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Comminution 

a b s t r a c t 

This paper presents the design and application of a multiple-input–multiple-output fractional order 

proportional-integral (MIMO FOPI) controller to a grinding mill circuit. The MIMO FOPI controller pa- 

rameters are tuned using an off-line optimization process based on Particle Swarm Optimization (PSO). 

Its performance is compared to a single-input–single-output fractional order proportional-integral (SISO 

FOPI) controller designed and tuned using the same procedure based on PSO. The results show that the 

MIMO FOPI achieves better results compared to the SISO FOPI controller in most of the cases simulated, 

even in the presence of hardness and composition variations in the processed ore, and also in the pres- 

ence of process noise. 

© 2019 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

The coupling and interaction between process variables, to-

gether with nonlinearities, disturbances, time delays and unmod-

eled dynamics, make grinding mill circuits difficult processes to

control. For that reason, multivariate control techniques have been

proposed and successfully implemented for grinding processes, im-

proving their performance compared to the cases when decen-

tralized SISO controllers are used. We can mention for instance

the application of Model Predictive Control (MPC) to grinding cir-

cuits, with a large number of works reported in literature. See

for instance [3,4,6,25,29,36] . Besides MPC, other multivariate con-

trol techniques have been proposed for grinding circuits as well,

such as direct Nyquist array [9,10,12] , extended horizon [9,10] , pole

placement [9,10] , multivariate model reference adaptive control

[9,10] , sequential loop closing [9,10] , and predictive multivariate

neural control [11] . 

Although these multivariate techniques can significantly im-

prove process performance compared to decentralized SISO con-

trollers [24,36] , still a great percentage of mining industries use

proportional integral and derivative (PID) controllers (or only PIs)

in their milling circuits. This is mainly due to the difficulty of
∗ Corresponding author. 
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mplementing and maintaining advanced process control like non-

inear MPC, and the lack of sufficient dynamic and fundamental

odels for mineral processing circuits [8] . 

On the other hand, the use of fractional order operators [15] in

he design of controllers have gained considerable attention in the

ast two decades. Several control techniques have been extended

o the fractional case, studied and applied to the control of sev-

ral process. We can mention, just to cite a few works, Fractional

rder Proportional Integral control (FOPI) [22] , Fractional Order

odel Reference Adaptive Control (FOMRAC) [35] , adaptive gain-

rder fractional order control [33] , among others. Although the

pplication of these fractional control techniques is found mainly

n SISO processes [1,32] , some were proposed for MIMO pro-

esses [17–19,31] . Due to the introduction of fractional operators in

hese control strategies, important advantages have been reported,

uch as improvements on system robustness in the presence of

isturbances, noisy environments, time-varying parameters, and

lso in the management of the control energy as stated by

guila-Camacho and Duarte-Mermoud [1] . For that reason, in

guila-Camacho et al. [2] it is proposed the design and applica-

ion of a SISO FOPI controller and a SISO Model Reference Adap-

ive Controller to a grinding mill circuit, obtaining similar or better

esults than a Lineal Model Predictive Controller (LMPC) when ex-

ernal disturbances and process noise were present in the circuit.

he work by Aguila-Camacho et al. [2] , together with the work by

livier et al. [20] , are the only two attempts (to the best of the
rved. 
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Fig. 1. Single-stage closed run-of-mine ore milling circuit. 
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Table 1 

Manipulated and controlled variables. 

Variable Description Value Unit 

Manipulated variables 

CFF Cyclone feed flow-rate 374 [m 

3 /h] 

MFO Mill feed-rate of ore 65.2 [t/h] 

SFW Sump feed water flow-rate 140.5 [m 

3 /h] 

αspeed Fraction of critical mill speed 0.72 [Fraction] 

MIW Mill inlet water flow-rate 4.64 [m 

3 /h] 

MFB Mill feed-rate of balls 5.68 [t/h] 

Controlled variables 

PSE Product particle size 67 [% < 75 μ m] 

LOAD Fraction of mill filled 33 [%] 

SVOL Slurry volume in the sump 11.8 [m 

3 ] 

THP Volumetric throughput of solids 20.375 [m 

3 ] 
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uthors knowledge) using fractional operators in the control of

rinding mill circuits. 

Despite integer order and fractional order controllers have been

uccessfully applied to the control of grinding mill circuits, no at-

empt is made on them to control the throughput of the grind-

ng circuit, but only the product quality. The exception would be

he work by Le Roux et al. [28] , where an independent control of

roduct quality and throughput is proposed, using non-linear MPC.

ince the main objective of the milling circuit is to grind mined

re into a fine product in order to extract the most minerals of

t in the downstream process, and increasing the processed mate-

ial with the correct quality standards leads to an increase in pro-

uctivity, thus we should be looking at both, product quality and

hroughput. However, as stated in [28] , the finer product of the

omminution circuit comes at the cost of a reduced throughput,

hus controlling both quality and throughput is desirable. 

Precisely, this paper proposes a MIMO FOPI controller for a

rinding mill circuit, where both product quality and throughput

f the circuit are controlled. The controller aims to preserve the

implicity of the fractional PI and, at the same time, to manage

he variables couplings and interactions using a multivariate de-

ign, also with the advantages that the fractional operators can add

o the controller performance. 

