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DEVELOPMENT OF A METHOD FOR PLANNING A RESILIENT MULTI-VECTOR 

ENERGY SYSTEM THROUGH A MULTI-OBJECTIVE OPTIMIZATION MODEL 

The operation of energy systems is affected by natural disasters; however, these systems 

can be improved if their resilience to such events is taken into account at the design phase. 

Moreover, the use of renewable energy technologies is increasing, but they are highly 

variable since they depend on climate conditions. Thus, coupling energy sectors using multi-

energy systems has proven to be beneficial in smoothing out the variability of renewable 

sources; nonetheless, the impact of natural disasters on these systems has not been 

thoroughly studied. The literature review has shown a lack in the study of resilience metrics 

for energy systems, specifically, there is no study observed for multi-energy systems. 

Therefore, the goal of this thesis is to develop a method to optimally plan a multi-energy 

system including resilience in its design. 

This method includes three stages: i) investment planning of a multi-energy system with two 

targets: resilience and costs, the first one being a core-part of our work: we create a new 

resilience indicator, ii) operational simulation of the system in case of a disrupting event, 

and iii) the index validation where we consider the uncertainty of restoration time through a 

Monte Carlo simulation. Both simulations are iterative processes, in which we compare the 

results with the predicted resilience value in the planning stage. If the results differ, the 

methodology is repeated, modifying the resilience index to obtain an appropriated one. 

The results of the planning stage show a clear trade-off between both targets, where 

increasing resilience involves an increase in costs. The operational simulation of the system 

in case of an event shows a higher value of resilience than predicted by the indicator 

because the model is free to adapt the power delivered, minimizing the unserved energy. 

To validate the model, we performed a Monte Carlo simulation. It shows lower results than 

predicted due to the restoration function used. Even though the values are lower than 

predicted, the increase in resilience is expected; therefore, the method looks promising to 

plan a multi-energy system including resilience. 
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RESUMEN DE LA TESIS PARA OPTAR AL TÍTULO DE: 
INGENIERA CIVIL QUÍMICA Y GRADO DE MAGÍSTER 
EN CIENCIAS DE LA INGENIERÍA, MENCIÓN QUÍMICA 
POR: GABRIELA ALEJANDRA VERA HOFMANN 
FECHA: 17/01/2020 
PROFESOR GUÍA: FELIPE DÍAZ ALVARADO 

 

DESARROLLO DE UN MÉTODO PARA EL DISEÑO DE UN SISTEMA MULTI-ENERGÍA 

RESILIENTE MEDIANTE UN MODELO DE OPTIMIZACIÓN MULTI-OBJETIVO 

Uno de los grandes problemas de la operación de sistemas energéticos es la ocurrencia 

de desastres naturales. Esto se podría mejorar si se considera la resiliencia en su etapa de 

diseño. Además, el uso de energías renovables está aumentando, pero estas son 

altamente variables, al depender de las condiciones climáticas. Es por esto, que la 

integración de los distintos sectores energéticos, usando sistemas multi-energéticos, ha 

demostrado traer beneficios minimizando esta variabilidad. Sin embargo, el impacto de 

desastres naturales en estos sistemas no ha sido estudiado en detalle. La bibliografía 

muestra una falta en el estudio de métricas de resiliencia en sistemas energéticos y menos 

para sistemas multi-energéticos. Es por esto, que el objetivo de esta tesis es desarrollar un 

método para planificar óptimamente un sistema multi-energético incluyendo resiliencia en 

el diseño. 

Este método se divide en tres etapas, primero, i) la planificación de la inversión de un 

sistema multi-energético con dos objetivos: minimizar costos y maximizar la resiliencia, 

siendo este último parte esencial de este trabajo, ya que se propone un nuevo indicador de 

resiliencia; ii) la simulación operacional del sistema dado un evento disruptivo; y iii) la 

validación del indicador de resiliencia, donde se considera la incertidumbre del tiempo de 

recuperación de las distintas tecnologías, a través de una simulación de Montecarlo. Ambas 

simulaciones son procesos iterativos, donde se compara el valor de resiliencia obtenido 

con el que se predijo en la etapa de planificación. Si los resultados difieren, se repite la 

metodología modificando el indicador de resiliencia hasta obtener uno apropiado. 

Los resultados de la etapa de planificación muestran una contraposición de ambas 

funciones objetivo, donde aumentar la resiliencia del sistema conlleva mayores costos. La 

simulación de la operación del sistema muestra valores superiores a los esperados de la 

etapa de planificación, porque, a diferencia de la planificación, en esta etapa el modelo es 

libre de adaptar sus flujos minimizando la energía no suministrada. La validación del 

modelo con la simulación de Montecarlo muestra valores menores a los esperados, lo que 

se explica por la diferencia de las funciones de recuperación de las tecnologías. A pesar 

de que con este método los valores son inferiores a los que predice el modelo en la etapa 

de planificación, el comportamiento de aumentar la resiliencia es el esperado, por lo que el 

método es prometedor para planificar un sistema multi-energético con resiliencia. 
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1. Chapter 1: Introduction 

1.1 Motivation and Theoretical Framework 

The growth of electricity demand and the need to mitigate climate change demand the use 

of renewable energies [1]. For reaching high-shares of renewables, coupling different 

energy sectors has proven to be beneficial in smoothing out the variability of renewable 

sources (e.g. photovoltaics PV) [2]. These systems allow us to identify many readily 

available options and synergies. Therefore, tools for a systematic design of these systems 

are crucial for helping the decision-makers in this task. 

Multi-energy systems (MES) consist in a system whereby different energy vectors, like 

electricity, heat, cooling, fuels, and transport interact with each other at various levels. MES 

represent an important opportunity to increase economic and environmental performance 

compared to classical energy systems whose sectors are treated separately [3].  

MES, like any other system, are vulnerable to the effects of earthquakes, which may result 

in significant disruption of power supply [4]. If a MES is planned considering disruptions as 

a possibility, the system can be designed to reduce negative consequences.  

Hence, it is important to take resilience into account in their design. Resilience is a term 

widely used in multiple disciplines, including psychology, ecology, environmental science, 

among others. The multidisciplinary use of resilience implies the ability of an entity or system 

to return to its normal state after a disruption [5]. 

The resilience curve is used to graphically represent resilience. This curve represents the 

system’s health over time [6], as shown in Fig. 1. In the beginning, the system is in steady-

state with the health 𝑄0. Nonetheless, in time 𝑡0, an event occurs, which causes a reduction 

in the system’s health, reaching the value 𝑄𝑒. After the event, the system starts a recovery 

state, until it reaches the steady state again in time 𝑡𝑟𝑒𝑐. 
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Fig. 1: Graphic representation of a resilience curve. 

For a system to be resilient, it should have the following characteristics (or dimensions): (i) 

Robustness: the ability of systems to withstand a given level of stress without suffering 

degradation. (ii) Redundancy: the extent to which systems are substitutable and can satisfy 

functional requirements in the event of disruption. (iii) Resourcefulness: the capacity to 

apply material and human resources to meet established priorities and achieve goals. (iv) 

Rapidity: the capacity to meet priorities and achieve goals in a timely manner to contain 

losses [7]. 

To consider resilience in the systems it is important to predict their behavior in the event of 

an earthquake. Therefore, two main concepts are used: fragility curve and restoration curve. 

The former describes the probability of reaching or exceeding a damaged state, while the 

latter describes the health of the system over time [4].  

Considering resilience when planning energy systems is important in order to reduce 

disruptions. Some authors have studied different ways to measure resilience, proposing 

metrics for different application areas [7, 8]. Literature reveals that there are multiple ways 

to describe the concept; however, some authors agree on the recovery ability. Despite 

resilience is widely studied, a resilience indicator for coupled multi-energy systems has not 

been observed. As a consequence, this study aims at filling this gap, developing a resilience 

indicator for MES. 

On the other hand, there is much recent work on designing multi-energy systems [3] whose   

most common goal is to minimize the costs of the system. In fact, even some environmental 

indexes have been included in these formulations [9].  
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Incorporating resilience in the planning stage of other systems, such as water resources, 

has shown adverse consequences on costs and environmental aspects as the redundancy 

of the system increases [10][11]. This implies that is important to consider the impact of 

planning with resilience. 

Other authors have studied how to incorporate resilience in power systems optimization. 

For example, [12] described and applied a resilience assessment and an adaptation 

framework of a power system exposed to seismic events. This framework optimally 

configures the network operation and restoration [12]. Moreover, [13] proposed an 

optimization framework for designing resilient power grids against natural hazards to make 

optimal decisions on network investment [13]. Nevertheless, planning a multi-energy 

system with a resilience target has not been observed. Therefore, the framework we 

propose aims at filling this gap by planning a multi-energy system. 

1.2 Research Questions and Goals 

The main goal of this thesis is to develop a method to optimally plan a multi-energy system 

including resilience in its design. More precisely, this study answers the following questions:  

RQ1: How to measure resilience? 

RQ2: How to simulate the resilience of a multi-energy system given a certain 

disturbance? 

RQ3: How to endogenize this resilience index in a multi-energy system expansion 

model? 

RQ4: What is the impact of planning considering resilience at the design phase on 

investment costs in an applied case? 

To answer each research question and reach the main goal, this thesis has the following 

specific goals: 

SG1: To provide a comprehensive review of the academic literature, focused on 

different resilience metrics. 

SG2: To simulate resilience of a multi-energy system in the event of a disturbance. 

SG3: To propose a new resilience indicator for multi-energy systems. 

SG4: To plan investment and make operational decisions in an applied case using the 

proposed indicator and an economic indicator through a multi-objective 

optimization model. 

This thesis has two novelties. The first one is the method for planning a MES considering 

resilience and costs through multi-objective optimization. The second one is the resilience 

indicator used, which is analog to the loss of energy expectation (LOEE) in power systems 

but extended to MES. 

The present thesis consists of 7 main chapters: i) Introduction: where the motivation and 

the theoretical framework as well as the research questions and goals are exposed. ii) 
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Methodology: we propose a framework to plan a multi-energy system taking resilience into 

account. It consists of three stages: investment planning, operational simulation and 

resilience index validation. In addition, we present the optimization model used, the 

superstructure and the optimization problem, and our case study. iii) Resilience metrics: we 

review different resilience metrics from literature and we adapt one for this study; iv) 

Operational simulation and resilience measurement: we use this metric to quantify 

resilience through an operational simulation. This chapter is important to develop a new 

resilience indicator to use the resilience value as a reference in the following stage. v) 

Development of a new resilience indicator for the system design: based on the previous 

chapter, we develop a new resilience indicator to design a multi-energy system. vi) Planning 

of a resilient and low-cost multi-energy system: using the previous work, we use the 

proposed framework to plan a multi-energy system considering resilience in its design. vii) 

Conclusions: finally, we mention some important conclusions related to our research.  
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2. Chapter 2: Methodology 

This chapter presents the thesis methodology. First, we propose a framework to plan a 

multi-energy system considering resilience. This framework is divided into stages: 

investment planning, operational simulation and resilience index validation, which are 

explained in detail. Then, we explain the optimization model used, the superstructure, and 

finally we describe our case study. 

2.1 Framework 

Incorporating a resilience index in a multi-objective optimization allows us to define relative 

importance to each goal and to study the trade-off between the functions. Therefore, we 

propose a framework that plans a multi-energy system considering a resilience target in its 

design and optimizes the network operation after being exposed to a hazard. This 

framework is divided into three main stages: investment planning, operational simulation, 

and resilience index (RI) validation, as presented in Fig. 2.  

 
Fig. 2: Methodology of the proposed framework 

To understand the state of the art of the different metrics already proposed we will provide 

a comprehensive review of the academic literature. In this review, we present some 

resilience metrics, analyze other metrics related to the topic, and finally adapt a metric for 

this study. 

The first stage of the proposed framework is the investment planning, which consists in a 

multi-objective optimization to decide the capacity and operation of each component of the 

system. The optimization functions (OF) are economic and resilience indicators. The latter 
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OF is a core-part of our work: we create a resilience indicator capable of ensuring 

computational tractability. The output of the investment planning stage is the configuration 

of the pre-event system, which operates in normal conditions. Since we are planning with 

resilience, we also obtain as output an expected value of resilience from this stage. 

When a hazard such as an earthquake occurs, some technologies may suffer damage 

(vulnerability). To predict the damage-state that each technology may reach, we use the 

HAZUS method (for more detail see Appendix A), to obtain their restoration curves, which 

describe the fraction of the system that is expected to be operational as a function of time 

following the earthquake. The incorporation of the damage-state of each technology implies 

a possible reduction in the capacities of the technologies, which might threaten the system's 

health (i.e. this might lead to unserved energy). To determine the best system configuration 

that minimizes the energy not supplied, we create an operational simulation. This simulation 

takes the restoration curve of each technology as input. The output of this stage is the post-

event system behavior over time. From this behavior, we calculate resilience using the 

adapted metric from the literature review. This final resilience value is compared to the value 

from the previous stage, if they are different, we modify the resilience indicator and the 

methodology is repeated until an appropriated indicator is obtained. 

The last stage of the framework is the validation of the resilience index used in the first 

stage. To do this, we perform a Monte Carlo Simulation (MCS) (for more detail see Appendix 

B) with the reposition time as a random variable, and its distribution is given from fragility 

curves. This value is then compared with the resilience value obtained from the previous 

stages. Like the previous stage, if the values are similar, the resilience index is accepted. 

Otherwise, the methodology is repeated, modifying the resilience index to obtain an 

appropriated one. 

The iterative process presented in this framework is applied to the operational simulation 

stage. However, this thesis presents the final indicator obtained from the process. The 

iterative process is not performed in the last stage because of the duration of the study. 

2.2 Optimization Model 

To develop the abovementioned methodology, we use an optimization model. This model 

gives us the system operation based on different inputs. It is for MES and extends an 

existing energy planning tool, adapted from [14] and [34] and it is illustrated in Fig. 3. We 

adapted this model adding resilience as a new objective function (OF). 
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Fig. 3: Optimization model used. Adapted from [14] and [34]. 

The optimization model is based on energy balances and OFs, which needs parameters as 

inputs, and the output is the expected result of the system. The model is a multi-objective 

optimization problem (MOP) (for more detail see Appendix C). It uses two OFs: economic 

function and resilience. To quantify those targets, the model needs the cost and vulnerability 

(fragility curves and restoration curves) of each technology, respectively.  

The model should help to decide which technology to install, the capacity and the 

configuration of the system. The model takes planning and operational decisions, and the 

final product is the optimal system design and its operation over time. 

The optimization model is a linear programming problem (LP). To solve this model, we use 

the solver CPLEX in the computational program GAMS. The input and output data are 

managed with EXCEL, while the graphics are generated with MATLAB. 

The complete model formulation, the inputs used for the model and the GAMS formulation 

are presented in Appendixes G, H and I, accordingly. 

2.3 Superstructure 

The superstructure used in this thesis describes a general fully-renewable multi-energy 

system, as shown in Fig. 4. This system has different types of technology: primary 

generation 𝑃𝐺, transformation technologies 𝑇𝑇 (which transform one type of energy to 

another), storage 𝑆 of the different energy types, and the process 𝐷 which demands energy. 

