
energies

Review

Energy Management Systems for Microgrids: Main
Existing Trends in Centralized Control Architectures

Danny Espín-Sarzosa 1, Rodrigo Palma-Behnke 1,* and Oscar Núñez-Mata 2

1 Energy Center, Department of Electrical Engineering, Faculty of Mathematical and Physical Sciences,
University of Chile, Santiago 8370451, Chile; despin@ing.uchile.cl

2 School of Electrical Engineering, University of Costa Rica, San José 11501, Costa Rica;
oscar.nunezmata@ucr.ac.cr

* Correspondence: rodpalma@cec.uchile.cl; Tel.: +56-9576-96810

Received: 11 December 2019; Accepted: 17 January 2020; Published: 22 January 2020
����������
�������

Abstract: This paper presents both an extensive literature review and a qualitative and quantitative
study conducted on nearly 200 publications from the last six years (based on international experience
and a top-down analysis framework with five classification levels) to establish the main trends in the
field of centralized energy management systems (EMS) for microgrids. No systematic trend analyses
have been observed in this field in previous literature reviews. EMS attributes for several features
such as objective functions, resolution techniques, operating models, integration of uncertainties,
optimization horizons, and modeling detail levels are considered for main trend identification. The
main contribution of this study is the identification of four specific existing research trends: (i) dealing
with uncertainties (comprises 33% of the references), (ii) multi-objective strategy (29%), (iii) traditional
paradigm (21%), and (iv) P-Q challenge (17%). Each trend is described and analyzed based on the
main drive of these separate research fields. The key challenges and the way to cope with them are
described based on the rationality of each trend, the results of previous reviews, and the previous
experience of the authors. Overall, finding these main trends, together with a complete paper database
and their features, serve as a useful outcome for a better understanding of the current research-specific
challenges, opportunities, potential barriers, and open questions regarding the creation of future
centralized EMS developments. The traditional numerical analysis is insufficient to identify research
trends. Therefore, the need of further analyses based on the clustering approach is emphasized.

Keywords: microgrid; energy management system; centralized control architecture; review; research
trends; clustering

1. Introduction

In a microgrid (MG), energy management systems are recognized as control-essential elements
in terms of stability, security, and efficiency, as well as power balancing elements in terms of their
dependence on operating conditions variability, characterized by the uncertainty caused by power
supplies from renewable energy resources (RES) and/or the dynamic behavior of electricity demand. In
recent years, literature exhibited a new generation of energy management systems (EMS) approaches
for MGs, which aim at dealing with the management of energy in variable operating and technological
contexts. However, power flow control and the guarantee of highly reliable and stable MGs are
becoming progressively complex [1]. Optimizing the size of the components and adopting an EMS
strategy are essential to decreasing the cost of the system and limiting its negative effects [2].

An MG is defined as a self-contained electrical power system consisting of distributed energy
resources (DERs), such as distributed generators (DG) and energy storage systems (ESS), and loads
(controllable loads in some cases). All the above are considered as a single controllable system [3,4].
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An MG can operate in either grid-connected [5–12] or isolated mode [13–21] or both [22]. The presence
of more than one DER requires energy flow control from various sources to ensure reliable energy
supply, safety, and a minimum-cost operation. Decisions on MGs are made by the EMS. In this sense,
EMS are control devices responsible for defining the optimum scheduling of dispatchable units in an
MG [23] by using different information about the latter, such as demand forecasting, power generation,
energy storage, weather forecasts, energy grid prices, etc. [20]. An EMS can be classified by adopting
a top-down approach, starting from general principles and down to developing specific processes
models. Consequently, EMS can be classified at the top-level based on whether they have a centralized
or decentralized control architecture.

In a centralized control architecture, the main responsibility for microgrid value maximization
and the optimization of its operation lies with the EMS/Central controller [24], as shown in Figure 1a.
In this figure, the red dashed arrows represent the exchange of information (centralized control
communication) among local controllers and the EMS/Central controller, while the solid black arrows
refer to the exchanged information (local control communication) among microgrid agents and their
local controllers. The EMS uses inputs (weather forecast, load demand, SoC, energy prices, etc.) to
perform scheduling and optimization procedures to determine the optimal set points for distributed
generation (DG) loads and local controllers (LCs) in the MG.

Figure 1. (a) Centralized control architecture, (b) Decentralized control architecture.

On the other hand, a decentralized control architecture is shown in Figure 1b. In this figure,
the blue dotted arrow represents the communication channel that allows local controllers/leaders to
exchange information among them (decentralized control communication), and the black solid arrows,
as in Figure 1a, represent the exchanged information among the local controller/leader and either other
local controllers or microgrid agents. Each agent or group of agents is self-controlled or controlled by a
leader, respectively [25]. For that reason, LC4a and LC4b are managed by LC4/Leader, and LC1, LC2,
and LC3 are self-controlled; they can also exchange information among them. The main responsibility
is given to competing or collaborating with LCs to optimize their production in order to satisfy the
demand and probably provide the possible maximum export to the grid, considering current market
prices [24]. A decentralized controller needs a complete local information to run the required control
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actions without full awareness of all system parameters [26], i.e., a decentralized approach is mainly
based on a local measurement of parameters, such as voltage and frequency values [27]. Control
actions are sent to the multiple DER and controllable loads. It is worth nothing that the peer-to-peer
control concept [28] can be understood as part of the blue dotted line in Figure 1b.

This review paper is focused on centralized EMS architectures, which have been widely used
in isolated MGs due to the high level of coordination required among DER units [29,30]. The
advantages of a centralized EMS include real-time observability of the whole system and straightforward
implementation. Additionally, confidential and private information can be safeguarded inside the
central unit. However, from another point of view, those features also mean that the EMS needs
to be powerful enough to process a considerable amount of data while making proper decisions.
High bandwidth communication is required to exchange information on a timely basis. Moreover,
centralized management entails a key risk, i.e., a fault in the central unit may cause the loss of several
system functions, including service supply. Low flexibility/expandability is another critical limit of a
centralized EMS [31]. To overcome some of these drawbacks, redundancy can be added to the existing
control and communication infrastructure which may increase the MG investment cost [32]. On the
other hand, in the absence of communication links between the EMS and LCs, the frequency and
voltage of the system would be locally kept by the droop control of the units. However, steady-state
frequency and voltage deviations from nominal values will be obtained [20,33,34]. Several methods
and tools have been proposed to overcome these drawbacks [35–37].

Based on the context above, the authors in [31] have described cases where the use of a centralized
control is preferred:

1. Small-scale MGs where centralized information gathering and decision-making with low
communication and computation effort can be conducted. All the properties inside the MG have
a common goal; therefore, the EMS can operate the MG as a single agent;

2. Military MGs where utmost privacy/confidentiality is required. System configuration is virtually
fixed and high flexibility/expandability is not required.