The paper is organized as follows: Section 2 describes the

rinding mill circuit and Section 3 the corresponding nonlinear

odel used for simulation. Section 4 introduces the design of the

roposed MIMO FOPI controller and Section 5 the tuning of the

ontroller parameters. Section 6 presents the results obtained from

imulations and in Section 7 main conclusions are drawn. 

. Process description 

The single-stage closed run-of-mine (ROM) ore milling circuit

hown in Fig. 1 is considered in this study, and it consists of a

emiautogenous (SAG) mill with an end-discharge grate, a sump

nd a hydrocyclone. The mill receives four streams as inputs:

ined ore ( MFO ), water ( MIW ) to assist with material transport,

teel balls ( MFB ) to assist with ore breakage, and underflow from

he hydrocyclone. 

The fraction of the mill filled with charge is denoted by LOAD ,

nd it is assumed in this study that a variable speed drive is fitted

n the mill motor, which can be used to manipulate the mill speed,

pecifically through the fraction of critical mill speed ( αspeed ). The
round ore in the mill mixes with water to form a slurry, which is

ischarged from the mill into the sump through an end-discharge

rate. The end-discharge grate limits the particle size of the dis-

harged slurry. The slurry in the sump is diluted with water ( SFW )

nd is pumped to the hydrocyclone for classification. The total vol-

me of slurry in the sump is denoted by SVOL . It is assumed the

ump is fitted with a variable speed motor to manipulate the cy-

lone feed flow-rate ( CFF ). The cyclone feed density can be ad-

usted by the sump dilution water as long as the sump does not

verflow or run dry. 

The hydrocyclone is responsible for the separation of the

n-specification and out-of-specification ore discharged from the

ump. The lighter, smaller and in-specification particles in the

lurry pass to the overflow of the hydrocyclone, while the heav-

er, larger and out-of-specification particles pass to the underflow.

he underflow is passed to the mill for further grinding while the

verflow flows to a downstream process. The volumetric flow-rate

f solids in the overflow is the throughput of the circuit ( THP ) and

s equal to the volumetric feed rate of ore at steady-state operation

f the circuit. The quality of the circuit product is indicated by the

raction of particles in the overflow smaller than specification size

 PSE ). The controlled and manipulated variables mentioned in this

ection are shown in Table 1 , together with their values at the op-

rating point. 

. Model description 

The continuous time dynamic phenomenological nonlinear pop-

lation balance model validated by Le Roux et al. [27] is used in

his study to describe the circuit shown in Fig. 1 . For the sake of

pace, a detailed description of the model is not presented in this

aper, but the reader can found it in Le Roux et al. [27] . Also, in

guila-Camacho et al. [2] the model is clearly specified, even in

he same operating point used in this paper. Note that the pro-

ess description and the model description are very similar to that

ounded in [2,28] , since here it is used the same process and the

ame model. 

In general terms, each process unit in the circuit of Fig. 1 is

odelled separately. The model is suitable for control purposes as

t uses as few parameters and states as possible to produce reason-

bly accurate model responses. 

The model divides the ore into three size classes: rocks, coarse

re and fine ore. Rocks are classified as ore too large to pass

hrough the mill discharge grate. Coarse ore can pass through the

ill discharge grate but it is larger than the specification size. Fine

re also passes through the mill discharge grate but it is within

pecification size. The sum of coarse and fine ore is defined as

olids. Although only three size classes are used to describe the ore

n the circuit, they are sufficient for the model to produce qualita-

ively accurate responses [26] . 
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Table 2 

Circuit parameter values. (Dimensionless parameters are shown without units.) 

Parameter Value Description 

Mill parameters 

αf 0.055 Mass fraction of fines in the feed ore 

αr 0.465 Mass fraction of rocks in the feed ore 

αP 1 Fractional power reduction per fractional reduction of critical mill speed 

αspeed 0.72 Fraction of critical mill speed 

αϕ f 0.01 Fractional change in kW/fines produced per change in fractional filling of mill 

χ P 0 Cross-term for maximum power draw 

δPs 17.46 Power-change parameter for fraction solids in the mill 

δPv 17.46 Power-change parameter for volume of mill filled 

d 0 88.0 Discharge rate [h −1 ] 

ε s v 0.6 Max fraction of solids by volume slurry at zero slurry flow 

ϕ P max 
0.57 Rheology factor for maximum mill power draw 

φb 90 Steel abrasion factor [kWh/t] 

φ f 29.5 Power needed per ton of fines produced [kWh/t] 

φr 6.72 Rock abrasion factor [kWh/t] 

P max 1670 Maximum mill power draw [kW] 

ρS 3.2 Density of ore [t/m 

3 ] 

ρB 7.85 Density of balls [t/m 

3 ] 

ρW 1 Density of water [t/m 

3 ] 

v P max 
0.34 Fraction of mill volume filled for maximum power draw 

v mill 59.12 Mill volume [m 

3 ] 

Hydrocyclone parameters 

αsu 0.9154 Parameter related to fraction solids in underflow 

εc 126.93 Parameter related to coarse split [m 

3 /h] 

C 1 0.6 Constant 

C 2 0.7 Constant 

C 3 4 Constant 

C 4 4 Constant 

C 5 0.6 Constant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

e

 

i

 

w

 

s  

s  

g  

a

C
 

w

 

g

L  

w  

a

L  

w  

d

4

a

 

i  
The model defines fives states to describe the mill charge volu-

metric hold-ups: water ( X mw 

), solids ( X ms ), fines ( X mf ), rocks ( X mr ),

and steel balls ( X mb ). Because of the mill discharge grate, only three

states are necessary to describe the sump slurry volumetric hold-

ups: water ( X sw 

), solids ( X ss ), and fines ( X sf ). The parameter values

of the model used in this paper can be seen in Table 2 . 

