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Abstract: Multi-sensor systems are proliferating in the asset management industry. Industry 4.0,
combined with the Internet of Things (IoT), has ushered in the requirements of prognostics and health
management systems to predict the system’s reliability and assess maintenance decisions. State of
the art systems now generate big machinery data and require multi-sensor fusion for integrated
remaining useful life prognostic capabilities. When dealing with these data sets, traditional prediction
methods are not equipped to handle the multiple sensor signals in unison. To address this challenge,
this paper proposes a new, deep, adversarial approach to any remaining useful life prediction in
which a novel, non-Markovian, variational, inference-based model, incorporating an adversarial
methodology, is derived. To evaluate the proposed approach, two public multi-sensor data sets are
used for the remaining useful life prediction applications: (1) CMAPSS turbofan engine dataset, and
(2) FEMTO Pronostia rolling element bearing data set. The proposed approach obtains favorable
results when against similar deep learning models.

Keywords: generative adversarial networks; variational autoencoders; prognostics and health
management; remaining useful life; multi-sensor fusion

1. Introduction

Reliability is defined as the ability of a product or system to perform its required functions
without failure for a specified time, and when used under specified conditions. Therefore, reliability
engineering has long been tasked with predicting the remaining useful life of systems by incorporating
all available data. Reliability engineering has been given technologies incorporating cheap sensing
with the Internet of Things (IoT) generating multi-dimensional data sets through Industry 4.0 [1]. With
this new data at the engineer’s fingertips, more sophisticated methodologies to handle this data have
been developed and expanded within the prognostics and health management (PHM) field.

These data sets are often costly and time-consuming to label [2]. The engineer therefore must
make an economic decision on how much data to label. Therefore, the greatest economic benefit
would be to take advantage of unsupervised learning-based methodologies. To understand relevant
system health states without labeling, deep learning methodologies have been shown to be a technique
employed without the need for previous knowledge of degradation processes [3].

Most recently, remaining useful life (RUL) research focused on fully supervised deep learning
methodologies has had success in RUL prediction [4–19]. These models depend on the analyst having
access to a fully labeled dataset. Therefore, these RUL prediction accuracies require the use of accurate
training data labels. Moreover, this previous research does not attempt to develop the underlying
generative or inference model.
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A reliability engineer does not always have the resources to label all the data necessary to train
a deep learning model. A valuable methodology would provide the flexibility to include a small
percentage of labeled data as it becomes available and as resources allow. Generative modeling is a
class of modeling techniques which provides the ability to predict RUL without having to label what
could be massive multidimensional sensor data.

There have been recent efforts in generative modeling research, although it has yet to be adapted
and applied to reliability and machine health prognostics. Indeed, Bayer and Osendorfer [20]
and Chung et al. [21] both employed the variational autoencoder (VAE) principles to times
series observations. Krishnan et al. [22] encodes the state space assumptions from within their
proposed structure inference deep Kalman filter-based methodology. Karl et al. [23] proposes a VAE
principled state-space filtering methodology in which the latent space is forced to fit the transition.
Mescheder et al. [24] present VAEs based on adversarial training, and they achieve the flexibility to
represent families of conditional distributions over latent variables. Hu et al. [25] combine generative
adversarial networks (GANs) with VAE by proposing a new interpretation of adversarial domain
adaptation (ADA) and a unifying generative modeling framework named through comparisons
with the wake–sleep algorithm [26]. These methods, while suited for their applications in computer
science, lack the requirements for RUL predictions, such as time series applications. The Markovian
assumption is also utilized, where it is assumed that all information of past observations is contained
within the last system state; however, for PHM, this is insufficient. Multiple operating conditions
increase the degradation complexity of the RUL predictions, and some degradation paths are inherently
non-Markovian (e.g., crack growth). VAE on their struggle with low probability events, like curb strike
events, inherent in large systems [27]. Additionally, for PHM applications with unsupervised RUL,
these methods lack the VAE combined with the adversarial training of a GAN on time-series data to
provide predictions.

To address these problems, this paper proposes a deep generative state-space modeling
methodology for the remaining useful life prognostics of physical assets. The mathematical
framework underpinning the proposed methodology delivers the following novel contributions for
RUL predictions: (i) Non-Markovian transitions from multi-dimensional sensor data by generalizing a
deep generative filtering approach for remaining useful life estimation of the system; (ii) a modeling
approach that incorporates both variational and adversarial mechanisms; (iii) flexibility to handle
both unsupervised and semi-supervised learning for the estimation of the remaining useful life. This
method has vast applications for RUL predictions on both new and existing system assets.