1.1. EMS Review Papers

Thanks to comprehensive research activities on EMS for MGs around the world, many researchers
have published review papers that focus on their objective functions, resolution techniques, and
uncertainties, among others. For instance, [31] is aimed at summarizing control objectives and
associated methodologies. In [38], a comprehensive and critical review of the strategies developed for
micro-grid energy management and solution approaches is presented. In [39], a general idea regarding
EMS in MGs is provided; EMS connection modes, different strategies, and control techniques are
developed; several optimization techniques to lower MGs overall costs and to continuously offset the
deviations between generation and demand are applied. In [26], the authors provided insights about the
state-of-the-art in energy management as well as generation/consumption prediction issues, practices,
and research status. Additionally, this review covers energy management or prediction-related studies
of MGs. In [2], a comprehensive review of the proposed approaches is presented. In [40], A. Ahmad
Khan et al. present a review on existing optimization objectives, constraints, solution approaches,
and tools used in MG energy management. In [41], a literature review on optimal control techniques
for energy management and control of an MG is provided. The authors show a classification of the
references involved in the design and development of an optimum EMS. This is mainly done by
considering the objective functions to be solved as well as the optimization techniques used for solving
optimum control issues related to a reliable operation of MGs.

Conclusively, the main review papers in this field focus on the classification and description of
specific attributes such as control objectives, forecasting strategies, optimization techniques, and energy
management approaches. There are no analyses in previous literature reviews on trends that deal with
a consideration of multiple attributes and features in this field.



Energies 2020, 13, 547 4 of 32

1.2. Contribution and Structure of this Paper

The main contribution of this study is the identification of specific research trends in the field related
to EMS for microgrids, focused on centralized control architectures. To identify these main trends,
EMS attributes for various features such as objective functions (e.g., single-objective, multi-objective),
resolution techniques (e.g., mathematical programming, computational intelligence), operating model
(e.g., DC load flow, AC load flow), integration of uncertainties, optimization horizon, and modeling
detail levels are considered in the study. The results show that there is no evidence of a research
trend where all EMS development challenges are dealt with simultaneously. Moreover, research
proposals are mainly focused on the improvement of specific areas, while making some simplifications
in others. Additionally, this work provides a comprehensive review that becomes useful for a better
understanding of the current challenges, opportunities, potential barriers, and open questions regarding
the creation of future centralized EMS developments.

The path to cope with the challenges identified is described below.
The remaining content in this paper is organized as follows. Section 2 describes the analysis

scheme for EMS trend identification. Section 3 presents the numerical results and trends of centralized
EMS. Finally, Section 4 shows relevant conclusions and future works on this topic.

2. Analysis Scheme for EMS Trends Identification

2.1. Procedure for the Identification of Main Trends

The literature review identifies a number of review papers regarding EMS development for
microgrids. A common approach adopted by previous studies focused on a qualitative analysis
based on expert knowledge. In this work, a classification methodology is used that seeks to meet the
objectives of both quantitative and qualitative analyses and an identification of the main trends in
research papers. The procedure and its main steps are established as follows:

Step (1) Database selection: The database covers a comprehensive review of papers published in
the most quoted journals in the field for the last six years (IEEE: Transactions on Power
Systems, Smart Grid, Industrial Informatics, Sustainable Energy, Control Systems Technology,
Neural Networks and Learning Systems; Elsevier: Applied Energy, Sustainable Energy, Grids
and Networks, Energy Conversion and Management, Sustainable Energy Technologies and
Assessments, Renewable & Sustainable Energy Reviews, Renewable Energy, Energy, Electric
Power Systems Research, Expert Systems with Applications, Energy Reports; IET: Generation,
Transmission & Distribution).

Step (2) Paper selection from databases: A group of papers covering the main topics of the selected
research field (EMS, microgrid, centralized control, etc.) is gathered by using IEEE Xplore,
Google Scholar, ISI Web of Knowledge, and Scopus search engines. Each paper should
be analyzed to verify its relationship with the topic related to centralized EMS. This step
requires a prior clear understanding of EMS solutions and centralized control architectures.
In addition, the reference tree should be followed; therefore, even more papers appeared after
following the usual bibliographic search process. This is a key aspect for the methodology
used for identifying review papers in the field, as the selection criteria has a direct impact
on the quality of the results. This procedure aims at gathering the large majority of the
field-related contributions and not only a representative sample.

Step (3) Gathering of information: All the attributes selected from predefined classification levels are
searched for and extracted from each paper.

Step (4) Relational database: A relational database is created and populated based on the information
from the attributes selected.

Step (5) Clustering technique: Various patterns are identified by means of a Self-Organizing Map
(SOM) clustering technique, including the identification of cluster centroids.
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Step (6) Content and structure analysis: A statistical analysis is applied to the information of the
database created. An analysis of the results is conducted.

Step (7) Identification of main trends: Based on the results of steps (5) and (6) the main trends are
identified and analyzed.

Step (8) In-depth analysis of the research-specific questions of each trend: Based on the main trends
identified in step (7) and the researcher’s know-how, the research-specific questions and key
challenges of each trend can be identified. With this aim, a detailed analysis of the cluster
centroids is suggested. Thus, research specific challenges may be identified.

Figure 2 shows an overview of the proposed procedure in this work.

Figure 2. Overview of the proposed procedure.

2.2. Levels for the Classification Framework

Figure 3 summarizes selected attributes and the database structure (steps (3) and (4) in Section 2.1).
Five classification levels (each level shown in a different color for a better differentiation between them)
are defined as follows:

I. Control Architectures: This level refers to the way an MG is controlled in order to ensure
its safe and reliable operation, at minimum cost, among other objectives. To meet these
objectives, either centralized or decentralized control architectures can be used. The light
green box highlights the centralized control architecture selected as the scope of analysis in
this paper. White boxes represent topics out of the paper’s scope but that are also relevant for
EMS description.

II. Fields of Interest: The level of yellow boxes presents broader fields for centralized EMS, such
as system modeling, EMS application fields, and time treatment in terms of the way different
periods of time are used for the acquisition or updating of information.

III. Selected Topics: This level is composed of light blue boxes and presents more details for
each field of interest presented at this level. As for “Applications”, four sub-items are
identified: state estimator, real-time SCADA, operation optimizer, and adaptive protection
system [42]. Regarding time treatment, the focus was on the periodicity (time frames) of EMS
processes execution.

IV. Main Features: This level shows the features of the topics that have been selected. As for
“Operation Optimizer”, six sub-items are presented (objective function, resolution technique,
inputs, outputs, operation model, and the consideration of uncertainties); and, as for
“Periodicity”, three sub-items were individualized (optimization horizon, data acquisition
time, and data updating time).
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V. Level of Complexity: A deeper description of the attributes selected is provided at this final
level. The taxonomy is based on the level of complexity of the models and the algorithms
used. All the sub-items in this level are colored with different shades of blue according to their
increasing and/or decreasing level of complexity (darker shades represent a higher complexity).

