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VORTICES INDUCED BY TOPOLOGICAL FORCING IN NEMATIC LIQUID
CRYSTAL LAYERS

In two-dimensional systems, dissipative vortices are described by a complex Ginzburg-Landau
equation (CGLE) which has a universal character and describes such different systems as
fluids, superfluids, superconductors, liquid crystals, granular media, magnetic media, and
optical dielectrics, to mention just a few. Vortices occur in complex fields and can be identified
as topological defects, that is, pointlike singularities which locally breaks the symmetry.

Liquid crystals with negative anisotropic dielectric constant and homeotropic anchoring
are a natural physical context where dissipative vortices are observed. Dissipative vortices
are known in this context as umbilical defects. Recently, by exploiting reorientational nonlin-
earities in nematic liquid-crystal layers of an optically addressable liquid-crystal cell, it has
been shown that spontaneous and stable matter vortices can be induced.

This thesis is composed of seven chapters and one appendix that contain the article pub-
lished during this work. The first three chapters serve as an introduction: In Chapter 1 we
present motivations and preliminary notions about topological defects, while Chapter 2 and
3 are focused on presenting general results about Ginzburg-Landau type equations.

Chapter 4 is devoted to establishing analytically the origin of vortex lattices observed in
illuminated liquid crystal layers, we give a theoretical description in terms of an approximate
vortex solution that we called Rayleigh vortex valid under the Fréederickzs transition and
induced by a topological forcing.

In Chapter 5 we study a new type of topological forcing that induces vortex-like de-
fects inspired by experimental observations with inhomogeneous magnetic fields in a nematic
liquid-crystal light valve (LCLV). We give a theoretical description in terms of a Ginzburg-
Landau type amplitude equation and also we derive an analytical solution which describes
accurately the system behavior and shows fair agreement with numerical simulations and
experimental observations.

In Chapter 6 we study the dynamics of defects in one (kinks) and two dimensional (vor-
tices) cases, deriving in each one the dynamical motion equation for the defect position under
topological forcing.

Finally, in Chapter 7 we show qualitative properties of global minimizers of the Ginzburg-
Landau energy, prove the existence of global minimizers and state the main results about
symmetry breaking scenarios.
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VORTICES INDUCED BY TOPOLOGICAL FORCING IN NEMATIC LIQUID
CRYSTAL LAYERS

En sistemas bidimensionales, vórtices disipativos son descritos por medio de la ecuación
de Ginzburg-Landau a coeficientes complejos (CGLE) la cuál tiene caracter universal y de-
scribe diferentes sistemas físicos tales como fluidos, superfluidos, superconductores, cristales
líquidos, medios granulares, medios magnéticos y dieléctricos ópticos, por mencionar algunos.
Los vórtices aparecen en campos complejos y pueden identificarse como defectos topológicos,
esto es, singularidades puntuales que rompen localmente la simetría.

Crístales líquidos con constante de anisotropía dieléctrica negativa y anclaje homeotropico
son un contexto físico natural donde vórtices disipativos son observados. En este contexto,
se los denomina defectos umbilicos. Recientemente, aprovechando no linealidades orienta-
cionales en capas de cristal líquido nemático de una celda óptica, se ha mostrado la indución
de vórtices estables.

Esta tesis esta compuesta de 7 capítulos y 1 apéndice que contiene el artículo publicado
durante este trabajo. Los primeros 3 capítulos sirven como una introducción: En el capítulo
1 presentamos motivaciones y nociones preliminares sobre defectos topológicos, mientras que
los capítulos 2 y 3 estan enfocados en presentar resultados generales sobre ecuaciones tipo
Ginzburg-Landau.

El capítulo 4 esta dedicado a establecer analiticamente el origen de redes de vórtices
observadas en celdas de cristal líquido, se da una descripción teórica en términos de una
solución aproximada denominada Vórtice de Rayleigh válida bajo la transición de Fréederickzs
e inducida por un forzamiento topológico.

En el capítulo 5 estudiamos un nuevo tipo de forzamiento topológico que induce defectos
tipo vórtices, inspirados en observaciones experimentales con campos magnéticos inhomo-
geneos aplicados a un celdad de cristal líquido nemático. Se da una descripción teórica en
términos de ecuaciones de amplitud y tambien se deriva una solución analítica que describe
de manera precisa al sistema en concordancia con simulaciones numéricas.

En el capítulo 6, estudiamos la dinámica de defectos en 1 y 2 dimensiones, derivando
en cada caso una ecuación de movimiento para la posición del defecto bajo forzamiento
topológico.

Finalmente, en el capítulo 7 estudiamos propiedades cualitativas de los minimizadores
globales de la energía de Ginzburg-Landau, se prueban resultados de existencia de mini-
mizadores globales y se enuncian los principales resultados existentes sobre escenarios de
rompimiento de simetría.
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Introduction

In two-dimensional systems, dissipative vortices are described by the complex Ginzburg-
Landau equation (CGLE) which has a universal character and describes such different sys-
tems as fluids, superfluids superconductors, liquid crystals, granular media, magnetic media,
and optical dielectrics, to mention just a few [1]. Vortices occur in complex fields and can
be identified as topological defects, that is, pointlike singularities which locally break the
symmetry. They exhibit zero intensity at the singular point which is phase spiraling around
it. The topological charge is assigned by counting the number of spiral arms in the phase
distribution, while the sign is given by the sense of the spiral rotation.

Liquid crystals with negative anisotropic dielectric constant and homeotropic anchoring
are a natural physical context where dissipative vortices are observed [2]. Dissipative vortices
are known in this context as umbilical defects [2, 3]. Two types of stable vortices are observed.
They have opposite charges and are characterized by being attracted to (repulsed from) the
opposite (identical) topological charge. Recently, by exploiting reorientational nonlinearities
in the nematic liquid-crystal layer of an optically addressable liquid-crystal cell, it has been
shown that spontaneous, stable matter vortices can be induced.

Topological defects that had attracted a lot of attention in view of their technological
applications are the so-called Optical Vortices, they are point phase dislocations; that is,
they are singular points where the electromagnetic field goes to zero and around which the
phase distribution forms an N -armed spiral, with N being the topological charge [1],[4]. In
the last decade, optical vortices have attracted attention for the diverse photonic applica-
tions [5], ranging from the interchange of angular momentum between light and matter [6],
optical tweezers [7], [8], quantum computation [9], enhancement of astronomical images [10],
the generation of optical beams by micro/macro patterned in liquid crystals [11], and data
transmission [12]. In these applications, optical vortices lattices are always involved and re-
quired, because they contain multiple optical vortices that supply information, flexibility, and
manipulation [12]. Indeed, the generation, detection, and manipulation of optical vortices
lattices are of fundamental relevance in the research described and in future optical applica-
tions. The realization of programable lattices of optical vortices with arbitrary distribution
in space was demonstrated by exploiting reorientational nonlinearities in the nematic liquid
crystal layer of light valve (LCLV) [13]. The vortex arrangements were determined qualita-
tively on the basis of consistent topological rules governing light-induced matter defects of
both signs. When a LCLV is illuminated by a Gaussian beam, a vortex in the molecular
orientation (umbilic defect) is induced [14], [15].
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This dissertation is devoted to establishing analytically the origin of the vortex lattices
observed in illuminated liquid crystal layers with photosensitive walls. Using a topologically
driven Ginzburg-Landau equation that describes illuminated LCLV close to the Frédericksz
transition, the vortices and the lattices they form are described. The numerical simulations
of the amplitude equation, analytical solutions, and experimental observations show good
agreement.

Topological forcing induced vortices can be also achieved by means of an inhomogeneous
magnetic field generated by a Neodymium magnet ring. Chapter 5 presents a method for
robust vortex induction, which relies on nematic liquid crystal strong interaction with mag-
netic fields. Experimentally, permanent induction of a matter vortex triplet is observed and
a static stable vortex is measured at the sample center.

In Chapter 6 we study the dynamics of defects in one (kinks) and two dimensional (vor-
tices) cases, deriving in each one the dynamical motion equation for the defect position under
topological forcing.

Finally, from a variational perspective vortex solutions correspond to minimizers of a
Ginzburg-Landau energy. In Chapter 7 existence and qualitative properties of global mini-
mizers of the Ginzburg-Landau energy are shown.
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Chapter 1

Preliminar Concepts

1.1 Topological Defects

The study of topological defects arises within many of the branches of physics, from quantum
field theory, cosmology, condensed matter physics, liquid crystals, among others [1]. The
importance of these defects and their role in phase transitions in bidimensional systems was
identified by Kosterliz and Thouless [16] and also by Berezinskii [17], and earned to the
formers being awarded the 2016 Nobel Physics Prize [18].

The mathematical theory of topological defects find its foundations on the algebraic topol-
ogy and the concept of homotopy groups [19], and connects abstract mathematical ideas with
actual physical phenomena.

Topology concerns itself with the study of shapes and spaces (without a notion of distance)
and how different shapes can be continuously deformed into one another. Topological de-
fects are defects that break the order of otherwise ordered systems—for example, structural
defects in crystalline solids or domain walls separating regions of different magnetic orienta-
tion in magnetic media, but what makes topological defects truly intriguing is that they are
permanently stable in the sense that they can not be continuously deformed.

1.2 Topological Phase Transitions

In a classical sense, matter exists as either a solid, a liquid or a gas. A phase transition
occurs when matter changes from one form into another, such as liquid water turning to
ice. Quantum effects do not normally play any role in these phase transitions because they
are ruled out by thermal fluctuations. However, at very low temperatures, matter takes on
strange new phases and quantum effects become noticeable. For example, electrical resis-
tance disappears at temperatures approaching absolute zero.
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In 1972 Kosterlitz and Thouless identified a new type of phase transitions in 2D systems
[16], where topological defects plays a crucial role. In parallel, this study was carried out in
the Soviet orbit by V.L. Berezinksy [17]. As a result, they were able to show that supercon-
ductivity and superfluidity can occur in 2D layers at low temperatures.

The simplest model that exhibits the BKT (This acronym is in honor of Berezinsky,
Kosterlitz and Thouless) transition is the XY model; i.e, a 2D lattice with unit 2D vectors
at each site. Each vector ~Si is specified by a single angle θi

~Si = (cos θi, sin θi).

Figure 1.1: Schematic representation of the XY Model Lattice [20].

Considering nearest-neighbor interactions, we write the reduced Hamiltonian as

H = − J

kBT

∑
<i,j>

~Si · ~Sj = − J

kBT

∑
<i,j>

cos (θi − θj),

where J > 0 is the interaction coupling constant and kBT accounts for the thermal energy.
Now at low temperatures, as the fluctuations in the angles are going to be small, at long
distances, we take the continuum limit of the lattice model assuming the angle field is slowly
varying and we get

H = −K
2

∫
d2x|∇θ|2 and K =

1

kBT
.

On the other hand, the periodicity allows nontrivial topological configurations: for a
periodic field, we can increase or decrease the field by integer multiples of the periodicity
around the circuit and still come back to the same physical value of the field, in this case we
can write the following constraint ∮

Γ

∇θ · dl = 2πn.

For n = ±1, the configuration is called a vortex, they correspond to topological defects in
the θ(x) field (which is not defined at the core of the defect). At the continuum level, the
vortex is a singular solution of the Euler-Lagrange equation.

∇2θ = 0 s.t.

∮
Γ

∇θ · dl = 2πn.
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And for a single defect, we have |∇θ| = n
r
and is possible to estimate the energy of the single

vortex configuration by

E1 = Jπ ln

(
L

a

)
,

where a is the lattice spacing. In the thermodynamic limit(L → ∞) this energy diverges
logarithmically, hence a lone vortex cannot exist. However, vortex pairs with opposite
charges (dipoles) have a finite energy

E2 = 2Jπ ln
(r
a

)
,

where r is the finite vortex separation, hence pairs can be excited at finite temperature.
There is a simple hand-waving argument for the existence of a phase transition: there are
roughly

(
L
a

)2 ways to place a vortex of size ∼ a2 in an area of L2. Then the configurational
entropy is given by

S = 2kB ln

(
L

a

)
,

and so the free energy

F = E1 − TS = (πJ − 2kBT ) ln

(
L

a

)
−→︸︷︷︸

Thermodynamic Limit

{
+∞ low temperature
−∞ conversely

This indicates that at low temperatures energy effects will dominate and vortices will be
suppressed (the system will behave like a dilute gas of vortex/antivortex pairs) while at
higher temperatures the entropic contributions favor the proliferation of vortices. In other
words, the pairs will unbind and the system will behave as a vortex plasma. Hence, we expect
the BKT Transition to occur by the critical temperature Tc = Jπ

2kBT
.

