively; fth ¼ ½10 Hz; 20 Hz; 30 Hz,
40 Hz, 60 Hz, 70 Hz, 80 Hz]; and, α ¼ 15; 30; 45; 60½ �. The highest average classification
accuracy was equal to 85.3% when N = 300 samples, α= 30, and fth = 80 Hz. The average
classification accuracies vs. fth and αwithN= 300 are shown in Figure 9. These results suggest
that a higher number of FFT samples does not lead to an increase in detection and
classification accuracy. This may be due to the fact that the high frequency portion of the
spectrum does not provides useful information to discriminate between the SEP1, SEP2 and
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AA blue whale song type. Figure 9 shows that a higher detection and classification accuracy is
achieved when the frequency compression curve starts at 40 Hz or 50 Hz, i.e. fth = 40 Hz or
fth = 50 Hz. The optimum observed fthwas around 80 Hz. This result indicates that at lower
frequencies (i.e. <50 Hz), a higher frequency resolution leads to higher accuracy. In fact,
classification accuracies decreased dramatically with fth < 30 Hz. This is probably because
these vocalizations are highly stereotyped and regular at low frequencies. Figure 9 also shows
that if frequency compression is delayed, i.e. fth > 80 Hz, classification accuracies also
decreased. It is worth highlighting that with higher accuracy comes greater discrimination
among SEP1, SEP2 and AA.

Experiments were carried out to compare the performance of the tuned Non-linear-
param, with the Linear-param and Mel-cepstral parametrizations. Table 2 shows the
average classification accuracies on ‘Corcovado-Songmeter’ database to compare the pro-
posed Non-linear-param with Linear-param (i.e. α = 0 in Equation (8) where all the filters
in Figure 8 have the same bandwidth) and Mel-cepstral. As shown in Table 2, the
classification accuracy was reduced when N increased, and the highest accuracies, 85.3%
and 83.9%, were achieved with N = 300 samples with Non-linear-param and Linear-param,
respectively. These results indicate that Non-linear-param led to a relative decrease in error
rate of 8.7% compared with the optimal Linear-param. According to the NIST matched-
pairs sentence-segment word error test (MAPSSWE, Pallet et al. 1990) the difference is
significant (p-value < 0.001; significance at p-value < 0.01). Because Non-linear-param
provided better accuracy than Linear-param, and its optimal value of fth is 80 Hz,

Figure 9. Classification accuracies obtained with non-linear-param and N made equal to 300. The
HMM training procedure made use of fully-supervised-initialization. The classification accuracy
decreases dramatically when fth < 30 Hz.
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a frequency compression above 80 Hz helped to better represent those acoustic events
characterized by components above 80 Hz (e.g. HB and ship noise). It is worth mentioning
that the frequency resolution of the Non-linear-param for frequencies less than fth is
equivalent to the frequency resolution of the Linear-param. When comparing Mel-
cepstral with the other parametrizations, Mel-cepstral led to an increase in classification
error of 169% (from 14.7% to 39.5%) and 145% (from 16.1% to 39.5%) relative to Non-
linear-param and Linear-param, respectively. This strongly supports the proposed para-
metrization scheme and our strategy to re-think the frequency compression curve applied
to the problem of whale vocalization detection and classification. It is worth mentioning
that we had to run the experiments with Mel-cepstral on ‘Corcovado-Songmeter’ database
because the sensitivities with respect to SEP2 obtained here are not comparable with the
one achieved in Putland et al. (2018) that targets Bryde’s whale (Balaenoptera edeni)
vocalizations based on only three categories of annotated event. In this study, 43 event
types (Table 1) were annotated andmodelled so we would expect to obtain higher detection
and classification errors; also the target whale species here is not Bryde’s whale.

5.2. Noise modelling evaluation

Table 3 shows the average detection and classification accuracy with the two noise model
topologies applied to the ‘Corcovado-Songmeter’ database described in Section 3, i.e.
three-state left-to-right with state skip transition (Figure 5(b)) and three-state left-to-
right without state skip transition (Figure 5(a)). The experiments were carried out with
the tuned Non-linear-param as in Table 2. The HMM training procedure made use of the
proposed Fully-supervised-initialization model initialization. According to Table 3, the
noise model with state skip transition topology delivers a reduction in error rate equal to
3% relative when compared to the topology without state skip transition. According to

Table 2. Classification accuracy and sensitivity with non-linear-param (N = 300
samples, α = 30, and fth = 80Hz), linear-param and mel-cepstral.
Parametrization Overall Classification Accuracy Sensitivity (SEP 2)

Non-linear-param
N = 300 samples, α = 30, and fth = 80 Hz
(Fully-supervised-initialization)

85.3 86.3

Linear-param, N = 300 samples
(Fully-supervised-initialization)