Figure 3. Analysis scheme proposed for the review.

2.3. Main Features and Level of Complexity

The main features of the selected attributes are described in this section (Levels IV and V in
Section 2.2):

• Objective function

Two types of objective functions be they single-objective or multi-objective can be considered to
formulate an EMS. Firstly, a single-objective function mainly focuses on a minimum-cost operation of
the MG. Secondly, a multi-objective function considers different objectives regarding MG operation,
such as greenhouse gas reduction, RES maximization, lifetime of batteries, energy purchase costs,
maximization of the energy sold to the grid, etc. Objective functions are based on user preferences,
geographical area, equipment installed in the, MG.; MG capacity, government regulations, types of
rates, energy storage, and generation [40].

• Resolution techniques

Once the EMS optimization problem is formulated, it requires a solution approach in order to obtain the
set points to be used by MG agents. In the literature, the authors solved the resulting EMS optimization
problems by means of alternative techniques. The selected solution approach offers key information
about the scope and the modeling details of each research work. For example, if the model involves
strong non-linearities and uncertainties, the resolution techniques should be able to deal with local
optima issues and multiple scenarios. Thus, the techniques were divided into the following three
groups:

(i) Mathematical programming (MP): A mathematical programming problem is a special class of
decision-making problem where the focus is on an efficient use of limited resources to meet a
desired objective [43]. Linear programming and mix-integer programming are examples of MP
approaches capable of solving the underlying optimization problem for MG operations. Table A1
summarizes a comprehensive list of MP techniques considered in this study.
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(ii) Computational intelligence (CI): Refers to the design and development of algorithms based on
biology and linguistics. It has been long-established that CI consists of three main cornerstones,
which are neural networks, fuzzy systems and evolutionary computation [44]. Within the last
few years, CI has become heavily influenced by nature. Thus, recently new developments
have emerged, such as ambient intelligence, artificial life, cultural learning, artificial endocrine
networks, social reasoning, and artificial hormone networks. For developing reliable smart
systems, CI plays a key role, for example, in games and cognitive development systems. In
recent years, Deep Learning has become very popular among researchers, particularly in deep
convolutional neural networks. Currently, Deep Learning is considered the principal approach
for artificial intelligence (AI) applications [44]. A comprehensive list of the CI techniques capable
of solving the EMS optimization problem is presented in Table A2. Furthermore, several authors
have proposed their own intelligent algorithm (AA) to solve the EMS problem.

(iii) Hybrid methods (HM): Refers to a combination of methods based on MP and CI. The incorporation
of uncertainties in system modeling encourages the use of this approach. The list of the HM
approaches considered can be found in Table A3.

It is worth noting that every acronym in the resolution techniques is referenced at least once in the
database shown in Tables A4–A10. Consequently, the reader can make a quick search of the description
when looking for a specific reference.

• EMS inputs and outputs

Input information is, for example, weather and load demand forecasts, energy prices, state-of-charge
(SoC), status of DGs, MG frequency, emissions data, voltage buses, etc.

Outputs are obtained once the optimization process has concluded and sent to the different
agents present in the MG. Examples of outputs are unit dispatch setpoints, unit commitment setpoints,
demand side management (DSM) setpoints, amount of energy purchased/sold from/to utility, power
battery charge/discharge, unit on/off status, signals for MG to operate connected either to the grid or in
standalone mode, among other outputs.

• Operating model

This feature shows the type of operation model that the researchers selected to formulate the EMS.
It can be either DC load flow or AC load flow. The DC load flow operation model mainly considers
the dispatch of active power, while the AC load flow operation model addresses the dispatch of both
active and reactive power into the MG. It is important to note that in the proposed definition, the DC
approach also considers single node active power dispatch.

• Optimization horizon

In order to address the optimization problem, EMS considers a time frame. This time frame is referred
to as optimization horizon or window which can be represented in seconds, minutes, hours, day(s)
and year(s), among others. The entire optimization horizon can be divided into time steps. The EMS
provides the optimization outputs for each one of them.

• Consideration of uncertainties

Due to RES variability, their uncertainty should be considered in the EMS mathematical model to
ensure safe and accurate MG operation. Uncertainties in generation, demand, grid, and storage are
identified. Grid uncertainty refers to the price forecasting of the main interconnected system (wholesale
market) and its variability.

• Data acquisition time and data updating time
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Data acquisition time is the time step during which the EMS obtains input information to perform
optimization. For example, the EMS can acquire the data at a step of minutes, seconds, and milliseconds.
On the other hand, data updating time is the time step during which the EMS carries out a new
optimization process and sends new outputs to MG agents. For instance, the EMS can send new data
outputs every hour, minute, or second.

• Detail level of components

The detail level of components refers to the way each MG component (e.g., generation, demand, grid,
storage, etc.) is mathematically modeled for their inclusion in the EMS optimization problem. The
detail level of components was divided into static models and dynamic models. The static model is a
mathematical algebraic equation model usually used for a multiperiod scheme in discrete time steps
and it is based on a steady-state description of the system. Dynamic models account for non-periodical
time-dependent changes in the system state. Dynamic models are typically represented by differential
equations [45,46] to capture the behavior of MG components [47].

Storage systems are one key component for EMS operation (particularly in isolated applications).
More specifically, the use of SoC and/or state-of-health (SoH) corresponds to a relevant modeling aspect.

For the case of a decentralized EMS, all the attributes of the proposed analysis scheme should
be retained. Nevertheless, in contrast to a centralized control architecture, a decentralized approach
needs a coordination strategy among all either local controllers or central power processing units [48].
Thus, the analysis scheme of Figure 3 should be broadened to consider the coordination strategy and
the attributes of a decentralized control architecture.

2.4. Application Case of the Proposed Analysis Scheme

Based on the analysis scheme presented in Section 2.2, a specific application of the classification
structure is herein presented for Reference [49]. In this publication, the authors propose “A Microgrid
Energy Management System Based on the Rolling Horizon Strategy”. Depending on the attributes
found in this paper, the boxes in the analysis framework scheme are highlighted in orange. The result
can be observed in Figure 4.

Figure 4. Example of the proposed analysis framework scheme application.

As shown in Figure 4, the proposed analysis scheme is a useful tool in order to extract relevant
information from a paper. In each level, the attributes that appear in a specific paper are both selected
and highlighted. This approach exhibits advantages when the researchers are interested in classifying
a large group of articles. Thus, the proposed analysis scheme is suitable when the aim is to perform a
systematic analysis and classification of the state-of-the-art in a selected research field.
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3. Results: Attributes and Trends

3.1. Results Obtained from the Proposed Analysis Scheme

A comprehensive review covering papers between the years 2012 and 2018 is conducted by
following the proposed analysis scheme (Section 2.1, steps (1) and (2)). Out of a universe of more
than 500 papers, 173 were relevant for and applicable to this work, while 125 of them were selected
for the database described in steps (3) and (4) from Section 2.1. It is worth noting that the database
is not a mere sample of papers in the field but an effort to make a comprehensive identification of
contributions. For a better understanding, a letter code for both features and attributes has been
assigned in Table 1. For example, letter “A” corresponds to the “detail level of components” (feature),
while “STM” refers to static models (attribute). Letter codes assigned in Table 1 are used in Table 2
(except from the acronyms of the other resolution techniques described in Tables A1–A3) for features
and attributes extracted from four distinctive papers. Additionally, several summary tables of this
complete literature review are shown in Tables A4–A10 in order to provide a quick overview of this
research field over the last six years.