We consider three types of energy: heat, fuel and electricity. Every energy type can be 

generated by different technologies (e.g. photovoltaics PV, wind turbine). The 

transformation of energy can also be addressed through different technologies (e.g. heat to 

fuel, electricity to heat, etc.). Every combination between input and output of the same 

energy type is possible. 

Techs performance

Climate Conditions

Cost of techs

System restrictions Energy demand model

Energy Balance

Hourly system operation

Size of technologies

Resilience

Vulnerability of techs

Economic Resilience

Inputs

Outputs

Optimization model

OF

Total cost
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Fig. 4: Model superstructure. 

The superstructure of the system is analog to a process, which has different units and 

connections. Therefore, we develop the model as a process with energy balances.  

The complete nomenclature of the sets, parameters and variables used in this thesis are 

detailed in Section 8. 

2.4 Case Study 

To study the application of the proposed approach, we use the case study presented in Fig. 

5. Specifically, it consists in a fully-renewable multi-energy system that supplies the energy 

demand for copper mining in Chile [13]. Mining demands energy in the form of electricity, 

fuels, and heat. It considers primary energy generation of electricity and heat, storage for 

all kinds of energy, and energy transformation technologies.  

Primary energy generation considers wind power and three different solar energy 

technologies (photovoltaics, concentrated solar power CSP –parabolic trough- and flat plate 

solar-thermal collectors). For electricity storage, we use lithium batteries, for fuel storage 

hydrogen tanks, and for heat molten salts storage and hot water tanks. Transformation 

technologies consider CSP-power block to generate electricity from heat, fuel cells to 

transform fuel into electricity, electrolyzer which uses electricity to generate fuel, and heating 

rod to transform electricity into heat. The specific nomenclature used for this case study is 

described in Section 8. 

𝑃𝐺 
Primary

Generation

𝑇𝑇   

𝑆 

𝐷

Transformation

Storage

Demand

     
         𝑡          𝑡    𝑡 
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𝑆 

𝑇𝑇   

𝑇𝑇   𝑃𝐺 

𝐷 
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Fig. 5: System superstructure for the case study. 

For this case study, we consider an earthquake as a disruption. An earthquake will affect 

the power that each technology might deliver. For example, for PV, this disruption may affect 

the connection to the grid or cause damage to a single panel, producing unserved energy 

to the process. 
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3. Chapter 3: Resilience Metrics 

This section reviews the existing literature on resilience metrics. We revise 60 studies on 

resilience, then we select those that we considered that can be adapted to energy system 

planning and analyzed them in more detail. First, we show the field of application of the 

articles, then we offer more details on the selected ones on a table, and finally, we discuss 

some selected metrics to adapt one to our study.  

3.1 Literature Review on Resilience Metrics 

Resilience is applied to many engineering fields. Fig. 6 summarizes the area of application 

of the reviewed metrics. The most studied field is infrastructure and transportation, while 

resilience in power systems accounts for a minor share. Although there are some studies 

that use resilience metrics in power systems, a resilience indicator for multi-energy systems 

has not been observed. Accordingly, the indicator we introduce in the next sections aims at 

filling this gap. 

 

Fig. 6: Application area of the different metrics. 60 metrics analyzed. 

From the revised studies on resilience, we select some metrics that we consider can be 

adapted to the field of MES. Selected metrics are summarized in Table 1. The metrics are 

described with some specific features: type of extreme event, application area, uncertainty 

considerations (deterministic or probabilistic), and time modeling (dynamic or stationary). In 

the following table, we summarize the selected studies.

Infrastructure

Transportation

Water resource

Power system

Supply chain

Economy

Organization

Petrochemical 
plant

Business

Networks

Others
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Table 1: Some resilience metrics proposed in the literature. 

Resilience Metric Recover from Application 

field 

Deterministic/ 

probabilistic 

Stationary/ 

dynamic 

Reference 

𝑅  ∫ [100 − 𝑄 𝑡 ]𝑑𝑡
𝑡1

𝑡0

 
Earthquakes Community Deterministic Dynamic [7] 

𝑅  ∫ [100 − 𝑄 𝑡 ]𝑑𝑡
𝑡1

𝑡0

   

𝑄 𝑡  100 − [𝐿 ∙  𝑟𝑒𝑐 ∙ 𝛼𝑅] 

Earthquakes Infrastructure Probabilistic Dynamic [15] 

𝑅 𝑋 𝑇  1 −
𝑋𝑇

2𝑇∗ 
- - Deterministic Dynamic [8] 

𝑅 𝑋 𝑇  1−
𝑋𝑇

2𝑇∗ + 𝛼 (
𝑋𝑇

2𝑇∗) 
- - Deterministic Dynamic [16]  

𝑅  ∑𝑤 ∫ [100 − 𝑞  𝑡 ]𝑑𝑡
𝑡1

𝑡0 

 
- Energy Deterministic Dynamic [17] 

𝑅𝐿  
𝑑𝑆 𝑡 

𝑑𝑡
 𝑅𝑇  ∫

𝑑𝑆 𝑡 

𝑑𝑡

𝑡𝑒

𝑡𝑏

 
Human accident 

occurrences 

Transportation Deterministic Dynamic [18] 

𝑅  𝐸 (∑𝑑𝑤

𝑤

/∑𝐷𝑤

𝑤

) 
Natural or human caused 

disaster 

Transportation Deterministic Dynamic [19] 

𝑅  
1

𝑃𝑑𝐸0
∫ 𝐸 𝑃𝑟 𝑑𝑃𝑟

𝑃𝑑

0

 
Earthquakes Infrastructure Probabilistic Dynamic [20] 
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𝑅  
%𝐷𝐷𝑌𝑚 −%𝐷𝐷𝑌

%𝐷𝐷𝑌𝑚
 

𝑌𝐷 − 𝑌0
𝑌𝑁 − 𝑌0

 
𝐵

𝐴
 

- Economic Deterministic Stationary [21] 

𝑅𝑛𝑒𝑡𝑤𝑜𝑟𝑘  
𝑉 𝑛 𝑡 − 𝑉𝑙𝑜𝑠𝑠

𝑉 𝑛 𝑡
 

Undersea earthquakes, 

fish bites or ship anchors 

Internet networks Deterministic Stationary [22] 

𝑅  
𝑅  𝑜𝑣    𝑡 

𝐿𝑜𝑠𝑠 𝑡𝑑 
 

𝐹(𝑡𝑟|  ) − 𝐹(𝑡𝑑|  )

𝐹 𝑡0 − 𝐹(𝑡𝑑|  )
 

External disruptive event Transportation Deterministic Stationary [23] 

𝑅𝜑(𝑡𝑟| 
 )  

𝜑(𝑡𝑟|  ) − 𝜑(𝑡𝑑|  )

𝜑 𝑡0 − 𝜑(𝑡𝑑|  )
 

- Water resource Probabilistic Stationary [24] 

𝑅𝜑 𝐸 [0 𝑇𝐶]  

1
|𝐸|

∑ ∫ 𝜑 𝑡; 𝑁 𝐿 𝐶 
𝑇𝐶

0𝐸

∫ 𝜑𝑛𝑜𝑚 𝑛𝑎𝑙 𝑡; 𝑁 𝐿 𝐶 
𝑇𝐶

0

 

Terrorist attacks, natural 

disasters or manmade 

hazards 

Infrastructure Probabilistic Dynamic [25] 
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Bruneau et al. (2003) propose an indicator to measure the size of the expected 

degradation in quality (𝑄) over time due to an earthquake. This metric is deterministic and 

dynamic. Later, Bruneau and Reinhorn (2007) improved the same index with a more 

detailed measure of functionality. It considers the loss function (𝐿), which is measured as 

the ratio of the actual loss, the recovery function ( 𝑟𝑒𝑐 ) after the time occurrence, which 

depends on the resources available during the recovery period, and the functionality 

recovery factor (𝛼𝑅). The second term considers probability functions from fragility curves 

[26], being a probabilistic index. 

Zobel (2010) proposed a simplification of the metric proposed by Bruneau et al. (2003). 

They calculated the loss function as a linear function and the total loss of functionality as 

the area of a triangle, in terms of the initial impact (𝑋) and the recovery time (𝑇). They also 

incorporated a time horizon (𝑇∗), which allows to represent resilience as a percentage [8]. 

Later, Zobel (2011) adjusted this resilience function by giving different importance (𝛼) to 

the initial impact of the disaster event and to the recovery time, by adding a new parameter 

to adjust the slope of the resilience function [16]. 

The metric proposed by Afgan and Veziroglu (2012) was also based on Bruneau et al. 

(2003) index. However, they developed a resilience index considering sustainability 

dimensions, which is a linear agglomeration function of products between indicators and 

the corresponding weighting coefficients (𝑤 ) [17]. 

Enjalbert et al. (2011) defined the concept of local resilience (𝑅𝐿) and total resilience (𝑅𝑇), 

where the local resilience is an instantaneous measurement of resilience and is the slope 

of the resilience curve (𝑆). It can be negative or positive if the performance decreases or 

increases, respectively. The total resilience is the sum of local resilience during a given 

period [18]. 

Chen and Miller-Hooks (2011) developed a similar indicator to that of  Zobel (2010), 

measuring the fraction between the loss and total functionality. In this case, they define 

resilience as a fraction between the demand that can be satisfied after the event (𝑑𝑤)  and 

the pre-disaster satisfied demand (𝐷𝑤) [19]. 

Franchin and Cavalieri (2015) described resilience in a new field: civil infrastructure. Their 

metric is a measure of the reallocated population (𝐸 𝑃𝑟 ) due to an earthquake. They also 

considered uncertainty and vulnerability factors and how they affect resilience [20]. 

All the above-mentioned metrics consider the behavior of the system over time to measure 

resilience. There are other stationary indexes [21, 23, 24, 27], which measure the 

robustness of the system. These indexes are defined as a fraction between the system 

health after the event and before. They just differ in their application field. 
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3.2 Discussion of Some Metrics Related to this Study 

From these metrics, we highlight the index proposed in [7], which measures the lack of 

system health over time. Graphically, this refers to the area over the resilience curve, as 

it shows in Fig. 7. 

 

Fig. 7: Graphic representation of the metric proposed in  [7].  

This metric can be easily adapted to our study considering the lack of system health as 

the energy not supplied over time. This energy can be expressed as the difference 

between the energy demand during time 𝐷 𝑡  and the power that the system can deliver 

after a disruptive event 𝑃 𝑡 . Mathematically:  

𝑅  ∫ [𝐷 𝑡 − 𝑃 𝑡 ]𝑑𝑡
𝑡𝑟

𝑡0

 (eq. 1) 

Or for a discrete case: 

𝑅  ∑[𝐷 𝑡 − 𝑃 𝑡 ]

𝑡

 (eq. 2) 

Graphically we can represent this equation as shown in Fig. 8. 

System

Health

𝑄 𝑡 

100

𝑡0 𝑡𝑟 Time
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Fig. 8: Adaptation of the metric proposed in [7]. 

For this study we have a multi-vector energy system (different types of energy), therefore 

the total energy not supplied is the summation of each energy type: 

A 

The problem with this metric is that it does not measure the resilience as we understand 

it. If the system’s resilience increases, the value of the metric should increase, and the 

opposite happens with this metric, because if the system is resilient the energy not 

supplied should be less (smaller area). Therefore, we call the term “energy shortage” 

(𝐸𝑆 ). 

Another problem with this metric is that the obtained value is difficult to compare in 

different case studies because the value is specific for each case (as total energy). 

Therefore, we expect a normalized metric.  

Taking both problems into account, we consider the metric from [8], which defines 

resilience as the fraction between the post-event system health over time and the one in 

normal conditions. In this study they consider the reposition as a lineal function: 

Power

𝑃 𝑡 

𝐷

𝑡0 𝑡𝑟 Time

𝑅𝑇  ∑∑[𝐷  𝑡 − 𝑃  𝑡 ]

𝑡 

  (eq. 3) 

𝐸𝑆 𝑇  ∑∑[𝐷  𝑡 − 𝑃  𝑡 ]

𝑡 

  (eq. 4) 
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𝑅 𝑋 𝑇  1−
𝑋𝑇

2𝑇∗
 

 

(eq. 5) 

This is shown graphically in Fig. 9, where the resilience is the fraction between 𝐴2 and the 

total area (𝐴1 + 𝐴2). 

 

Fig. 9: Graphic representation of the metric proposed in  [8]. 

The problem with this metric is that the recovery function can be non-linear. Therefore, 

we consider both metrics and use an adaptation of them. This new indicator is the fraction 

between the energy shortage of the system post-event and the total demand in a given 

time, as is shown in Fig. 10. 

System

Health

𝑄 𝑡 

1

𝑡0 𝑡𝑟 Time𝑇∗

𝑋

𝐴1  
 𝑡𝑟
2

𝐴2  𝑇∗
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Fig. 10: Graphic representation of the proposed metric, considering [7] and [8]. 

From the graphic, we define the metric as: 

𝑅  
𝐴2

𝐴𝑇
 1−

𝐴1

𝐴𝑇
 (eq. 6) 

For this case, considering equation (eq. 1), this can be expressed as: 

𝑅  1 −∫
𝐸𝑆  𝑡 

𝐷 𝑡 
𝑑𝑡

𝑇∗

𝑡0

 (eq. 7) 

Or for a discrete case: 

𝑅  1 −∑
𝐸𝑆  𝑡 

𝐷 𝑡 

𝑇∗

𝑡0

 (eq. 8) 

As the metric should consider a multi-vector energy system, the total resilience is the 

summation of the weighting of all specific-energy resilience (𝑅 ): 

Power

𝑃 𝑡 

𝐷

𝑡0 Time𝑡𝑟 𝑇∗

𝐴1

𝐴2
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𝑅𝑇  
∑ 𝑅 ⋅ 𝐸𝐵

   

𝐷𝑇
 (eq. 9) 

In this section, we reviewed existing resilience metrics. The literature review shows a lack 

of resilience metrics for power systems and specifically, a resilience metric for multi-

energy has not been observed. Therefore, we adapt a metric from the existing ones. This 

metric quantifies the energy shortage of the system. This is analog to the existing metrics 

but extended to multi-vector systems using weighting factors and considering models for 

the recovery of the components after an extreme event.  



 

19 

 

4. Chapter 4: Operational Simulation and Resilience 

Measurement  

In this section, we simulate a disruptive event in an applied case. Given the resilience 

curve we measure the resilience using the metric previously described. First, we give the 

structure of the optimization problem. Then, we present the results of the simulation in an 

applied case. The work presented in this section is important to develop a new indicator 

because the results are used as a reference in the next section.  

The case study is the same from section 2.4, which is already planned by [14] considering 

only an economic indicator. The value of the installed capacity of each technology is used 

as input in this section and the values are detailed in appendix D. 