The operating condition in Table 1 and the model parame-

ter values in Table 2 were taken from the controller comparison

study of Le Roux et al. [29] and were also used in Aguila-Camacho

et al. [2] . 

The manipulated variables specified in Table 1 have the follow-

ing limits: 

u lower = [ 0 0 0 0 100 0 . 7 ] 
T 

u upper = [ 80 100 10 400 450 0 . 85 ] 
T (1)

where the vector u is defined as u = [ M IW M F O M F B SF W CF F 

αspeed ] 
T , the u lower represents the lower bound, and u upper repre-

sents the upper bound. Furthermore, the sump has a maximum

capacity of 16 m 

3 . 

4. Controller design 

This section presents the design of a MIMO FOPI controller for

the grinding mill circuit. Some basic definitions of fractional calcu-

lus are introduced first in Section 4.1 , since they are used in the

controllers design. Also, the technical specifications of the approx-

imation used to implement the fractional operators in simulations

are presented in Section 4.2 . Finally, Section 4.3 presents the con-

troller design itself. 

4.1. Basic concepts of fractional calculus 

In fractional calculus, the traditional definitions of the integral

and derivative of a function are generalized from integer orders to

real orders. In the time domain, the fractional order derivative and
ractional order integral operators are defined by a convolution op-

ration. 

According to Kilbas et al. [15] , the Riemann–Liouville fractional

ntegral of order α ∈ R , with α ≥ 0, is defined as: 

I αt 0 f ( t ) = 

1 

	( α) 

∫ t 

t 0 

f ( τ ) 

( t − τ ) 
1 −α

dτ, t > t 0 , (2)

here 	( α) is the Gamma function [15] . 

Regarding the fractional derivative of order β ≥ 0, there exist

everal definitions. In this work, the Caputo definition [15] pre-

ented in (3) will be used, since it is one commonly used in en-

ineering applications. The Caputo fractional derivative is defined

s 

 D 

β
t 0 

f ( t ) = 

1 

	( n − β) 

∫ t 

t 0 

f ( n ) ( τ ) 

( t − τ ) 
β−n +1 

dτ, t > t 0 , (3)

here f ∈ AC n [ t 0 , t ], n − 1 < β < n, n ∈ Z 

+ . If β ∈ Z 

+ , then n = β . 

The Laplace transform of the Riemann–Liouville fractional inte-

ral (2) corresponds to 

 

{
I αt 0 f ( t ) 

}
= s −αF ( s ) , (4)

hile the Laplace transform of the Caputo fractional derivative (3) ,

ccording to Podlubny [23] is 

 

{ 

C D 

β
t 0 

f ( t ) 

} 

= s βF ( s ) −
n −1 ∑ 

k =0 

s n −k −1 f ( k ) ( t 0 ) , (5)

here the initial conditions of the function and its integer order

erivatives appear. 

.2. Numerical approximation for implementing fractional integrals 

nd derivatives 

Fractional integrals and derivatives are commonly implemented

n simulations and practical applications by means of numerical
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pproximations of these operators. Using these approximations,

quivalent integer-order transfer functions are obtained, whose be-

avior approximate the fractional order Laplace operator and are

asily implemented. In this paper, the Oustaloup’s, method [21] is

sed to approximate the Laplace transform of the fractional opera-

or, that is 

 ( s ) = ks α (6) 

hich is approximated using a recursive distribution of N poles

nd N zeros of the form: 

 ( s ) = k 
′ 

N ∏ 

n =1 

1 + s/ω zn 

1 + s/ω pn 
. (7) 

he gain k 
′ 

is adjusted so that if k = 1 then | C ( s ) | = 0 dB at 1 rad/s

nd ω zn , ω pn represent respectively the zeros and poles of the ap-

roximation, which are placed inside a frequency interval [ ω l , ω h ]

ad/s in which the approximation is valid. 

The Oustaloup’s method is incorporated in the NID block of the

integer Toolbox for Matlab/Simulink [34] specified as the Crone

pproximation. In this block, if α < 0 is set, then the NID simulates

 fractional integral, otherwise, if α > 0 the NID simulates a frac-

ional derivative. 

.3. Design of MIMO FOPI controller 

The transfer function of a SISO FOPID controller is represented

s: 

 c ( s ) = K P + 

K I 

s α
+ K D s 

β, (8)

here K P is the proportional gain, K I is the integral gain, K D is the

erivative gain, and α, β ∈ (0, 2) are the order of the integral and

he order of the derivative, respectively, considered in this interval

or stability purposes [16] . When α = β = 1 , then (8) represents

he classic PID controller. 