It is worth noting that some features or attributes are not mentioned or not discussed if mentioned
in some papers. In such case, Table 2 is filled with blank spaces. Consequently, those features or
attributes cannot be considered for numerical analysis and trend identification.

Table 1. Letter code for features and attributes.

Feature ID Letter Code Attribute ID Letter Code

Detail level of components A
Static models STM

Dynamic models DYM

Objective function B
Single-objective SOBJ
Multi-objective MOBJ

Resolution technique C
Mathematical programming MP
Computational intelligence CI

Hybrid Methods HM

Inputs D

Generation forecast GFO
Demand forecast DFO
Weather forecast WFO

Other inputs OIN

Outputs E

Dispatch setpoints DSET
UC setpoints UC

DSM setpoints DSM
Other outputs OOU

Operating model F
DC load flow DC
AC load flow AC

Optimization horizon G

Seconds SEC
Minutes MIN
Hours HR
Day(s) DY
Year(s) YR

Consideration of uncertainties H

Demand DM
Generation GE

Grid GR
Storage ST

Data acquisition time I
Minutes MIN
Seconds SEC

Milliseconds MILI

Data updating time J

Hours HR
Minutes MIN
Seconds SEC

Milliseconds MILI
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Table 2. Features and attributes of the distinctive papers selected.

Ref. A B
C

D E F G H I J
MP CI HM

[50] STM SOBJ MILP OIN DSET + OOU DC DY DM + GE MIN

[51] STM MOBJ MO + FL + ANN GFO + OIN DSET DC DY DM + GE

[52] STM SOBJ MINLP GFO + DFO + OIN OOU DC HR

[53] STM SOBJ LO OIN DSET + DSM AC DY GE

3.2. Quantitative Results (Numerical Results Analysis)

Numerical results and quantitative analyses of various features detailed in Table 1 from the
database summarized in Tables A4–A10 are presented in this section. Figure 5a shows the distribution
of the “resolution techniques” (percentages) used in recent years. The results show that, in general, CI
techniques have been used with a higher frequency. Regarding MP approaches, despite MP ability to
guarantee global optimal solutions, these have been considered to have a lower frequency than CI
techniques. Finally, HM appear as an option to solve the EMS optimization problem. Based on the
increasing complexity and new requirements for microgrid operations (cost-effectiveness, reliability,
and resilience), HM may gain strength in the future.

Figure 5. (a) Resolution techniques used in recent years, (b) Objective function types used in recent
years, (c) Operating model types used in recent years and (d) Consideration of SoC and SoH in storage.

On the other hand, Figure 5b shows the results of the objective function types researchers have
used to formulate the mathematical optimization problem in EMS. The red line shows that, in general,
SOBJ functions have been considered to have a higher frequency than MOBJ functions. This is
an expected result for a technology that focuses on main objectives in early development phases.
Nevertheless, a minimum-cost operation is not the only objective of an EMS. In fact, authors have
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recently considered other objectives to improve MG overall performance, e.g., reduction of polluting
gases, maximization of the use of renewable resources, maximization of the useful life of batteries, etc.

Upon the penetration of several DG technologies, electrical vehicles, and controllable loads, the
need for a more detailed modeling of system components is a well-known issue in the context of
distribution systems. Thus, a proper management of reactive power requirements, minimization of
losses, and unsymmetrical operations is required. However, this consideration introduces non-linear
equations that increase formulation complexity and computational burden [29]. This can explain that,
in recent years, the authors have generally considered the use of DC load flow operating models. In
fact, the results in Figure 5c show a predominant use of DC load flow approaches with nearly 85% of
the references. In spite of the evidence, the authors expect an increase in AC approaches in the future.

Both SoC and SoH are important features to be considered in the operation of the EMS. Figure 5d
shows the results on how these attributes are considered in the EMS mathematical optimization
problem. In general, the large majority of the papers (nearly 70% on average) have considered the
SoC to be part of the mathematical problem. In contrast, only about 15% of the papers integrate the
SoH attribute into the optimization problem. No clear trends could be identified over the years for
both attributes.

The high penetration of renewable generation into MGs increases multiple power injection
variability. Furthermore, load forecasting uncertainty in MGs is higher compared with bulk power
systems. This is explained by a high preponderance of individual loads in total MG loads and the
integration of electromobility. The factors described above should be considered in EMS optimization
approaches [54,55] to achieve more realistic and cost-effective results. Figure 6 summarizes these
results. The orange line (linear regression trend) shows that the consideration of uncertainties into
the EMS mathematical problem has increased in recent years. Figure 6a shows that in the years 2017
and 2018, uncertainties were considered in approximately 53% and 41% of the papers, respectively.
Additionally, Figure 6b shows the distribution of modeled uncertainties such as generation profile, load
forecast, grid electricity prices, and storage SoC. Furthermore, Figure 6b shows that the authors have
generally considered the uncertainty in generation and load while storage uncertainty seems to be at
an early stage but increasing in importance. Electromobility can be a key driver in this direction [56].

Figure 6. (a) Uncertainty trend in recent years, (b) Uncertainty consideration distribution in different
microgrid agents.

The results of this section help to identify structural research issues from a comprehensive database
of research works from past years. Thus, main resolution techniques, objective functions options, load
flow types, storage attributes, and the integration of uncertainties were identified. Nevertheless, apart
from the uncertainties (Figure 6), it was not possible to identify trends over the period of analysis
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(2012–2018). Moreover, a traditional quantitative analysis could not reveal how these research aspects
are related. This situation motivated the following cluster analysis.

3.3. Cluster Analysis

The cluster analysis proposed is used in this section to identify additional trends in EMS
developments. Only such features holding enough information (see Table 2) are considered for
obtaining and analyzing these trends (e.g., detail level of components (A), objective function (B),
resolution technique (C), operating model (F), and consideration of uncertainties (H)). More specifically,
this identification is performed by using the Kohonen self-organizing maps (SOM) tool. The SOM is a
clustering and data visualization technique based on a neural network approach. As with other types
of centroid-based clustering, the objective of SOM is to find a group of centroids (reference vectors
in SOM terminology) and assign each object in the data group to the centroid that provides the best
approximation of that object [57].