4.1 Structure of the Operational Simulation 

For an operational simulation of a system dealing with a disrupting event is necessary to 

know the reposition curves of each technology, which are detailed in Appendix E. With 

these parameters, the behavior of each technology given an event is known and it is 

possible to perform an operational simulation to obtain the optimal configuration of the 

system over time. The optimal configuration is obtained minimizing the not supplied 

energy. Therefore, we minimize the energy shortage described in (eq. 4): 

min𝐸𝑆 𝑇  ∑∑[𝐷  𝑡 − 𝑃  𝑡 ]

𝑡 

  (eq. 10) 

This energy shortage is described as an energy balance, considering the power demand 

and supply of each technology for each process over time (𝑃𝑏 𝑡𝑒𝑐 𝑡 ). 

This power could change after an event, cause the maximum available capacity could be 

affected by the damage caused. This damage is given by the restoration curve (𝑅𝐶 𝑡 ), 

which is considered a fraction of the original capacity, depending on time. Therefore, the 

maximum capacity is given by the following equation: 

𝑃𝑏 𝑡𝑒𝑐
𝑎𝑣  𝑡  {

𝑃𝑏 𝑡𝑒𝑐
 𝑛𝑠𝑡  𝑡 < 𝑡0

𝑃𝑏 𝑡𝑒𝑐
 𝑛𝑠𝑡 ⋅ 𝑅𝐶 𝑡  𝑡0 ≤ 𝑇

 (eq. 11) 

This can be graphically described in Fig. 11: 
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Fig. 11: Graphical representation of the power capacity installed over time given a disruptive event.  

This maximum power capacity is introduced to the optimization problem as a constraint, 

where the power delivered should be less or equal than the available capacity: 

𝑃 𝑡 ≤ 𝑃𝑏 𝑡𝑒𝑐
𝑎𝑣  𝑡  (eq. 12) 

4.2 Results in Applied Case 

After the problem is optimized, we can measure the resilience as it was described in the 

previous section, with (eq. 9). 

To study this metric, we use the case study described in Section 2.4. The installed 

capacity and restoration curve of each technology are presented in Appendix D and E, 

respectively. For this study, we used a time horizon of one year, a PGA (Peak ground 

acceleration) of 0.6g, which is similar to an earthquake of 8Mww, and the time when the 

event occurs is the first hour of the year (01:00 January 1st). 

The resulting resilience is 80%. This means that for a PGA of 0.6, this system can provide 

80% of the total energy demand in one year. This is equivalent to two and a half months 

of a blackout, which is a long period of time. 

The resilience value is an arbitrary value, which depends on the time horizon and the PGA 

of the earthquake. 

Power

𝑃 𝑡 

𝑃 𝑛𝑠𝑡

𝑡0 Time𝑇

𝑃𝑎𝑣 𝑡 

𝑃 𝑛𝑠𝑡
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On the other hand, the simulation provides us information about the expected served 

energy over time, which is shown in Fig. 12. The served energy is normalized by the total 

demand.  

 

Fig. 12: Served energy of the system over time. Values are normalized by the total demand. 

The peaks of the curve are explained by the energy demand of the systems, which is not 

linear. From the figure, we can see that the system is completely recovered in 220 days, 

which is a long-time period. 

This is consisting with the expected result, according to the shape of the curve, which 

grows gradually as the restoration of each technology. However, is difficult to compare to 

reality, because there is no existing autonomous MES affected by an earthquake. 

A limitation of this metric is that the value of this indicator depends directly on the time 

horizon, which is an arbitrary selection. For this study, we used a time horizon of one year, 

but this may change depending on the study. Increasing the time horizon should increase 

resilience because we are considering the time where the system already recovered, so 

the fraction between the shortage and the total demand will decrease. The opposite 

should happen by decreasing the time horizon. Despite the arbitrariness, as it is a 

percentage, it is easy to compare the resilience of different system configurations. 

However, to compare the resilience of different scenarios, the time horizon should be the 

same.  

The system depends fully on renewable energy and most of the solar energy as the 

primary generation, so it is important to consider the weather. In the present analysis, the 

time of the earthquake 𝑡0 was fixed in the first hour of the year (00:00, January 1st). Since 
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the case study is in Chile (southern hemisphere), that is in the summertime. Then, the 

availability of solar energy is higher than at other times of the year. To compensate for the 

reduced capacity factor in winter, the system has more installed capacity of PV than it 

requires in summer. This would lessen the impact of losing generation capacity during 

summer. In other words, it should be harder for the system to compensate for the damage 

in solar generation during winter than during summer. However, the event may occur at 

any time during the day and any day of the year, so if the event occurs in winter, we expect 

a lower value of resilience. Therefore, the resilience of the system may also depend on 

the time of the event. 

In this section, we performed an operational simulation and we measured the resulting 

resilience given a disrupting even. To simulate the system operation after an event we 

used the adapt metric in an LP problem. We used restoration curves as input. The 

objective function was to minimize the energy shortage of the system. While the main 

constraint is that the power delivered for each technology cannot exceed its restoration 

curves. This was possible to apply to our case study and the results are consisting of the 

expected. 
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5. Chapter 5: A New Resilience Indicator for the System 

Design 

In this section, based on the literature review and the methodology of the previous section, 

we propose a new indicator to plan with resilience of a multi-energy system. We expect to 

use this indicator in planning decisions as an OF in a MOP. 

The methodology of this section is an iterative process, where we use the value obtained 

from the previous section as a reference for the development of the new indicator. 

However, only the final result is presented. 

The proposed indicator considers the possible energy shortage in the system due to an 

earthquake. This indicator requires as inputs the performance of the energy technologies 

(energy demand and supply of each technology over time, considering efficiency and 

generation profile for variable renewable energy), the energy demand, and the 

technologies behavior in the case of facing an earthquake (described by the restoration 

curve). 

The indicator we propose describes the resilience of the system as a percentage that 

shows the energy that the system can supply after a disruptive event about the total 

energy demand in an evaluation horizon. To determine the energy that the system can 

supply, we need to measure the non-supplied energy (energy shortage) of each energy 

vector to obtain the total shortage. This is analog to the loss of energy expectation (LOEE) 

in power systems but extended to multi-vector systems using weighting factors and 

considering models for the recovery of the components after an extreme event. We 

evaluate the damage of each component of the system and count the energy demand that 

cannot be satisfied as a result of this damage. This is done for each vector and the total 

resilience is a weighted sum. 

5.1 Maximum Power Available 

As this indicator quantifies the possible energy shortage to the process, we need to know 

the behavior of each technology during the time, represented in their power capacity. This 

is illustrated in Fig. 11, where the maximum power available is described by 𝑃𝑎𝑣 𝑡 . This 

power can be mathematically described as follows: 

𝑃𝑏 𝑡𝑒𝑐
𝑎𝑣  𝑡  {

𝑃𝑏 𝑡𝑒𝑐
 𝑛𝑠𝑡  𝑡 < 𝑡0

𝑃𝑏 𝑡𝑒𝑐
 𝑛𝑠𝑡 ⋅ 𝑅𝐶 𝑡  𝑡0 ≤ 𝑡

 (eq. 13) 
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Where 𝑃 𝑛𝑠𝑡 is the power of the technology previously installed, 𝑅𝐶 𝑡  is the restoration 

curve, 𝑡0 is the time of the day where the event occurs, 𝑡𝑟𝑒𝑐 the expected recovery time, 

and 𝑇∗ the time horizon of the evaluation. 

The energy delivered or consumed by each technology changes over time. Fig. 13 a) 

shows a possible power delivered by a technology 𝑃 𝑡 . The real power delivered by this 

technology 𝑃𝑟  𝑡  after an event is the minimum between both functions as is shown in Fig. 

13 b). 

 

Fig. 13: Power delivered or consumed by each technology due to an event. 

Mathematically we will express that as follows: 

𝑃𝑟 𝑡  min{𝑃𝑎𝑣 𝑡  𝑃 𝑡 } (eq. 14) 

Or in a linear optimization model  

𝑃𝑟 𝑡 ≤ 𝑃𝑎𝑣 𝑡  

𝑃𝑟 𝑡 ≤ 𝑃 𝑡  
(eq. 15) 

We do the same procedure for each technology.  

5.2 Energy Shortage Measurement 

To define the resilience of the system we need to measure the non-supplied energy. 

Therefore, we measure the energy shortage  𝑆   in every time for each energy type   

(𝑆 𝑃  𝑡 ), through an energy balance. This balance is the difference between the demand 

and the supply of that energy type. The power demand is the summation of the demand 

of the process 𝑃𝐷
 , the demand for the transformation technologies 𝑃𝑇𝑇

   
, (demand   to 

𝑃𝑟 𝑡 

a)
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𝑃   

Time𝑇∗

𝑃 𝑛𝑠𝑡

𝑡0

𝑃 𝑡 

𝑃𝑎𝑣 𝑡 

b)

Power

𝑃   

Time𝑇∗

𝑃 𝑛𝑠𝑡
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produce  ), and the power required by the storage load 𝑃𝑆
𝑙𝑜𝑎𝑑  . The supply corresponds to 

the power produced from the primary generation 𝑃𝑃𝐺
 , the supply from the transformation 

technologies 𝑃𝑇𝑇
   

, and the power given by the storage unload 𝑃𝑆
𝑙𝑜𝑎𝑑  . This can be 

summarized in the following equation:  

𝑆 𝑃  𝑡  (𝑃𝐷
 +∑𝑃𝑇𝑇

   

 

+𝑃𝑆
𝑙𝑜𝑎𝑑  )−(𝑃𝑃𝐺

 +∑𝑃𝑇𝑇
   

 

+ 𝑃𝑆
𝑢𝑛𝑙𝑜𝑎𝑑  )   ∀   𝜖  (eq. 16) 

If this difference is positive, there is an energy shortage; if it is negative, the system can 

supply the demand. In consequences, the shortage is the maximum between this 

difference and zero: 

𝑆 𝑃 
+ 𝑡  max(0 𝑆 𝑃  𝑡 ) ∀   𝜖  (eq. 17) 

Or in a linear optimization model  

𝑆 𝑃 
+ 𝑡 ≥ 0 

𝑆 𝑃 
+ 𝑡 ≥ 𝑆 𝑃  𝑡  

∀ 𝜖  (eq. 18) 

The total energy shortage is its integration over time: 

𝑆   ∫ 𝑆 𝑃 
+ 𝑡 

𝑇∗

𝑡0

d  ∀ 𝜖  (eq. 19) 

5.3 Resilience Measurement 

With this shortage, we can calculate the resilience for this energy vector as one minus the 

fraction between the energy shortage and the demand of that vector (𝐸𝐷
 ): 

𝑅  1 −
𝑆  

𝐸𝐷
 

 ∀ 𝜖  (eq. 20) 
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As it is a multi-vector energy system, the total resilience is the summation of the weighting 

of all individual resilience values: 

𝑅𝑇  ∑(𝑅 ⋅
𝐸𝐷

 

∑ 𝐸𝐷
 
  

) 

 

 
∑ 𝐸𝐷

 − ∑ 𝑆    

∑ 𝐸𝐷
   

 (eq. 21) 

This indicator, in contrast to other resilience metrics, can be easily integrated into the 

planning process. This is because of the linear nature of the index. Using LP is a common 

practice in energy systems planning. This allows for computational tractability in large 

scale problems. Our index also allows keeping the optimization linear. It can be included 

as an optimization function. 

A limitation of this indicator is that it does not consider the re-design of the system to 

deliver energy after the event. This is analyzed in Chapter 6, where the resilience value 

of the indicator is compared to the value obtained through an operational simulation of the 

system after the event. 

Another limitation of the indicator is the time of occurrence of the event. The result of the 

resilience value may change depending on the time of the event. Therefore, we can 

analyze this problem changing many times this variable and analyzing the results. 

This section presents the development of a new resilience indicator to design a MES. It 

measures the energy shortage of the system in case of a disrupting event. It uses 

weighting factors for the different energy vectors and considers models for the recovery 

of the components after the event. This indicator can be integrated into planning decisions, 

because of its linear nature.  
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6. Chapter 6: Planning a Resilient and Low-cost Multi-

energy System 

In this chapter we proved the methodology of the proposed framework described in 

Chapter 2, dividing this chapter into 3 sections, accordingly to the methodology stages: 

1. Investment planning: we use the previously created resilience indicator and an 

economic indicator (costs) to plan a MES. With this purpose, we solve a MOP with 

different weights to study the trade-off between both objective functions and 

analyze 3 scenarios. 

2. Operational simulation: we follow the same methodology as Chapter 4. We use as 

input the installed capacities of the chosen scenarios, obtained by the previous 

section. We simulate a disruptive event using restoration curves, and we measure 

the resulting resilience. 

3. Resilience index validation: To validate the index, we perform an operational 

simulation with the MCM and we compared it with the result obtained using 

restoration curves. 

6.1 Investment Planning 

For investment planning, we need to solve a MOP with two objectives functions: resilience 

and costs. Therefore, we use a normalized constraint method, where the objective 

function is the costs of the system, while the resilience is modeled as a constraint varying 

the weight of the target. 

min
𝑥 𝑅𝑛

      𝑒𝑐     

𝑠 𝑏   𝑡 𝑡𝑜    𝑟𝑒    
 𝑟𝑒

𝑏𝑐   −  𝑟𝑒   

 𝑟𝑒
𝑏𝑐   −  𝑟𝑒

𝑤𝑐   
≤ 𝜔𝑟𝑒 

  𝑟𝑒   ≥ 𝜔𝑟𝑒 ⋅ ( 𝑟𝑒
𝑏𝑐   −  𝑟𝑒

𝑤𝑐   ) +  𝑟𝑒
𝑏𝑐    

(eq. 22) 

To use this method, we need to know the best and the worst case for the objective function 

to be modeled as a constraint. For resilience, the best case is the maximum value, which 

was set in 99% and the worst case is the minimum, which is achieved when the cost is 

minimum. Table 2 presents the maximum and minimum value for both objective functions. 
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Table 2: Value for the worst and best case of each objective function. 

Target 𝒇𝒘𝒄 𝒇𝒃𝒄 

Costs  €/𝑴𝑾𝒉   53 6 26 4 

Resilience  −  0 80 0 99 

With those values, we solve the MOP for different weights of resilience to obtain a Pareto 

front, presented in Fig. 14. 

 

Fig. 14: Pareto front between resilience (y-axis) and costs (x-axis). 

From the Pareto front, we can note a trade-off between the resilience and the cost: 

increasing the resilience means a higher cost for the system. Specifically, to increase 

resilience by 20% (from the lowest to the highest value) it is necessary to double the 

installation cost. 

On the other hand, we can see that in high values of resilience, increasing this target is 

more expensive than in lower values. For example, increasing the resilience from 97% to 

99% implies an installation cost 32% higher, and increasing this value from 80% to 82%, 

implies increasing the installation cost just by 0.2%. 

To study the effect of including resilience on planning decisions, we analyze three cases 

pointed with red in Fig. 14: (1) minimum cost, (2) weight of 50% of resilience and (3) 

maximum resilience. The results for costs and resilience for these cases are detailed in 

Table 3. Appendix F shows detailed results. 
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Table 3: the value of resilience and costs for 3 scenarios. 

 

 
𝒎𝒊𝒏 𝑪𝒐𝒔𝒕 𝟓𝟎 − 𝟓𝟎 𝒎𝒂𝒙 𝑹𝒆 

Costs  €/𝑴𝑾𝒉   26 4 29 9 53 6 

Resilience  −  0 80 0 90 0 99 

For these three scenarios, we analyze the predicted served energy over time, as shown 

in Fig. 15. From the figure we can see that increasing the value of the resilience, the total 

served energy increases, as is expected. 