Figure 1.2: Schematic representation of the Kosterlitz Thouless Transition [18].

In contrast to usual continuous phase transitions, the BKT-transition does not break any
symmetry, something that was completely new and unexpected, since initially, the phase
transition were thought to be related to symmetry breaking phenomena (Landau Theory)
[21].
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The BKT topological model of a phase transition in two dimensions has been used to
explain experiments with many different types of physical systems. Examples include very
thin films of superfluid 4He that form naturally on a solid substrate [22], disordered thin films
of superconductors [23], granular films of superconductors [24].

1.3 Topological Theory of Defects

On a qualitative level, the formation of defects in phase transitions is described by the
geometrical language of group theory [19]. In order to do that, we consider an ordered
medium i.e. a region of space M ⊂ R3 described by a function f : M → X that assigs to
each point of the region an order parameter. The space X it is known as the order parameter
space or manifold of internal states.

Figure 1.3: Order parameter space for 3D Magnetization [19].

Remark A medium is uniform if f is constant everywhere and it is disordered if f = 0, and
ordered otherwise.

Figure 1.4: A Chiral Liquid Crystal is an example of ordered media

We shall be interested in nonuniform media in which the order parameter varies constin-
uously in space except, perhaps, at isolated points, lines or surfaces, these regions constitute
the subset of defects Z ⊂M .
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Figure 1.5: Snapshot of a liquid crystal cell, the interception of black lines shows umbilical
defects, vortices

We now introduce, some topological notions which are necessary to understand and classify
defects.

Definition 1.1 Path-connected
A topological space X is said to be path-connected or pathwise connected if there is
exactly one path-component, i.e., if there is a path joining any two points in X

Definition 1.2 Simple connected
A topological space X is called simple connected if it is path-connected and any loop in
X can be contracted to a point, i.e, for any loop f : S1 → X there exits a continuous map
F : D2 → X such that F |S1 = f . Here, S1 and D2 denotes the unit circle and closed unit
disk in the Euclidean plane respectively.

Definition 1.3 Homotopy
Let f1 and f2 be two curves in a simple connected space X with the same endpoints.
Then, f1 and f2 are homotopic if there is a continuous deformation of f1 into f2, i.e. theres
is a continuous function H : X × [0, 1]→ X such that, H(x, 0) = f1(x) and H(x, 1) = f2(x).

Figure 1.6: Illustration of a Homotopic curves

1. It can be shown that homotopy is an equivalence relation.
2. The equivalence class [f ] of a path f is defined as the set of all paths that are

homotopic to f .
3. A path that is homotopic to a single point is called nullhomotopic

The homotopy classes in a path-connected space X have a group structure if we define the
following operation:
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1. Let x0 ∈ X, let f, g be continuous paths that start and end at x0.
2. We can form a new path by going along f first and then along g.
3. This new path is said to be the composition path fog.

Figure 1.7: Composition path

Definition 1.4 Fundamental Group
The set of all equivalence classes of paths that start and end at x0 is a group under the
operation of path composition.
This is called the fundamental group of X at the point x0, written as π1(X, x0)

Remark In a space X path-connected the fundamental group does not depend on the choice
of base point x0

Topological spaces with different homotopy groups cannot be continuously deformed into
one another and thus are not homeomorphic. As it can be seen in Figure 1.8, the fact that
there is a hole in the M2 manifold means that there are new classes of maps from the circle
to the manifold.

Figure 1.8: Non homeomorphic manifolds

OnM1, there is only one class of maps from S1 and thus α is homotopic to β. However, on
M2, the hole defines infinite classes of maps from the circle. The fundamental group detects
holes in a topological space by mapping loops to the space. If a space has no holes in it, then
loops can always be contracted to points, and all maps are identical, i.e, the fundamental
group on X is trivial π1(X) = I. However, if a space has a single hole in it there will be
distinct maps from S1 → X.
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Example 1. The fundamental group of the unit circle S1 is the collection of paths with
different winding number: π1(S1) ∼= Z

Figure 1.9: Fundamental group of S1

2. On the unit sphere S2, any loop can be smoothly deformed to a point. Thus, all loops
on the sphere are nullhomotopic, and π1(S2) ∼= 0.

Figure 1.10: Fundamental group of S2

3. On the torus T 2 there are three types of loops, those that can be contracted and those
that cannot be contracted because they wind around the donut hole or the donut tube.
Thus, the first homotopy group of the torus is π1(T 2) = Z× Z× I ∼= Z2

Figure 1.11: Fundamental group of T 2

It is possible to generalize the concept of the fundamental group to maps from higher
dimensional spheres, instead of from S1:

Definition 1.5 Homotopy Group
The n-th homotopy group of a topological space X is the set of homotopy classes of maps
from the n-sphere to X, with a group structure, and is denoted πn(X). The fundamental
group is π1(X), and the maps Sn → X must pass through a basepoint x0 ∈ X.

Remark For n > 1, the homotopy group πn(X) is an Abelian group, and the group opera-
tions are not as simple as those for the fundamental group.
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When the n-th homotopy group is non-vanishing, their elements are identified as topological
defects in codimension n. This formalism allow us a classification of topological defects as:

π0(X) 6= 0→ walls
π1(X) 6= 0→ vortices
π2(X) 6= 0→ monopoles
π3(X) 6= 0→ textures

· · ·

1.4 Optical Vortices

Topological defects that had attracted a lot of attention in view of their technological ap-
plications are the so-called Optical Vortices. There are a broad variety of applications of
optical vortices in diverse areas of communications and imaging, from optical tweezers [7],
to quantum computation [9], enhanced astronomical imaging and high-contrast coronagraph
for exoplanet detection [10].

Figure 1.12: Optical Tweezer [7].

Optical vortices are singular points where the electromagnetic field goes to zero and around
which the phase forms an n-armed spiral profile, with n the topological charge.

n =
1

2π

∮
C
∇ϕ · d~l,

where C is an arbitrary curve that goes around the singularity and ϕ is the field phase in
complex representation.
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Figure 1.13: Optical Vortex

Different methods to generate optical vortices have been proposed: spiral phase [25],
plates, diffractive elements [26], computer-generated holograms among others. Several of
these methods are based on the light-matter interaction in liquid crystal media.

In a nematic liquid crystal light valve (LCLV) with a photosensitive substrate [27], the
vortex induction is possible by transforming the intensity of the incoming light into a voltage
that locally applies only across the illuminated regions, this enables the local induction
of stable and positionally reconfigurable matter vortices, trapped at each location. This
matter vortices, in turn, give rise to optical vortices via the transfer of spin-to-orbital angular
momentum onto the incoming light.

Figure 1.14: (a) Schematic representation of a LCLV. (b) Snapshot of a vortex in LCLV. (c)
Representation of the directors projected on the plane [14]
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1.5 Liquid Crystals

Liquid Crystals are materials that have local position and orientation correlation, but not at
larger distances [2, 28], thus allowing them to flow and also to presente crystal-like properties.
They have been a great source of interest since their discovery due to their optical properties
and their use in technological applications, the most widely known being the Liquid Crystal
Display (LCD)

Figure 1.15: Liquid Crystal Display

Liquid crystals may appear in different phases depending on temperature (thermotropic
state), straining conditions, and the particular properties of the chemical compound [29].
There are three principal phases: nematic, cholesteric and smectic. The nematic phase has
the least order amount and the highest symmetry, presenting only orientational order of
the long molecular axis. The cholesteric phase is similar to the nematic, but with chirality,
meaning that it has a macroscopic helical structure. Finally, the smectic phase besides
orientational order it also has positional order, having the molecules ordered in layers (cf.
Fig. 1.16).

Figure 1.16: Liquid Crystal Classification
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In the nematic mesophase, the molecules are elongated with a rod-like shape. The pre-
ferred direction may vary throughout the medium and is called a director. The orientation
of the director is represented by a unit vector ~n(~r, t). that describes the average molecule
position in the liquid crystal. In a nematic, the molecules are able to rotate around their
long axes, and there is no preferential arrangement of their ends, even if they differ. Hence,
the sign of the director has no physical significance, and the nematic behaves optically as a
uniaxial material with a center of symmetry.

Figure 1.17: Nematic Liquid Crystal

Liquid Crystals are a highly dissipative medium whose dynamic is characterized by min-
imizing their elastic energy. In nematic materials there are three principal distinct director
axis deformations: twist, splay and bend; each of these deformation has its own elastic
constant giving rise to the Frank-Oseen Free energy density [2]:

F =
K1

2
(∇ · ~n)2 +

K2

2
(~n× (∇× ~n))2 +

K3

2
(~n× (∇× ~n))2.

where K1 corresponds to the splay deformation, K2 to the twist deformation, and K3 to the
bend one. If the liquid crystal is subject to electric or magnetic fields, then those energy
densities are added accordingly.

Figure 1.18: Principal deformations on a nematic liquid crystal
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Chapter 2

Ginzburg Landau Equations

2.1 Dynamical Systems

A dynamical system is a manifoldM called the phase (state) space endowed with a family
of smooth evolution functions Φt that for any element of t ∈ T , map a point of the phase
space back into the phase space.

Example The evolution function Φt is often the solution of a differential equation:

ẋ = f(t, x),

x|t=0 = x0.

Then x(t) = Φ(t, x0).

When the evolution map Φt depends on a parameter µ, the structure of the phase space
will also depend on this parameter.

Bifurcation theory considers a structure in the phase space (for example a fixed point or
a periodic orbit) and studies its behavior as a function of the parameter µ [30, 31]. At the
bifurcation point the structure may change its stability, split into new structures, or merge
with other structures.

2.2 Bifurcations

To ilustrate this concept, let us consider the following autonomous dynamical system [32]:

dx

dt
= f(x;µ), (2.1)
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where µ is a control parameter. In other words, this parameter allows a transition from one
equilibrium to another. Suppose that x = x0 is a fixed point (or steady state solution), i.e.:

f(x0;µ) = 0.

To study the dynamics around x0, we consider x = x0 + δx with δx a small perturbation
around the equilibrium. (Linear analysis). Replacing into (2.1) and linearizing in δx:

d

dt
δx =

[
∂f

∂x
(x0)

]
· δx, (2.2)

where the matrix
[
∂f
∂x

(x0)
]
is the Jacobian of f evaluated at the equilibrium x0. Since the

perturbation δx obeys a linear equation, its solution is:

δx = eλtv.

Replacing into (2.1) one obtains: [
∂f

∂x
(x0)− λI

]
v,

where I is the identity matrix. Such problem is soluble when:

det

(
∂f

∂x
(x0)− λI

)
= 0. (2.3)

This is known as the characteristic equation,we note that since the left-hand side is a poly-
nomial function of λ,it has n a priori complex roots, where n dimension of x. For vector
equations, the asymptotic stability of a state is determined by the real part of the eigenvalues
because the imaginary part only generates oscillations at frequencies ω = Im(λ), that is:

δx =
∑
j

eRe(λj)t︸ ︷︷ ︸
decay/growth

ei Im(λj)︸ ︷︷ ︸
oscillations

vj.

where {λj}nj=1 are the eigenvalues and { vj}nj=1 are their respective eigenvectors. If there is
an eigenvalue with positive real part, then there is a direction of the phase space in which
perturbations grow. In that case, the equilibrium x0 is unstable. If all the eigenvalues have
negative real part, then the state is stable.

In general, the eigenvalues depend on the control parameter λ = λ(µ), and then a change
of sign of the real part of one eigenvalue can be expected. This change in the stability of a
state when a parameter is increased or decreased is called a bifurcation [33]. The eigenvector
associated to the eigenvalue Re(λ) = 0 is named a critical mode, and its direction define a
center manifold in the phase space [34]. In a similar manner, we can define the unstable
manifold, as the subspace spanned by the eigenvectors satisfying Re(λ) > 0. Moreover, at
the onset of instability the eigenvalue of the critical mode is small, Re(λ) ≈ 0, and then the
center manifold is charaterized by a slow evolution. The rest of the phase space is the stable
manifold, and in this region the evolution is much faster than in the central manifold. This
behavior is known as a temporal scales separation; and it means that one or a few degrees
of freedom are dynamical while all the others evolve fast. Separation of scales permits one
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to describe the system at long times in terms of a few relevant variables that corresponds to
the order parameters.