To better visualize these trends, the SOM is integrated into RStudio [58]. It associates different
colors to each attribute (e.g., red for SOBJ, yellow for MP; etc.) for a general view of the final results.
The color code associated to each attribute is shown in Figure 7.

Figure 7. Attributes considered with their respective associated color.

Four distinctive groups are identified with the aid of the clustering technique. Figure 8 shows the
number of papers contained by each group. Each of these groups has its respective features depending
on the most common attributes present in the papers from a specific group (see Figure 9). The chart
consists of a sequence of equiangular spaces, with each area representing one of the attributes. The
data length of every pie is proportional to the magnitude of the attribute (weight) for the data point
against the maximum magnitude of the variable across all data points. Furthermore, for every cluster
there is a paper with the shortest distance to their representing attribute. This distinctive paper is
known as the centroid of the cluster to which it belongs (see Figure 8). Table 2 shows the centroids
(papers) for each cluster jointly with a detailed classification of their attributes.

Figure 8. Number of papers in each cluster.
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Figure 9. Main attributes of each cluster.

The following modeling strategies, accordingly EMS trends, are identified based on this
combination of attributes (see Figures 8 and 9):

Cluster 1: Dealing with uncertainties: This cluster comprises 33% of the references; therefore, it is
the main research trend. Its distinctive feature is the challenge of modeling the uncertainties present in
various MG agents (DM, GE, GR) that will impact the performance of the EMS. This is in line with the
general idea that uncertainties are becoming an increasingly important issue in MG developments due
to DER integration, more active participation of loads, and electromobility. Basic modeling strategies
involve static representation of components (STM) and a DC load flow approach. The optimization
model corresponds to a SOBJ function, and it is solved by either MP or CI methods. This is a reflection
of alternative solution techniques exploration in research proposals. Surprisingly, HMs are not part of
this EMS development trend.

As previously mentioned, the centroid of Cluster 1 corresponds to Reference [50] (see Table 2). In
this work, a strategy to deal with uncertainties associated with generation and demand is presented.
The SOBJ objective function considered is total profit maximization. The optimization problem is
formulated by using the MP technique MILP and solved by employing CPLEX. The focus is only
on the interchange of active power among power generators, energy storage, energy consumption,
and the grid. Thus, DC load flow is considered. Finally, MG components are formulated as STMs
(discrete-time formulation). By following step (8) from the proposed procedure, new research-specific
challenges in this trend are:

• How to solve further problems entailing higher complexities by combining reactive and proactive
techniques and considering the uncertainty of renewable resources and load consumption.

• Guidelines to a simultaneous consideration of different factors (i.e., costs, environmental impact,
social aspects, etc.) through the implementation of multi-objective optimization approaches.

Cluster 2: Multi-objective strategy: This cluster contains approximately 29% of the references.
This second leading trend addresses a multi-objective approach. For this purpose, three resolution
techniques are used for the resulting optimization problem, with a slight predominance of CI approaches.
Uncertainties in the fields of DM and GE have been considered on a general basis. In this case, a DC load
flow approach is also the basic network modeling approach. Nonetheless, as mentioned in Section 3.2,
a predominance of SOBJ approaches in the near future may be expected; a research community with a
focus on MOBJ challenges exploring several solution techniques can be clearly identified.

The centroid of Cluster 2 corresponds to Reference [51]. The authors propose a MOBJ framework
to minimize operational costs and the environmental impact of an MG. The mathematical problem is
solved through FL and ANN, CI techniques used jointly with MP. The problem formulation includes
optimum battery scheduling while considering the uncertainties of microgrid DERs and forecasted
parameters. The objective functions are only subjected to active power constraints; therefore, a DC
load flow is considered.

Based on step (8), research-specific challenges are:
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• How a combination of CI and traditional techniques can achieve a clear and important minimization
of operation costs, greenhouse gases emissions, and other technical and economic MG-related issues.

• How to achieve a highly accurate forecasting of renewable energy sources by using CI techniques,
in order to comply with an efficient MG energy management.

Cluster 3: Traditional paradigm: This third cluster contains approximately 21% of the references.
By conceiving a traditional approach for EMS developments, the following options might be selected:
SOBJ instead of MOBJ, a deterministic approach instead of focusing on uncertainty modeling, well
proven MP approaches, a static representation of components (STM) instead of a DYM approach and
finally a focus on active power simulation (DC) vs. an AC paradigm. This is exactly what can be
observed in this modeling trend. This type of development can be expected to be very useful for
improving current commercial EMS solutions that usually follow a more traditional modeling strategy.
The only unexpected feature is a substantial use of HM for the solution techniques. This issue may
indicate that most research proposals and innovations in this research group address the migration of
traditional MP techniques. This makes use of the advantages of combining CI solutions that constitute
HM strategies. In Figure 5a, a positive evolution of this strategy is identified.

The centroid of Cluster 3 is the paper in Reference [52]. In this work, a traditional SOBJ function
is used to minimize the total cost of energy. The authors assumed that the voltage level is the same
at all MG busses—a DC load flow operating model. MG components are formulated as STMs in a
time-discrete formulation resulting in a number of algebraic constraints. Proposed energy management
is based on local energy market and allows scheduling MG generation with minimum information
shared by the generating units. For EMS optimization, the authors propose a novel algorithm based on
a MINLP approach for an MG in islanding mode considering different scenarios. The optimization
problem is solved in a GAMS/CONOPT environment.

The following specific challenges were identified in step (8):

• How to enable the owners of the distributed generation units to establish their own strategies to
participate in MG generation with minimum information shared between distributed generators.
Additionally, comply with consumer’s requirements with a minimum energy cost.

• How to use demand response programs either to avoid or to decrease penalty costs and the
amount of unserved power, as well as to improve demand side management.

Cluster 4: The P-Q challenge: This last cluster contains approximately 17% of the references. As
mentioned in the previous section, proper management of reactive power requirements, voltage profile,
ohmic losses minimization, and unsymmetrical operations are well-known issues in MG developments.
Nevertheless, Figure 5cdoes not identify a clear trend in this field. On the contrary, the cluster analysis
was able to extract a trend in this field, where AC modeling is in the core of the solution approaches,
together with a predominance of CI-based solution techniques. Additionally, a more deterministic
focus in modeling approaches is identified, with the exception of uncertainties in generation (GE). This
is the only trend that incorporates STM and some DYM approaches. Additionally, the use of either
SOBJ or MOBJ proposals has been identified in this field.

The centroid of Cluster 4 corresponds to Reference [53]. In this study, an online EMS for real-time
operation of MGs is presented that considers the power flow and system operational constraints.
The SOBJ formulation is to minimize the long-term operational cost, while delivering reliable and
high-quality power to customers. Online energy management is modeled as a stochastic optimal
power flow (AC load flow model) capable of capturing uncertainties in generation (GE). The EMS
problem is solved by the Lyapunov optimization approach (CI).