 

Fig. 15: Served energy over time. The values of energy are normalized by the total demand. 

6.2 Operational Simulation 

For these three scenarios, we perform an operational simulation. We follow the same 

methodology described in Chapter 4, where the goal is to minimize the energy shortage. 

Like in the planning stage, we use restoration curves. However, in this stage, we use as 

input the installed capacities obtained from the previous stage and we simulate the system 

operation after the event. 

The operational simulation gives the system the freedom to adapt its operation minimizing 

the energy shortage. This differs from the planning stage, where the power delivered after 

the event is constraint by the scheduled power, defined by (eq. 15). Therefore, we expect 

that the resilience value obtained for the operational simulation using restoration curves 

is equal or better the expected in the planning stage. 
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The results are shown in Table 4 and Fig. 16. Table 4 shows the predicted values from 

the indicator in the first row, previously described, and the second row shows the 

operational simulation. Fig. 16 shows the served energy, comparing the predicted result 

using the indicator and for the operational simulation for the different scenarios. 

Table 4: The value of resilience for 3 scenarios. The first row shows the predicted values from the 
indicator, the second row the resulting value through an operational simulation using restoration curves 

(RC). 
 

 
𝒎𝒊𝒏 𝑪𝒐𝒔𝒕 𝟓𝟎 − 𝟓𝟎 𝒎𝒂𝒙 𝑹𝒆 

Indicator 0 80 0 90 0 99 

RC 0 84 0 92 0 99 

Difference 5% 2% 0% 

From the table, we can see that the values of resilience for the indicator are 

underestimated compared to the obtained in the operational simulation. On the other 

hand, from Fig. 16, we can also observe this difference over time. 

This difference is explained because of the difference in both models. For the indicator, 

the resilience is calculated from the energy that is supplied in normal conditions 

constraining the maximum power available for each technology. On the other hand, for 

the operational simulation the target is to minimize the unserved energy, given the model 

freedom to adapt the delivered power given the event. 

However, the highest difference is 5% in the scenario of minimum costs, which makes this 

indicator a good approach for the resilience final value. 

In this case, the operational simulation is modeled, as the indicator, with the restoration 

curves. The restoration curve is a smooth function and, in this context, means that the 

restoration of each technology will increase hourly, as is shown in Fig. 17 a). This may not 

be entirely correct. Therefore, we use another method to validate our index. 
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Fig. 16: Served energy for 3 scenarios. Comparison between the indicator and the case of operational 
simulation using restoration curves (RC). Value for energy is normalized by demand. 
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6.3 Resilience Index Validation 

In real life, the restoration of the system includes uncertainty on the damage suffered and 

the restoration of each technology. Usually, the restoration of technology is defined as a 

one-step function, where is completely inactive and in a specific time is completely 

operative, as is shown in Fig. 17 b), and this restoration time is random. 

In some cases, the system may have more than one technology of the same type and 

they might have different restoration time (e.g. PV) because different problems or not all 

of them will be completely inactive due to an earthquake. In this case, the restoration curve 

will be similar to the presented in Fig. 17 c), where the curve is a step function, and each 

step is the restoration of one technology.  

In this case, if recovery time has the same distribution of the restoration curve given from 

fragility curves, as more technologies we have, the curve will be more like the curve 

presented in Fig. 17 a). 

 

Fig. 17: Different scenarios for the restoration of the technologies. (a) represent the restoration curve used 
in planning decisions, (b) the step function used in the Monte Carlo simulation with random recovery time, 

and (c) is a graphic representation when you have more technologies of the same type. 

To simplify the study, we consider that every technology restores as a one-step function, 

where the restoration time is a random variable, which its distribution is given from fragility 

curves. This means that the average of those values is the restoration curve. Therefore, 

we performed a Monte Carlo simulation (MCS).  

As the average of these restoration times is the restoration curve, which is the same used 

in the previous operational simulation, we expect that the average value of the resilience 

in this validation through MCS will be similar to the obtained in the operational simulation 

with restoration curves. 

We performed an MCS for the same three scenarios and simulated 500 cases for different 

restoration times. The mean resilience value for each scenario is shown in Table 5. 

a) b) c)

𝑡𝑟𝑒𝑐
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Fig. 18: Served energy for 3 scenarios. Comparison between the indicator and the case of operational 
simulation using Monte Carlo simulation (MC). Value for energy is normalized by demand. 
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Table 5: Resilience average value for 3 scenarios through operational simulation using restoration curves 

(RC) and through the Monte Carlo simulation (MCS), with the percentual difference.  

 
𝒎𝒊𝒏 𝑪𝒐𝒔𝒕 𝟓𝟎 − 𝟓𝟎 𝒎𝒂𝒙 𝑹𝒆 

Indicator  0 80 0 90 0 99 

MCS 0 69 0 71 0 80 

Difference 14% 21% 19% 

From Table 5 we can see that the average value of resilience of the MCS is lower than 

the expected from the indicator, where the difference is around 20%. However, the 

tendency is similar, as increasing the expected resilience value, the average value of 

resilience increases. We can also observe this difference in Fig. 18, which shows the 

served energy for the three scenarios as the average value for each time for the 500 

cases.  

This behavior is also presented in Fig. 19, where it is shown the served energy of the 

three scenarios. The served energy of the scenario of maximum resilience is significantly 

higher than the other scenarios, while the curve for the scenario of minimum cost and 

50%-50% are similar, which agree with the values from the table with a difference of 2%. 

 

Fig. 19: Energy unserved over time. Monte Carlo Simulation. 

The histogram of the Monte Carlo simulation for the three scenarios is shown in Fig. 20. 

We can see that the distribution is center in specific ranges, defined as the mode. These 

ranges are presented in Table 6. 
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Fig. 20: Histogram for the resilience value through the Monte Carlo simulation. Values are normalized. 

 

Table 6: Mode of the data of resilience through the Monte Carlo simulation for 3 scenarios. 

 
𝒎𝒊𝒏 𝑪𝒐𝒔𝒕 𝟓𝟎 − 𝟓𝟎 𝒎𝒂𝒙 𝑹𝒆 

Mode [0 75 − 0 8] [0 9 − 0 95] [0 9 − 0 95] 

These values match better with the expected values, where the only value of the expected 

resilience out of the range is for the scenario of maximum resilience, in which the expected 

value is overestimated according to the MCS results. 

The difference between the mode and the average value is related to the definition of 

resilience, which does not allow values greater than 1. This is given by the  (eq. 17), where 

all the negative values of the energy shortage are set in zero. 

Therefore, the expected value for resilience given by the indicator seems to be the value 

of the maximum probability of occurrence and not the average. 

On the other hand, we can explain this difference by the different restoration curves used 

in this simulation and in the planning stages. The system integrates the different energy 

vectors. Therefore, the supply of each energy vector is subject to the performance of every 

technology. Therefore, the supply is directly subjected to the technology that restores the 

last, creating a “bottleneck” effect in the process. 

In the case of the operational simulation using restoration curves, as every technology 

restores gradually, this bottleneck effect is not present, contrary to the MCS, where the 

technology with the highest value of restoration time creates the effect. 

However, we think that we are underestimating this value, because, as we previously 

explained with Fig. 17, there are some technologies that can gradually recover, or the 

health of the technology might not be zero. For example, PV: if the process has many 

panels, they might have different restoration times, because of different problems, or not 

all of them will be completely inactive due to an earthquake, as shown in Fig. 17 c). 
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A limitation of this model is that it can be applied just for a process, where the location of 

each technology is not far away from each other. If that is the case, the transmission would 

have an important impact on the system, which is not considered in this model. On the 

other hand, this system considers a given PGA and it is the same for each technology, if 

they were in a larger distance the earthquake will affect them on different magnitudes, 

therefore, the PGA may change between technologies. 

In conclusion, the resilience index is not completely validated, because MCS results of 

the resilience average differ in around 20% of the expected resilience value. However, 

integrate the resilience index has a positive effect on resilience because if we increase 

the weight of the resilience indicator, the system is more resilient. 

This section is the final chapter, where we proved the methodology of the proposed 

framework. It was divided into three sections. The first section presents the investment 

planning of the system. We observed a clear trade-off between both OF through a Pareto 

curve. Improve the resilience of the system involves increasing costs. In the second 

section, we simulate the operation given a disruption. We saw that the recovery of the 

system was similar to the expected in the previous section. Specifically, it had a better 

recovery because it gives the model the freedom to adapt the delivered power given the 

event. The last section is a validation of the model using another method. We used step-

functions instead of restoration curves. Therefore, we used an MCM, where the recovery 

time was the random variable. The average of the method shows that the resilience value 

was lower than the expected. This was explained because, as it is a coupled system, the 

step functions for the technology generates a “bottleneck effect”, where the technology 

with the highest value of restoration time affects the most the energy supply. 
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7. Conclusions 

For this study, we developed a method to plan a multi-energy system (MES) optimizing 

its resilience and costs. This method had three stages: i) investment planning of a MES 

with two targets: resilience and costs, ii) operational simulation of the system in the case 

of a disrupting event, and iii) the index validation where we considered the restoration time 

uncertainty through a Monte Carlo simulation. To apply this method, this thesis has been 

divided into four chapters: a review of resilience metrics and the adaptation of a metric for 

our study, an operational simulation and measurement of resilience for a better 

comprehension of a new indicator creation; the creation of a resilience indicator for the 

system design, and the planning of a resilient and low-cost MES, in which all three method 

stages were applied. 

The review of resilience metrics showed that most of the metrics are focused on 

measuring the lack of system’s health, which is analog to the energy shortage of our study. 

Furthermore, we observed that resilience in power systems are barely studied. 

Specifically, a resilience indicator for multi-energy systems has not been observed. 

Accordingly, this work aims at filling this gap, adapting a metric for MES based on the 

review. 

This metric was used to simulate the system operation in the case of a disrupting event. 

The simulation was a linear programming problem based on minimizing the energy 

shortage of the system in the case of an event. 

Based on the operational simulation, we integrated this metric into planning decisions, 

creating a new indicator. This indicator describes the resilience of the system as a 

percentage to show the energy that the system can supply after a disruptive event in 

relation to the total energy demand in an evaluation horizon.  In contrast to other resilience 

metrics, this indicator can be easily integrated into the planning process due to the linear 

nature of the index. 

Finally, we planned a resilient and low-cost MES, using the proposed method. The results 

showed a clear trade-off between both targets, where increasing resilience involved an 

increase in costs. The operational simulation of the system after an event shows a higher 

value of resilience than predicted by the indicator since the model is free to adapt the 

power delivered, minimizing the unserved energy. To validate the model, we performed a 

Monte Carlo simulation. It showed lower values than expected, explained by the difference 

between the restoration curves used in the planning stage and in Monte Carlo simulation. 

Even though the values are lower than predicted, the increase in resilience is the 

expected; therefore, the method looks promising to plan a multi-energy system 

considering resilience in its design. 
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The model limitations are, on one hand, that the resilience indicator considers losses or 

degradation of the technologies, but not of the energy transmission since it was developed 

for a process and the distances between technologies are not considered. On the other 

hand, this system considers a given PGA, which is the same for each technology, if they 

were further away, the PGA may change between technologies. As a consequence, this 

is a forward-looking work that aims at adapting the present model to cover those 

limitations. We propose to adapt the indicator to consider the transmission of the system 

and its possible damage in the case of an earthquake and expand the case study to a 

region or even a country. 
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Glossary 

CSP Concentrated solar power 

GW Giga Watts 

FEMA Federal Emergency Management Agency 

IPCC Intergovernmental Panel on Climate Change 

LP Linear programming 

MCM Monte Carlo Method 

MES Multi-energy system 

MOP Multi-objective problem 

PV Photovoltaics 

PGA Peak ground acceleration 

SOP Single-objective problem 
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8. Nomenclature 

8.1 Sets 

  {     } Set of energy type: 

    Electricity 

    Fuel 

    Heat 

𝐷 Set of the process which demands energy. 

𝑇𝐸𝐶 Set of all technologies of the system. 

𝑃𝐺 ⊆ 𝑇𝐸𝐶 Set of primary generation technologies of the energy type    .  

  1  PV 

  2  Wind Turbine 

   1  Flat Plate Collectors 

   2  CSP - Parabolic Trough 

𝑇𝑇   ⊆ 𝑇𝐸𝐶 Set of transformation technologies of the energy type     to 

energy type     . 
 

 𝑝𝑡   Electrolyzer 

  𝑡𝑝  CSP - Power Block 

 𝑝𝑡   Heating Rod 

  𝑡𝑝  Fuel Cell. 

𝑆 ⊆ 𝑇𝐸𝐶 Set of primary storage technologies of the energy type    .  

 𝑠  Li-Battery 

 𝑠   Hot Water Tank 

 𝑠  𝑡  Molten Salts Storage 
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 𝑠   H2 Storage 

𝐾  {𝐸𝑛 𝐸  𝑅} Set of indicators: 

 𝐸𝑛  Environmental 

 𝐸   Economic 

 𝑅  Resilience 

8.2 Parameters 

𝑡0 Time when the event occurs. 

𝑡𝑟 Reposition time. 

𝑇∗ Evaluation time. 

𝐸𝑑
  Energy     demanded by process 𝑑  𝐷. 

𝐷 𝑡  Energy demand on time 𝑡. 

𝐷𝑇 Total energy demand. 

 𝑏 𝑡𝑒𝑐 The fraction of damage of the technology 𝑡   𝑇𝐸𝐶 for the process 

𝑏  𝐵. 

𝜔𝑘 Relative weight of the indicator 𝑘. 

8.3 Variables 

𝑅 Resilience. [0 1] 

𝑅  Resilience of the energy type    . [0 1] 

𝑅𝑇 Total resilience.  [0 1] 

𝑄 𝑡  System health on time.  ℝ+ ∪ {0} 

𝑡 Time ℝ+ ∪ {0} 

𝐸𝑑 𝑔𝑝
  Generated energy     by technology  𝑝  𝐺𝑃 for the 

process 𝑑  𝐷. 

ℝ+ ∪ {0} 
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𝐸   
𝑑 𝑡𝑡 Transformed energy from type   to   by technology 𝑡𝑡  

𝑇𝑇 for the process 𝑑  𝐷   {   }   . 

ℝ+ ∪ {0} 

𝐸𝑑 𝑎
   𝑛 Inflow energy     for technology    𝐴 for the process 

𝑑  𝐷. 

ℝ+ ∪ {0} 

𝐸𝑑 𝑎
  𝑜𝑢𝑡  Outflow energy     for technology    𝐴 for the 

process 𝑑  𝐷. 

ℝ+ ∪ {0} 

𝑃 𝑡  Generated power on time 𝑡 ℝ+ ∪ {0} 

𝑃𝑑 𝑔𝑝 𝑡  Generated power by technology  𝑝  𝐺𝑃 for the 

process 𝑑  𝐷 on time 𝑡. 