Why is a good idea considering FOPID in control systems is

 question that has its answer in many reported advantages of

his controllers above classic PID. For instance, in Shah and Agashe

30] it is reported that using FOPIDs, five degrees of freedom are

vailable for the controller design, while only three degrees of free-

om are available for the integer order PID controller design, which

mplies that more design criteria can be satisfied using a FOPID

ontroller than using a classic PID controller. 

Also, in Shah and Agashe [30] it has been reported that for

igher order systems, the performance of PID controller deterio-

ates, whereas FOPID controller can provide better results; and for

 system with long time delays, FOPID controllers can provide bet-

er results than PID controllers. We can also find evidence of a

etter robust stability for FOPID compared to PID controllers, as

ell as a better performance for systems with nonlinearities and

or non-minimum phase systems. 

Based on these facts, SISO FOPI controllers were proposed and

tudied in the work by Aguila-Camacho et al. [2] for the grind-

ng mill circuit studied in this paper, obtaining a good behavior

ompared to SISO Fractional Order Model Reference Adaptive Con-

rollers (SISO FOMRAC) as well as to a LMPC controller, which is a

IMO control technique. However, in the work by Aguila-Camacho

t al. [2] , no attempt is made to control THP , which implies that

he productivity of the circuit was determined by the amount of

aterial that the mill can handle, using a constant speed, and in-

uenced by the desired size of the particles ( PSE ) at the circuit

utput. 

On the other hand, in this paper THP is also included as a con-

rolled variable, and the mill speed is introduced as an additional

anipulated variable. Also, the proposed controller is MIMO, ex-

ecting a lower effect of the coupling between variables in the

ontrol scheme, compared to SISO FOPI controllers. 
Thus, a MIMO FOPI controller is proposed in this work, with a

ransfer matrix given by 

 

 

 

CF F 
MF O 

SF W 

αspeed 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

G c 11 ( s ) G c 12 ( s ) G c 13 ( s ) G c 14 ( s ) 
G c 21 ( s ) G c 22 ( s ) G c 23 ( s ) G c 24 ( s ) 
G c 31 ( s ) G c 32 ( s ) G c 33 ( s ) G c 34 ( s ) 
G c 41 ( s ) G c 42 ( s ) G c 43 ( s ) G c 44 ( s ) 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

e 
PSE 

e 
LOAD 

e 
SVOL 

e 
THP 

⎤ 

⎥ ⎦ 

(9) 

here G c i j 
( s ) = k P i j 

+ 

k I i j 

s αi j 
, ∀ i, j : 1 . . . 4 , with k P i j 

, k I i j 
and αij ac-

ordingly with the description made in (8) . These controller pa-

ameters will be tuned and explained in Section 5 . 

The variable e 
PSE 

corresponds to the error between the desired

et point and the actual value of PSE , e 
LOAD 

is the error between the

esired set point and the actual value of LOAD , e 
SVOL 

is the error

etween the desired set point of the sump volume SVOL and its

ctual value, and e 
THP 

is the error between the desired set point

nd the actual value of THP . On the other hand, CFF , MFO ,

SFW and αspeed correspond to the variation of CFF , MFO , SFW

nd αspeed around the operating point, respectively. 

In the case of the two additional manipulated variables of this

ircuit, MFB and MIW , they are considered as in [2,29] : 

• MFB is kept as a constant ratio of 16.7 of the mill filling LOAD . 

• MIW is kept as a constant ratio of 7% of MFO . In that way, if

MFO increases, MIW also increases to help push the extra mate-

rial through the circuit and to ensure the density of the charge

inside the mill does not go too high. 

Fig. 2 shows the general diagram of the controlled system. Note

hat in Fig. 2 , variables P SE _ SP, LOAD _ SP, SV OL _ SP and T HP _ SP cor-

espond to the desired set point values for PSE , LOAD , SVOL and

HP , respectively. 

. Controller tuning 

This section presents the tuning procedure used for the MIMO

OPI controller parameters. Off-line Particle Swarm Optimization

PSO) is used to select the controller parameters. Besides, a SISO

OPI controller is also tuned, which will be used for comparison

urposes. 

.1. Particle swarm optimization basics 

For tuning the controller parameters, an optimization procedure

s carried out. PSO is the optimization technique used in this paper,

hich is an heuristic global optimization technique that belongs to

he category of swarm intelligence. 

As an heuristic technique, PSO has the advantage of being able

o drive the most versatile fitness functions, and being able to

se non-differentiable, nonlinear and/or discontinuous functions. 

ompared to techniques such as genetic algorithms and differ-

ntial evolution, PSO is a good alternative to solve global opti-

ization problems with multiple maximum/minimum, discontinu- 

ties and deterministic solutions in non-polynomial time, which

s reflected in the increase of successful applications based on

SO [14] . 