The case when a solution changes its stability and two new stable solutions appear, it is
called a Supercritical Pitchfork Bifurcation and it is common in systems with reflection
symmetry.

Figure 2.1: Supercritical Pitchfork Bifurcation

The simplest system that presents this bifurcation:

∂tx = µx− x3,

here we recognize the bifurcation parameter µ and note that the bifurcation occurs at µ = 0.

This system has three steady states: x0 = 0 and x± = ±√µ. The two last equilibria exist
only for µ > 0. The eigenvalue of x0 is λ0 = ε, therefore, this state loses its stability when µ
becomes positive. The eigenvalues related to x± = −2ε, then, this states are always stable.

2.3 Ginzburg Landau Equation

In extended systems, the dynamics can be described by an order parameter A = A(~r, t)
that is a function of time and space coordinates, hence its evolution is giving by a partial
differential equation. Typically, the order parameter is a combination of the relevant fields
in the system such that important changes can be easily visualized as changes in the order
parameter.

If we consider the 2D bifurcation in extended systems,this is described by the following
normal form :

∂tA = µA− |A|2A (2.4)

and it is called a Degenerated Pitchfork Bifurcation.

In those systems, it is possible to find the emergence of spatial instabilities, depending on
the parameters of the system. More generically when the amplitude of the order parameter
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goes to zero that point corresponds to a defect, because it breaks the translational invariance
symmetry.

The simplest equation that describes the emergency of 2D defects in extended systems is
the Ginzburg Landau Equation with real coefficientes:

∂tA = µA− |A|2A+∇2A, (2.5)

The system above presents a Degenerated Pitchfork Bifurcation when µ = 0, which
means that the homegeneous state A =

√
µeiφ0 can take any value of φ0. In addition, due to

initial conditions or fluctuations two solutions can exist in different locations simultaneously,
these different locations are called domains. When this happens the two solutions are
connected in a smooth way through an inhomogeneous solutions A =

√
µeiφ0 tanhx

√
µ/2

known in the literature as kinks [35].

Remark It is important to mention that this equation has a Lyapunov functional F so
that ∂tA = − δF

δĀ
, which means that the system is variational and has a relaxation dynamic,

minimizing its free energy:

F =

∫ (
−µ|A|2 +

|A|4

2
+∇A∇Ā

)
dS,

Indeed:

dF
dt

=

∫ (
δF
δA

∂tA+
δF
δĀ

∂tĀ

)
dS,

= −2

∫
δF
δA

δF
δĀ
≤ 0.

and the minimal energy solution corresponds to the homogeneous state A =
√
µeiφ0 , where

φ0 is an arbitrary phase.

2.3.1 Vortex solutions

Ginzburg Landau equations have been used to model a wide variety of physical systems (see,
e.g. [1]). In the context of pattern formation the real Ginzburg Landau equation was first
derived as long-wave amplitude equation in the conection with convection in binary mixtures
near the onset of instability [36].

The complex Ginzburg Landau equation (also known as Gross-Pitaevsky equation) de-
scribe, among other things, macroscopic stationary states of superfluids, Bose-Einstein con-
densation, and solitary waves in plasmas [37]. In the recent years, it has become a subject
of active mathematical research [38, 39, 40].

The stationary equation is simple to write:

−∆A+ (|A|2 − µ)A = 0, (2.6)
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where (in the case of the entire plane) A : R2 → C with the boundary condition:

|A| → √µ as |x| → ∞,

The most studied particle type solution of this equation is the Dissipative Vortex Solution,
i.e., a radially symmetric solution where the amplitude is axisymmetric and the phase grows
continuously around the vortex: Am = R(r)ei(mθ+θ0), where (r, θ) are polar coordinates with
the origin in the vortex position and θ0 is an arbitrary parameter, related to the symmetry
of the system, that shows explicitly the position of the phase discontinuity. Solutions Am are
called m vortices. We note that m = degAm, where degAm, the degree (or vorticity) of A is
the total index (winding number) at ∞ of A considered as a vector field in R2, i.e.

degA =
1

2π

∫
|x|=R

d(argA),

for sufficiently large R.

The known facts about existence and properties of the vortex solutions are as follows:

1. Existence and uniqueness (modulo symmetry transformations and in a class of radially
symmetric functions) [41].

2. Stability for |n| ≤ 1, and instability for |n| > 1 [42].
3. Uniqueness of A±1) in a class of functions A with degA = ±1 and

∫
(|A|2 − 1)

2
< ∞

[43].

Remark Also, solutions breaking the rotational symmetry were found to exist in the case
of the Ginzburg-Landau equation in the ball BR = {x ∈ R2||x| ≤ R} with the boundary
condition A|∂BR = einθ and |n| ≥ 2 ([38]). The boundary condition repels vortices, forcing
their confinement. On the other hand, the energy is lowered by breaking up multiple vortices
into +1 or −1 vortices and merging vortices of opposite signs. Thus, for R not very small,
the lowest energy is reached by a configuration of |n| vortices of degree ± depending on the
sign of n, which, is not rotationally symmetric.

The function R(r) in the vortex solution Am satisfies the ordinary differential equation:

ei(mθ+θ0)

(
µR−R3 +

∂2R

∂r2
+

1

r

∂R

∂r
− m2R

r2

)
= 0.

This equation does not have an analytic solution known, however we can find its asymp-
totic behavior close to infinity and near the origin [1].

R(r) ≈

{
αmr

|m| + · · · , r → 0
√
µ− m2

2
r−2 + · · · , r →∞

where αm is a positive constant that depends on µ.
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Figure 2.2: Ginzburg Landau Vortices with charges +1 and -1 [44]

We can calculate the energy E of the vortex, without lose of generality, we take µ = 1, so
we can write the energy:

E =
1

2

∫
∇A∇Ā+

1

2
(1− |A|2)2dS,

replacing the vortex solution A = Rve
imθ:

E =
1

2

∫
(∂rRv)

2 +
m2R2

v

r2
+

1

2
(1−R2

v)
2dS,

since Rv depends only in the absolute value of m, the energy of a vortex depends only on the
size of the charge but not on its sign. We can write the energy E as:

E = π

∫ ∞
0

(
(∂rRv)

2 +
m2R2

v

r2

)
rdr︸ ︷︷ ︸

E1

+
π

2

∫ ∞
0

(1−R2
v)

2rdr︸ ︷︷ ︸
E2

,

the first term is divergent in an infinite domain, but the second can be solved analytically
using the Rv is the vortex profile:

E2 = π

∫ ∞
0

(1−R2
v)RvR

′
vr

2dr = −π
∫ ∞

0

(
rR′v

d(rR′v)

dr
−m2RvR

′
v

)
dr =

πm2

2
.

It can be shown that considering a cut-off distance L (see Remark), the divergent term
depends on a numerical constant a0 giving by the specific shape of the vortex core solution:

E1 = πm2 ln

(
L

a0

)
,

then we get:

E = πm2 ln

(
L
√

e

a0

)
.
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Hence, both vortices are indistinguishable from the point of view of their magnitude. Notice
that this is the same result obtained by Berezinskii-Kosterlitz-Thouless.

Remark The Ginzburg Landau equation is invariant under the following symmetries:

• Spatial translation invariance: ~r → ~r + ~r0.
• Coordinates rotation: ϕ→ ϕ+ ϕ0

• Coordinates reflection: ϕ→ −ϕ
• Phase invariance: A→ Aeiϕ0

• Reflection invariance: A→ Ā

Remark Note that equation (2.6) is the equation for critical points of the Ginzbunrg-Landau
functional

F [A] =
1

2

∫ (
|∇A|2 +

1

2
(|A|2 − 1)2

)
d2x

But we have the following theorem [42]:

Theorem 2.1 Let ϕ be a C1 vector field in R2 s.t. |ϕ| → 1 as |x| → ∞. If defϕ 6= 0, then
F [ϕ] =∞.

Thus is we want to use energetic arguments for vortices we have to modify F as follows
[42]

Fren[ϕ] =
1

2

∫ (
|∇ϕ|2 − (degϕ)2

r2
χ+

1

2
(|ϕ|2 − 1)2

)
d2x

where r = |x| and χ is a smooth cut-off function

χ =

{
0 for r ≤ 1

1 for r ≥ 2
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Chapter 3

Vortex Induction

3.1 Experimental Setup

Nematic liquid crystals with negative anisotropic dielectric constant and homeotropic an-
choring are a natural physical context where dissipative vortices are observed [2, 28].

Furthermore, it is possible to produce optical vortices through the induction of a material
vortex in a Liquid Crystal Light Valve(LCLV) under suitable illumination conditions [14, 15].

The LCLV is composed of a thin nematic liquid-crystal film sandwiched between a glass
and a photoconductive plate. The LCLV is filled with a nematic mixture exhibiting negative
dielectric anisotropy. The transparent interfaces are treated in order to provide a homeotropic
alingment of the liquid crystals, that is, close to the walls the liquid crystal molecules are
perpendicular to the confining layers (homeotropic configuration), one of which is the pho-
toconductive slab.

Figure 3.1: Schematic representation of a Liquid Crystal Light Valve [44]

If the material has negative dielectric constant εa, then when a voltage is applied to the
plates, the molecules will tend to align perpendicular to the electric field in order to reduce
their energy. This electric forces opposes the elasticity if there homeotropic, therefore, for
low voltages the sample remains in equilibrium, but if the voltage is increased a transition
occurs at the Freedericksz Voltage and a schlieren texture appears [45].
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Figure 3.2: Schlieren Texture [46]

This transition is a Degenerated Pitchfork Bifurcation, where the molecules leave the
vertical axis in an angle that depends on the magnitude of the voltage, but there is a cone of
possible equilibrium positions for the molecules. Two types of stable vortices with opposite
charges are observed, which are characterized by being attracted (repulsed) to the opposite
(identical) topological charge.

Figure 3.3: Umbilical Defects [44]

Owing to the photoconductive substrate, when the LCLV is illuminated by a Gaussian
light beam, the effective voltage drop across the LC layers acquires a bell shaped profile (see
Section 3.2), peaked in the center of the illuminated area and able to overcome the critical
value of the Freédericksz transition for which the molecules start to reorient owing to the
torque exerted by the electric field.
The created defect, couples orbital and spin components of the optical angular momentum;
hence, the outgoing beam acquires a helical wavefront. This allows the creation of Gauss
Laguerre modes in the light once it has crossed the sample. These modes correspond
to an optical vortex, i.e, light modes with a singularity at their centre that carry angular
momentum.

Figure 3.4: Optical Vortex Induction [47]
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3.2 Anisotropic Laplace Equation

To calcule the electric field inside a LCLV, the cell is modelled as two infinite planar parallel
plates separated by a distance d in the z axis, where the photoconductor is in z = d and has
a gaussian-shaped voltage drop, and the other plate is taken as reference, thus the boundary
conditions are:

V (r, θ, z = d) = V0 + αI(r).