Finally, Step 8 helps to identify the following research-specific challenges:

• How to properly consider the underlying power distribution network and its associated power
flow and system operational constraints in order to achieve control decisions that do not transgress
real-world constraints.
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• How to develop an intelligent algorithm on the customer side to generate demand requests that
allow the EMS to make more accurate operating decisions in the MG.

These papers’ analyses on cluster centroids validate the rationality of cluster descriptions and
their main attributes.

3.4. Key Lessons Learned, Key Challenges, and Future Research Directions

The key challenges and the way to cope with them are identified based on the analysis of each
trend, the results of previous reviews, and the previous experience of the authors.

Uncertainties in renewables is a topic with an increasing interest to researchers (see Figure 6a)
but that is only partially integrated by the research community with a third of research results. It can
be envisaged that uncertainties in renewables, demand, and grids will become a common modeling
aspect in EMS proposals in the near future. Decentralized solutions will increasingly integrate local
renewable sources required by small productive processes (e.g., agriculture, farming, tourism, etc.).
Consequently, more complex customer/prosumer behaviors are expected. The modeling of this type of
load involves new uncertainties and the need of new simulation strategies that exceeds the traditional
ZIP approach (load model that considers constant impedance “Z”, constant current “I”, and constant
power “P” components) or a time series analysis.

Some obstacles for the researchers to cope with additional modeling challenges that occur
on a simultaneous basis have been identified, e.g., multiple objective functions, full AC network
representations, and the application of hybrid solution methods. Each of these combinations constitute
new challenges in this research area. In fact, researchers have recently considered introducing more
than one objective into the objective functions to enhance overall MG performance (e.g., minimization
of operational cost, reduction of polluting gases, maximization of the service life of batteries, etc.). An
emerging topic in this field is the integration of dynamic socio-environmental preferences from the local
community. The work on the relative weights of the different objective functions is limited, and new
consensus strategies resulting from community participation are being developed. Socio-environmental
preferences may also be linked to present and future economic costs, which are not only related to the
cost of electricity. The integration of all the foregoing is optimal for developing an EMS that considers
all real-world constraints while satisfying consumer requirements at the same time. This increase in
complexity will impact not only the computational burden of the resulting optimization problems
but also the convexity properties of mathematical models, the availability and quality of input data,
communication network requirements (bandwidth), cost reduction needs, among others. Based on
the specific MG features (size, type and number of technologies, environmental conditions, etc.) a
balance and trade-off analysis should be conducted by the researchers in order to develop adequate
and practical proposals. Internet of Things (IoT) may play a key role in this area for both the access to
a wide range of information sources and types and the cost-effective data acquisition approach. In
fact, an important benefit of IoT to microgrids is the ability to control non-critical loads (demand side
management), which is the ability to run the microgrid at the lowest possible cost whilst providing the
highest possible reliability to provide power to critical loads and improve its flexibility. Moreover, IoT
allows the application of DSM in a context of diverse commercial solutions of appliances, a common
issue related to MG globally. In this context, more accurate and computationally efficient dynamic
models for critical MG components are needed. The centralized approach needs a representation of the
critical stability aspects related to operational decisions. The transition between the operation modes is
a clear example in the case of isolated operations. The feasibility and impact of each transition should
be considered as part of the EMS optimization strategy. Nowadays, this aspect is only considered for
specific MG configurations (i.e., failure of the master unit and replacement of a specific predefined
back-up unit). This constitutes a barrier for a massive integration of these solutions in everchanging
local conditions.

On the other hand, storage systems are one key component for EMS operation. Thus, both
SoC and SoH should be fully considered in the EMS mathematical optimization problem. However,
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according to the findings from this work, SoH is still not considered on a frequent basis. Consequently,
research efforts should focus on developing valid, general, and suitable SoH models to be included
in the EMS mathematical problem. Moreover, to consider multiple storage systems in a single, MG.;
equivalent storage system approaches or clustering should be considered.

The results have shown that most of these papers hold a high consideration of DC load flow. However,
reactive power is also an important part of MG and should be considered in energy management to
achieve a reliable and secure system. However, this consideration introduces non-linear equations that
increase formulation complexity and computational burden. Therefore, research efforts should focus on
developing low complexity and computationally efficient AC load flow models.

To solve the EMS mathematical optimization problem, MP, CI, and HM have been used. CI
approaches have advantages in convergence speed and large-scale problem solving compared to
MP methods. However, CI techniques may fall into local optima as MG complexity increases. HM
approaches that combine the benefits of the above methods have attracted researchers’ attention. Thus,
it could be a great opportunity to focus on developing new HM approaches.

The results of this research trend analysis show that there is no evidence of a research cluster
where all EMS development challenges were dealt with on a simultaneous basis. In fact, research
proposals in every cluster are mainly focused on the improvement of specific areas, while making
some simplifications in others. Thus, these proposals can be addressed with the mathematical and
computational resources currently available. A clear understanding of each of the four trends identified
can be considered a good starting point and guidance for future research contributions. In spite of
current proposals imposing some simplifications, they have been accepted for the deployment of EMSs
around the world. Thus, they reflect proposals that aim at dealing with specific contexts and practical
solutions that can be improved in a number of dimensions, based on the main features and levels of
complexity summarized in Section 2.3.

Finally, innovative DSM and storage applications and concepts may play a key role to overcome
the current and future challenges faced in the design and solutions of MGs. Thus, more cost-effective,
reliable, social, and environmentally compatible solutions are feasible. These opportunities, i.e., key
enablers for massive MG integration, have not been properly addressed in the literature.

4. Conclusions and Future Works

A review of EMS research trends and their main features is explored in this paper. A brief EMS
overview with control architecture types is presented. The quantitative analysis helps to identify
some structural aspects in EMS research efforts. Nevertheless, it could not reveal more complex
relationships among the main modeling attributes. Therefore, the need of a further analysis based on
the clustering approach is emphasized. Upon a cluster analysis, the main trends in the EMS field for
microgrids focused on centralized control architectures are discovered. Following a systematic analysis,
four main existing research trends are identified: (i) dealing with uncertainties, (ii) multi-objective
strategy, (iii) traditional paradigm, and (iv) P-Q challenge. These results prove the existence of active
and dynamic research fields in separate research communities where specific research challenges are
covered. These trends, together with the entire database of papers, are useful for a better understanding
of the current challenges and main open questions in the field of centralized EMS developments. Thus,
future research efforts and trends can be developed. The key challenges and the way to cope with
them are described based on the rationality of each trend, the results of previous reviews, and the
previous experience of the authors. An analysis of cluster centroids that is not cluster-limited is a clear
method to identify research-specific challenges. As future work, the authors propose the development
of a software tool for the selection of a centralized EMS containing the most appropriate attributes
depending on the requirements of each user profile. Additionally, it may be reviewed whether the
proposed analysis scheme can become a generally valid classification methodology for other research
fields. Finally, since the storage system is a key component in EMS operations, a detailed classification
about storage systems becomes a relevant research topic for future improvement options.
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Appendix A

Table A1. Mathematical programming techniques.