The algorithm defines a population where every possible solu-

ion of the optimization problem is represented by a particle. These

articles move in the search space iteratively according to certain

ules, influenced by the particle that had found the best global

osition, with respect to a predefined objective function (fitness



126 N. Aguila-Camacho, M.A. Duarte-Mermoud and M.E. Orchard / European Journal of Control 51 (2020) 122–134 

Fig. 2. General diagram of the MIMO FOPI controller configuration. 
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function). The evolution of the particles is given by: 

v i ( k + 1 ) = ω v i ( k ) + r 1 ( k ) c 1 [ p i ( k ) − x i ( k ) ] 

+ r 2 ( k ) c 2 
(
g ( k ) − x i,d ( k ) 

)
x i ( k + 1 ) = x i ( k ) + v i ( k + 1 ) , 

p i ( k ) = 

{
p i ( k − 1 ) i f f ( p i ( k − 1 ) ) ≤ f ( x i ( k ) ) 
x i ( k ) i f f ( p i ( k − 1 ) ) > f ( x i ( k ) ) 

g ( k ) = argmin { f ( p 1 ( k ) ) , . . . , f ( p s ( k ) ) } 

(10)

where v i ( k ) and x i ( k ) represent the speed and the position of the

i th particle at the k th iteration, respectively, and ω ∈ [0, 1] is the

inertia weight, which serves to limit the particle velocity and con-

sequently to achieve convergence to an equilibrium point. c 1 and

c 2 are the social and cognitive acceleration coefficients, r 1 ( k ) and

r 2 ( k ) are a pair of random numbers uniformly distributed in the

interval [0, 1] and represents the stochastic element of any swarm,

x i , d ( k ) is the best global position founded at the k th iteration, f is

the fitness function to be optimized, and s is the number of parti-

cles in the swarm [13] . 

5.2. Tuning of MIMO FOPI controller parameters using PSO 

As the reader may check from Section 4.3 , according to the pro-

posed structure of the MIMO FOPI controller, 48 parameters need

to be tuned in this optimization stage. Nevertheless, it must be

noted that, although the optimization process involves 48 tuning

parameters, it can result that optimal values for some of these

parameters are zero, leading to a MIMO controller not contain-

ing FOPI controllers for every position of the transfer matrix (9) ,

but proportional controllers, pure fractional integral controllers, or

even no controller at all. 

The cost function used in the optimization process was selected

including the control errors and the control energy, as: 

J = 

∫ T 

t 0 

[ 

w 1 e 
2 
PSE 

( t ) + w 2 e 
2 
LOAD 

( t ) + w 3 e 
2 
SVOL 

( t ) + w 4 e 
2 
THP 

( t ) + 

+ w 5 CF F 2 ( t ) + w 6 MF O 

2 ( t ) + w 7 SF W 

2 ( t ) + w 8 α2 
speed ( t ) 

] 

dt 

(11)

where T is the simulation time and w i , i = 1 , . . . , 8 are weighting

factors to give more or less importance to every term in the cost

function. 

The weighting factors were selected based on some of the cri-

teria used in Le Roux et al. [28] . The weighting factors w , w , w 
1 2 3 
nd w 4 were determined such that a 0.5% deviation from the THP

et-point will produce an error in the cost function equal to a 1%

eviation from PSE set-point, equal to a 5% change from LOAD set-

oint and equal to a 20% change from SVOL set point. Thus 

 1 ( 1% P SE _ SP ) 
2 = w 2 ( 5% LOAD _ SP ) 

2 = w 3 ( 20% SV OL _ SP ) 
2 

= w 4 ( 0 . 5% T HP _ SP ) 
2 
. (12)

If we choose w 2 = 1 , based on the operating condition shown

n Table 1 and using (12) , the controlled variable weighting factors

esult i.e. 

 1 = 6 . 0648 w 2 = 1 w 3 = 0 . 488 w 4 = 261 . 77 (13)

On the other hand, the weighting factors for the manipulated

ariables were determined such that a 1% change of the half ranges

f CFF and SFW will produce the same error as a 2% change of

he half range of MFO and as a 15% change of the half range

f αspped , in the cost function. Also, the corresponding weighting

actors were scaled to produce 1% of the error compared to the

eighting factors of the corresponding controlled variables i.e. 

00 w 6 

(
2% MF O range 

2 

)2 

= w 2 ( 5% LOAD SP ) 
2 

nd 

 5 

(
1% CF F range 

2 

)2 

= w 6 

(
2% MF O range 

2 

)2 

= w 7 

(
1% SF W range 

2 

)2 

= w 8 

(
15% αspeed range 

2 

)2 

. 

herefore, the manipulated variable weighting factors are: 

 5 = 8 . 8898 × 10 

−7 w 6 = 2 . 7225 × 10 

−6 

 7 = 6 . 8063 × 10 

−7 w 8 = 0 . 0215 (14)

For the optimization process, the range of search for those

arameters corresponding to controller gains was set as [0, 10 8 ],

hich guarantees a wide searching space for the optimization

rocess. 

According to Matignon [16] , stability cannot be guaranteed for

ny linear time invariant system if the fractional order is equal

r higher than 2. Although the grinding mill circuit is a nonlin-

ar time varying system, the range of search for those parameters
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Fig. 3. Parameter variations introduced in the milling circuit in the second and third simulation scenarios. 
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orresponding to fractional orders was limited to (0, 2), as a conser-

ative bound. Nevertheless, stability issues due to combinations of

ains and orders are taken into consideration in the optimization

rocess by the cost function. If a combination of fractional orders

nd gains lead to instability of the circuit during the optimization

rocess, the cost function returns a high value to guide the opti-

ization process away from these solutions. 