The rest of the paper is organized as follows. Section 2 provides a brief overview of GAN, VAE and
state-space modeling. Section 3 presents the proposed methodology and the underlying mathematical
framework. Section 4 overviews the experimental results. Section 5 concludes with discussions and
future work.

2. Background

The generative modeling research as mentioned above [20–25], all aims to tackle the problem of
both a generative manifold space and inference modeling for prediction. There are slight differences
between generative and inference modeling, but fundamentally they aim to solve the same problem:
black-box neural transformations for implicit distribution modeling between the latent and visible
spaces. For RUL estimation, reliability and PHM, this is equivalent to modeling the underlying
degradation space, z, that is a result of the acquired observed sensor data set, x.

Traditional generative modeling approaches tend to distinguish between latent and visible
variables clearly, and to treat them differently. However, a key aspect of generative modeling is that
a clear boundary between the latent and visible variables (as well as generation and inference) is
not necessary. Instead, viewing generative modeling as a symmetric pair helps in modeling and
understanding as shown in Figure 1.
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2.1. Generative Adversarial Networks 

Generative Adversarial Networks (GANs) are a class of generative modeling techniques where 
two neural networks compete via a minimax game [28]. This game’s objective is to develop/learn a 
generator distribution 𝑃 (𝑥)  able to generate fake data identical to the real data distribution 𝑃 (𝑥). However, the generator does not directly have access to the real data. Instead, the generator 
distribution, 𝑃 (𝑥), transforms a vector of random noise, 𝑃 (𝑧), with an objective function, 𝐺(𝑧). The 
generator is then trained against an adversarial discriminator network parameterized by a separate 
neural network whose objective, 𝐷(𝑥), is to classify the data as real or fake, as shown in Figure 2. 
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point; however, the optimal discriminator 𝐷(𝑥) = 𝑃 (x) [𝑃 (x) + 𝑃 (𝑥)]⁄  should converge to 
equilibrium [29]. Formally, Equation (1) shows this value function: min max 𝑉(𝐺, 𝐷) = 𝔼 ~ ( )[log (𝐷(x)] + 𝔼 ~ ( )[log (1 − 𝐷(𝐺(z)))]. (1) 

where G(z) is the generator objective function, D(x) is the discriminator objective function, Pdata(x) is 
the data distribution and Pz(x) is the noise distribution. 

2.2. Variational Autoencoders 

Variational autoencoders (VAEs) are a class of generative models which develop both an 
inference and a generative model [27]. VAEs attempt to develop a model of latent variables, 𝑧, which 
can generate the observed data, 𝑥. Formally, this is expressed as: 𝑝(𝑥) = 𝑝(𝑥, 𝑧)𝑑𝑧 = 𝑝(𝑥|𝑧)𝑝(𝑧)𝑑𝑧 (2) 

Figure 1. Generative and inference modeling similarities.

2.1. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of generative modeling techniques where
two neural networks compete via a minimax game [28]. This game’s objective is to develop/learn a
generator distribution PG(x) able to generate fake data identical to the real data distribution Pdata(x).
However, the generator does not directly have access to the real data. Instead, the generator distribution,
PG(x), transforms a vector of random noise, Pz(z), with an objective function, G(z). The generator is
then trained against an adversarial discriminator network parameterized by a separate neural network
whose objective, D(x), is to classify the data as real or fake, as shown in Figure 2.
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There is no mechanism within the GAN training to constrain and control the Nash Equilibrium
point; however, the optimal discriminator D(x) = Pdata(x)/[Pdata(x) + PG(x)] should converge to
equilibrium [29]. Formally, Equation (1) shows this value function:

min
G

max
D

V(G, D) = Ex∼Pdata(x)[log(D(x)] +Ez∼Pz(z)[log(1−D(G(z)))]. (1)

where G(z) is the generator objective function, D(x) is the discriminator objective function, Pdata(x) is
the data distribution and Pz(x) is the noise distribution.