V (r, θ, z = 0) = 0.

where I(r) is proportional to the light intensity that illuminates the sample and has a gaussian
profile: I(r) = I0e−r

2/ω2 , where I0 is the intensity peak and ω is the waist of the beam.
Introducing cylindrical coordinates at the center of the gaussian beam, the voltage satisfies
the anisotropic Laplace equation [48]:

∂zzV +
ε⊥
ε‖
∇2
⊥V = 0,

where ∇2
⊥V is the laplacian in the transversal coordinates, ε⊥ is the dielectric constant of the

LC for the perpendicular electrical field and ε‖ is the dielectric constant for the parallel one.
By using Fourier transform in the parallel plane to the plates one obtains for the voltage:

V̂ (z, k) =
1√
2π

∫ ∞
−∞

eik·r⊥V (z, r⊥)dr⊥,

and for the equation:
∂zzV̂ −

ε⊥
ε‖
k2V̂ = 0. (3.1)

Aplying the boundary condition V (z = 0) = 0, the solution of (3.1) only have odd modes,
obtaining:

V̂ (z, k) = A(k)

sinh

(√
ε⊥
ε‖
kz

)
sinh

(√
ε⊥
ε‖
kd

) .
Using the inverse Fourier transform:

V (z, r) =
1√
2π

∫ ∞
−∞

dke−ik·r⊥A(k)

sinh

(√
ε⊥
ε‖
kz

)
sinh

(√
ε⊥
ε‖
kd

) , (3.2)

considering the boundary condition at the photoconductor:

V (r, d) = V0 + αI(r/ω) =
1

2π

∫ ∞
−∞

dke−ik·r⊥A(k) (3.3)

using again Fourier transform it follows:

A(k) =
1√
2π

∫ ∞
−∞

dr⊥eik·r⊥(V0αI(r⊥/ω)). (3.4)
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Replacing (3.4) in (3.1) one obtains the solution to the initial equation:

V (z, r) =
1√
2π

∫ ∞
−∞

dke−ik·r⊥
sinh

(√
ε⊥
ε‖
kz

)
sinh

(√
ε⊥
ε‖
kd

) (∫ ∞
−∞

dr∗⊥eik·r∗⊥(V0αI(r⊥/ω))

)
.

For the sake of simplicity; one can consider the limit of a Gaussian beam sufficiently flattened
(ω → ∞). This limit is consistent with experimental observations, since the beam waist
(about 200 µm) is much larger than the size of the vortex (5 µm). In this aproximation:

sinh

(√
ε⊥
ε‖
kz

)
sinh

(√
ε⊥
ε‖
kd

) ≈ z

d
+O

(
1

ω2

)
, (3.5)

then:

V (z, r) ≈ z

d

1√
2π

∫ ∞
−∞

∫ ∞
−∞

dqdpeiq(p−r/ω)(V0 + αI(p)) =
z

d

∫ ∞
−∞

dpδ(p− r/ω)(V0 + αI(p)),

solving the integral, at first order the voltage inside the valve is giving by [48]:

V (z, r) ≈ z

d
(V0 + αI(r/ω)).

Then, the electric field E(r, θ, z) inside the LCLV takes the form:

~E = −~∇V = Ez ẑ + Err̂ = −1

d

[
V0 + αI

( r
ω

)]
ẑ − zα

dω

dI(r/ω)

dr
r̂,

with ẑ and r̂ the unitary vectors in cylindrical coordinates. Note that the electric field
contains an axis-symmetrical structure (c.f. Fig. 3.5). This structure of the electric field
projected onto the x− y plane corresponds to a vortex with positive charge and zero phase
as is shown in Figure 3.6

Figure 3.5: Vertical cross section [49] Figure 3.6: Horizontal cross section
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3.3 Amplitude Equation

The description of the nematic liquid crystal is given by the director vector ~n, which accounts
for the molecular order. The dynamical equation for the director ~n comes from the Frank-
Oseen Free Energy Density [2, 28]:

F =
K1

2
(∇ · ~n)2 +

K2

2
(~n× (∇× ~n))2 +

K3

2
(~n× (∇× ~n))2 +

εa
2

( ~E · ~n)2.

Minimizing the free energy, with the aditional constraint |~n| = 1 the Euler-Lagrange equation
for the director reads:

γ
d~n

dt
= −δF

d~n
+ ~n

(
~n · δF

δ~n

)
, (3.6)

thus follows:

γ∂t~n = K3 [∇2~n− ~n(~n · ∇2~n)] + (K3 −K1)[~n(~n · ~∇)(~∇ · ~n)− ~∇(~∇ · ~n)]

+ (K2 −K3)[2(~n · ∇ × ~n)(~n(~n · ∇ × ~n)−∇× ~n) + ~n×∇(~n · ∇ × ~n)]

− εa(~n · ~E)(~n(~n · ~E)− ~E),

where γ is the relaxation time, εa is the anisotropic dielectric constant that accounts for non-
linear response, {K1, K2, K3} are the nematic liquid crystal elastic constants, which acounts
for the elastic deformation of splay, twist, and bend type, respectively. Under uniform illu-
mination, the electric field is given by ~E = (V/d)ẑ = Ez ẑ, where Ez is the root mean square
amplitude of the electric field, V is the applied voltage, and d is the thickness of the liquid
crystal layer.

A trivial equilibrium of the liquid crystal layer is the homeotropic state, ~n = ẑ. This state
undergoes a degenerate stationary instability due to the effect of the electric field, setting
~n =

(
u, v, 1− u2+v2

2

)
where u, v are small perturbations, we obtain at first order:

γu̇ = K3∂zzu− εaE2u,

γv̇ = K3∂zzv − εaE2v.

By taking a solution of the form u(z, t) = u0eσt sin (πnz/d) and v(z, t) = v0eσt sin (πnz/d)
with {u0, v0} constants and n an integer number, we obtain the rate growthn relation:

γσ = −K3k
2 − E2εa,

where k = nπ
d
, this shows that the first wavelenght that destabilizes the system is kc = π

d
,

and solving for the electric field we obtain the minimum value that causes movement in the
molecules:

E =

√
−K3π2

εad2
,

and thus the critical Freedericksz Voltage is VF =
√
−K3π2/εa [45]. Then, the director

undergoes orientational instability, i.e., the molecules do not want to aling with the electric
field. As a result of elastic coupling between the molecules the director has a cone of possible
equilibria. Figure 3.7 illustrates a degenerate Pitchfork bifurcation.
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Figure 3.7: Freedericksz Bifurcation

When the illumination has a Gaussian profile, close to the transition point we introduce
the ansatz:

n(r, θ, z) ≈

 u(r, θ, t) sin
(
πz
d

)
w(r, θ, t) sin

(
πz
d

)
1− (u2+w2)

2
sin2

(
πz
d

)
 .

Introducing the above ansatz in the director equation, integrating in the z coordinate over
one period, and defining the complex amplitude A = u+iw, after straightforward calculations
(see Appendix) one obtains the Topologically Driven Ginzburg Landau Equation:

γ∂tA = µA− aA|A|2 +∇2
⊥A+ δ∂η,ηĀ+ bf(r)eiθ, (3.7)

where µ(r) = −K3(π/d)2−εa(V0+αI)2/d2 is the bifurcation parameter, a = −[K3(π/d)2/4+
3εa(V0 + αI)2/4d2] > 0 is the linear response, b = 2εadαV0/π, ∂η = ∂x + i∂y, δ = (K1 −
K2)/(K1 + K2) stands for the anisotropy elasticity of the system, and f(r) = I0r

ω2 e−r
2/2ω2 is

strength of the external forcing.

The external forcing is generated by the inhomogeneous radial electric field, which in turn
is induced by the inhomogeneous profile of the light beam. The forcing term is responsible
for inducing a matter vortex with positive charge in the centre position where the applied
Gaussian beam is peaked, which is at origin of the self-stabilization mechanism for the vortex
induction. A simple explanation of the origin of this vortex is due to the structure of the
electric field (see Fig. 3.5), the molecules are oriented forming a positive charged vortex
configuration.

Without forcing and anisotropy this equations corresponds to the Ginzburg Landau
Equation, with real coefficients, which admits stable dissipative vortex solutions with topo-
logical charge (winding number) ±1. The presence of anisotropy breaks the symmetry, and
the +1 vortex is energetically favored with respect to −1.

Similar equation were derived before: using the method of homogenization for nematic
liquid crystals near the Fréedericksz transition [45], and for modeling self-organization in an
array of microtubules interacting via molecular motors [50].
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3.4 Anisotropic Ginzburg Landau Equation

Ignoring the inhomogeneous forcing, the amplitude of the critical mode satisfies theAnisotropic
Ginzburg Landau equation:

γ∂tA = µ0A− aA|A|2 +∇2
⊥A+ δ∂η,ηĀ. (3.8)

This equation has lost the independent rotational symmetries A → Aeiθ and z → zeiθ with
θ ∈ (0, 2π), retaining only the joint symmetry A(z)→ e−iθA(zeiθ) [44].
Note that equation (3.8) can be rewritten in the form:

∂tA = − δE
δĀ

,

where the free energy is:

E(A, δ) =

∫
Ω

dS

[
|∇A|2 +

1

2
(µ0 − |A|2)2 + δRe{(∂ηĀ)2}

]
, (3.9)

where Ω ⊂ R2 is a bounded domain 1.

The trivial equilibria that minimize the free energy are |A|2 = µ0. However, this equation
has nontrivial inhomogeneous equilibria.

Using the notation Rϕ0 for a rotation by a angle ϕ0 of R2 about the origin, a short
calculation shows that when ϕ0 = π/2:

E(A, δ) = E(A ◦ Rϕ0 ,−δ) = E(Rϕ0A,−δ).

Moreover, E has a fourfold symmetry in the sense that:

E(A, δ) = E [Rmπ/2A ◦ Rkπ/2, (−1)m+kδ].

By introducing the ansatz A(r, θ) = R(r)ei(θ+ϕ0) in equation (3.8) for the vortex solution
with positive topological charge, we obtain the following set of scalar equations:

0 = µ0R− aR3 + (1 + +δe−2iϕ0)

(
d2R

d2r
+

1

r

dR

dr
− R

r2

)
. (3.10)

0 = δ sin 2ϕ0

(
d2R

d2r
+

1

r

dR

dr
− R

r2

)
. (3.11)

From equation (3.11), the only possibility to obtain a nontrivial solution is to consider the
phase parameter satisfying sin 2ϕ0 = 0, which gives the discrete solutions ϕ0 = {0, π/2, π, 3π/2}
and which is consistent with the fourfold symmetry mentioned above. On the other hand,
the equation for the magnitude of the amplitude reads:

0 = µ0R−R3 + (1 + cos 2ϕ0)

(
d2R

d2r
+

1

r

dR

dr
− R

r2

)
.

1The energy of vortex solutions diverges in unbouded domains (c.f. Remarks Section [2.3])
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Since ϕ0 = {0, π/2, π, 3π/2} , we must have cos 2ϕ0 = ±1. Rescaling the space by the factor√
1± δ, the isotropic solution is recovered:

A = R±v

(
r√

1± δ

)
ei(θ+π

4
+∓π

4
+nπ).

withRv the magnitude of the vortex solution of the Ginzburg Landau equation n = 0,±1,±2, . . . .
Consequently, the anisotropic vortex solution corresponds to a scaling of the isotropic vortex
solution, with a finite number of possible phase jumps.

Remark Note that the vortex solution of the anisotropic Ginzburg Landau equation is not
well-defined for δ = ±1, this extremes cases occurs when one of the elastic constants (K1 or
K2) diverges. This happens when the liquid crystal goes through a phase transition from the
nematic state to a smetic one.

To study the existence, stability properties and bifurcation diagram of the vortex solution
with positive topological charge, one can analize the properties of the free energy E(A, δ).
Using the vortex solution A = R±v (r/

√
1± δ)ei(θ+ϕ0), where + stands for ϕ0 = {0, π} and −

for ϕ0 = {π/2, 3π/2}, and taking Ω = B(0, L) we obtain:

EA = π

∫ L

0

{
(∂rRv)

2 +
R2
v

r2
+

1

2
(1−R2

v)
2 + δ cos (2ϕ0)

(
∂rRv +

Rv

r

)2
}
rdr,

changing variables ρ = r/
√

1± δ, we obtain:

EA = π

∫ L/
√

1±δ

0

{
(∂ρRv(ρ))2 +

R2
v(ρ)

ρ2
+

(1± δ)(1−R2
v(ρ))2

2
± δ

(
∂ρRv(ρ) +

Rv(ρ)

ρ

)2
}
ρdρ,

after straightforward calculations (see [48]), the energy of the vortex with positive topo-
logical charge is:

E = π ln

(
L

a0

√
1± δ

)
+
π(1± δ)

2
± πδ

(
ln

(
L

a0

√
1± δ

)
+ 1

)
.