As the reader may note, given the lower and upper limits used

or the fractional orders, the resulting controllers could be classic

I controllers if the optimal fractional orders found are 1. 

With all the parameters previously defined, the optimization

rocess was carried out using the Constrained Particle Swarm

ptimization toolbox for Matlab [7] . Most of the PSO parameters

ere used at their default values, except: 

• Population size: 500. 

 

 

 

CF F 
MF O 

SF W 

αspeed 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

738 . 18 + 

35452 

s 0 . 858 
0 

0 1 . 31 × 10 

5 + 

3 . 42 × 10 

5 

s 1 . 9 

0 . 009 0 34

0 . 015 0 
• Number of generations: 500. 
For every generation, the milling circuit is simulated in a time

indow of 6 h under ideal conditions for every particle, that is,

o disturbances or noise are present in the scheme. Step ref-

rences are applied to the four inputs at t = 1 h, specifically

 SE _ SP = 72 % , LOAD _ SP = 34 % , SV OL _ SP = 13 . 8 m 

3 and T HP _ SP =
2 . 375 m 

3 . From the simulation results, cost function (11) is calcu-

ated for every particle, and based on the corresponding results the

lgorithm generates the population to be used in the next genera-

ion. The process continues until 500 generations are reached and

he optimal controller parameters are found. 

As a result of this optimization process, the resulting MIMO

OPI controller detailed in (9) is: 

 011 0 . 010 

 . 18 0 . 39 

 

141 . 19 

s 0 . 178 
3 . 96 

 . 76 4 . 99 × 10 

3 + 

82076 

s 0 . 483 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎣ 

e 
PSE 

e 
LOAD 

e 
SVOL 

e 
THP 

⎤ 

⎥ ⎦ 

(15) 

It can be seen from (15) that the resulting MIMO FOPI controller

as FOPI controllers on its main diagonal, and the rest of the con-

roller parameters are zero, except for the resulting proportional

ontrollers in the positions G c 13 
, G c 14 

, G c 23 
, G c 24 

, G c 31 
, G c 34 

, G c 41 

nd G c 43 
. This is already a big difference with the FOPI controllers

unned in [2] , where the controllers were SISO and consequently

he coupling between variables were not taken into account. Re-
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Fig. 4. Controlled variables for first simulation scenario. 
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garding the order of the FOPI controllers, it can be seen that it is

fractional for all cases, and far from the integer order case where

α = 1 . 

5.3. Tunning of a SISO FOPI controller for comparison purposes 

For comparison purposes, an equivalent SISO FOPI controller

was also tuned in this work. In this case, the selection of the

controlled-manipulated variable pairing to be used is of great im-

portance, since the process presents important interactions be-

tween variables. The pairings CF F − P SE, MF O − LOAD and SF W −
SV OL are the most appropriate for this circuit, according to [5] , as

they can improve the robustness to feed disturbances compared to

other pairings. Also, the pairing αspeed − T HP is selected, since ac-

cording to Le Roux et al. [28] , manipulation of αspeed allows further

control over THP . 

Thus, the structure of the SISO FOPI controller can be seen as

an special case of the transfer matrix (9) , considering all the ele-

⎡ 

⎢ ⎣ 

CF F 
MF O 

SF W 

αspeed 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

100 . 86 + 

940 . 24 

s 0 . 865 
0 

0 1 . 157 × 10 

5 + 

3 . 63 × 10 

5 

s 1 . 98 

0 0 206 .

0 0 
ents outside the main diagonal being zero. This implies that only

2 parameters need to be tuned for the SISO FOPI controller. The

ptimization process was carried out under the same conditions

sed for the MIMO FOPI controller, resulting in the following SISO

OPI controller: 

0 

0 

24 . 49 

s 0 . 182 
0 

3 . 9 × 10 

5 + 

86090 

s 0 . 47 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎣ 

e 
PSE 

e 
LOAD 

e 
SVOL 

e 
THP 

⎤ 

⎥ ⎦ 

(16)

. Simulations and results 

This section presents the simulation results obtained using the

roposed controllers in Sections 4 and 5 for the milling circuit, un-

er disturbances and noise conditions. 

.1. Simulation environment 

The parameter values and the operating point can be seen in

ables 1 and 2 , respectively. The grinding mill circuit was simu-

ated considering a simulation time of 7 h and a sampling rate of

0 s. The following scenarios were simulated: 

1. The first simulation scenario corresponds to step changes

in the set points of the two most important controlled
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Fig. 5. Manipulated variables for first simulation scenario. 
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variables in the circuit, that is PSE and THP . The set point for

PSE is increased in 0.05% from 67%, at t = 0 . 5 h. Later, it is

decreased in 0.025 % at t = 2 . 5 h and finally it is returned to

67% at t = 4 . 5 h. In the case of THP , its set point is increased

in 2 m 

3 /h from 20.375 m 

3 , at t = 0 . 5 h. Later, it is decreased

in 2.5 m 

3 /h at t = 4 . 5 h. 