2.2. Variational Autoencoders

Variational autoencoders (VAEs) are a class of generative models which develop both an inference
and a generative model [27]. VAEs attempt to develop a model of latent variables, z, which can generate
the observed data, x. Formally, this is expressed as:

p(x) =
∫

p(x, z)dz =

∫
p(x|z)p(z)dz (2)
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It is common for p(x|z) ≡ pθ(x|z) to be developed and parameterized by a neural network with
parameters θ. For most cases, the posterior distribution p(z|x) is intractable.

However, an approximate posterior distribution, qφ(z|x), can be used to maximize the evidence
lower bound (ELBO) on the marginal data log-likelihood:

logp(x) ≥ E
qφ(z|x)

[logpθ(x|z)] −KL(qφ(z|x)||p (z))] (3)

From this, the VAE objective is equivalent to minimizing the Kullback–Liebler (KL) divergence
between qφ(z|x) and pθ(x|z), where pθ(x|z) and qφ(z|x) are parameterized by two neural networks with
parameters φ and θ, as shown in Figure 3.
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Figure 3. Variational autoencoder.

The training of a VAE involves the training of two neural networks, the encoder, qφ(z|x) sometimes
referred to as the recognition model, and the decoder, pθ(z|x) sometimes referred to as the generative
model. The encoder learns the relevant features of the input data and compresses the information to
the latent hidden space. The decoder then attempts to generate signals (e.g., images) identical to the
input data, and the reconstruction error is then minimized.

Within the computer vision community, VAEs tend to produce blurred images that are not as sharp
as those produced by other generative models. Within an engineering context, VAEs on their own can
result in a common issue with particle filtering algorithms: Without a fully expressive generative model
capable of handling extremely low probability events or sensor reading interactions, the resulting
prognosis model may not have considered these non-Markovian events.

3. Proposed Methodology

Given the complexities and associated uncertainty of the fault diagnostic and prognostic problem,
a proposed methodology would be one that is flexible enough to include new sets of information as
they become available. Expert opinion, black swan events, abnormal operating conditions, knowledge
of the underlying failure modes, physics of failure models and partially relevant information, can all
be included within the remaining useful life estimation. While this information can be valuable, the
methodology should also adequately generalize this data. For example, extracting relevant features,
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which may be known, may not be able to account for noisy sensor signals or operating conditions
outside the norm. With this end, we propose the methodology shown in Figure 4.Sensors 2020, 20, x FOR PEER REVIEW 5 of 18 
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The methodology has two distinct phases: (1) Unsupervised learning assessment of RUL,
(2) Semi-supervised learning assessment of RUL. It starts with the raw data signal fed into the
unsupervised variational adversarial filter. Without knowledge of labeling (e.g., the system health
states) at the start of operation of the system, this stage of development requires the use of unsupervised
remaining useful life estimation. Once the system has had operational time, the engineer can start
labeling data in a semi-supervised iterative loop, i.e., to identify the system’s health states with
corresponding input sensor data patterns. As it may not be feasible (time and cost-wise) to do so
for all the available data, experiments have shown that semi-supervised methodologies with only
a few percentages of the data set labeled can substantially improve the unsupervised methods [30].
Therefore, as the engineer labels data, the framework is robust enough to handle this percentage of
labeled data, as shall be demonstrated later in Section 4.

3.1. Unsupervised Remaining Useful Life Formulation

In this work, we propose a mathematical formulation that encapsulates the following features:
Both unsupervised and semi-supervised feature learning, adversarial-variational state-space modeling
with non-Markovian transitions (i.e., it is not assumed that all information regarding past observation
is contained within the last system state), adversarial training mechanism on the training of the
recognition qφ(zt|x1:t), and variational Bayes for the inference and generative model pθ(xt|z1:t). As
shown in Figures 5 and 6, we set xt as the observed sensor data, zt as the latent system health state
(e.g., crack length, degradation), and yt is the target domain relevant to the adversarial training
y ∈ 0, 1, . . . , RUL. Blue lines represent the adversarial mechanism, dashed lines indicate inference
processes and solid lines indicate a generative process. The transition parameters, θt, are inferred
via a neural network. Past observations are directly included in the inferential model output. The
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proposed mathematical framework does not assume that all the information relevant to parameters φt