Acronym Description

LP Linear Programming
MILP Mixed-Integer Linear Programming

DP Dynamic Programming
QP Quadratic Programming

MINLP Mixed-Integer Non-Linear Programming
SLP Stochastic Linear Programming
RO Robust Optimization
SO Stochastic Optimization

MIQCP Mixed-Integer Quadratically Constrained Programming

Table A2. Computational intelligence techniques.

Acronym Description

GA Genetic Algorithms
CQGA Chaotic Quantum Genetic Algorithm
NSGA Nondominated Sorting Genetic Algorithm
HGA Hierarchical Genetic Algorithm

INIGA Isolation Niche Immune Genetic Algorithm
FL Fuzzy Logic

MPC Model Predictive Control
PSO Particle Swarm Optimization
DE Differential Evolution

ANN Artificial Neural Networks
MACO Multi-Layer Ant Colony Optimization

ABC Ant Bee Colony
AMFA Adaptive Modified Firefly Algorithm

IBO Interval-Based Optimization
ICA Imperialist Competitive Algorithm
LO Lyapunov Optimization

LHMPC Lyapunov Hybrid Model Predictive Control
MGSA Multiperiod Gravitational Search Algorithm
NEA Niching Evolutionary Algorithm

MBFO Modified Bacterial Foraging Optimization
ITLBO Improved Teaching-Learning-Based Optimization
SGSA Self-Adaptive Gravitational Search Algorithm

MOMADS Multi-Objective Mesh Adaptive Direct Search
PCAO Parameterized Cognitive Adaptive Optimization
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Table A2. Cont.

Acronym Description

EADP Evolutionary Adaptive Dynamic Programming
RB Rule-Based

SSOA Search Strategy Based On Orthogonal Array
CBPSO Chaotic Binary Particle Swarm Optimization
MOPSO Multi-Objective Particle Swarm Optimization

EDF Event-Driven Framework
NRSFS Non-Dominated Ranking Stochastic Fractal Search

SA Simulated Annealing
D&C Divide And Conquer Algorithm
FSM Finite State-Machine

Table A3. Hybrid method’s techniques.

Acronym Description

MPC + MILP Model Predictive Control plus Mixed-Integer Linear Programming
MPC + MIQP Model Predictive Control plus Mixed-Integer Quadratic Programming

MO + FL + ANN Multi-Objective Optimization plus Fuzzy Logic and Artificial Neural Networks
SM + GA State Machine Approach plus Genetic Algorithms

MIP + SBA Mixed-Integer Programming plus Subgradient-Based Algorithm
FL + CSA Fuzzy Logic plus Cuckoo Search Algorithm

NMPC + MINLP Non-Linear Model Predictive Control plus Mixed-Integer Non-Linear Programming
MPC + MINLP Model Predictive Control plus Mixed-Integer Non-Linear Programming

MPC + MIQP + MINLP Model Predictive Control plus Mixed-Integer Quadratic Programming and
Mixed-Integer Non-Linear Programming

MPC + MILP + TSSP Model Predictive Control plus Mixed-Integer Linear Programming and Two-Stage
Stochastic Programming

MPC + SMILP + NLP Model Predictive Control plus Stochastic Mixed-Integer Linear Programming and
Non-Linear Programming

SMPC + DP + EM Stochastic Model Predictive Control plus Dynamic Programming and Empirical Mean
DL + ADP Deep Learning plus Adaptive Dynamic Programming

PSO + PDIP Particle Swarm Optimization plus Primal-Dual Interior Point
PSO + SQP + FL Particle Swarm Optimization plus Stochastic Quadratic Programming and Fuzzy Logic

LO + MIP Lyapunov Optimization plus Mixed-Integer Programming
LP + SA Linear Programming plus Simulated Annealing

MO + GA Multi-Objective Optimization plus Genetic Algorithms



Energies 2020, 13, 547 19 of 32

Appendix B

Table A4. Papers published in 2012.

Ref. A B
C

D E F G H I J
MP CI HM

[59] STM MOBJ ITLBO GFO + DFO + OIN OOU DC DY DM + GE + GR
[60] STM MOBJ CQGA GFO + DFO DSET DC
[61] STM SOBJ SMPC + DP + EM GFO + DFO DC HR DM+GE
[62] STM SOBJ FL OIN OOU DC
[63] STM MOBJ DP GFO + DFO + OIN UC + OOU DC DY MIN
[64] STM SOBJ FL OIN OOU DC
[65] STM SOBJ FL OIN OOU DC MIN
[66] STM MOBJ LP + SA GFO + DFO + OIN DSET DC DY MIN
[67] STM SOBJ SGSA GFO + DFO + OIN DSET + OOU DC DY DM + GE+ GR HR
[68] STM MOBJ MOMADS GFO + DFO + OIN OOU DC
[69] STM SOBJ MPC + MILP OIN DSET+OOU DC
[70] STM MOBJ NEA OIN DSET AC
[71] STM MOBJ SQP + PSO + FL AC GE
[72] STM SOBJ MPC OIN DSET + OOU DC DY
[73] STM MOBJ AA OIN DSET DC DY
[74] STM SOBJ MINLP OIN OOU DC DM + GE MILI
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Table A5. Papers published in 2013.

Ref. A B C D E F G H I J

[49] STM SOBJ MILP GFO + DFO + OIN DSET + DSM +
OOU DC DY + YR DM + GE SEC MIN

[75] STM MOBJ MPC GFO + DFO + OIN DSET DC HR GE MIN
[76] STM SOBJ AMFA GFO + DFO + OIN DSET DC DM + GE + GR
[77] STM SOBJ MILP GFO + DFO + OIN DSET + DSM DC DY + YR
[78] STM SOBJ FL GFO + OIN OOU DC
[79] STM MOBJ MPC + MIQP GFO + DFO + OIN DSET + OOU AC SEC
[80] STM MOBJ MILP DFO + OIN OOU DC DY
[81] STM SOBJ QP DFO + OIN DSET DC
[82] STM SOBJ MILP GFO + OIN DSET + OOU DC DY
[83] STM SOBJ SM+GA OIN DSET + OOU DC HR
[84] STM SOBJ MILP OIN OOU AC
[52] STM SOBJ MINLP GFO+DFO+OIN OOU DC HR
[85] STM MOBJ SLP GFO + OIN DSET DC DY GE MIN
[86] STM MOBJ MILP DFO + OIN OOU DC DY HR
[87] STM MOBJ NSGA OIN DSET DC
[88] STM SOBJ MPC + MIQP GFO + OIN DSET DC HR
[89] STM MOBJ SO GFO + DFO + OIN DC HR DM + GE HR
[90] STM SOBJ FL OIN OOU DC HR
[91] DYM SOBJ DP OIN OOU AC DY MIN
[92] STM SOBJ DP GFO + OIN DSET DC
[93] STM SOBJ FL GFO + OIN DSET + OOU DC HR
[94] STM SOBJ MPC GFO + DFO + OIN DSET + OOU DC HR MIN
[95] STM SOBJ INIGA OIN DSET DC DY
[51] STM MOBJ MO + FL + ANN GFO + OIN DSET DC DY DM + GE
[96] STM SOBJ AA OIN DSET + DSM DC DY
[97] STM MOBJ MPC + MILP + TSSP OIN DSET + OOU DC DY DM+GE MIN
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Table A6. Papers published in 2014.