83.9 85.9

Linear-param, N = 400 samples
(Fully-supervised-initialization)

82.8 84.8

Linear-param, N = 500 samples
(Fully-supervised-initialization)

82.2 83.4

Mel-cepstral
(Fully-supervised-initialization)

60.5 67.2

Spectrogram cross correlation N.A. 60.6

Table 3. Accuracy for different noise model topologies
with the tuned non-linear-param using the proposed
fully-supervised-initialization model initialization.
Noise topology Accuracy

Three-states with state skip transition 85.3
Three-states without state skip transition 84.8
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the NISTmatched-pairs sentence-segment word error test (MAPSSWE, Pallet et al. 1990)
the difference is significant (p-value < 0.001; significance taken at p-value < 0.01). This can
probably be explained by the fact that the separation between two vocalizations is in some
cases as short as one frame, and these silences are better represented when noise is
modelled with a topology that includes the state skip transition.

5.3. Model initialization evaluation

Table 4 shows detection and classification accuracy of the two model initialization
methods applied to the ‘Corcovado-Songmeter’ database (Section 4.2), i.e. Fully-
supervised-initialization and Semi-supervised-initialization. Non-linear-param as in
Table 3 was employed in both cases. Noise models used the left-to-right three-state
with state skip transition topology (Figure 5(b)). According to Table 4, the proposed
initialization method led to a dramatic reduction in error rate of 59% relative to the
ordinary Semi-supervised-initialization provided by Kaldi. This may be a consequence
of the stereotyped nature of the AA, SEP1 and SEP2 blue whale vocalizations. The
Fully-supervised-initialization initialization described in Section 4.2 takes advantage of
this fact, and therefore generates more representative and accurate initial models.

5.4. Validation experiments

Results of the validation experiments were obtained with the following configurations:
System 1: Non-linear-param combined with Fully-supervised-initialization; System 2:
Non-linear-param combined with Semi-supervised-initialization; and System 3: Mel-
cesptral combined with Fully-supervised-initialization. The noise model was represented
with the three-state left-to-right with state skip transition HMM topology (Figure 5(b))
for the three systems described. Detection of SEP2 phrases using Systems 1, 2, and 3
(where detection of song unit D or S2.3 events as proxy for the entire phrase) was
compared with the average daily number of SEP2 published in (Buchan et al. 2015) and
shown in Figure 10. Detection of SEP2 phrases using Systems 1, 2, and 3 was compared
with the Buchan et al. (2015) reference (Figure 10). As seen in Figure 10, System 1 follows
much more closely the reference than Systems 2 or 3. The slight difference between
System 1 and the reference is hard to analyse because the latter results from a correction
made with a constant estimated empirically (see Section 4). Regarding Mel-cepstral,
Figure 10 supports the conclusion in Section 5.1 that these features do not discriminate
among whale vocalizations as well as the Non-linear-param. This must be due to the fact
that Mel filterbank was optimized for speech recognition and not for bioacoustics. To
compare the performance of the three systems, the root mean square error (MSE)
between each evaluated system and the reference was computed. The proposed detection

Table 4. Comparison of HMM training initi-
alization. Non-linear-param as in Table 3
was employed in both cases.
GMM initialization Accuracy

Fully-supervised-initialization 85.3
Semi-supervised-initialization 64.2
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and classification system, System 1, led to an MSE of 82.0, which is much lower than the
MSE with respect to the reference obtained with System 2 (MSE = 344.1) and System 3
(MSE = 440.2). In fact, System 2 and System 3 deliver MSE’s that are 320% and 437%
greater than System 1. These results indicate that System 1 is the optimal system for whale
vocalization classification and detection. This also confirms the pertinence of the fre-
quency compression curve for processing whale vocalizations; the accurate generation of
initial models for training estimated with a set of handmade annotated or labelled signals;
and, the model scheme that includes simultaneous whale vocalizations.

5.5. Performance comparison with the spectrogram cross-correlation method

An important criterion when comparing the proposed HMM-based method to other
methods, is the amount of human supervision time required and the computational
processing time. Here, training procedure does involve human analyst time, however in
principle, the training stage needs to be done only once with a database of annotated events
targeted by the study in question. The time required to annotate the 157.5 hours of the
‘Corcovado-Songmeter’ database was approximately 43.4 analyst hours; and the training
procedure using the annotated data demanded 1.3 hours of an Intel i7 desktop PC with
32 GB of RAM. Once the system was trained, it could be used to detect vocalizations in
a different database without the need of human supervision. Then, we compared the time
demanded to obtain the results of Figure 10 with our trained system and with the