is encoded within zt.Sensors 2020, 20, x FOR PEER REVIEW 6 of 18 
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To establish the training optimization, we denote the latent sequence zt ∈ Z ⊂ Rnz as a set of real
numbers nz and observations as xt ∈ X ⊂ Rnx . NowX can be, but is not limited to, a multi-dimensional
sensor data set from a large asset. The observations, xt, are not constrained to a Markovian transition
assumption. For engineering problems (e.g., crack growth and environmental effects on RUL) these
transitions can be complex non-Markovian. Therefore, the degradation sequence p(xt|z1:t−1) generated
by the discrete multi-dimensional sensor data sequences xt = (x1, x2, . . . , xt) and latent sequences
z1:t−1 = (z1, z2, . . . , zt−1) are of interest to the engineer. This is shown in Equation (4):

p(xt|x1:t−1) =

∫
p(xt|x1:t−1, z1:t)p(z1:t|z1:t−1)dz1:t (4)

where z1:t−1, zt ∈ Z ⊂ Rnz denotes the latent sequence. The basis of the latent dynamical system is
assumed to have an emission model p(xt|x1:t−1, z1:t) and transition model p(zt|z1:t−1). Two assumptions
are classically imposed on the emission and transition models as shown in Equations (5) and (6),

p(xt|x1:t−1, z1:t) =
t∏

i=1

p(xt|zt) (5)

p(zt|z1:t−1) =
t−1∏
i=0

p(zt+1
∣∣∣zt) (6)
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These equations capture the assumption that the current state, zt, holds complete information
for the observations xt, and the subsequent state zt+1. For noisy multidimensional sensor data sets
with complex non-Markovian transition, this assumption is insufficient. The proposed mathematical
formulation characterizes the state-space model without these assumptions.

Therefore, to derive the proposed mathematical framework of the proposed methodology, we
first put forward the variational lower bound objective function from Equation (4), given that we do
not make the Markov assumption from Equations (5) and (6). Thus, we have:

KL
(
qφ(z1:t|x1:t )

∣∣∣∣∣∣p(z1:t|x1:t )
)
= −

∫
qφ(z1:t|x1:t )

[
log

(
p(z1:t|x1:t )

qφ(z1:t|x1:t )

)]
(7)

As we know,

p(z1:t|x1:t) =
p(x1:t, z1:t)

p(x1:t)
(8)

Substituting into Equation (7) we get,

= −

∫
qφ(z1:t|x1:t)

log


p(x1:t,z1:t)

p(x1:t)

qφ(z1:t|x1:t)


 (9)

Rearranging (9) we get,

= −

∫
qφ(z1:t|x1:t)

[
log

(
p(x1:t, z1:t)

qφ(z1:t|x1:t)
∗

1
p(x1:t)

)]
(10)

Applying the product rule on (10) we have,

= −

∫
qφ(z1:t|x1:t)

[
log

p(x1:t, z1:t)

qφ(z1:t|x1:t)
+ log

1
p(x1:t)

]
(11)

Applying the quotient rule on (11) we have,

= −

∫
qφ(z1:t|x1:t)

[
log

p(x1:t, z1:t)

qφ(z1:t|x1:t)
− log p(x1:t)

]
(12)

Separating (12) we have,

= −

∫
qφ(z1:t|x1:t)

[
log

p(x1:t, z1:t)

qφ(z1:t|x1:t)

]
+

∫
z

qφ(z1:t|x1:t)logp(x1:t) (13)

However, we know that,

logp(x1:t)

∫
z

qφ(z1:t|x1:t) = 1 (14)

Therefore, we have,

logp(x1:t) = KL
[
qφ(z1:t|x1:t )

∣∣∣∣∣∣p(z1:t|x1:t)
]
+

∫
qφ(z1:t|x1:t)

[
log

p(x1:t, z1:t)

qφ(z1:t|x1:t )

]
(15)

where we simultaneously want to minimize the Kullback–Liebler (KL) divergence and maximize the
variational (evidence) lower bound (ELBO), L(θ,φ; x1:t), as shown in Equation (16):

L(θ,φ; x1:t) =

∫
qφ(z1:t|x1:t )

[
log

p(x1:t, z1:t)

qφ(z1:t|x1:t)

]
(16)
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Now, rearranging Equation (16), we have the non-Markovian variational lower bound derived for
time series data in Equation (17):

L(θ,φ; x1:t) = Eqφ(z1:t |x1:t )
[logpθ(x1:t |z1:t)] −KL

[
qφ(z1:t|x1:t)p(z1:t)

]
(17)