ℝ+ ∪ {0} 

𝑃𝑑 𝑡𝑡 𝑡  Transformed power by technology 𝑡𝑡  𝑇𝑇 for the 

process 𝑑  𝐷 on time 𝑡. 

ℝ+ ∪ {0} 

𝑃𝑑 𝑎
 𝑛  𝑡  Inflow power of technology    𝐴 for the process 𝑑  𝐷 

on time 𝑡. 

ℝ+ ∪ {0} 

𝑃𝑑  𝑎
𝑜𝑢𝑡 𝑡  Outflow power of technology    𝐴 for the process 𝑑  

𝐷 on time 𝑡. 

ℝ+ ∪ {0} 

𝑃𝑑  𝑡𝑒𝑐
 𝑛𝑠𝑡  Installed capacity of the technology 𝑡   𝑇𝐸𝐶 for the 

process 𝑑  𝐷. 

ℝ+ ∪ {0} 

𝑃𝑑 𝑡𝑒𝑐
𝑎𝑣  𝑡  Available capacity of the technology 𝑡   𝑇𝐸𝐶 for the 

process 𝑑  𝐷 on time 𝑡 

ℝ+ ∪ {0} 

𝐸𝑆   Energy shortage of type     ℝ 

𝐸𝑆  
+  Positive energy shortage of type     ℝ+{0} 

𝑃𝑆   Power shortage of type     ℝ 

𝑃𝑆  
+  Positive power shortage of type     ℝ+ ∪ {0} 

𝑂𝐹 Objective function ℝ 
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Appendixes 

A. Appendix A: HAZUS Earthquake Model 

The HAZUS Earthquake Model is designed to produce loss estimates for planning 

earthquake risk mitigation, emergency preparedness, response, and recovery. The 

methodology deals with nearly all aspects of the built environment, and a wide range of 

different types of losses. [4] To estimate the damage and predict the restoration of the 

components, the methodology uses two important concepts: fragility curves and 

restoration curves [28].  

Fragility Curves 

The fragility curves describe the probability of damage to a building, including structural  

systems and nonstructural components. Depending on the component response, fragility 

curves distribute damage between four physical damage states: slight, moderate, 

extensive, and complete [29]. 

Fragility curves used in HAZUS Model are lognormal probability functions that describe 

the likelihood of reaching, or exceeding structural and nonstructural damage states, given 

an estimate of peak building response. These curves consider the variability, including 

inherent uncertainty associated with capacity curve properties, damage states, and 

ground shaking (Usually measured as PGA) [29]. 

Fig. 21 illustrates the fragility curves for each damage state. For any given value PGA, 

discrete damage-state probabilities are calculated as the difference of the cumulative 

probabilities of reaching or exceeding successive damage states. 
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Fig. 21: Example fragility curves for slight, moderate, extensive and complete damage [29]. 

Restoration curves 

Restoration curves describe the fraction or percentage of the system that is expected to 

be open or operational as a function of time following the earthquake. [4] This can be 

graphically represented as shown in Fig. 22, where the system health increase over time. 

 

Fig. 22: Restoration curve: System health over time. 
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B. Appendix B: Monte Carlo Method 

The essence of the Monte Carlo Method (MCM) is the generation of random objects or 

processes by means of a computer. These objects could arise ‘naturally’ as part of the 

modeling of a real-life system, apply to many fields such as physics, engineering, or 

economics. However, in many cases, the random objects in Monte Carlo techniques are 

introduced ‘artificially’ in order to solve deterministic problems. In this case, the MCM 

simply involves random sampling from certain probability distributions. Therefore, the idea 

of the Monte Carlo technique is to repeat the experiment many times to obtain several 

values of interest using the Law of Large Numbers and other methods of statistical 

inference. [30] 

Some typical uses of MCM are sampling, estimation, and optimization. For this work, we 

focus on the latter. The MCM is a powerful tool for the optimization of complicated 

objective functions. In many applications these functions are deterministic, and 

randomness is introduced artificially in order to more efficiently search the domain of the 

objective function, as the case of this study. However, Monte Carlo techniques are also 

used to optimize noisy functions, where the function itself is random, for example, the 

result of a Monte Carlo simulation. [30] 

C. Appendix C: Optimization Methods 

Optimization is known as a tool to find the best possible solution given many available. To 

make use of this tool, we must find an objective, i.e. a function to represent a quality of a 

given solution and we use a search algorithm to minimize (or maximize) this objective [31]. 

Single-objective Optimization 

Mathematically speaking, optimization is the minimization (or maximization) of an 

objective function subject to constraints in its variables. The optimization problem can be 

written as follows [32]: 

min
𝑥 𝑅𝑛

      

𝑠 𝑏   𝑡  𝑡𝑜         ( 1     2    …   𝑛   ) ≤ 0  

𝑤                      1  2 …   𝑛  𝑋 

(eq. 23) 

In this equation,   is the decision vector,   is the objective function, 𝑋 is the decision 

space, and     ≤ 0 are the constrains, which determine the set of feasible solutions. 
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Multi-objective Optimization 

Almost every real problem involves more than a single objective and often there are 

competing objectives. While in single-objective optimization problems (SOP) the optimal 

solution is usually clearly defined, this does not hold for multi-objective optimization 

problems (MOP). Instead of a single optimal solution, there is a set of alternative trade-

offs among objectives [33].  

A MOP is similar to a single-objective optimization (described in (eq. 23)), including 

variables    , constraints    , and a set of 𝑘 objective functions     : 

min
𝑥 𝑅𝑛

      1     2    …   𝑘     

𝑠 𝑏   𝑡 𝑡𝑜        ( 1     2    …   𝑛   ) ≤ 0  

(eq. 24) 

The set of alternative trade-offs can be graphically represented with the Pareto-optimal 

front, as is shown in Fig. 23, where the optimal points are in the Pareto-optimal front, 

which divide two regions: feasible region, where are the feasible solutions, and infeasible 

region, where solutions do not satisfy the constraint of the MOP [33]. 

 

Fig. 23: Illustrative example of Pareto-optimal front. 
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constraint method, goal programming [33]. The two first mentioned are briefly described 

here.  

Weighting Method 

For the weighting method the MOP is converted to an SOP by a linear combination of the 

objectives [33]: 

min
𝑥 𝑅𝑛

     𝜔1 ⋅  1   +  𝜔2 ⋅  2   +   +𝜔𝑘 ⋅  𝑘     

𝑠 𝑏   𝑡 𝑡𝑜        ( 1     2    …   𝑛   ) ≤ 0  

(eq. 25) 

𝜔  are the weights of each function, and usually are normalized such that ∑𝜔  1. 

The main disadvantage of this method is that it cannot generate all Pareto-optimal 

solutions with non-convex trade-off surfaces [33]. 

ε-Constraint Method 

Another method that fixed the problem is the ε-constraint method, which transforms 𝑘 − 1 

of the 𝑘 objectives into constraints. The remaining objective ( ℎ) is the objective function 

of the resulting SOP[33]: 

min
𝑥 𝑅𝑛

      ℎ     

𝑠 𝑏   𝑡 𝑡𝑜              ≤ 𝜖        1 ≤  ≤ 𝑘  ≠    

(eq. 26) 

The upper bounds 𝜖 , is the parameter that is varied to obtain multiple Pareto-optimal 

solutions. 

This method is able to obtain solutions associated with non-convex parts of the trade-off 

curve. However, this technique has another problem. If the upper bounds are not 

appropriately chosen, the obtained feasible set might be empty. Therefore, the suitable 

range of values for the bounds must be known beforehand [33]. 

On the other hand, this method is difficult to give importance to each function, when we 

are generating the Pareto-optimal front. 
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Normalized Constraint Method 

To solve the last-mentioned problem of the constraint method, we use a normalized 

method. Therefore, the upper and lower bounds must be known beforehand. This can be 

obtained by an SOP on each objective. The best case for each one of the   objectives is 

optimal for  ℎ (  
𝑏𝑐   ), and the worst-case (  

𝑤𝑐   ) is the maximum obtained value from 

the optimization of   , where  ≠ 𝑘. 

min
𝑥 𝑅𝑛

      ℎ     

𝑠 𝑏   𝑡 𝑡𝑜         
     −   

𝑏𝑐   

  
𝑤𝑐   −   

𝑏𝑐   
≤ 𝜔        1 ≤  ≤ 𝑘  ≠    

(eq. 27) 

In the last equation, 𝜔  are the normalized weights of each function. 

 

D. Appendix D: Installed Capacity of each Technology: Case 

Study 

Table 7: The installed capacity of each technology case min costs. 

Installed capacity (MW) 

r1 1649 

r2 587 

rh1 0 

rh2 144 

ptg 212 

htp 0 

pth 92 

gtp 60 

Converter size (MW) 

s 306 

sh 92 

shht 0 

sf 203 

Storage size (MWh) 

s 1916 

sh 1515 

shht 0 
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sf 21921 

 

E. Appendix E: Fragility Curves 

This appendix contains the date used to represent de damage of each technology for an 

event with PGA equal to 0.6g. 

Data Obtained from HAZUS Methodology 

Generation Facilities 

This data is used for the following technologies: PV, Wind Turbine, Flat Collectors, CSP-

Parabolic Trough, CSP-Power Block. 

Table 8: Damage algorithms for generation facilities [4]. 

Damage state Median (g) 𝜷 

Slight (𝑑𝑠2) 0.1 0.5 

Moderate (𝑑𝑠3) 0.17 0.5 

Extensive (𝑑𝑠4) 0.42 0.5 

Complete (𝑑𝑠5) 0.58 0.55 

 

Table 9: Restoration function for generation facilities [4]. 

Damage state Mean (days) 𝜷 

Slight (𝑑𝑠2) 0.5 0.1 

Moderate (𝑑𝑠3) 3.6 3.6 

Extensive (𝑑𝑠4) 22 21 

Complete (𝑑𝑠5) 65 30 
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Fig. 24: Restoration curve for generation facilities. 

Communication Facilities 

This data is used for the following technologies: Battery, Fuel Cell, Electrolyzer [4]. 

Table 10: Damage algorithms for communication facilities [4]. 

Damage state Median (g) 𝜷 

Slight (𝑑𝑠2) 0.13 0.55 

Moderate (𝑑𝑠3) 0.26 0.5 

Extensive (𝑑𝑠4) 0.46 0.62 

Complete (𝑑𝑠5) 1.03 0.62 

 

Table 11: Restoration function for communication facilities [4]. 

Damage state Mean (days) 𝜷 

Slight (𝑑𝑠2) 0 0.1 

Moderate (𝑑𝑠3) 0.5 0.2 

Extensive (𝑑𝑠4) 1 1 

Complete (𝑑𝑠5) 7 7 
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Fig. 25: Restoration curve for communication facilities. 

 

Water Storage Tank 

This data is used for the following technologies: Water Tank [4]. 

Table 12: Damage algorithms for water storage tank [4]. 

Damage state Median (g) 𝜷 

Slight (𝑑𝑠2) 0.15 0.7 

Moderate (𝑑𝑠3) 0.35 0.75 

Extensive (𝑑𝑠4) 0.68 0.75 

Complete (𝑑𝑠5) 0.95 0.7 

 

Table 13: Restoration function for water storage tank [4]. 

Damage state Mean (days) 𝜷 

Slight (𝑑𝑠2) 1.2 0.4 

Moderate (𝑑𝑠3) 3.1 2.7 

Extensive (𝑑𝑠4) 93 85 

Complete (𝑑𝑠5) 155 120 



 

55 

 

 

Fig. 26: Restoration curve for a water storage tank. 

Storage Tanks 

This data is used for the following technologies: Molten Salt Storage, H2 Storage [4]. 

Table 14: Damage algorithms for storage tank [4]. 

Damage state Median (g) 𝜷 

Slight (𝑑𝑠2) 0.3 0.6 

Moderate (𝑑𝑠3) 0.7 0.6 

Extensive (𝑑𝑠4) 1.25 0.65 

Complete (𝑑𝑠5) 1.6 0.6 

 

Table 15: Restoration function for storage tank [4]. 

Damage state Mean (days) 𝜷 

Slight (𝑑𝑠2) 1.2 0.4 

Moderate (𝑑𝑠3) 3.1 2.7 

Extensive (𝑑𝑠4) 93 85 

Complete (𝑑𝑠5) 155 120 
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Fig. 27: Restoration curve for a storage tank. 

Boiler 

This data is used for the following technologies: Heating Rod [4]. 

Table 16: Damage algorithms for boilers [4]. 

Damage state Median (g) 𝜷 

Slight (𝑑𝑠2) 0.05 0.15 

Moderate (𝑑𝑠3) 0.4 0.4 

Extensive (𝑑𝑠4) 0.7 0.8 

Complete (𝑑𝑠5) 1 1.5 

 

Table 17: Restoration function for boilers [4]. 

Damage state Mean (days) 𝜷 

Slight (𝑑𝑠2) 1.2 0.4 

Moderate (𝑑𝑠3) 3.1 2.7 

Extensive (𝑑𝑠4) 93 85 

Complete (𝑑𝑠5) 155 120 
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Fig. 28: Restoration curve for boilers. 

 

Calculation Report 

𝑃[𝑑𝑠|𝑠𝑑]  Φ [
1

𝛽
ln(

𝑠𝑑
𝑠𝑑 𝑑𝑠̅̅ ̅̅ ̅̅

)] (eq. 28) 

Where Φ is the standard normal distribution. 

Φ 𝑧  
1

√2𝜋
∫  

𝑢2

2 𝑑 

𝑧

−∞

 (eq. 29) 

And, 

𝑧  
1

𝛽
ln (

𝑠𝑑
𝑠𝑑 𝑑𝑠̅̅ ̅̅ ̅̅

) (eq. 30) 

And finally, the probability for the different damage state is: 
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𝐹𝑅𝑑𝑠 𝑡  Φμ β    
1

𝛽√2𝜋
∫  

 𝑢−𝜇 2

2𝛽2
𝑑 

𝑥

−∞

 (eq. 31) 

Therefore, the functionality is 

𝐹𝑃𝑑𝑠 𝑡  𝑃𝑑𝑠 ⋅ 𝐹𝑅𝑑𝑠 𝑡  0 01 (eq. 32) 

For example, for the generation facilities (data in 0), given a PGA equal to 0.6, for slight 

damage: 

𝑧  
1

0 5
ln (

0 6

0 1
)  3 58 (eq. 33) 

Φ 3 58  
1

√2𝜋
∫  

𝑢2

2 𝑑 

3 58

−∞

 1 00 (eq. 34) 

We do the same procedure for each damage state. The results are given in the following 

table: 

Table 18: Probabilities for different damage state for generation facilities. 

Damage state 𝜱 𝑷𝒅𝒔 

None (𝑑𝑠1) 1.00 0.00 

Slight (𝑑𝑠2) 1.00 0.01 

Moderate (𝑑𝑠3) 0.99 0.23 

Extensive (𝑑𝑠4) 0.76 0.24 

Complete (𝑑𝑠5) 0.52 0.52 

To estimate the functionality for each restoration period, we use (eq. 31). For example, for 

slight damage after 10 days: 

𝐹𝑅𝑑𝑠2 𝑡  10  
1

0 1√2𝜋
∫  

 𝑢−0 5 2

2⋅0 12 𝑑 

10

−∞

 1 00 (eq. 35) 

And the estimate of functionality is: 
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𝐹𝑃𝑑𝑠2
 𝑡  10  𝑃𝑑𝑠2

⋅ 𝐹𝑅𝑑𝑠2
 0 01 (eq. 36) 

For each damage state, after 10 days, the functionality is given in the following table: 

Table 19: Restoration period and functionality for each damage state for generation facilities after 10 days. 