This expression shows that the scaling that makes the core smaller is the one with less
energy and, therefore, preferred by the system.
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Chapter 4

Rayleigh Vortex

4.1 Rayleigh Vortex

In the context of the LCLV experimental setup described in Sec[3.1], we can consider the
topologically driven Ginzburg Landau equation (3.7):

γ∂tA = µA− aA|A|2 +∇2
⊥A+ δ∂η,ηĀ+ bI ′eiθ, (4.1)

with the parameters given in Sec[3.3] and I ′ =
√

(∂xI)2 + (∂yI)2. When the LCLV is forced
with a single beam of sufficiently intense light, it always induces a vortex of positive charge at
the center of the beam [14, 15]. To characterize analytically the solutions of equation (4.1),
we assume µ(r) < 0 (i.e in a region below the Fréedericksz transition) and consider a single
ray of light with intensity I = I0er

2
⊥/ω

2 , where I0 and ω are, the stregth and waist of the light
beam, and r⊥ =

√
x2 + y2 is the radial coordinate with its origin in the center of the beam.

We can renormalize the variables using the width ω of the gaussian beam: ρ = r/ω and
renaming constants

∂tA =
(
µ0 + βe−ρ

2
)

︸ ︷︷ ︸
µ(r)<0

A− |A|2A+
1

ω2
∇2A+

δ

ω2
∂ηηĀ+ µ1

ρ

ω
e−ρ

2

eiθ. (4.2)

When ω � 1 and I � 1, we find the following approximate stationary solution

AR(r⊥, θ) = −bI
′(x, y)

µ
eiθ =

µ1

ω2µ
r⊥e−r

2
⊥/ω

2

eiθ, (4.3)

where θ is the angular coordinate with its origin in the center of the Gaussian. It can be
checked that the error of this approximate solution is of order O

(
1
ω6

)
, in other words, the

nonlinear term and the spatial derivatives are negligible in this limit. We called this solution
the Rayleigh vortex after the Rayleigh distribution [51]. Figures 4.1 shows surface plot,
vectorial representation, and phase of the Rayleigh vortex.

29



(a) Surface plot of Rayleigh vortex

(b) Vector representation of the vortex solution.
The colors show the magnitude of the amplitude
|A|

(c) Countour plot of the phase of amplitude A,
arg(A) = Im(A)/Re(A) (d) Rayleigh vortex profile

Figure 4.1: Rayleigh vortex of the topologically driven Ginzburg Landau equation with
µ = −3,a = 1, δ = 0,b = 1,I0 = 0.01 and ω = 30. The colors account for the magnitude of
the amplitude

4.2 Numerical Results

The maximum value h that the vortex reaches corresponds to vortex height, h = 2bI0/µω
√

2e
and the width of the vortex is l = ω/

√
2 (c.f. Fig. 4.1). Figure 4.2 shows a comparison

between numerical solutions of the topologically driven Ginzburg Landau equation (4.1) and
the approximation (4.2). From this figure we infer that for a light beam of big waist the
Rayleigh vortex is an excellent approximation of the topologically driven Ginzburg Landau
vortex. For light beams of order one, the effect of the Laplacian and the nonlinear term
begins to play a role, and the Rayleigh solutions ceases to be dominant.
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Figure 4.2: Log-log plot of the height of the vortex as function of beam waist ω. The
heights obtained by numerical simulations of the topologically forced Ginzburg Landau equa-
tion(crosses) with µ = −3,a = 1, δ = 0,b = 1,I0 = 0.01 are compared with h = 2bI0/µω

√
2e.

In Figure 4.3 we can observe the form of the numerical solution as the effect of the neglected
terms becomes noticiable.

Figure 4.3: Numerical comparison of the Rayleigh solution and the vortices obtained from
equation (4.1)

To give actual physical sense to the condition ω � 1, we need to build-up a dimensionless
number from the constants of the problem:

ωγ2

K
� 1

where γ is the rotational viscosity and K is any of the elastic anisotropy constants of the
liquid crystal:

[K] =
L

T 2
[γ] =

1

T
,
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with [52]:

K ∼ 3.4× 10−7 cm

s2
γ ∼ 1.9

1

s
,

then K/γ2 ∼ 3µm.

Experimentally, the standard width used for the waist of the light beam (250µm) is 50
times larger that the length associated with the elastic constant (5µm), that is, in our dimen-
sionless units ω = 50. Then, below the Fréedericksz transition, Rayleigh vortices accounts
for the umbilical defects.

To explain the origin of the Rayleigh vortex, we note that the liquid crystal light valve is
a thin film and thus one should consider averaged quantities. The voltage averaged over the
thickness 〈V (r⊥)〉 takes the form:

〈V (r⊥)〉 =
1

d

∫ d

0

V (z, r⊥)dz =
V0 + αI(r⊥)

2
.

Likewise, calculating the electric field averaged in the vertical direction, we obtain 〈E(r⊥, φ)〉 =
−∇r⊥〈V 〉 = αI0(r⊥/2ω

2)e−r
2
⊥/ω

2
eiφ, where the electric field is represented in complex vari-

able notation. Therefore, the Rayleigh vortex is proportional to the averaged electric field or,
equivalently the gradient of the averaged potential AR(r⊥, φ) = 4b〈E〉/α = −4b∇⊥〈V 〉/α.

Then the external forcing giving by the external electric field is resposible for inducing a
matter vortex with positive charge at the center position where the applied Gaussian beam
is peaked, this is the origin of the self-stabilization mechanism for the vortex induction.

Figure 4.4: Numerical comparison of the Rayleigh solution and the vortices obtained from
equation (4.1) in the I vs µ0 space parameter
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4.3 Cubic Approximation

In the limit when ω � 1 but I is not necessarily small, the cubic term in equation (4.1) can
not longer be neglected, and in the stationary case equation (4.2) becomes:

(µ0 + βe−ρ
2

)A− |A|2A+
µ1

ω
ρe−ρ

2

eiθ = 0. (4.4)

Looking for vortex solutions A(r, θ) = R(r)eiθ and defining µ(ρ) = (µ0 + βe−ρ
2
) and f(ρ) =

µ1
ω
ρe−ρ

2 , the amplitude of the vortex solution R satifies:

R3 − µR− f = 0. (4.5)

This is a depressed cubic equation and can be solved following the Cardano formula:

R =
3

√
f

2
+

√
f 2

4
− µ3

27
+

3

√
f

2
−
√
f 2

4
− µ3

27
. (4.6)

Figure 4.5 shows the amplitude profile in this cubic approximation.

Figure 4.5: Amplitude profiele of vortex solution in the cubic approximation

In the limit ω � 1 and I � 1, this solutions coincides with the Rayleigh vortex solu-
tion discused in Section [4.2], and numerical simulations shows that this new approximated
solution accounts for the nonlinear effects when I � 1.

Then, the Cubic or Cardano vortex is an even better approximation of the topologi-
cally driven Ginzburg-Landau vortex than the Rayleigh vortex with drawback of being less
manipulable analytically.
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4.4 Bifurcation Diagrams

In this section, we study the bifurcations diagrams found by simulating numerically equation
(4.1) in the space of parameters {ω, µ} and {I, µ}.

We will name the different regions showed in the figures 4.6 and 4.7 simply by yellow
region, pink region, blue region, green region and red region:

1. Yellow region: In this region, the solution is given by the Rayleigh vortex.
2. Pink region: In this region, the solution is given by the Cubic Vortex given by formula

(4.6).
3. Blue region: In this region, the effect of the spactial derivatives can not be negleted

and the Raylegh approximation ceases to be valid.
4. Green Region: In this region, the system is above the Fréedericksz transition, and

the core of the vortex solution is given by the intrisic parameters of the system.
5. Red Region: In this region, the solution correponds to the Standard Vortex of the

Ginzburg Landau equation studied in Chapter 3.

Figure 4.6: Bifuraction Diagram µ vs ω

Remark In the regime ω � 1, numerical simulations breakdown since this region is under
the charactheristic scale of the equation.
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Figure 4.7: Bifuraction Diagram µ vs I

4.5 Standard vortex solution

When the system is above the molecular reorientational transition (µ > 0), the elastic cou-
plings (taking into account in (4.1) by the Laplacian and the second-order differential operator
describing anisotropic space variation with δ 6= 0) determines the vortex core size, which is
now of the order of few microns.

In this regime, the Rayleigh vortex solution does not account for the observed vortice, and
the solution of the system is given by a slightly deformation of the Standard Vortex solution
(Chapter 3) of the Ginzburg Landau equation.

Considering the amplitude equation (4.1) as in [48]:

∂tA = µA+∇2A+ δ∂ηηĀ− A|A|2 + bI ′ei(θ+θ0) (4.7)

The forcing induces a single vortex along with the preferred direction for the phase jump θ0.
This phase jump may or may not coincide with the phase jump preferred by the anisotropy
(which depends only in the sign of δ).

When these two effects do not agree, numerical simulations and experimental observations
[14, 15, 48] have shown that the vortex starts to turn in order to align its phase jump close
to the center with the preferred value for the anisotropy, but mantaining the phase jump
imposed by the forcing in the border of the illuminated area. This phenomenon gives rises to a
vortex with swirling arms as a stationary state. Figure 4.8 shows numerical and experimental
observations of this solution:
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Figure 4.8: a) Numerical simulation of a vortex with swirling arms, b) Experimental obser-
vations [48]

Figure 4.9: Profile and surface plot of the solution for µ > 0 as µ increases

Remark This solution converges monotocally to √µ as r →∞.
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4.6 Vortex Lattice

Generalizing the previous analysis one can consider two light beams illuminating the opti-
cal light valve in different positions (r1 and r2). The averaged potential 〈V (r⊥)〉 = (V0 +
αI(x, y, r1) +αI(x, y, r2))/2, where I(x, y, ri) is a Gaussian beam centered at ri, corresponds
to a surface with two mounds. Since the equilibrium amplitude is the gradient of the averaged
potential we identify maxima or minima of the potential with positively charged vortices and
the saddle points with vortices of negative charged. Figure 4.9 illustrates this in the case of
two Gaussian beams. Note that a negative vortex is located between the positive vortices.
By decreasing the distance between the centers of the Gaussian, the charges approach each
other. When this distance is of the order of the beam waist, the vortices merge, leaving a
single vortex of a positive charge.

Figure 4.10: Analitycal vortices solutions induced by two Gaussians using equation 4.1 with
two forcing terms. The total topological charge is N = 1. The complex amplitude A was
obtained using formula A = −4b∇r⊥〈V 〉/α. The left panels correspond to the vector repre-
sentation of the complex amplitude. The colors account for the magnitude of the amplitude.
The contour plot of the phase of the amplitude is shown on the left panel.
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This can also be shown considering the superposition of two Rayleigh vortices nested in
noncoaxial Gaussian beams. Assuming the vortices are located along the x axis and separated
symmetrically from the origin a distance a. The superposition of such beams can be written
as

v(x, y) = v1(x, y) + v2(x, y),

with

v1(x, y) =

(
−(x− a)e−[(x−a)2+y2]/ω2

−ye−[(x−a)2+y2]/ω2

)
,

v2(x.y) =

(
−(x+ a)e−[(x+a)2+y2]/ω2

−ye−[(x+a)2+y2]/ω2

)
,

One finds that all the existing vortices are located on the y = 0 axis, and their x coordinates
satisfy:

x

a
= tanh (2xa).

Figure 4.11: Single vortices presented in the superposition v(x, y)

When the initial separation between the individual beams reaches the critical value a =
ac = 1/

√
2 the number of existing vortices changes. Below ac, the total field contains only one

vortex. This case can be understood physically since there is a strong superposition between
rays of light. Such vortex has positive charge and is located at the origin. Beyond the critical
separation, the two existing single-charge vortices with positive charge are expelled toward
both sides of the origin, at which a negatively charged vortex remains. This vortex with
negative charge is always present, so the net topological charge of the superposition of the
two charges +1 vortices is always +1. Indeed, expanding v(x, y) in Taylor series around
(0, 0):

v(x, y) ≈
(
−x+ 2a2x

ω2

−y

)
.

Taking a = ω shows, explicitely a vortex of topological charge −1 at the origin:

v(x, y) =

(
x
−y

)
= re−iθ.