To add in adversarial training, we follow Goodfellow, et al. [28] and rewrite the optimization
function from Equation (17) to Equation (18) as follows:

min
θ

max
φ

ED(x)Eqφ(z1:t |x1:t )

(
[logpθ(x1:t|z1:t)] −KL

[
qφ(z1:t|x1:t)p(z1:t)

])
(18)

We now have an objective function which gives us an expressive qφ(zt|xt, z1:t−1), that is, we have a
mathematical framework the characterizes the state-space model without the restrictive assumptions
outlined in Equations (5) and (6). Additionally, this mathematical framework contains both the
generative and inference models of the system state that allows us to perform fault diagnostics and
prognostics as well as the RUL of the system assessment.

3.2. Semi-Supervised Loss Function

Semi-supervised initialization involves training of the chosen model’s architecture with an
incrementally increasing set of labeled data. This is an important aspect to explore, because as the
engineer gains more knowledge about a new system, one can label small sets of data, which are known
to be system degradation versus healthy operation to increase the system’s health state prediction [29].
This approach can improve the quality of the results via a semi-supervised loss, L, function given by
Equation (19):

L = Lsupervised + Lunsupervised (19)

In the context of the proposed adversarial framework, during the unsupervised training, the
discriminator learns features to avoid classifying the generated data as real data, but these features
might not be the best representation. To improve the discriminator and develop more meaningful
features for the system’s health states over time, labels are used. This is possible by writing the loss
function, L, within training to some predetermined number of epochs as follows:

Lsupervised = −Ex1:t,y1:t∼pdata(x1:t,y1:t)logpmodel(y1:t
∣∣∣x1:t, y1:t < K + 1) (20)

Lunsupervised = −
{
Ex∼pdata(x1:t)log[1− pmodel(y1:t

= K + 1
∣∣∣x1:t)]+Ex∼Glog[pmodel(y1:t = K + 1

∣∣∣x1:t)]
} (21)

where x and y are the same as defined previously. pmodel corresponds to the trained model. This cost
function adds a cross-entropy loss for the first K discriminator outputs. The unsupervised cost is
the same as the original GAN (see Equation (2)). However, there is a slight change, as now K + 1
corresponds to the probability of the sample being false [31]. The discriminator is used as a competent
classifier, given a subset of the dataset. In the context of the proposed mathematical framework, the
discriminator will be used as a feature extractor, given a subset of the dataset to improve the system’s
health state identification results.

4. Results and Discussion

The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) multi-sensor data set
was used to evaluate the proposed methodology [32]. C-MAPSS is a simulation tool developed in
MATLAB and Simulink environment for commercial turbofan engines. The model outputs multiple
sensor signal values corresponding to the input parameters of an engine component degradation
level or health indicator. In order to adjust to a specific problem that the user is trying to solve,
operational profile, closed-loop controllers and environmental conditions, can all be adjusted. The
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term “multi-sensor” for this data set references multiple types of sensors, operating conditions,
environmental conditions, flight numbers and trajectories. The 90,000-pound thrust class engine and
the CMAPSS simulation package allows operations at (1) Mach numbers from 0 to 0.90, (2) Altitudes
measuring sea level to 40,000 feet, and (3) sea-level temperatures measuring −60 to 103 ◦F.

Figure 7 shows the engine’s main elements with the following abbreviations: fan speed (N1),
low-pressure turbine (LPT), low-pressure compressor (LPC), high-pressure compressor (HPC), core
speed (N2), high-pressure turbine (HPT).Sensors 2020, 20, x FOR PEER REVIEW 9 of 18 
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Figure 7. Simplified diagram of engine simulated in the Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) [32].

The PHM 2008 competition data set developed from using the C-MAPSS program is used as an
example of application in this paper [33]. Four data sets, FD001 through FD004, are available, and
have the properties shown in Table 1

Table 1. C-MAPSS Data Overview.

Data Set Train Trajectories Test Trajectories Operating Conditions Fault Modes

FD001 100 100 1 (Sea Level) 1 (HPC)
FD002 260 259 6 1 (HPC)
FD003 100 100 1 (Sea Level) 2 (HPC, and Fan)
FD004 248 249 6 2 (HPC, and Fan)

The four data sets have a combination of two fault conditions: high-pressure compressor
(HPC) degradation and fan degradation. The data set includes the true RUL to measure prediction
performance against. The data set is separated into training and test sets consisting of 26 different
sensor measurements, three conditions of operation, flights and mission times. Each of the engines
within the dataset initiates with different levels of manufacturing variation and initial degradation.
This information is hidden from the engineer, and is not considered a fault condition. The three
operational settings do have a substantial effect upon engine performance. These settings are known.
Finally, the sensor data is contaminated with noise. Figure 8 shows an example of one of the sensor
measurements for one trajectory with its RUL.