2. In the second simulation scenario, a disturbance in the mill

feed size distribution is simulated by increasing αr from

0.465 to 0.495 at t = 1 . 5 h, decreased to 0.455 at t = 2 . 5 h,

and increased back to 0.465 at t = 4 . 5 h. Also, a disturbance

in the energy required to produce fine ore, which is similar

to a change in the hardness of the ore, is simulated by in-

creasing φf from 29.5 to 32.5 kWh/t at t = 2 h, decreased to

27.5 at t = 3 h, and back to 29.5 kWh/t at t = 4 h. Besides, a

disturbance in the energy required to break rocks into solids

is simulated by decreasing φr from 6.72 to 5.72 kWh/t at t =
2 . 5 h, increased to 7.55 at t = 3 . 5 h, and back to 6.72 kWh/t

at t = 4 . 5 h. The parameter variations can be seen in Fig. 3 . 

3. In order to evaluate the noise rejection capabilities of the

controllers, in the third scenario, disturbances as specified

above in scenario 2 are applied, and process noise is added

to the model states [27] , which correspond to: mill wa-

ter hold up ( X mw 

), mill solids hold up ( X ms ), mill fines

hold up ( X mf ), mill rocks hold up ( X mr ), mill balls hold up

( X mb ), sump water hold up ( X sw 

), sump solids hold up ( X ss )

and sump fines hold up ( X sf ). The process noise follows

a uniform random distribution, with maximum and mini-

mum values given by ± 0.01 x 0 , where x 0 is the nominal
value of the corresponding state (1% of the state’s nominal

value). 

.2. Results and discussion 

This section presents the results of the simulations for the

hree scenarios detailed above, and the corresponding discussion

f these results. 

.2.1. Performance functions to evaluate the grinding mill circuit 

ehavior 

The behavior of the grinding mill circuit is evaluated through

he following three performance functions. 

1. The first performance function proposed is the Normalized

Root Mean Square Error (NRMSE), which is calculated for

each controlled variable as: 

NRMSE = 

√ ∑ N 
( y − y SP ) 

2 

N 

y max − y min 

, (17) 

where y is the controlled variable at instant of time t , y SP 

is the corresponding set point, N is the number of sample

data, and y max and y min are the maximum and minimum

values of y over the observation interval, respectively. This

performance index checks how far the controlled variables

are from their set points over the observation interval, thus

checking how well the controller is working. 
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Fig. 6. Controlled variables for second simulation scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Values of performance functions for the first simulation scenario. 

MIMO FOPI SISO FOPI 

NRMSE PSE 0.0247 0.1312 

LOAD 0.0882 0.1047 

SVOL 0.1496 0.2281 

THP 0.1975 0.1310 

σ PSE 0.0194 0.4929 

NRMSI CFF 10.0720 10.0319 

MFO 1.5696 1.5672 

SFW 3.4830 3.4567 

αspeed 5.2268 5.2013 

6

 

r  

F  

c  

t  

d  

a  

T

 

t  

2  

T  
2. The second proposed performance index is the Normalized

Root Mean Square Input (NRMSI), which in this work is cal-

culated for each manipulated variable as: 

NRMSI = 

√ ∑ N 
( u ) 

2 

N 

u max − u min 

, (18)

where u is the manipulated variable at instant of time t , N is

the number of sample data in the observation interval, and

u max and u min are the maximum and minimum values of u

over the observation interval, respectively. This performance

index is somehow aimed to check how much energy is being

spent in the control. 

3. Finally, the third performance index corresponds to the vari-

ance of PSE given by 

σPSE = 

N ∑ | P SE − μ| 2 
N 

, (19)

where N is the number of sample data in the observation

interval, PSE is the value of this variable at the time instant

t and μ is the mean value of PSE . This performance index

is of great relevance, given the importance of reducing small

variations in PSE in the circuit. Thus, this performance index

can be seen as a measure of the quality of the final product
in the grinding stage. f  
.2.2. Simulation scenario 1 

Figs. 4 and 5 show the controlled and manipulated variables,

espectively, for the first simulation scenario. It can be seen from

ig. 4 that the PSE behaves better for the case of the MIMO FOPI

ontroller, since it remains closer to the set point value than with

he SISO FOPI controller. Also, it has less oscillations, which is a

esirable feature in the grinding mill circuit. This behavior is in

greement with the NRMSE value for PSE and the σ PSE shown in

able 3 . 

Regarding the THP , it can be seen that both controllers achieve

he control goal after the first step reference in t = 0 . 5 h. At t =
 . 5 h, when the set point for PSE is decreased, it can be seen that

HP presents some oscillatory performance, with less oscillations

or the MIMO FOPI controller but with less amplitude in the case
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Fig. 7. Manipulated variables for second simulation scenario. 
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Table 4 

Values of performance functions for the second simulation scenario. 

MIMO FOPI SISO FOPI 

NRMSE PSE 0.0243 0.2042 

LOAD 0.2158 0.1498 

SVOL 0.1498 0.1744 

THP 0.2140 0.1439 

σ PSE 0.0056 0.3954 

NRMSI CFF 10.5679 10.5565 

MFO 4.8941 4.9133 

SFW 6.7312 6.7129 

αspeed 4.8678 4.8901 

q  

a

 

o  

c  

T  

S  

l  

p  

a

 

t  

v  
f the SISO FOPI controller. It is natural that the performance of

he circuit deteriorates a little in this time frame, since the circuit

eeds to produce the same amount of grind material but with a

maller size, so it is a stressful situation for the control. After t =
 . 5 h, where the set point for THP is decreased, both controllers

re capable to achieve the control goal, with similar stabilization

imes, although the control error is a little smaller for the MIMO

OPI controller. LOAD and SVOL , on the other hand, remain in their

perating values as it is expected. The performance indexes for all

he controlled variables are presented in Table 3 . 