But when the individual vortices are separated by several beam widths (a � ω), the nega-
tively charged vortex is hidden in the dark region surrounding the individual beams, where
the field amplitude is exponentially small. Thus the presence of this negative charged vortex
might be difficult to detect by experimental means like the polarimetry technique.
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Numerical simulations of equation (4.1) with forcing term consisting of a superposition of
Gaussians equivalent to illuminating the optical valve with several light beams give vortex
lattices as a stable equilibria. The middle pannels in Figure 4.8 show the typical lattices.
Circles account for the waist of the Gaussian forcing. When the liquid crystal light valve is
forced with a single beam of sufficiently intense light, it always induces a vortex of positive
charge at the center of the beam. This result is easily understood as a consequence of the
voltage induced by a single ray being an electric field with a positively charged vortex. Figure
4.8 shows the vortices induced by a green laser.

Figure 4.12: Numerical Vortex Lattices forced with two, four, and six rays of light.

39



An excellent agreement is observed with the vortex lattices obtained by numerical simula-
tions of the topologically driven Ginzburg Landau equation (4.1). Liwewise, there is excellent
agreement with the experimental observations. However, due to the anisotropic effects that
are not accounted for in the Rayleigh vortex approximation, the experimental positive vor-
tices exhibit swirling arms discused in Section [4.5]. Note that in the case of four light beams,
the averaged potential has four saddle points on the side of a square formed by the maxima
and a minimun on the intersection of the diagonals. This explains why in the experiment a
swirling vortex is induced on the diagonal between the topologically forced vortices.

The existence of a +1 vortex at the origin in configurations with +1 vortices placed at
the vertices of any 2n-sized regular polygon with n ≥ 2, can also be shown following simple
steps.

Taking ~v(x, y) =
∑4

i=1 vi the superposition of 4 vortices in the square configuration of
Figure 4.12

Figure 4.13: Square configuration: black dots acounts for +1 charges, while red for −1
charges

Then for the x coordinate:

vx =
4∑

i=1

(vi)x = (x+ ω)e−x++y+ + (x− ω)e−x−−y−

+(x+ ω)e−x+−y− + (x− ω)e−x−−y− ,

where x± and y± denotes the following quantities:

x± =

(
x± ω
ω

)2

y± =

(
y ± ω
ω

)2

.
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Expanding in Taylor series around the origin gives:

4∑
i=1

(vi)x ≈ ω − ω

2
(x+ + y+)− ω +

ω

2
(x− + y−)

+ω − ω

2
(x+ + y−) + ω +

ω

2
(x− + y+)

≈ ω(x+ − x−)

≈ 4x.

Similarly, in the y component expansion gives vy ≈ 4y. This implies that locally around the
origin the field follows a +1 vortex configuration.

In conclusion, we have been able to establish analytically the origin of the vortex lattices
observed in illuminated liquid crystal layers with photosensitive walls below the Fréedericks
transition. In the regime where the Rayleigh vortex does not account for the observed
vortices, the position and configuration of the vortex lattices are qualitatively described by
the lattices of the Rayleigh vortices. The amplitude equation describe qualitatively and
quantitatively the dynamics near the instability point.

At the onset of the Fréedericksz transition, depending on the light intensity, the vortices
positioned in the center of the light beam can undergo instabilities and move to dark areas
(the area outside the illuminated region). Thesse new topological defects known as shadow
vortices [53, 54] are characterized by having an exponetially small height. Experimentally
they are detected indirectly. The lattice created by these and the induced vortices is a
problem currently in progress. These are all the topological solutions in the one-dimensional
model giving by equation (4.8).

Figure 4.14: (a)Schematic setup for vortex induction. (b), (c) Intensity profile measured
using linear crossed polarizers for a large (V0 = 18V ) amd a small (V0 = 17V ) voltage,
respectively. The presence of a shadow vortex is revealed in (c) by the lines of zero intensity
intersecting at the boundaries of the illuminated region. After [53]
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4.7 One-dimensional scalar model

To shed lthe dynamics of phase singularities, we can consider the equivalent equation in one
dimension [53, 55]

∂tu = (µ0 + βe−x
2/ω2

)u− u3 + ∂xxu+ αxe−x
2/ω2

, (4.8)

where u(x, t) is a one-dimensional order parameter, µ0 < 0 is a control parameter, β stands
for the intensity of the inhomogeneous linear parameter and satisfies β + µ0 > 0, ω is the
width of the Gaussian, and α is the intensity of the forcing. For β = α = 0, the previous
model corresponds to the real Ginzburg-Landau equation or the overdamped φ4 model [56].
Topologically non trivial solutions of (4.6) are kink (and they corresponds to the equivalent of
vortex solution in Eq. (4.1)). When the kinks are spatially monotone increasing (decreasing),
they are positively (negatively) charged. The innhomegeneous linear term (proportional to
β) causes the kink to move in the direction of its gradient. On the other hand, the forcing
term (proportional to α) tends to generate a kink that is positioned at the origin. Then,
the superposition of these two terms-when α is large enough-must generate a kink that is
positioned at the origin, i.e, standard kink.

When α decreased and exceeds a critical value, the standard kink becomes unstable and
begins to move to the region where the linear parameter µ(x) is negative and is finally
positioned in the corner region, this corresponds to the shadow kink [53, 55]. If the limit
ω � 1 is taking into account in the region µ(x) < 0, it is possible to find an analytical
solution u ∼ −αxe−x

2/ω2

µ0
that is called the Rayleigh kink. These are all the topological

solutions that exists in the model giving by equation (4.8).

Figure 4.15: One dimensional topological equilibria

The case when µ0 > 0 and α = β = 0 was briefly in Section [2.3], in this scenario (4.8)
reduces to
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∂tu = µ0u− u3 + ∂xxu.

In this equation there are two symmetrical homogeneous solutions, u =
√
µ0 and u =

−√µ0, these solutions are both stable and have the same energy.

Moreover, because of initial condition or fluctuations these two solutions can exist in
different locations in the system simultaneously, these different locations are called domains.
When this happens the two solutions are connected in a smooth way through a kink solution,
u =

√
µ0 tanhx

√
µ0/2 which is shown in Figure 4.16. Due to the symmetry u → −u, the

analogous Antikink also exist u = −√µ0 tanhx
√
µ0/2. If more than one kink (or antikink)

exists in the system, they will atract if they are of different charge or repel if they have the
same charge, in order to minimize the total free energy. Then, when two kinks of different
type collide they annihilate leaving a homogeneous solution in the system as a global energy
minimum.

Figure 4.16: Kink solution with µ0 = 1. This state connects the solutions u =
√
µ0 and

u =
√
µ0

Experimentally, kink solutions connecting spatially modulated states on one-dimensional
fluidized granular layers have been reported [57]

Figure 4.17: Top: Typical image of a granular kink. Bottom: Granular kink averaged over
1000 frames, d stands for the granular kink height with respect to middle plane and ∆ stands
for the typical core size of the kink. [57]
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4.8 Numerical Results in the one-dimensional model

The Rayleigh kink solution is an excellent approximation for the one-dimensional model
(4.8). Figure 4.18 shows a comparison between numerical solutions of equation (4.8) and
the approximation u = −αxe−x

2/ω2

µ0
, we can observe the form of the numerical solution as the

effect of the neglected term becomes noticiable.

Figure 4.18: Numerical comparison of the Rayleigh kink solution and the kinks obtained
from equation (4.8)

One-dimensional parallel of the vortex lattice discused in Section [4.5] correspond to pe-
riodic solutions of equation (4.8) with n forcing terms centered at points xi, i = 1, . . . , n

∂tu = (µ0 + βe−x
2/ω2

)u− u3 + ∂xxu+
n∑

i=1

α(x− xi)e
−(x−xi)2/ω2

. (4.9)

With points xi equidistant i.e. |xi − xi+1| = λ, ∀i. Since actually there exists a critical
distance λc such that the number of existing kinks changes (c.f. Section [4.5]), as long as
the distance between the forcings exceed the critical distance the equilibrium solution will
exhibit pairs kink-antikink.
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Figure 4.19 shows the periodic solutions of equation (4.9) in the case n = 2 for different
values of the control parameter µ. (In blue numerical solution of equation (4.9) and in yellow
Rayleigh approximation superposition)

Figure 4.19: Periodic solutions of equation (4.9) for different signs of the control parameter

Particularly interesting for future research is the case when µ ∼ 0 since standard kinks
appears connected through pairs of shadow kinks/antikinks.

Figure 4.20: Standard kinks connected through shadow kinks obtained in numerical simula-
tions

We conjecture that the emergence of these kind of solutions is due to shadow kinks pairs
decrease the total energy, but this is yet to be confirmed through rigorous methods since
interaction shadow-standard kink is not fully understand.
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Chapter 5

Topological Magnetic Forcing

5.1 Generation of umbilics by inhomogeneuos magnetic
fields

As discussed in the previous chapters, optical vortices can be derived directly from induced
umbilical defects in Liquid Crystal textures. Indeed, an umbilical defect is one that natu-
rally possesses a vortex-like morphology, making it attractive for spontaneously enabling the
matter template to impress a helical structure on an incoming light wavefront. Nonetheless,
major problems arise when practical implementations are aimed at, because soft-matter de-
fects are dissipative structures that obey a complex Ginzburg-Landau equation (CGLE) and
undergo a coarsenig dynamics ruled by their mutual interaction and annihilation. Therefore,
they are unstable, usually limited to a single defect pair per sample or a defect-free sample,
and without the possibility of controlled addressing.

In [58] Pieranski presents a method of controlled generation of umbilics by means of mag-
netic fields of appropiate geometry applied temporarily before, during or after the Freederick’s
transition. Therefore,magnets are used to control the initial conditions where the vortices
were positioned. The induction is achieved by the use of a cylindrical magnet oriented with
is symmetry axis along the ~n0 ‖ z direction. But this approach have a lot of significant
disadvantages that prevents the true creation and pinning of matter vortices in the nematic
sample, since the magnets are applied for 5 minutes and then removed resulting in a tran-
sient induction of defects as the system relaxes after the removal of the magnet and the
simultaneous application of a electric field E > Ec is not enough to sustain a permanent
vortex.
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Figure 5.1: Generation of a −2π umbilic by a system of antiparallel magnets: (a), (b) final
state of the distortion in the presence of magnets; (c), (d) relaxation of the distortion after
the removal of the magnets. After [58]

5.2 Experimental Setup

Recently, in the Laboratory of robust phenomena in optics (LAFER), a novel and cheap
method for robust vortex induction has been designed, this approach relies on nematic liquid
crystal strong interaction with magnetic fields.

CCD camera

polarizer

objective

magnetic ring

NLC

polarizer

Vω(t)

5x

x

z

y

x

z

y

a)

b)

Figure 5.2: Experimental setup. Courtesy of Valezka Zambra

We consider a liquid crystal cell with thickness d= 0.75µm sandwiched between two glass
plates which have been chemical treated for hometropic anchoring and equipped with indium
tin oxide (ITO) electrodes, the cell is filled, by capilarity, with the nematic liquid crystal
MLC-6608(Merck). On top of nematic liquid crystal cell a neodymium magnetic ring 14x5
mm was placed. The system is located betweeen linear crossed polarizers of a Olympus Bx51
microscope. A sinusoidal voltage with 100 Hz frequency is applied to the sample, and the
experimental images are captured by a MODELO ThorLabs CCD camera
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The employed LC has negative magnetic and dielectric anisotropy, χa = χ‖ − χ⊥ (εa =
ε‖ − ε⊥), with χ‖ and χ⊥ the magnetic (dielectric) susceptibility for the magnetic(electric)
fields parallel and orthogonal, respectively, to the molecular director.
In its ground state withoud external fields, the director ~n field is homogeneous and the sample
has the axial symmetry around the z-axis.

Owing to the magnetic anisotropy χa = χ‖ − χ⊥ of the diamagnetic susceptibility of the
nematic phase, the magnetic field ~B applied to the sample exerts the torque:

Γm =
χa
µ0

(~n · ~B)(~n× ~B) ≈ χa
µ0

Bz(~n× ~B), (5.1)

on the director and tilts it out from its initial orientation. The new orientation results form
the balance between the magnetic torque and the restoring elastic torque.

When a bias V0 is applied to the LCLV beyond the Fréederickzs transition voltage VFT ,
the molecules tend to reorient perpendicularly to the (low frequency) electric field because
of the negative εa ; hence, since ~E = Vs/dẑ is applied along the longitudinal z direction
and the 2π azimuthal degeneracy imposes rotational invariance around it, the LC molecules
can arbitrarily align in any direction, spontaneously forming spatial domains separated by
walls, loops, and umbilic defects or vortices [3]. In the present experiment, we keep V0 . VFT
in order to avoid the spontaneous reorientation while bringing the molecules close to the
transition point. When a magnetic field is applied onto the sample: the Fréedericskz threshold
is locally overcome and the molecules start reorienting, following the gradient associated with
magnetic field profile.