To avoid unnecessary duplications, the following sections only use FD001 and FD004 for the sake
of brevity. To successfully predict the remaining useful life of the engine, a methodology that can fuse
the twenty-six different sensor signals is necessary.
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4.1. Example of Application: Turbofan Engines

To evaluate the proposed semi-supervised methodology, two types of labeling were used: (1) fixed
interval and (2) random interval. The fixed interval consists of labeling one out of every x number
of labels (i.e., 5% equals labeling 1 out of every 20 data points.) Random interval labeling consisted
of taking a random sample of the complete data set for labeling (i.e., 5% of 15,680 data points equals
784 randomly labeled data points). This was done because, as the time interval between labels is
decreasing, the RUL estimation error improvements reduce. As one will notice in the rest of this
section, this did affect RUL prognostics.

To evaluate the effects of adding a small subset of labeled data to the training procedure,
semi-supervised learning was also conducted on the C-MAPSS dataset. There are two parts of the
algorithm to evaluate this effect of labeling on the results: (1) feature learning and (2) regression. When
it is stated “semi-supervised feature learning”, it implies that the percentage of labels were fed into the
feature learning phase of the model. When results are reported as “unsupervised feature learning”,
zero labels were used in the feature learning portion of the model.

The proposed methodology is evaluated against the true RUL via the root mean square error
(RMSE). To not sway these results in a more positive light, the authors chose to train the model ten
times and take the average results from all ten.

First, FD001 is evaluated from one percent to one hundred percent labels. The RMSE results can be
found in Tables 2 and 3. As one can see from the results, there is an effect on the RUL prognostics with
both types of labeling (fixed vs. random) and adding labels to both parts of the model. This can also be
viewed in Figure 9 There are two observations to note when looking at the results: (1) adding labels to
feature learning improves the RUL prediction, and (2) as more labels are added to the feature learning
and regression parts of the modeling, the prediction performance (in terms of RMSE) improvement
tends to taper off after twenty percent. The increase in prediction performance from adding labels
to the feature learning portion of the model shows that feeding labels to the generative model help
extract more degradation-related features present in the data. The appropriate percentage of labeling
could be inferred or determined based on the evolution of the RMSE according to Figure 9. In this
case, the RMSE marginally improves for FD001 beyond twenty percent labeling (1.5% improvement
for 50% labeling and 2.7% improvement for 100% labeling). This is important because labeling data
is expensive and time consuming. Therefore, increasing the prediction performance (i.e., reducing
RMSE) beyond twenty percent of labels becomes increasingly more expensive for a smaller benefit.
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Table 2. FD001 root mean square error (RMSE) Unsupervised feature learning with
semi-supervised regression.

Labeling 1% 5% 10% 20% 50% 100%

Fixed 23.33 19.34 18.26 17.66 17.39 16.91
Random 24.54 19.66 19.17 18.50 17.96 17.57

Table 3. FD001 RMSE Semi-supervised feature learning with semi-supervised regression.

Labeling 1% 5% 10% 20% 50% 100%

Fixed 20.50 18.50 17.47 16.37 15.82 15.44
Random 21.20 18.33 16.50 16.06 15.54 15.27Sensors 2020, 20, x FOR PEER REVIEW 11 of 18 
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To evaluate the effects and differences of modeling operating conditions and additional fault
modes, FD004 was also examined. This data set is more applicable for cases that include fleets of
vehicles operating in different conditions. Based on the results reported in Figure 10, Tables 4 and 5,
this data set had a larger improvement in results by adding labels into both feature learning and
regression parts of the model. One can argue that this is because of the non-homogeneity of the data
resulting from the inclusion of additional operating conditions and fault modes.

Table 4. FD004 RMSE Unsupervised feature learning with semi-supervised regression.

Labeling 1% 5% 10% 20% 50% 100%

Fixed 53.19 49.85 47.79 46.66 46.54 46.40
Random 54.82 50.30 49.90 48.22 47.39 47.09

Table 5. FD004 RMSE Semi-supervised feature learning with semi-supervised regression.