As far as the manipulated variables is concerned, it can be seen

rom Fig. 5 that they remain within their bounds, except for the

ase of αspeed , which reaches its upper bound during a part of the

imulation. Nevertheless, it can be noticed that it remains at its

pper bound longer for the case of the MIMO FOPI controller, gen-

rating less speed fluctuations to the mill. The rest of the manipu-

ated variables have similar values for NRMSI, as in the case of the

ISO FOPI, as seen from Table 3 . 

.2.3. Simulation scenario 2 

Figs. 6 and 7 show the controlled and manipulated variables,

espectively, for the second simulation scenario. During this time

indow, the external disturbances described in Section 6.1 and

howed in Fig. 3 are present in the grinding mill circuit. As seen

rom Fig. 6 , PSE behaves better for the case with MIMO FOPI con-

roller, keeping the variable around its set point with less oscilla-

ions. It can also be seen that MIMO FOPI controller tends more
uickly to return to the set point of PSE after external disturbances

ppears, while SISO FOPI has a slower response. 

In the case of LOAD and SVOL , no significant differences are

bserved between the two control strategies. However, it can be

orroborated from their corresponding NRMSE values showed in

able 4 that the MIMO FOPI controller behaves better than the

ISO FOPI controller for these two controlled variables. Neverthe-

ess, the two controlled variables remain very close to their set

oints values, even in the presence of the disturbances, which is

 very good result for the control. 

In the case of THP , no big differences are appreciated between

he two control strategies in Fig. 6 . However, looking at the NRMSE

alue for THP in Table 4 , it can be seen that it is smaller for the
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Fig. 8. Controlled variables for third simulation scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Values of performance functions for the third simulation scenario. 

MIMO FOPI SISO FOPI 

NRMSE PSE 0.0391 0.1964 

LOAD 0.1672 0.1473 

SVOL 0.1463 0.1547 

THP 0.1840 0.1406 

σ PSE 0.0159 0.4002 

NRMSI CFF 10.9435 10.9294 

MFO 1.9669 1.9721 

SFW 5.6390 5.6222 

αspeed 4.8726 4.8891 

i  

s  

a

 

a  

c  

t

 

F  

i  

t

SISO FOPI controller. This is because THP has less oscillations for

the MIMO FOPI controller, but these oscillations are longer in time

and amplitude than for the SISO FOPI controller. 

Regarding the manipulated variables, Fig. 7 shows their evolu-

tion for this simulation scenario. As seen from Fig. 7 , the two con-

trol strategies keep the manipulated variables within their limits,

except for the αspeed in the MIMO FOPI controller, which reaches its

upper bound in a few instants of time. The αspeed shows, however,

a more oscillatory behavior for the SISO FOPI controller, contrary

to the MIMO FOPI controller, where the speed control is smoother.

The NRMSI values for the four manipulated variables are similar

for the two control strategies, as can be seen from Table 4 . 

In the case of the variance of PSE , it is higher for the SISO FOPI

controller. Since PSE is the most important variable in the circuit,

the difference between the two controllers can be seen as an im-

provement of the MIMO FOPI in the grinding mill circuit operation

in the presence of disturbances. 

6.2.4. Simulation scenario 3 

The results obtained for the third simulation scenario can be

seen in Figs. 8 and 9 . Table 5 shows the corresponding values of

the performance indexes. 

From Fig. 8 it is seen that all the controlled variables are af-

fected by the process noise described in Section 6.1 , for both

control strategies, although they remain close to their set points,

which is an indication of satisfactory operation. The overall behav-
or is similar to that of the case with external disturbances in the

econd simulation scenario, but with noise affecting the variables,

nd it is more visible in the cases of PSE and THP . 

The results are supported by the NRMSE performance function

nd σ PSE in Table 5 . This agrees with other results that have been

ited in the literature, where the capability of fractional controllers

o handle the noise is one of their advantages. 

Regarding the manipulated variables, it is observed from

ig. 9 that they are also affected by the process noise, more vis-

ble in the case of MFO and SFW . The NRMSI values are similar for

he two controllers. 
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Fig. 9. Manipulated variables for third simulation scenario. 
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173–181 . 
. Conclusions 

The design and application of a MIMO FOPI controller to a

rinding mill circuit has been presented in this paper. Its per-

ormance was evaluated under different scenarios and compared

ith the performance of a SISO FOPI controller, both designed and

unned using the same optimal PSO procedure. Simulations were

onducted when external disturbances and process noise were

resent in the circuit and different performance indexes were cal-

ulated to quantify the effects of disturbances on the milling circuit

or both controllers. 

Results indicate that the MIMO FOPI controller achieves inde-

endent control of product quality and throughput. Also, results

ndicates that MIMO FOPI controller achieves better results com-

ared to the SISO FOPI controller in the presence of parametric

isturbances and process noise, according to the performance func-

ions computed. 
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