5.3 Experimental Observations

Experimentally we observe the existence of a stable vortex triplet composed by a positive
vortex at the center of the magnet and two vortices of opposite charge at the boundaries.
This is given by the topological conditions, since the net topological charge imposed by such
a magnet ring is +1.

Figure 5.3: Vortex triplet induced by a magnet ring. Courtesy of Valezka Zambra
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Figure 5.4: Intensity profile of the central vortex measured under white illumination and
crossed polarizers. Courtesy of Valezka Zambra

5.4 Theoretical Description

In a first approximation, the magnetic field ~B produced by such a magnet is well described
by a dipolar field and can be expressed analytically:

~B(ρ, z) =
(µ0m0

4π

){[ 3z2

(
√
ρ2 + z2)5

− 1

(ρ2 + z2)3/2

]
ẑ +

3zρ

(ρ2 + z2)3/2
ρ̂

}

Where m0 is the polar moment of the magnet and ρ =
√
x2 + y2.

Figure 5.5: Schematic representaion of the magnetic field of a magnet ring

49



Here we consider the following correction to the Dipolar Magnetic Field:

~B(ρ, z) = Bz ẑ +Bρρ̂ =
(µ0m0

4π

){[ 3z2 + ε

(
√
ρ2 + z2)5

− 1

(ρ2 + z2)3/2

]
ẑ +

3zρ

(ρ2 + z2)3/2
ρ̂

}
where ε > 0 is a phenomenological parameter that accounts for the width of the magnet ring.
Figure 5.6 shows the contrast in the magnetic field lines between the dipolar approximation
and the proposed correction. Note that correction gives account for the non punctual magnet
size in the actual physical experiment.

Figure 5.6: Magnetic field lines comparison. Left: Dipolar magnetic field lines. Right:
Magnetic field lines in the approximation

The generating field B(ρ, h) in the plane of the sample given by z = h can be calculated
in the dipolar approximation and has the radial geometry required for the production of a
+1 umbilical defect and its amplitude varies with the distance ρ from the z axis as shown in
Figure 5.6. Note that the Bz component of the magnetic field has zeros at ρ =

√
2h. (This

is where the Bz component is reversed).

Figure 5.7: Left: Radial component of the magnetic field Bρ(h, ρ) ; Right: Vertical component
of the magnetic field Bz(h, ρ)

Plotting the amplitude of the forcing term in a log-log scale, we observe that follows a
power law decay consistent with A(ρ) ∼ 1/ρ5 as ρ goes to ∞.(c.f. Figure 5.8). This type of
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behavior is expected since the forcing decay polynomially. Performing a polynomial fitting on
the experimental data (c.f. Figure 5.9) we found a decay exponent close to −4.5, hence our
theoretical considerations describes not only qualitatively and also qualitatively the physical
situation.

Figure 5.8: Left: Power law decay radial forcing term; Right: Plot in log-log scale

Figure 5.9: Vortex triplet intensity profiles induced by a magnet ring. Courtesy of Valezka
Zambra
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To describe the mechanism of creation and pinning of this vortices, we derive a model
in the vicinity of the Fréedericksz transition, a limit where analytical results are accessible,
as nematic LC molecules are weakly tilted from the longitudinal axis ẑ and backflow effects
can be neglected. The dynamical equation for the molecular director ~n is derived from the
Frank-Ossen energy taking into account the contribution of the magnetic field ~B:

F =
K1

2
(∇ · ~n)2 +

K2

2
(~n · (∇× ~n))2 +

K3

2
(~n× (∇× ~n))2 − εa

2
( ~E · ~n)2 − χa

2
( ~B · ~n)2.

From the Euler-Lagrange equations associated
δR
δ~̇n

= −δF
δ~n

s.a ~n · ~n = 1, R =
γ

2
|~n|2,

the dynamics reads:

γ∂t~n = K3 [∇2~n− ~n(~n · ∇2~n)] + (K3 −K1)[~n(~n · ∇)(∇ · ~n−∇(~n · ∇))]

+ 2(K2 −K3){(~n · ∇ × ~n)[~n(~n · ∇ × ~n)−∇× ~n]

+ ~n×∇(~n · ∇ × ~n)} − εa(~n · ~E[ ~E − ~n(~n · ~E)])

− χa(~n · ~B[ ~B − ~n(~n · ~B)]),

where γ is the LC rotational viscosity and {K1, K2, K3} are the NLC elastic constants

Under uniform illumination, ~E = V
d
ẑ = Ez ẑ and close to the transition point, it is possible

to suppose that:

~n ≈
(
n1, n2, 1−

n2
1 + n2

2

2

)
,

therefore:

γṅ1 = K3 [∇2n1 + n1((∂zn1)2 + (∂zn2)2)]

− (K3 −K1)[n1∂zz(n
2
1 + n2

2)/2 + ∂xxn1 + ∂xyn2]

+ (K2 −K3)[−∂xyn2 + ∂yyn1]

− εan1E
2(1− n2

1 − n2
2)− εmn1B

2
z (1− n2

1 − n2
2)

− χa[2n
2
1BzBx + 2n1n2BzBx −ByBz(1− n2

1/2− n2
2/2)]

γṅ2 = K3 [∇2n2 + n2((∂zn1)2 + (∂zn2)2)]

− (K3 −K1)[n2∂zz(n
2
1 + n2

2)/2 + ∂xxn1 + ∂xyn2]

+ (K2 −K3)[−∂xyn2 + ∂yyn1]

− εan2E
2(1− n2

1 − n2
2)− εmn2B

2
z (1− n2

1 − n2
2)

− χa[2n
2
2BzBx + 2n1n2BzBx −ByBz(1− n2

1/2− n2
2/2)].
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Considering the following ansatz for the critical mode:

n1 = X sin
(π

d
(z − z0)

)
+W1

n2 = Y sin
(π

d
(z − z0)

)
+W2,

where ~W = (W1,W2) stands for higher order corrections. If k = π/d and z′ = z − h we
obtain:

γẊ sin (kz′) = (K3∂zz − εaE2
z − χaB2

z )W1 +K3 sin (kz′)[∇⊥X − k2X + k2X(X2 + Y 2) cos2 (kz′)]

− (K3 −K1) sin (kz′)[Xk2(X2 + Y 2)(cos2 (kz′)− sin2 (kz′)) + ∂xxX + ∂xyY ]

+ (K2 −K3) sin (kz′)[∂yyX − ∂xyY ]

− εaX sin (kz′)E2
z (1− (X2 + Y 2) sin2 (kz′))

− χaX sin (kz′)B2
z (1− (X2 + Y 2) sin2 (kz′))

+ χaByBz − χa sin2 (kz′)[2X2BzBy + 2XY BzBx +ByBz(X
2 + Y 2)/2]

γẎ sin (kz′) = (K3∂zz − εaE2
z − χaB2

z )W2 +K3 sin (kz′)[∇⊥Y − k2Y + k2Y (X2 + Y 2) cos2 (kz′)]

− (K3 −K1) sin (kz′)[Y k2(X2 + Y 2)(cos2 (kz′)− sin2 (kz′)) + ∂xxX + ∂xyY ]

+ (K2 −K3) sin (kz′)[∂yyY − ∂xyX]

− εaY sin (kz′)E2
z (1− (X2 + Y 2) sin2 (kz′))

− χaY sin (kz′)B2
z (1− (X2 + Y 2) sin2 (kz′))

+ χaByBz − χa sin2 (kz′)[2Y 2BzBy + 2XY BzBx +ByBz(X
2 + Y 2)/2].

The linear operator acting on W is:

L =

(
K3∂zz − εaE2 − εmB2

z 0
0 K3∂zz − εaE2 − εmB2

z

)

Defining the inner product 〈f |g〉 =
∫ z0+d

z0
f · g this operator is self-adjoint and its kernel

is Ker{L†} = {(sin (kz′), 0); (0, sin (kz′))}.

Using Fredholm alternative [59] projecting onto the kernel elements of the adjoint operator
and considering that Bz(z, r⊥) and Bρ(z, r⊥) are slowly varying as functions of z, then for
d� 1:

∫ z0+d

z0

Bz(z)Bρ(z) sin2
(π

d
(z − z0)

)
dz ≈ Bz(z0)Bρ(z0)

2d

π
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γẊ = K3[∇⊥X − k2X + k2X(X2 + Y 2)/4]− (K3 −K1)[(∂xxX + ∂xyY )−Xk2(X2 + Y 2)/2]

− (K2 −K3)[∂yyX − ∂xyY ]

− εaXE
2
z (1− 3(X2 + Y 2)/4)− χaXB2

z (1− 3(X2 + Y 2)/4)

+ χa
2

d

∫ z0+d

z0

BzBx sin (k′z)dz

− χa
2

d
[2X2

∫ z0+d

z0

BzBx sin3 (k′z)dz + 2XY

∫ z0+d

z0

BzBy sin3 (k′z)dz

+
X2 + Y 2

2

∫ z0+d

z0

BzBx sin3 (k′z)dz]

γẎ = K3[∇⊥Y − k2Y + k2Y (X2 + Y 2)/4]− (K3 −K1)[(∂xxX + ∂xyY )− Y k2(X2 + Y 2)/2]

− (K2 −K3)[∂yyY − ∂xyX]

− εaY E
2
z (1− 3(X2 + Y 2)/4)− χaXB2

z (1− 3(X2 + Y 2)/4)

+ χa
2

d

∫ z0+d

z0

BzBx sin (k′z)dz

− χa
2

d
[2Y 2

∫ z0+d

z0

BzBx sin3 (k′z)dz + 2XY

∫ z0+d

z0

BzBy sin3 (k′z)dz

+
X2 + Y 2

2

∫ z0+d

z0

BzBx sin3 (k′z)dz]

γẊ = K3[∇⊥X + k2X + k2X(X2 + Y 2)/4]

− (K3 −K1)[(∂xxX + ∂xyY )−Xk2(X2 + Y 2)/2] + (K2 −K3)[∂yyX − ∂xyY ]

− εaXE
2
z (1− 3(X2 + Y 2)/4)− χaXB2

z (1− 3(X2 + Y 2)/4)

+ χa
4

π
BxBz − χaBz

8

3π
[2X2By + 2XY Bx +By(X

2 + Y 2)/2]

γẎ = K3[∇⊥Y + k2Y + k2Y (X2 + Y 2)/4]

− (K3 −K1)[(∂xxY + ∂xyX)− Y k2(X2 + Y 2)/2] + (K2 −K3)[∂yyX − ∂xyY ]

− εaY E
2
z (1− 3(X2 + Y 2)/4)− χaY B2

z (1− 3(X2 + Y 2)/4)

+ χa
4

π
BxBz − χaBz

8

3π
[2Y 2By + 2XY Bx +By(X

2 + Y 2)/2]

Rewriting with the help of the complex parameter A = X + iY , defining ∂η = ∂x + i∂y
and after straightformard calculations:
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∂tA =

[
λ0 + εa

(
V0

d

)2

+ χaB
2
z (z0)

]
︸ ︷︷ ︸

µ

A− a|A|2A+
K1 +K2

2
∇2A+

K1 −K2

2
∂ηηĀ

−4χa
π
Bz(z0)Bρ(z0)− 8χa

3π
Bz(z0)Bρ(z0)

(
2ARe(Ae−iθ) +

|A|2eiθ

2

)

with
λ0 = −K3

(
π
d

)2
a = 1

4

[
(K1 −K3)

(
π
d

)2 − 3εaE
2
z − 3χaB

2
z

]
dropping the smaller correction and reescaling the parameter A:

A(~ρ, t)→ γ√
a
A

(
~r

√
2

K1 +K2

, t

)
we obtain:

∂tA = µA− |A|2A+∇2A+ δ∂ηηĀ+ bBρ(z0)Bz(z0)eiθ (5.2)

where δ = (K1 − K2)/(K1 + K2) and b = 4χa
√
a

γπ
. This corresponds to a Topologically

Driven Ginzburg Landau equation. Then, renormalizing the variables ρ =
√
x2 + y2/z0 and

considering the Fermi limit z0 � 1 under the Fréedericksz transition (in analogy to the limit
used to deduce the Rayleigh vortex solution), we obtain the following approximate stationary
solution:

A(ρ) = −bBz(ρ, z0)Bρ(ρ, z0)

µ
eiθ (5.3)

It can be checked that the error of this approximate solution is of order O
(

1
z40

)
, in other

words, the nonlinear term and the spatial derivatives are negligible in this limit.