Labeling 1% 5% 10% 20% 50% 100%

Fixed 45.76 41.36 39.90 38.76 38.56 38.18
Random 46.80 40.73 39.46 37.98 36.93 36.26
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Note that FD004 needed an increased percentage of labels given the inherent non-homogeneity
of the data set. With six operating conditions and two failure modes, there is a higher degree of
uncertainty, and therefore the model performance benefits from an increasing percentage of labels.
Compared to the FD001 results in Figure 9, there is still a noticeable reduction of RMSE up to 100%
labeling. This reflects the model taking advantage of the increased knowledge of the RUL evolution
granted by the known labels during the training stage.

Moreover, both FD001 and FD004 RUL prediction benefited from random interval labeling during
semi-supervised feature learning. This is can be attributed to the proposed model’s ability to better
generalize the underlying generative model or lower-dimensional manifold space. The output of the
proposed framework also includes a semi-supervised model that gives the engineer the ability to
continuously add labels as more information about the degradation process becomes available. From a
practical point of view, this is an important characteristic of the model: the engineer can weigh the
economic impacts of labeling more data.

4.2. Ablation Study and Comparison Results

An ablation study was conducted on the FD001 data set to understand the effects and advantages
of integrating variational inference with an adversarial approach, as it is done in the proposed
mathematical framework. To this end, both VAEs and GANs were applied separately to FD001 and
RUL estimates were performed. Unsupervised feature learning with semi-supervised regression was
performed to evaluate the effects of the generative modeling without labels for feature learning. These
results can be seen in Tables 6 and 7, Figures 11 and 12.

Table 6. FD001 RMSE Unsupervised Feature Learning—Fixed Labeling Intervals.

Model 1% 5% 10% 20% 50% 100%

Proposed 23.33 19.34 18.26 17.66 17.39 17.09
GAN 28.77 24.38 22.90 22.16 21.80 21.73
VAE 34.54 33.39 33.18 33.10 32.73 32.01
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Table 7. FD001 RMSE Unsupervised Feature Learning—Random Labeling Intervals.

Model 1% 5% 10% 20% 50% 100%

Proposed 24.54 19.66 19.17 18.50 17.96 17.57
GAN 25.89 23.16 20.50 19.22 19.01 18.59
VAE 34.82 33.58 33.37 33.38 32.84 32.44
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These results allow one to see the effects of the variational and adversarial approach of the proposed
methodology. Even though the VAE and GAN models provide acceptable results, the proposed
methodology outperformed both on their own. The VAE model’s RUL prediction performance in
terms of RMSE was slightly better with fixed interval labeling, while the GAN model’s performance
was better with random intervals for the labeling. VAE did not perform as well as the GAN and the
proposed methodology. The VAE model also did not benefit from labeling more data after adding
10% labels.
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The authors suspect the VAE model did not perform as well due to the possibility of modeling the
Gaussian priors of the VAE model sequentially in the training portion of the model [32]. These results
show the value of the combination of the non-Markovian adversarial and variational capabilities
within the proposed methodology.

Additionally, the proposed methodology and corresponding mathematical framework were
assessed against the deep generative modeling technique outlined in Krishnan, et al. [22]. This
modeling technique incorporates a Deep Markov Model (DMM) state-space system utilizing structured
inference architecture without an adversarial mechanism. Additionally, Krishnan’s methodology was
not developed for, or applied to, the PHM context. It is, however, a state-of-the-art deep generative
modeling technique on time series data. For this paper, it was applied to the CMAPSS FD001 and
FD004 data sets as a comparison method. These results can be found in Table 8.

Table 8. Unsupervised RMSE average results for the C-MAPSS test set.

Proposed Krishnan Fully Supervised NN

Data Set Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

FD001 16.91 0.39 17.32 1.91 16.43 0.84
FD004 46.40 0.53 54.15 0.54 38.35 0.18

As shown in Table 8, the proposed methodology provides superior results when compared
with DMM. Additionally, the DMM is restricted to unsupervised learning, and does not provide
a mechanism for semi-supervised learning and labeling. To compare the methodology to a more
traditional fully supervised RUL approach, a basic neural network was also applied to the data
set within this table. This gives a baseline for the engineer to make an economic decision about
labeling the complete data set. This further demonstrates the benefits of the proposed methodology
for RUL assessment.