Damage state FR 𝑭𝑷 

None (𝑑𝑠1) 1.00 0.00 

Slight (𝑑𝑠2) 1.00 0.01 

Moderate (𝑑𝑠3) 0.54 0.13 

Extensive (𝑑𝑠4) 0.20 0.05 

Complete (𝑑𝑠5) 0.02 0.01 

Total  0.19 

Therefore, given a PGA equal to 0.6, after 10 days about the power generation will be 

about 19% of the initial value. 

We can graph the functionality of the technology for each time as it is shown in Fig. 24. 

 

F. Appendix F: Results of Three Scenarios 

Install Capacity of each Technology 

Table 20: The installed capacity of each technology for the three scenarios. 

 𝒎𝒊𝒏 𝑪𝒐𝒔𝒕 𝟓𝟎% 𝑹𝒆 − 𝑪𝒐 𝒎𝒂𝒙 𝑹𝒆 

 Installed capacity (MW) 

r1 1649 1455 1136 

r2 587 24 6 

rh1 0 0 0 

rh2 144 76 137 

ptg 212 238 179 

htp 0 0 6 

pth 92 94 25 

gtp 60 33 7 

 Converter size (MW) 

s 306 355 499 

sh 92 94 33 

shht 0 0 96 

sf 203 194 135 
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 Storage size (MWh) 

s 1916 2128 2499 

sh 1515 873 747 

shht 0 0 540 

sf 21921 4570 5214 

  

 

 

Fig. 29: Performance of each technology over time for the three scenarios. For the storage, the negative 
values represent the charge and positive values discharge. 
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Fig. 30: Performance of each technology over time for three scenarios. The X-axis shows the days of the 
year and the Y-axis shows the hours of the day. The power is normalized by the maximum value for each 

technology. For the storage, the negative values represent the charge and positive values discharge.  
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G. Appendix G: Model Formulation 

This appendix shows the complete model formulation used for this thesis adapted from 

the work of [14] and [34]. First, we present the nomenclature of the sets, parameters and 

variables used, then the general equations and finally, the specific equations and OF for 

the different models. 

Sets 

𝐷 Set of the process which demands energy. 

𝑇 Time 

𝑇𝐸𝐶 Set of all technologies of the system. 

𝑃𝐺 ⊆ 𝑇𝐸𝐶 Set of primary generation technologies of the energy type    .  

  1  PV 

  2  Wind Turbine 

   1  Flat Plate Collectors 

   2  CSP - Parabolic Trough 

𝑇𝑇   ⊆ 𝑇𝐸𝐶 Set of transformation technologies of the energy type     to 
energy type     . 
 

 𝑝𝑡   Electrolyzer 

  𝑡𝑝  CSP - Power Block 

 𝑝𝑡   Heating Rod 

  𝑡𝑝  Fuel Cell. 

𝑆 ⊆ 𝑇𝐸𝐶 Set of primary storage technologies of the energy type    .  

 𝑠   Li-Battery 

 𝑠   Hot Water Tank 

 𝑠  𝑡  Molten Salts Storage 

 𝑠   H2 Storage 
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Parameters 

𝜂𝑡𝑡  Efficiency of transformation technologies. 

𝜂𝑠
𝑙𝑜𝑎𝑑  Energy load efficiency of storage technologies. 

𝜂𝑠
𝑢𝑛𝑙𝑜𝑎𝑑  Energy unload efficiency of storage technologies. 

𝜔𝑅𝑒 Relative weight of the resilience OF. 

 𝑛𝑛  𝑡 𝑡𝑒𝑐  Annuity of technology 𝑡   𝜖 𝑇𝐸𝐶 . 

 𝑜𝑠𝑡𝑡𝑒𝑐
𝑜𝑝

 Operational cost of technology 𝑡   𝜖 𝑇𝐸𝐶 . 

 𝑜𝑠𝑡𝑠
𝑜𝑝 𝑙𝑜𝑎𝑑

 Operational cost of loading 𝑠 𝜖 𝑆. 

 𝑜𝑠𝑡𝑠
𝑜𝑝 𝑢𝑛𝑙𝑜𝑎𝑑

 Operational cost of unloading 𝑠 𝜖 𝑆. 

 𝑜𝑠𝑡𝑡𝑒𝑐
𝑓 𝑥  Fixed operational cost of technology 𝑡   𝜖 𝑇𝐸𝐶 . 

 𝑜𝑠𝑡𝑠
𝑓 𝑥 𝑐𝑎𝑝

 Fixed operational cost of technology 𝑠 𝜖 𝑆 per volume. 

 𝑜𝑠𝑡𝑠
𝑓 𝑥 𝑐𝑜𝑛𝑣

 Fixed operational cost of technology 𝑠 𝜖 𝑆 per conversion. 

 𝑜𝑠𝑡𝑡𝑒𝑐
 𝑛𝑣  Investment cost of technology 𝑡   𝜖 𝑇𝐸𝐶. 

 𝑜𝑠𝑡𝑠
 𝑛𝑣 𝑐𝑎𝑝

 Investment cost of technology 𝑠 𝜖 𝑆 per volume. 

 𝑜𝑠𝑡𝑠
 𝑛𝑣 𝑐𝑜𝑛𝑣  Investment cost of technology 𝑠 𝜖 𝑆 per conversion. 

𝐷 𝑚 𝑛𝑑𝑡 𝑑
𝑒  Electricity demand for process 𝑑 𝜖 𝐷 during time 𝑡 𝜖 𝑇. 

𝐷 𝑚 𝑛𝑑𝑡 𝑑
ℎ  Heat demand for process 𝑑 𝜖 𝐷 during time 𝑡 𝜖 𝑇. 

𝐷 𝑚 𝑛𝑑𝑡 𝑑
𝑓

 Fuel demand for process 𝑑 𝜖 𝐷 during time 𝑡 𝜖 𝑇. 

𝐷 𝑚 𝑛𝑑𝑡𝑜𝑡𝑎𝑙  Total demand for the system. 

𝐸𝑑 𝑡𝑒𝑐
 𝑛𝑠𝑡  Installed capacity of technology 𝑡   𝜖 𝑇𝐸𝐶  for process 𝑑 𝜖 𝐷 (for 

operational simulation). 

𝐸𝑑 𝑠
 𝑛𝑠𝑡 𝑐𝑎𝑝

 Installed volume capacity of technology 𝑠 𝜖 𝑆 for process 𝑑 𝜖 𝐷 (for 

operational simulation). 
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𝐸𝑑 𝑠
 𝑛𝑠𝑡 𝑐𝑜𝑛𝑣  Installed converters capacity of technology 𝑠 𝜖 𝑆 for process 𝑑 𝜖 𝐷 

(for operational simulation). 

 𝑜𝑠𝑠 𝑠𝑠  Energy losses over time for technology 𝑠 𝜖 𝑆. 

𝑃 𝑜    𝑡 𝑑 𝑝𝑔 Profile of renewable technologies 𝑝  𝜖 𝑃𝐺 of process 𝑑 𝜖 𝐷 during 

time 𝑡 𝜖 𝑇. 

𝑅 𝑚𝑎𝑥  Maximum resilience value. 

𝑅 𝑚 𝑛 Minimum resilience value. 

𝑅 𝐶  𝑣 𝑡 𝑑 𝑡𝑒𝑐 Restoration curve for technology 𝑡   𝜖 𝑇𝐸𝐶 of process 𝑑 𝜖 𝐷 during 

time 𝑡 𝜖 𝑇. 

𝑅 𝑇 𝑚 𝑡 𝑑 𝑡𝑒𝑐  Restoration function for MC simulation (step-function) for 

technology 𝑡   𝜖 𝑇𝐸𝐶 of process 𝑑 𝜖 𝐷 during time 𝑡 𝜖 𝑇. 

𝑌   𝐹   𝑡 𝑜𝑛 Fraction of the year simulated. 

 

Variables 

𝐶𝑜𝑠𝑡𝑠𝑓 𝑥 𝑡𝑒𝑐 Fixed operational costs of technology 𝑡   𝜖 𝑇𝐸𝐶 . ℝ+ ∪ {0} 

𝐶𝑜𝑠𝑡𝑠 𝑛𝑣 𝑡𝑒𝑐 Investment costs of technology 𝑡   𝜖 𝑇𝐸𝐶. ℝ+ ∪ {0} 

𝐶𝑜𝑠𝑡𝑠 𝑛𝑣 𝑡𝑜𝑡𝑎𝑙  Total investment costs. ℝ+ ∪ {0} 

𝐶𝑜𝑠𝑡𝑠𝑜𝑝 𝑡𝑒𝑐 Fixed operational costs of technology 𝑡   𝜖 𝑇𝐸𝐶 . ℝ+ ∪ {0} 

𝐶𝑜𝑠𝑡𝑠𝑜𝑝 𝑡𝑜𝑡𝑎𝑙  Total operational costs. ℝ+ ∪ {0} 

𝐶𝑜𝑠𝑡𝑠𝑡𝑜𝑡𝑎𝑙  Total costs. ℝ+ ∪ {0} 

𝐸𝑑 𝑡𝑒𝑐 Installed capacity of technology 𝑡   𝜖 𝑇𝐸𝐶  for process 

𝑑 𝜖 𝐷. 

ℝ+ ∪ {0} 

𝐸𝑑 𝑠
𝑐𝑎𝑝 Installed volume capacity of technology 𝑠 𝜖 𝑆 for 

process 𝑑 𝜖 𝐷  

ℝ+ ∪ {0} 

𝐸𝑑 𝑠
𝑐𝑜𝑛𝑣  Installed converters capacity of technology 𝑠 𝜖 𝑆 for 

process 𝑑 𝜖 𝐷  

ℝ+ ∪ {0} 
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𝐸𝑑 𝑠
𝑓 𝑟𝑠𝑡

 Energy stored by 𝑠 𝜖 𝑆 for process 𝑑 𝜖 𝐷 during time 𝑡  

1. 

ℝ+ ∪ {0} 

𝐸𝑑 𝑠
𝑙𝑎𝑠𝑡 Energy stored by 𝑠 𝜖 𝑆 for process 𝑑 𝜖 𝐷 during time 𝑡  

 𝑛𝑑. 

ℝ+ ∪ {0} 

𝐸𝑡 𝑑 𝑠
𝑙𝑜𝑠𝑠 Energy losses by 𝑠 𝜖 𝑆 for process 𝑑 𝜖 𝐷 during time 

𝑡 𝜖 𝑇. 

ℝ+ ∪ {0} 

𝐸𝑡 𝑑 𝑠
𝑠𝑡𝑜𝑟𝑒𝑑  Energy stored by 𝑠 𝜖 𝑆 for process 𝑑 𝜖 𝐷 during time 

𝑡 𝜖 𝑇. 

ℝ+ ∪ {0} 

𝐸′𝑡 𝑑 𝑠
𝑙𝑜𝑠𝑠  Energy losses by 𝑠 𝜖 𝑆 for process 𝑑 𝜖 𝐷 during time 

𝑡 𝜖 𝑇 (auxiliary variable for resilience indicator). 

ℝ+ ∪ {0} 

𝐸′𝑡 𝑑 𝑠
𝑠𝑡𝑜𝑟𝑒𝑑  Energy stored by 𝑠 𝜖 𝑆 for process 𝑑 𝜖 𝐷 during time 

𝑡 𝜖 𝑇 (auxiliary variable for resilience indicator). 

ℝ+ ∪ {0} 

𝐸𝑆 𝑡
𝑒 Energy shortage of electricity during time 𝑡 𝜖 𝑇. ℝ 

𝐸𝑆 𝑡
ℎ  Energy shortage of heat during time 𝑡 𝜖 𝑇. ℝ 

𝐸𝑆 𝑡
𝑓
 Energy shortage of fuel during time 𝑡 𝜖 𝑇. ℝ 

𝐸𝑆 𝑡
+𝑒 Positive energy shortage of electricity during time 𝑡 𝜖 𝑇. ℝ+ ∪ {0} 

𝐸𝑆 𝑡
+ℎ Positive energy shortage of heat during time 𝑡 𝜖 𝑇. ℝ+ ∪ {0} 

𝐸𝑆 𝑡
+𝑓

 Positive energy shortage of fuel during time 𝑡 𝜖 𝑇. ℝ+ ∪ {0} 

𝑃𝑡 𝑑 𝑡𝑒𝑐  Power delivered or transformed by 𝑡   𝜖 𝑇𝐸𝐶 for 

process 𝑑 𝜖 𝐷 during time 𝑡 𝜖 𝑇. 

ℝ+ ∪ {0} 

𝑃𝑡  𝑑 𝑠
𝑙𝑜𝑎𝑑 Power stored by 𝑠 𝜖 𝑆 for process 𝑑 𝜖 𝐷 during time 

𝑡 𝜖 𝑇. 

ℝ+ ∪ {0} 

𝑃𝑡 𝑑 𝑠
𝑢𝑛𝑙𝑜𝑎𝑑  Power delivered by 𝑠 𝜖 𝑆 for process 𝑑 𝜖 𝐷 during time 

𝑡 𝜖 𝑇. 

ℝ+ ∪ {0} 

𝑃𝑡 𝑑
𝑡𝑒𝑐1 𝑡𝑒𝑐2 Power delivered from 𝑡  1 𝜖 𝑇𝐸𝐶  to 𝑡  1 𝜖 𝑇𝐸𝐶 for 

process 𝑑 𝜖 𝐷 during time 𝑡 𝜖 𝑇. 

ℝ+ ∪ {0} 

𝑃𝑡 𝑑
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑒 Electricity unserved for process 𝑑 𝜖 𝐷 during time 𝑡 𝜖 𝑇. ℝ+ ∪ {0} 
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𝑃𝑡 𝑑
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 ℎ Heat unserved for process 𝑑 𝜖 𝐷 during time 𝑡 𝜖 𝑇. ℝ+ ∪ {0} 

𝑃𝑡 𝑑
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑓  Fuel unserved for process 𝑑 𝜖 𝐷 during time 𝑡 𝜖 𝑇. ℝ+ ∪ {0} 

𝑃′𝑡  𝑑 𝑡𝑒𝑐 Power delivered or transformed by 𝑡   𝜖 𝑇𝐸𝐶 for 

process 𝑑 𝜖 𝐷 during time 𝑡 𝜖 𝑇 (auxiliary variable for 

resilience indicator). 

ℝ+ ∪ {0} 

𝑃′𝑡 𝑑 𝑠
𝑙𝑜𝑎𝑑  Power stored by 𝑠 𝜖 𝑆 for process 𝑑 𝜖 𝐷 during time 𝑡 𝜖 𝑇 

(auxiliary variable for resilience indicator). 