Figure 10. Results of average SEP2 song detections per day for the Corcovado-MARU database.
‘Reference’ bars represent the results reported in (Buchan et al. 2015). ‘System 1’ and ‘System 2’ bars
represent the results with Non-linear-param combined with Fully-supervised-initialization and Semi-
supervised-initialization, respectively. ‘System 3’ bars represent results with Mel-cepstral combined
with Fullysupervised-initialization.
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spectrogram cross-correlation method. The time required to run our trained system on the
five months of data (‘Corcovado-MARU’ database) was 5.0 hours with the same PC
employed to train the system. In comparison, and disregarding the time required to run
the spectrogram cross-correlation detector on five months of data, which depending on
computational power can be hours or a day, the visual review of detections according to the
method in Buchan et al. (2015) involved 17.3 analyst-days. Consequently, the proposed
HMM-based automatic system allows the processing of huge amounts of data with no
human-supervision aside from the model training phase and achieves similar accuracies to
the commonly used spectrogram cross-correlation method, which cannot be done without
human review of detection results.

5.6. Implications for monitoring baleen whales in the southeast pacific

The coast of Chile is host to 50% of the world’s cetacean species (Aguayo-Lobo et al.
1998), most of which are currently classified as Vulnerable or Endangered (http://www.
iucnredlist.org/) following commercial whaling. This study contributes to advancing the
PAM of endangered whale populations off the coast of Chile and in the southeast
Pacific region, which is an extensive area of ocean that remains poorly covered in terms
of ocean observation (acoustic and non-acoustic) in general, and marine mammal
monitoring in particular. Moreover, marine bioacoustics is a relatively new field in
this region and research effort remains limited. For example, there are only six papers
on blue whale acoustics in this region (Cummings and Thompson 1971; Stafford et al.
1999a; Buchan et al. 2010, 2014, 2015; Buchan and Quiñones 2016), compared with
over a dozen papers on blue whale acoustics in the North Pacific (Thompson 1965;
Thompson et al. 1996; Rivers 1997; Stafford et al. 1998, 1999b, 2001, 2005, 2007, 2009;
Thode et al. 2000; McDonald et al. 2001; Wiggins et al. 2005; Rankin et al. 2006; Oleson
et al. 2007a, 2007b; Širović 2016). This is both a reflection of a low number of
researchers working in this field and limited financial resources to collect and analyse
PAM data. Given this scenario, developing methods that require a limited degree of
human supervision, or even no human supervision, is particularly important to advance
the analysis of existing datasets in this region, but also to demonstrate the feasibility of
PAM studies to national authorities and funding bodies in Latin America who are
generally unfamiliar with the broad applications of PAM technologies (compiled in Au
and Lammers 2016). More efficient analytical methods also advance the possibility of
real-time or near real-time PAM, that hold real promise for decision making, e.g. the
real-time detection of endangered whale presence for planning human activities in
coastal and offshore environments, or reducing the risk of fatal collisions between
whales and large ships (Baumgartner et al. 2018).

Beyond the southeast Pacific, we hope that this system can be applied to other
regions of the world ocean; similarly, we hope that this system can be applied to
vocal cetacean species other than blue whales.

6. Conclusions

The contributions of this study are: the accurate modelling of whale vocalizations
including overlapping vocalizations; proposing a frequency compression curve for
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processing whale vocalizations; the generation of accurate initial models for training
with an annotated database; using a state-of-the-art platform to run machine learning
experiments; and, advancing methods for the acoustic monitoring of Endangered
baleen whales off the coast of Chile and the southeast Pacific.

This study provides an automated system, without human intervention, for the detec-
tion and classification of single and overlapping blue whale vocalizations recorded off the
coast of Chile (SEP1, SEP2, AA and D-calls) using HMM implemented with the Kaldi
speech recognition toolkit, with 85.3% accuracy. This is the first automatic method for the
detection and classification of blue whale vocalizations off Chile and can be applied in the
future to other baleen whale vocalization types. To the best of our knowledge this is also
the first time that Kaldi has been used for analysing whale vocalizations. In addition, this
study proposes a new frequency compression curve for analysing whale vocalizations that
improves detection and classification, which we recommend be used by other researchers
that are processing low-frequency (<200 Hz) whale vocalizations. Consequently, another
consequence of this study is the fact that the use of Mel cepstral features in bioacoustics in
general should be revised and replaced by more ad-hoc parameters optimized with target
species in mind. Finally, the proposed system in this study has been validated by reprodu-
cing very similar results without human supervision to published results obtained via
spectrogram cross-correlation. Further training and testing to expand the repertoire of
target signals of this system and further validation with other published reference datasets
should be the focus of future research.

Notes

1. http://www.iucnredlist.org/.
2. http://kaldi-asr.org/.
3. http://www.wildlifeacoustics.com/.
4. http://www.birds.cornell.edu/brp/.
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