The analysis presented was completed with an nVidia TitanXP GPU processor, and each set of
training results took approximately fifty-five minutes to complete. Currently, it takes 1.1 s on average
to feed a batch set of data through the model after training. Further research would be required
and is beyond the scope of this paper; however, once training is complete it would be reasonable to
envision the regression side of the proposed methodology as capable of operation within an online real
time system.

4.3. FEMTO Dataset Results

For an additional point of experimental validation, this dissertation uses the PHM 2012 Challenge
dataset incorporating the PRONOSTIA platform for accelerated aging The term “multi-sensor” for this
data set means multiple bearing trajectories, load conditions and rotational speeds. The experimental
setup is shown in Figure 13.

The platform’s goal is to provide a sensor data output that characterizes the realistic degradation
processes of rolling element bearings throughout their life. This data set consists of a run to failure
data set for seventeen bearings at different load cases and rotational speeds. The information for each
bearing is outlined in Table 9.

Table 9. FEMTO Dataset Information.

Condition Load Speed Bearings

1 4000 1800 1–1 1–2 1–3 1–4
1–5 1–6 1–7

2 4200 1650 2–1 2–2 2–3 2–4
2–5 2–6 2–7

3 5000 1500 3–1 3–2 3–3
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To evaluate this data set, sixteen of the seventeen bearings were used as the training set, while the
seventeenth bearing is used as the test set. Data augmentation in the form of spectrogram images was
done to ensure a consistent signal and degradation path. Figures 14 and 15 show the raw signal and
spectrogram signals for bearing 1–3 prior to data normalization. Data was normalized for each bearing
signal to maintain a consistent scale for the data, and it is a necessary step in preparation to be input
into the proposed methodology.
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The results of the FEMTO data set within the proposed methodology show good performance
against research incorporating this dataset, where the published fully supervised RMSE results for
bearings 1–3, 2–4 and 3–1 are 9.0, 8.9 and 24.2, respectively [35]. As shown in Table 10, the proposed
methodology outperformed these results.

Table 10. FEMTO RMSE Results—Semi-supervised Feature Learning with Semi-Supervised regression.

Bearing 1% 5% 10% 20% 50% 100%

1–3 11.32 11.10 10.96 10.36 7.50 6.59
2–4 10.13 9.92 8.65 7.28 6.77 6.42
3–1 31.90 27.42 23.73 20.08 15.02 11.51

Similarly, to the CMAPSS results, increasing the percentage of the labels reduces the RMSE results
of the prediction accuracy. This again demonstrates that the model’s ability to extract system health
features improves with more knowledge about the system. Due to the nature of this data set, only fixed
interval labeling was used. Random interval labeling was explored; however, unlike the CMAPSS
results, it had mixed results. The results show the robust ability of the proposed methodology to
generalize the underlying machine health state degradation process.

5. Conclusions

In this paper, a novel deep learning-enabled, adversarial–variational methodology, and
corresponding non-Markovian mathematical framework, for remaining useful life estimation, was
proposed. This was then applied to both a public multi-sensor turbo fan dataset and a public
multi-sensor rolling element bearing data set. The proposed methodology achieved superior RUL
prediction performance and demonstrated its ability to predict the RUL even with a small percentage
of labeled data.

Within the ablation study, the proposed framework proved higher RUL prediction performance
with a combined generative modeling methodology. The prediction performance was further enhanced
with the addition of labels to the data set. Moreover, the type of labeling (random versus fixed-interval)
was explored, and it was uncovered that the method with which one labels time series data can be
beneficial towards RUL prediction. Preliminary results indicate that the proposed methodology could
be implemented as an online system; however, further research is required to explore this possibility.
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A limitation of the proposed methodology is inherent when trying to quantify the variability,
while not specifically calculating the uncertainty. This is a potential drawback to this model supporting
PHM risk decision making given the computational complexity. Therefore, a suggestion would be
to expand the method in terms of a Bayesian framework so the uncertainty on RUL can be explicitly
calculated. This approach would be useful with the implication of a quantifiable uncertainty metric,
where a loss function could find a relation between the percentage of labeling and the uncertainty on
RUL. From this, one could then find an optimal labeling percentage for a given physical asset’s dataset
based on the risk surrounding a failed prediction.
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