ℝ+ ∪ {0} 

𝑃′𝑡 𝑑 𝑠
𝑢𝑛𝑙𝑜𝑎𝑑  Power delivered by 𝑠 𝜖 𝑆 for process 𝑑 𝜖 𝐷 during time 

𝑡 𝜖 𝑇(auxiliary variable for resilience indicator). 

ℝ+ ∪ {0} 

𝑃′𝑡  𝑑
𝑡𝑒𝑐1 𝑡𝑒𝑐2 Power delivered from 𝑡  1 𝜖 𝑇𝐸𝐶  to 𝑡  1 𝜖 𝑇𝐸𝐶 for 

process 𝑑 𝜖 𝐷 during time 𝑡 𝜖 𝑇 (auxiliary variable for 

resilience indicator). 

ℝ+ ∪ {0} 

𝑅 𝑒  Resilience value for electricity vector. [0 1] 

𝑅 ℎ Resilience value for heat vector. [0 1] 

𝑅 𝑓 Resilience value for fuel vector. [0 1] 

𝑅 𝑡𝑜𝑡𝑎𝑙 Total resilience. [0 1] 

 

General Equations 

Operational costs 

𝐶𝑜𝑠𝑡𝑠𝑜𝑝 𝑝𝑔  ∑∑∑( 𝑜𝑠𝑡𝑝𝑔
𝑜𝑝 ⋅ 𝑃𝑡 𝑑 𝑝𝑔)

𝑝𝑔𝑑𝑡

 (eq. 37) 

𝐶𝑜𝑠𝑡𝑠𝑜𝑝 𝑡𝑡  ∑∑∑( 𝑜𝑠𝑡𝑡𝑡
𝑜𝑝 ⋅ 𝑃𝑡 𝑑 𝑡𝑡)

𝑡𝑡𝑑𝑡

 (eq. 38) 

𝐶𝑜𝑠𝑡𝑠𝑜𝑝 𝑠  ∑∑∑( 𝑜𝑠𝑡𝑠
𝑜𝑝 𝑙𝑜𝑎𝑑 ⋅ 𝑃𝑡 𝑑 𝑠

𝑙𝑜𝑎𝑑 +  𝑜𝑠𝑡𝑠
𝑜𝑝 𝑢𝑛𝑙𝑜𝑎𝑑 ⋅ 𝑃𝑡  𝑑 𝑠

𝑢𝑛𝑙𝑜𝑎𝑑)

𝑠𝑑𝑡

 (eq. 39) 
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Fixed operational costs 

𝐶𝑜𝑠𝑡𝑠𝑓 𝑥 𝑝𝑔  ∑∑( 𝑜𝑠𝑡𝑝𝑔
𝑓 𝑥 ⋅ 𝐸𝑑 𝑝𝑔)

𝑝𝑔𝑑

 (eq. 40) 

𝐶𝑜𝑠𝑡𝑠𝑓 𝑥  𝑡𝑡  ∑∑( 𝑜𝑠𝑡𝑡𝑡
𝑓 𝑥 ⋅ 𝐸𝑑 𝑡𝑡)

𝑡𝑡𝑑

 (eq. 41) 

𝐶𝑜𝑠𝑡𝑠𝑓 𝑥 𝑠  ∑∑( 𝑜𝑠𝑡𝑠
𝑓 𝑥 𝑐𝑎𝑝 ⋅ 𝐸𝑑 𝑠

𝑐𝑎𝑝 +  𝑜𝑠𝑡𝑠
𝑓 𝑥 𝑐𝑜𝑛𝑣 ⋅ 𝐸𝑑 𝑠

𝑐𝑜𝑛𝑣)

𝑠𝑑

 (eq. 42) 

Total operational costs 

𝐶𝑜𝑠𝑡𝑠𝑜𝑝 𝑡𝑜𝑡𝑎𝑙  𝐶𝑜𝑠𝑡𝑠𝑜𝑝 𝑝𝑔 + 𝐶𝑜𝑠𝑡𝑠𝑜𝑝 𝑡𝑡 + 𝐶𝑜𝑠𝑡𝑠𝑜𝑝 𝑠 + 𝐶𝑜𝑠𝑡𝑠𝑓 𝑥  𝑝𝑔

+ 𝐶𝑜𝑠𝑡𝑠𝑓 𝑥  𝑡𝑡 + 𝐶𝑜𝑠𝑡𝑠𝑓 𝑥  𝑠 
(eq. 43) 

Investment costs 

𝐶𝑜𝑠𝑡𝑠 𝑛𝑣 𝑝𝑔  ∑∑( 𝑛𝑛  𝑡 𝑝𝑔 ⋅  𝑜𝑠𝑡𝑝𝑔
 𝑛𝑣 ⋅ 𝐸𝑑 𝑝𝑔)

𝑝𝑔𝑑

 (eq. 44) 

𝐶𝑜𝑠𝑡𝑠 𝑛𝑣 𝑡𝑡  ∑∑( 𝑛𝑛  𝑡 𝑡𝑡 ⋅  𝑜𝑠𝑡𝑡𝑡
 𝑛𝑣 ⋅ 𝐸𝑑 𝑡𝑡)

𝑡𝑡𝑑

 (eq. 45) 

𝐶𝑜𝑠𝑡𝑠 𝑛𝑣 𝑠  ∑∑( 𝑛𝑛  𝑡 𝑠 ⋅ ( 𝑜𝑠𝑡𝑠
 𝑛𝑣 𝑐𝑎𝑝

⋅ 𝐸𝑑 𝑠
𝑐𝑎𝑝

+  𝑜𝑠𝑡𝑠
 𝑛𝑣 𝑐𝑜𝑛𝑣 ⋅ 𝐸𝑑 𝑠

𝑐𝑜𝑛𝑣))
𝑠𝑑

 (eq. 46) 

Total investment costs 

𝐶𝑜𝑠𝑡𝑠 𝑛𝑣 𝑡𝑜𝑡𝑎𝑙  𝑌   𝐹   𝑡 𝑜𝑛 ⋅ (𝐶𝑜𝑠𝑡𝑠 𝑛𝑣 𝑝𝑔 + 𝐶𝑜𝑠𝑡𝑠 𝑛𝑣 𝑡𝑡 + 𝐶𝑜𝑠𝑡𝑠 𝑛𝑣 𝑠) (eq. 47) 

Total costs 
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𝐶𝑜𝑠𝑡𝑠𝑡𝑜𝑡𝑎𝑙  𝐶𝑜𝑠𝑡𝑠𝑜𝑝 𝑡𝑜𝑡𝑎𝑙 ⋅ 𝐶𝑜𝑠𝑡𝑠 𝑛𝑣 𝑡𝑜𝑡𝑎𝑙 (eq. 48) 

Energy balances 

Maximum power constraint by the capacity 

𝑃𝑡 𝑑 𝑝𝑔 ≤ 𝐸𝑑 𝑝𝑔 ⋅ 𝑃 𝑜    𝑡 𝑑 𝑝𝑔      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑝 𝜖𝑃𝐺  (eq. 49) 

𝑃𝑡 𝑑 𝑡𝑡 ≤ 𝐸𝑑 𝑡𝑡      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑡𝑡𝜖𝑇𝑇 (eq. 50) 

𝑃𝑡  𝑑 𝑠
𝑙𝑜𝑎𝑑 ≤ 𝐸𝑑 𝑠     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 51) 

𝑃𝑡  𝑑 𝑠
𝑢𝑛𝑙𝑜𝑎𝑑 ≤ 𝐸𝑑 𝑠     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 52) 

𝑃𝑡  𝑑 𝑠
𝑢𝑛𝑙𝑜𝑎𝑑 ≤ 𝐸𝑑 𝑠     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 53) 

Efficiency of transformation technologies 

𝑃𝑡 𝑑 ℎ𝑡𝑝  𝑃𝑡 𝑑
𝑠ℎℎ𝑡 ℎ𝑡𝑝

⋅ 𝜂ℎ𝑡𝑝     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 54) 

𝑃𝑡 𝑑 𝑔𝑡𝑝  𝑃𝑡 𝑑
𝑠𝑓 𝑔𝑡𝑝

⋅ 𝜂𝑔𝑡𝑝      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 55) 

Energy balances 

𝑃𝑡 𝑑 𝑟ℎ1  𝑃𝑡 𝑑
𝑟ℎ1 𝑑 + 𝑃𝑡 𝑑

𝑟ℎ1 𝑠ℎ      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 56) 

𝑃𝑡 𝑑 𝑟ℎ2  𝑃𝑡 𝑑
𝑟ℎ2 𝑑 + 𝑃𝑡 𝑑

𝑟ℎ2 𝑠ℎℎ𝑡      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 57) 

𝑃𝑡 𝑑 𝑝𝑡ℎ  𝑃𝑡 𝑑
𝑝𝑡ℎ 𝑠ℎ +𝑃𝑡 𝑑

𝑝𝑡ℎ 𝑑      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 58) 

𝑃𝑡 𝑑 𝑝𝑡𝑔  𝑃𝑡 𝑑
𝑝𝑡𝑔 𝑠𝑓 +𝑃𝑡 𝑑

𝑝𝑡𝑔 𝑑      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 59) 
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𝑃𝑡 𝑑 𝑠ℎ
𝑙𝑜𝑎𝑑  𝑃𝑡 𝑑

𝑟ℎ1 𝑠ℎ + 𝑃𝑡 𝑑
𝑝𝑡ℎ 𝑠ℎ

      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 60) 

𝑃𝑡  𝑑 𝑠ℎℎ𝑡
𝑢𝑛𝑙𝑜𝑎𝑑  𝑃𝑡 𝑑

𝑠ℎℎ𝑡 𝑑 + 𝑃𝑡 𝑑
𝑠ℎℎ𝑡 ℎ𝑡𝑝      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 61) 

𝑃𝑡 𝑑 𝑠𝑓
𝑢𝑛𝑙𝑜𝑎𝑑  𝑃𝑡 𝑑

𝑠𝑓 𝑔𝑡𝑝 +𝑃𝑡  𝑑
𝑠𝑓  𝑑      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 62) 

Energy balances in storage technologies 

𝐸𝑡+1 𝑑 𝑠
𝑠𝑡𝑜𝑟𝑒𝑑  𝐸𝑡 𝑑 𝑠

𝑠𝑡𝑜𝑟𝑒𝑑 − 𝐸𝑡 𝑑 𝑠
𝑙𝑜𝑠𝑠 + 𝜂𝑠

𝑙𝑜𝑎𝑑 ⋅ 𝑃𝑡  𝑑 𝑠
𝑙𝑜𝑎𝑑 −

𝑃𝑡  𝑑 𝑠
𝑢𝑛𝑙𝑜𝑎𝑑

𝜂𝑠
𝑢𝑛𝑙𝑜𝑎𝑑

     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 
(eq. 63) 

𝐸𝑡 𝑑 𝑠
𝑙𝑜𝑠𝑠  𝐸𝑡 𝑑 𝑠

𝑠𝑡𝑜𝑟𝑒𝑑 ⋅  𝑜𝑠𝑠 𝑠𝑠     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 64) 

𝐸𝑡𝑓𝑖𝑟𝑠𝑡 𝑑 𝑠
𝑠𝑡𝑜𝑟𝑒𝑑  𝐸𝑑 𝑠

𝑓 𝑟𝑠𝑡      ∀𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 65) 

𝐸𝑡𝑙𝑎𝑠𝑡  𝑑 𝑠
𝑠𝑡𝑜𝑟𝑒𝑑  𝐸𝑑 𝑠

𝑙𝑎𝑠𝑡      ∀𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 66) 

𝐸𝑑 𝑠
𝑓 𝑟𝑠𝑡

 𝐸𝑑 𝑠
𝑙𝑎𝑠𝑡      ∀𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 67) 

Maximum storage energy capacities 

𝐸𝑡 𝑑 𝑠
𝑠𝑡𝑜𝑟𝑒𝑑 ≤ 𝐸𝑑 𝑠

𝑐𝑎𝑝     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑡𝑡𝜖𝑇𝑇 (eq. 68) 

Satisfy demand 

𝐷 𝑚 𝑛𝑑𝑡 𝑑
𝑒  𝑃𝑡 𝑑 𝑟1 +𝑃𝑡 𝑑 𝑟2 + 𝑃𝑡 𝑑 ℎ𝑡𝑝 −

𝑃𝑡 𝑑 𝑝𝑡ℎ

𝜂𝑝𝑡ℎ
+𝑃𝑡 𝑑 𝑔𝑡𝑝 −

𝑃𝑡 𝑑 𝑝𝑡𝑔

𝜂𝑝𝑡𝑔

− 𝑃𝑡 𝑑 𝑠𝑒
𝑙𝑜𝑎𝑑 +𝑃𝑡  𝑑 𝑠𝑒

𝑢𝑛𝑙𝑜𝑎𝑑 + 𝑃𝑡 𝑑
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑒      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 

(eq. 69) 
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𝐷 𝑚 𝑛𝑑𝑡 𝑑
ℎ  𝑃𝑡 𝑑 𝑟ℎ1 +𝑃𝑡 𝑑 𝑟ℎ2 + 𝑃𝑡 𝑑

𝑝𝑡ℎ 𝑑
+𝑃𝑡 𝑑

𝑠ℎℎ𝑡 𝑑 + 𝑃𝑡 𝑑 𝑠ℎ
𝑢𝑛𝑙𝑜𝑎𝑑

+𝑃𝑡  𝑑
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 ℎ     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 

(eq. 70) 

𝐷 𝑚 𝑛𝑑𝑡 𝑑
𝑓  𝑃𝑡 𝑑

𝑝𝑡𝑔 𝑑 +𝑃𝑡 𝑑
𝑠𝑓 𝑑 +𝑃𝑡  𝑑

𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 ℎ     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 71) 

Operational Simulation Model with Restoration Curves 

Maximum power available 

𝐸𝑡 𝑑 𝑝𝑔 ≤ 𝑅 𝐶  𝑣 𝑡 𝑑 𝑝𝑔 ⋅ 𝐸𝑑 𝑝𝑔
 𝑛𝑠𝑡 ⋅ 𝑝 𝑜    𝑡 𝑑 𝑝𝑔      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑝 𝜖𝑃𝐺  (eq. 72) 

𝑃𝑡 𝑑 𝑡𝑡 ≤ 𝑅 𝐶  𝑣 𝑡 𝑑 𝑡𝑡 ⋅ 𝐸𝑑 𝑡𝑡
 𝑛𝑠𝑡      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑡𝑡𝜖𝑇𝑇 (eq. 73) 

𝑃𝑡  𝑑 𝑠
𝑙𝑜𝑎𝑑 ≤ 𝑅 𝐶  𝑣 𝑡 𝑑 𝑠 ⋅ 𝐸𝑑 𝑠

 𝑛𝑠𝑡 𝑐𝑜𝑛𝑣      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 74) 

𝑃𝑡 𝑑 𝑠
𝑢𝑛𝑙𝑜𝑎𝑑 ≤ 𝑅 𝐶  𝑣 𝑡 𝑑 𝑠 ⋅ 𝐸𝑑 𝑠

 𝑛𝑠𝑡 𝑐𝑜𝑛𝑣      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 75) 