Ref. A B C D E F G H I J

[29] STM SOBJ MPC + MILP + NLP GFO + DFO DSET AC HR + DY MIN
[98] STM SOBJ AA OIN OOU DC DY
[99] STM SOBJ MPC + MILP DFO + OIN DSET + OOU DC DY MIN
[100] STM MOBJ MPC + MILP DFO + OIN DSET + OOU DC HR GE
[101] STM SOBJ GA OIN DSET + OOU DC DY
[102] STM SOBJ MILP OIN DSET DC DY DM + GE MIN
[103] DYM AA OIN OOU AC DY
[104] STM SOBJ FL OIN OOU DC
[105] STM SOBJ FL OIN OOU DC MIN
[106] STM SOBJ PSO OIN OOU DC
[107] STM SOBJ FL + CSA OIN DSET + OOU DC
[108] STM SOBJ MIP + SBA GFO + DFO UC DC DY DM + GE HR
[109] STM MOBJ SO GFO + DFO DSET + OOU DC DY GE
[110] STM SOBJ MINLP GFO + DFO + OIN OOU AC DY GE
[111] STM SOBJ MPC + MILP GFO + DFO + OIN DSET + OOU DC DY DM + GE MIN

[112] STM SOBJ MILP GFO + DFO + OIN DSET + UC +
OOU DC DY

[113] STM MOBJ MGSA OIN DSET DC DY
[114] STM MOBJ GA DSET DC
[115] STM SOBJ LP OIN DSET DC DY MIN
[116] STM MOBJ MBFO OIN DSET + OOU DC DY GE

Table A7. Papers published in 2015.

Ref. A B C D E F G H I J

[117] STM SOBJ MILP GFO + DFO + OIN UC + OOU DC DY HR
[50] STM SOBJ MILP OIN DSET + OOU DC DY DM + GE MIN
[118] STM SOBJ MPC WFO+OIN DSM + OOU DC
[119] STM SOBJ GA OIN DC DY
[120] STM SOBJ AA GFO + DFO + OIN OOU DY
[121] DYM SOBJ FL OIN DSET + OOU DC SEC
[122] STM MOBJ DE DSET DC
[123] DYM SOBJ PCAO OIN DY
[124] STM SOBJ FL OIN OOU DC MIN
[125] STM SOBJ ICA OIN DSET + OOU DC DM + GE
[15] STM SOBJ RB OIN DSET DC DY
[126] STM SOBJ ANN OIN OOU DC
[127] STM SOBJ MPC + SMILP + NLP GFO + OIN DSET + UC AC DY GE MIN
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Table A8. Papers published in 2016.

Ref. A B C D E F G H I J

[6] STM MOBJ SO GFO + DFO + OIN DSM DC DY DM + GE + GR
[128] STM SOBJ LP OIN OOU DC YR
[129] STM MOBJ EADP OIN OOU DC MIN
[130] STM SOBJ IBO DSET DC DY DM + GE
[131] STM SOBJ AA OIN DSET DC DY
[132] STM MOBJ AA GFO + OIN DSET AC HR
[133] SOBJ RB OIN DSET + DSM AC DY
[134] STM SOBJ MILP GFO + DFO DSET + UC DC
[135] STM SOBJ FL OIN OOU DC
[136] STM SOBJ NMPC + MINLP DFO+OIN OOU AC MIN MIN
[16] STM SOBJ AA OIN OOU DC
[54] STM SOBJ SSOA DC DM + GE

[137] STM SOBJ MPC DFO + OIN DSET + DSM DC DY DM + GE MIN
[138] STM MOBJ MPC GFO + OIN DSET DC DY GE MIN
[139] STM SOBJ MACO OIN DSET + DSM + OOU DC MIN+DY
[140] STM MOBJ CBPSO AC DM + GE
[141] STM SOBJ MILP DC DY

Table A9. Papers published in 2017.

Ref. A B C D E F G H I J

[142] STM SOBJ EDF OOU DC DY ST MIN

[143] STM MOBJ MPC + MIQP +
MINLP UC + DSM DC DY DM + GE MIN

[144] STM SOBJ ABC OIN DSET DC DY DM + GE
[145] STM MOBJ MO + GA OIN OOU DC
[146] STM SOBJ MINLP GFO + DFO OOU DC DY
[147] SOBJ AA OIN OOU DC
[148] STM MOBJ NRSFS DC DM + GE
[149] STM MOBJ MPC + MINLP GFO + OIN DSET AC DY DM + GE MIN
[150] STM MOBJ HGA DSET AC DY

[151] STM MOBJ LP +
MILP GFO + DFO + OIN DSET + OOU DC DY GE

[152] STM MOBJ NSGA DC GE
[153] STM MOBJ SA DSM DC DY
[154] STM SOBJ D&C DC
[53] STM SOBJ LO OIN DSET + DSM AC DY GE

[155] STM SOBJ MILP OIN DSET DC DM + GE
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Table A10. Papers published in 2018.

Ref. A B C D E F G H I J

[156] STM SOBJ FL + PSO DFO + OIN OOU DC DY MIN
[157] STM MOBJ AA GFO + DFO DSET + UC DC DY DM + GE

[158] STM SOBJ SO +
MIQCP DC HR + DY MIN

[159] STM SOBJ FL OIN OOU DC DY SEC
[160] STM SOBJ RO DSET + UC DC GEGR
[161] STM MOBJ MOPSO DC
[162] STM SOBJ MILP GFO + DFO OOU DC HR GE MILI MIN
[163] STM SOBJ MILP GFO + DFO + OIN DSET + DSM DC DY HR
[164] STM SOBJ SO GFO + DFO + OIN OOU AC DY GE
[165] STM SOBJ DP DFO + WFO DSET DC DM + GE
[166] STM SOBJ PSO + PDIP OIN DSET + OOU AC DY GE
[167] DYM SOBJ AA OIN OOU
[168] STM SOBJ LO + MIP GFO + DFO + OIN DSET + UC DC DY DM + GE
[169] STM SOBJ DL + ADP OIN DSET + OIN DC MIN
[170] STM SOBJ FSM OIN DSET AC MILI
[171] STM SOBJ MINLP DC DY
[172] STM SOBJ LHMPC OIN UC + DSET + OOU DC DY MIN
[173] STM SOBJ RO + MPC GFO + DFO DSET DC DY DM + GE HR
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