𝑃𝑡 𝑑 𝑠
𝑠𝑡𝑜𝑟𝑒𝑑 ≤ 𝑅 𝐶  𝑣 𝑡 𝑑 𝑠 ⋅ 𝐸𝑑 𝑠

 𝑛𝑠𝑡 𝑐𝑎𝑝     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 76) 

Resilience metric 

𝑅 𝑒  1− ∑∑
𝑃𝑡  𝑑

𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑒

𝐷 𝑚 𝑛𝑑𝑡 𝑑
𝑒

𝑑𝑡

 
(eq. 77) 

𝑅 ℎ  1 −∑∑
𝑃𝑡 𝑑

𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 ℎ

𝐷 𝑚 𝑛𝑑𝑡 𝑑
ℎ

𝑑𝑡

 
(eq. 78) 

𝑅 𝑓  1− ∑∑
𝑃𝑡 𝑑

𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑓

𝐷 𝑚 𝑛𝑑𝑡 𝑑
𝑓

𝑑𝑡

 
(eq. 79) 
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𝑅 𝑡𝑜𝑡𝑎𝑙  
𝑅 𝑒 ⋅ 𝐷 𝑚 𝑛𝑑𝑒 + 𝑅 ℎ ⋅ 𝐷 𝑚 𝑛𝑑ℎ +𝑅 𝑓 ⋅ 𝐷 𝑚 𝑛𝑑𝑓

𝐷 𝑚 𝑛𝑑𝑡𝑜𝑡𝑎𝑙
 

(eq. 80) 

Objective function 

min∑∑(𝑃𝑡 𝑑
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑒 +𝑃𝑡 𝑑

𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 ℎ +𝑃𝑡  𝑑
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑓

)
𝑑𝑡

 (eq. 81) 

Monte Carlo Simulation Model 

Maximum power available 

𝑃𝑡 𝑑 𝑝𝑔 ≤ 𝑅 𝑇 𝑚 𝑡 𝑑 𝑝𝑔 ⋅ 𝐸𝑑 𝑝𝑔
 𝑛𝑠𝑡 ⋅ 𝑝 𝑜    𝑡 𝑑 𝑝𝑔      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑝 𝜖𝑃𝐺  (eq. 82) 

𝑃𝑡 𝑑 𝑡𝑡 ≤ 𝑅 𝑇 𝑚 𝑡 𝑑 𝑡𝑡 ⋅ 𝐸𝑑 𝑡𝑡
 𝑛𝑠𝑡     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑡𝑡𝜖𝑇𝑇 (eq. 83) 

𝑃𝑡 𝑑 𝑠
𝑙𝑜𝑎𝑑 ≤ 𝑅 𝑇 𝑚 𝑡 𝑑 𝑠 ⋅ 𝐸𝑑 𝑠

 𝑛𝑠𝑡 𝑐𝑜𝑛𝑣      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 84) 

𝑃𝑡  𝑑 𝑠
𝑢𝑛𝑙𝑜𝑎𝑑 ≤ 𝑅 𝑇 𝑚 𝑡 𝑑 𝑠 ⋅ 𝐸𝑑 𝑠

 𝑛𝑠𝑡 𝑐𝑜𝑛𝑣     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 85) 

𝐸𝑡 𝑑 𝑠
𝑠𝑡𝑜𝑟𝑒𝑑 ≤ 𝑅 𝑇 𝑚 𝑡 𝑑 𝑠 ⋅ 𝐸𝑑 𝑠

 𝑛𝑠𝑡 𝑐𝑎𝑝     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 86) 

Resilience metric 

𝑅 𝑒  1 −
∑ ∑ 𝑃𝑡 𝑑

𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑒
𝑑𝑡

𝐷 𝑚 𝑛𝑑𝑒  
(eq. 87) 

𝑅 ℎ  1 −
∑ ∑ 𝑃𝑡 𝑑

𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 ℎ
𝑑𝑡

𝐷 𝑚 𝑛𝑑ℎ  
(eq. 88) 

𝑅 𝑓  1 −
∑ ∑ 𝑃𝑡 𝑑

𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑓
𝑑𝑡

𝐷 𝑚 𝑛𝑑𝑓
 

(eq. 89) 
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𝑅 𝑡𝑜𝑡𝑎𝑙  
𝑅 𝑒 ⋅ 𝐷 𝑚 𝑛𝑑𝑒 + 𝑅 ℎ ⋅ 𝐷 𝑚 𝑛𝑑ℎ +𝑅 𝑓 ⋅ 𝐷 𝑚 𝑛𝑑𝑓

𝐷 𝑚 𝑛𝑑𝑡𝑜𝑡𝑎𝑙
 

(eq. 90) 

Objective function 

min∑∑(𝑃𝑡 𝑑
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑒 +𝑃𝑡 𝑑

𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 ℎ +𝑃𝑡  𝑑
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑓

)
𝑑𝑡

 (eq. 91) 

Resilience Indicator 

Maximum power available (auxiliary functions) 

𝑃′𝑡 𝑑 𝑡𝑒𝑐 ≤ 𝐸𝑡 𝑑 𝑡𝑒𝑐      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑡  𝜖𝑇𝐸𝐶  (eq. 92) 

𝑃′𝑡 𝑑 𝑝𝑔 ≤ 𝑅 𝐶  𝑣 𝑡 𝑑 𝑝𝑔 ⋅ 𝐸𝑑 𝑝𝑔 ⋅ 𝑝 𝑜    𝑡 𝑑 𝑝𝑔     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑝 𝜖𝑃𝐺  (eq. 93) 

𝑃′𝑡 𝑑 𝑡𝑡 ≤ 𝑅 𝐶  𝑣 𝑡 𝑑 𝑡𝑡 ⋅ 𝐸𝑑 𝑡𝑡      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑡𝑡𝜖𝑇𝑇 (eq. 94) 

𝑃′𝑡 𝑑 𝑠
𝑙𝑜𝑎𝑑 ≤ 𝑅 𝐶  𝑣 𝑡 𝑑 𝑠 ⋅ 𝐸𝑑 𝑠

𝑐𝑜𝑛𝑣      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 95) 

𝑃′𝑡  𝑑 𝑠
𝑢𝑛𝑙𝑜𝑎𝑑 ≤ 𝑅 𝐶  𝑣 𝑡 𝑑 𝑠 ⋅ 𝐸𝑑 𝑠

𝑐𝑜𝑛𝑣      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 96) 

𝑃′𝑡 𝑑 𝑠
𝑠𝑡𝑜𝑟𝑒𝑑 ≤ 𝑅 𝐶  𝑣 𝑡 𝑑 𝑠 ⋅ 𝐸𝑑 𝑠

𝑐𝑎𝑝
     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 97) 

Energy balances in storage technologies (auxiliary functions) 

𝐸′𝑡+1 𝑑 𝑠
𝑠𝑡𝑜𝑟𝑒𝑑  𝐸′𝑡  𝑑 𝑠

𝑠𝑡𝑜𝑟𝑒𝑑 −𝐸′𝑡  𝑑 𝑠
𝑙𝑜𝑠𝑠 + 𝜂𝑠

𝑙𝑜𝑎𝑑 ⋅ 𝑃′𝑡 𝑑 𝑠
𝑙𝑜𝑎𝑑 −

𝑃′𝑡 𝑑 𝑠
𝑢𝑛𝑙𝑜𝑎𝑑

𝜂𝑠
𝑢𝑛𝑙𝑜𝑎𝑑

     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 
(eq. 98) 

𝐸′𝑡 𝑑 𝑠
𝑙𝑜𝑠𝑠  𝐸′𝑡  𝑑 𝑠

𝑠𝑡𝑜𝑟𝑒𝑑 ⋅  𝑜𝑠𝑠 𝑠𝑠     ∀𝑡𝜖𝑇 𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 99) 

𝐸′𝑡𝑓𝑖𝑟𝑠𝑡 𝑑 𝑠
𝑠𝑡𝑜𝑟𝑒𝑑 ≤ 𝐸𝑡𝑓𝑖𝑟𝑠𝑡 𝑑 𝑠

𝑠𝑡𝑜𝑟𝑒𝑑      ∀𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 100) 
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𝐸′𝑡𝑙𝑎𝑠𝑡  𝑑 𝑠
𝑠𝑡𝑜𝑟𝑒𝑑 ≤ 𝐸𝑡𝑙𝑎𝑠𝑡 𝑑 𝑠

𝑠𝑡𝑜𝑟𝑒𝑑      ∀𝑑𝜖𝐷 𝑠𝜖𝑆 (eq. 101) 

Energy balances 

𝑃′𝑡 𝑑 𝑟ℎ1  𝑃′𝑡 𝑑
𝑟ℎ1 𝑑 + 𝑃′𝑡 𝑑

𝑟ℎ1 𝑠ℎ      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 102) 

𝑃′𝑡 𝑑 𝑟ℎ2  𝑃′𝑡 𝑑
𝑟ℎ2 𝑑 + 𝑃′𝑡  𝑑

𝑟ℎ2 𝑠ℎℎ𝑡      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 103) 

𝑃′𝑡 𝑑 𝑝𝑡ℎ  𝑃′𝑡 𝑑
𝑝𝑡ℎ 𝑠ℎ + 𝑃′𝑡 𝑑

𝑝𝑡ℎ 𝑑      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 104) 

𝑃′𝑡 𝑑 𝑝𝑡𝑔  𝑃′𝑡 𝑑
𝑝𝑡𝑔 𝑠𝑓 + 𝑃′𝑡  𝑑

𝑝𝑡𝑔  𝑑      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 105) 

𝑃′𝑡 𝑑 𝑠ℎ
𝑙𝑜𝑎𝑑  𝑃′𝑡  𝑑

𝑟ℎ1 𝑠ℎ +𝑃′𝑡 𝑑
𝑝𝑡ℎ 𝑠ℎ      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 106) 

𝑃′𝑡  𝑑 𝑠ℎℎ𝑡
𝑢𝑛𝑙𝑜𝑎𝑑  𝑃′𝑡 𝑑

𝑠ℎℎ𝑡 𝑑 +𝑃′𝑡 𝑑
𝑠ℎℎ𝑡 ℎ𝑡𝑝      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 107) 

𝑃′𝑡 𝑑 𝑠𝑓
𝑢𝑛𝑙𝑜𝑎𝑑  𝑃′𝑡 𝑑

𝑠𝑓 𝑔𝑡𝑝
+ 𝑃′𝑡 𝑑

𝑠𝑓 𝑑
      ∀𝑡𝜖𝑇 𝑑𝜖𝐷 (eq. 108) 

Energy shortage measurement 

𝐸𝑆 𝑡
𝑒  ∑𝐷 𝑚 𝑛𝑑𝑡 𝑑

𝑒

𝑑

− (𝑃′𝑡 𝑑 𝑟1 + 𝑃′𝑡 𝑑 𝑟2 + 𝑃′𝑡 𝑑 ℎ𝑡𝑝 −
𝑃′𝑡 𝑑 𝑝𝑡ℎ

𝜂𝑝𝑡ℎ
+ 𝑃′𝑡  𝑑 𝑔𝑡𝑝

−
𝑃′𝑡  𝑑 𝑝𝑡𝑔

𝜂𝑝𝑡𝑔
−𝑃′𝑡  𝑑 𝑠𝑒

𝑙𝑜𝑎𝑑 +𝑃′𝑡  𝑑 𝑠𝑒
𝑢𝑛𝑙𝑜𝑎𝑑)     ∀𝑡𝜖𝑇 

(eq. 109) 

𝐸𝑆 𝑡
ℎ  ∑𝐷 𝑚 𝑛𝑑𝑡 𝑑

ℎ

𝑑

− (𝑃′𝑡 𝑑 𝑟ℎ1 + 𝑃′𝑡 𝑑 𝑟ℎ2 +𝑃′𝑡  𝑑
𝑝𝑡ℎ 𝑑

+ 𝑃′𝑡  𝑑
𝑠ℎℎ𝑡 𝑑

+𝑃′𝑡 𝑑 𝑠ℎ
𝑢𝑛𝑙𝑜𝑎𝑑 )     ∀𝑡𝜖𝑇 

(eq. 110) 
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𝐸𝑆 𝑡
𝑓
 ∑𝐷 𝑚 𝑛𝑑𝑡 𝑑

𝑓
− (𝑃′𝑡 𝑑

𝑝𝑡𝑔  𝑑
+ 𝑃′𝑡 𝑑

𝑠𝑓 𝑑
)

𝑑

     ∀𝑡𝜖𝑇 (eq. 111) 

𝐸𝑆 𝑡
+𝑒 ≥ 𝐸𝑆 𝑡

𝑒      ∀𝑡𝜖𝑇 (eq. 112) 

𝐸𝑆 𝑡
+ℎ ≥ 𝐸𝑆 𝑡

ℎ      ∀𝑡𝜖𝑇 (eq. 113) 

𝐸𝑆 𝑡
+𝑓 ≥ 𝐸𝑆 𝑡

𝑓     ∀𝑡𝜖𝑇 (eq. 114) 

Resilience indicator 

𝑅 𝑒  1 −
∑ 𝐸𝑆 𝑡

+𝑒
𝑡

𝐷 𝑚 𝑛𝑑𝑒 
(eq. 115) 

𝑅 ℎ  1 −
∑ 𝐸𝑆 𝑡

+ℎ
𝑡

𝐷 𝑚 𝑛𝑑ℎ
 

(eq. 116) 

𝑅 𝑓  1−
∑ 𝐸𝑆 𝑡

+𝑓
𝑡

𝐷 𝑚 𝑛𝑑𝑓
 

(eq. 117) 

𝑅 𝑡𝑜𝑡𝑎𝑙  
𝑅 𝑒 ⋅ 𝐷 𝑚 𝑛𝑑𝑒 +𝑅 ℎ ⋅ 𝐷 𝑚 𝑛𝑑ℎ +𝑅 𝑓 ⋅ 𝐷 𝑚 𝑛𝑑𝑓

𝐷 𝑚 𝑛𝑑𝑡𝑜𝑡𝑎𝑙  
(eq. 118) 

ε-constraint equation 

𝑅 𝑡𝑜𝑡𝑎𝑙 ≥ 𝑅 𝑚𝑎𝑥 −  1− 𝜔𝑅𝑒 ⋅ (𝑅 𝑚𝑎𝑥 −𝑅 𝑚 𝑛) (eq. 119) 

Objective function 

min𝐶𝑜𝑠𝑡𝑠𝑡𝑜𝑡𝑎𝑙  (eq. 120) 
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H. Appendix H: Inputs for the Model 

The inputs of the model are available in the next link: https://cutt.ly/0rxkgyI. 

The link references an Excel spreadsheet. The worksheet “Scenarios” configure the 

different scenarios to be used as the model type, the relative weight of the OFs, the time 

event, the time horizon and the PGA. The worksheet “Inputs” summarizes all the inputs 

for the model, whose are referenced in the same spreadsheet. 

 

I. Appendix I: GAMS Model 

The complete model is available in the next link: https://cutt.ly/jrxkhvY . 

The link references a GAMS code. It calls the abovementioned Excel spreadsheet from 

Appendix H and uses the data as input for the model. 

https://cutt.ly/0rxkgyI
https://cutt.ly/jrxkhvY