This solution goes to zero when ρ = 0 and ρ =
√

2z2
0 + ε, where ε is a phenomenological

parameter that accounts for the magnet width. Consequently the forcing term will induced
a +1 vortex at the sample center and any number of ±1 vortices on the circle of radius
ρ =

√
2z2

0 + ε consistent with the global topological constraint.

However in the actual physical experimente and due to the anisotropic nature of the
nematic liquid crystal only two vortices of opposite charge remains close to the magnet
boundaries (c.f Figure 5.11)
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Figure 5.10: Magnetic induced vortex profile

Figure 5.11: Induced vortex triplet

Numerical simulations of model (5.2) were conducted considering a triangular finite ele-
ment code with adaptative spatial and temporal steps, and a simulation box of dimensions
150 × 150 with Neumann boundary condition. This matches qualitatively the experimental
observations.

Figure 5.12: (a) Contour plot of the nullcline field ψ(x, y) = Re(A)Im(A). (d) Phase field of
the complex amplitude A(x, y)
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Restricted to the region ρ <
√

2z2
0 + ε we can study the accuracy of the Fermi approxi-

mation (5.3)

Figure 5.13: Tridimensional graph of the magnitude of the complex amplitude A(x, y) in the
Fermi Approximation

In Figure 5.14 (a) we observed the vector representation of the complex amplitude A, with
horizontal and vertical components corresponding, respectively to the real and imaginary
parts of A , in (b) a contour plot of the nullcline field ψ(x, y) = Re(A)Im(A) while (c)
corresponds to the phase field associated.

Figure 5.14: Induced vortex obtained from numerical simulations

In the onset of the transition point, numerical and theorical simulations show quite fair
agreement (in green the Fermi approximation and in red the corresponding numerical solu-
tion):
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Figure 5.15: Fermi solution against numerical simulations with µ = −0.5 and µ = −3

5.4.1 Existence of Shadow Vortex

In the vicinity of the Fréedericksz transition, under the critical transition threshold numer-
ical simulations shows that when the voltage is decreased the vortex in the center becomes
unstable. As a result, it moves away from the origin towards the boundaries of the system
reaching an equilibrium position eventually.

We call this type of singularity a shadow vortex and has beed studied in the context of
light-matter interaction in liquid crystal light valves by Clerc et al [53, 54]. (c.f. Chapter 4).
Experimental observation has not been possible, given the absence of a continuum magnetic
field generator, since the available magnets are too weak or too strong to provide careful
measurements.

In Figure 5.16 (a) we observed the vector representation of the complex amplitude A of the
shadow vortex with magnetic forcing, with horizontal and vertical components corresponding,
respectively to the real and imaginary parts of A , in (b) a contour plot of the nullcline field
ψ(x, y) = Re(A)Im(A) while (c) corresponds to the phase field associated.

Figure 5.16: Shadow vortex under magnetic forcing. Left: Vector Representation. Center:
Contour plot of the nullcline field. Right: Phase Field
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Numerical results shows the existence of two vortex (Standard and shadow) that bifurcates
accordingly a Supercritical Pitchfork Bifurcation when the control parameter µ reach a critical
value. Taking as order parameter the separation r between the origin and the vortex position,
then as a function of the control parameter µ this order parameter follows the universal law
r ∼
√
µ− µc.

In Figure 5.17 we present a curve fitting in log-log scale of r in function of µ obtained
numerically.

Figure 5.17: Left: Numerical data of the separation r between the sample center and the
vortex position. Right: Curve fitting of numerical data in log-log scale
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Chapter 6

Defects dynamics

6.1 Moving Defects

The problem of motion of topological defects on a spatially innhomogeneous background
arises in connection with studies of vortex confinement in superfluids and superconductors.
Indeed, Schwarz [60] studied the motion of a quantized vortex in superfluid He4 attracted to
a pinning site on a macroscopically rough surface. This problem has been widely studied by
Pismen, Rica and others [1, 61, 62, 63].

We shall consider the motion of vortices in the dissipative Ginzburg Landau equation in
2D with a variable supercritically parameter and a external forcing term. The basic equation
can be written as

∂tu = ∇2u+ (µ(r)− |u|2)u+ F (r). (6.1)

It is assumed that the relief µ(r) varies on a scale large compared to the size of the vortex
core. As seen in chapter 3, topologically non-trivial vortex solution have a general form

u(r, t) = ρ(r, t)eiθ(r,t).

where the phase θ of a vortex with a topological charge n 6= 0 satisfies the circulation
condition ∮

Γ

∇θ · d~l = 2πn.

on any closed contour Γ surrounding the vortex position. The vortex position can be defined
precisely as a zero of the complex order parameter field. A stationary solution corresponding
to an isolated circularly symmetric vortex exists at µ = const. and F = 0. The vortex is set
into motion when the circular symmetry is broken owing to spatial inhomogeneities, external
fields, or presence of other vortices.
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6.2 One-Dimensional Case

To understand the dynamics of defects, we first consider the problem in the one-dimensional
approach discussed in Section 4.7.

∂tu = εu− u3 + ∂xxu+ δe−αx
2

u− δβxe−αx
2

. (6.2)

where u(x, t) is a one dimensional order parameter, ε is a control parameter, β stands for
the intensity of the forcing term and δ � 1 is a formal expansion parameter. The previous
model corresponds to the perturbed real Ginzburg Landau equation or the overdamped φ4

model. Topologically non trivial solutions of (7.1) are kinks and can be written explicitly:

uKINK =
√
εtanh

(√
ε
2
x
)

u′KINK = ε√
2
sech2

(√
ε
2
x
)

Looking for solutions of (5.1) in the form of an expansion in the small parameter δ

u = uKINK (x0 − V t)︸ ︷︷ ︸
=x(t)

+δϕ.

In the comoving frame u = u(x0 − V t)⇒ ∂tu = −V u′KINK , and follows

−V u′KINK = εuKINK + δεϕ− [u3
KINK + 3u2

KINK · δϕ+ 3uKINK(δϕ)2 + (δϕ)3]

+ δe−αx
2

uKINK + δ2e−αx
2

ϕ− δβxe−αx
2

+ ∂xxuKINK + δ∂xxϕ.

Writting the order zero solution in δ, uKINK verifies

εuKINK − u3
KINK + ∂xxuKINK = 0.

While the first order equation reads

−V u′KINK = εϕ+ ∂xxϕ+ 3u2
KINKϕ+ e−αx

2

uKINK − βxe−αx
2

,

rearranging
− V uKINK = Lϕ+ e−αx

2

uKINK − βxe−αx
2

, (6.3)

where L is the linear operator:

Lϕ = [εϕ+ 3u2
KINKϕ+ ∂xxϕ]. (6.4)

Equivalently (7.2) can be written:

Lϕ = e−αx
2

uKINK − βxe−αx
2

+ V uKINK︸ ︷︷ ︸
=Φ

. (6.5)

The solvability condition of the first-order equation (7.4) is the orthogonality of the inhomo-
geneous part to the eigenfunction u′KINK ∈ KerL∗ under the scalar product:

〈f, g〉 =

∫ ∞
−∞

f · gdl.
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Then, by Fredholm Alternative [64]

〈Lϕ, u′KINK〉 = 〈Φ, u′KINK〉 = 0,

which leads to the velocity of the defect as a function of x

V (x) =
β
∫∞
−∞(x− x0)e−α(x−x0)2u′KINKdx0 −

∫∞
−∞ e−α(x−x0)2uKINKu

′
KINKdx0∫∞

−∞ u
′
KINK · u′KINKdx

(6.6)

it is possible to identify

I1(x) = β

∫ ∞
−∞

(x− x0)e−α(x−x0)2u′KINKdx0, I2(x) =

∫ ∞
−∞

e−α(x−x0)2uKINKu
′
KINKdx0

as potential whose superposition generate the motion of the perturbed defect. This way
equation (6.6) correspond to a motion equation for the vortex position (kinetic equation)

ẋ = I1(x)− I2(x)

Figure 6.1: Red:I1(x). Blue:I2(x). Green circles acounts for the emergence of equilibria

These two potentials give rise to forces that compete with each other shifting the equilib-
rium kink position away from the origin. Figure 6.2 shows the existence of two new equilibria
depending on the direction of the net force acting on the kink
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Figure 6.2: Potential: I1(x)− I2(x)

6.3 Previous results for vortex motion

Following the previous studies done by Pismen and Rubistein in [65], we derive the equation
of vortex motion using the method of matched asymptotic expansion on the core and far
field solutions [1]. The matching procedure results in a mobility relationship connecting the
vortex velocity with the local gradient of the supercritically parameter.

In the core region, we use the comoving coordinate frame centered on the vortex position
~r0 and propagating withn a slow velocity ε~v. Stationary solutions in the comoving frame
verify the equation

ε~v · ∇u+∇2u+ (µ(r)− |u|2)u = 0. (6.7)

The local relief in the core region is expanded in Taylor series

µ(~r) = µ(~r0) + ε ~M · ~r + · · · = µ0 + εµ1 + . . . ,

where ~M = ∇µ(~r0).

We are looking for a solution of equation (6.7) in the form of an expansion in the small
parameter ε:

u = u0 + εu1 + ε2u2 + . . . .

The zero-order solution is written in the polar coordinate frame r, θ as u0 = ρ0(r)eiθ, where
the function ρ0(r) verifies the stationary zero-order equation

ρ′′0 +
1

r
ρ′0 +

(
µ0 −

1

r2
− ρ2

0

)
ρ0 = 0. (6.8)

The first-order equation reads

L(u1, u
∗
1) = −~v · ∇u0 − µ0µ1u0. (6.9)
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where L is the linear operator

L(u1, u
∗
1) = ∇2u1 + (µ0 − 2|u0|2)u1 − u2

0u
∗
1. (6.10)

The solvability condition of the first order equation is the orthogonality of the inhomogeneous
part to the eigenfunction ∇u∗0. In order to avoid divergencs, the solvability condition has to
be obtained by integration over a circle with radius L = O(ε−1/2)� 1:

Re

{∫ L

0

rdr

∫ 2π

0

dθ∇u∗0(~v · ∇u0 + µ0µ1u0) + L

∫ 2π

0

(∇u∗0 · ∂ru1 − u1 · ∂r∇u∗0)r=L

}
= 0.

(6.11)
The contour integral depends on the asymptotics of the first- order field u1. Since ρ0(L) =
µ0(1 − O(ε)), ∇u∗0 can be multiplied by a cut-off function in order to avoid divergences in
the phase field and to obtain simple qualitative results.

The area integral in (4.11) is evaluated as

π

∫ L

0

drρ′0(r)ρ0(r)(2v −Mr2µ0)

The term proportional to v can be computed using (4.8) as πvµ0, while the second term can
be calculated numerically using the core solution as 2πMµ0 ln (a1Lµ0), where the constant
a1 is given numerically as ln a1 = 0.405. Thus, the mobility relation takes the form

v ∼ 2M ln a1µ0 (6.12)

6.4 Vortex dynamics in the Topologically Driven Ginzburg
Landau equation

Considering the previous studies done for the Isotropic Ginzburg Landau Equation by Bo-
denchatz et al in [63]. We follow the same procedure for the Topologically Driven Ginzburg-
Landau equation:

∂tA = (ε+ αe−γr
2

)A− A|A|2 +∇2
⊥A+ βre−γr

2

. (6.13)

Rewriting the equation as

∂tA = εA− A|A|2 +∇2
⊥A+ αe−γr

2

)A+ βre−γr
2

,

we can consider the last terms as perturbations and as vortices are still solutions, we insert
the ansatz of a vortex moved by a phase disturbance:

A = R(~r − ~r0(t))ei~k·~r +W

where R is the vortex solution of the Isotropic Ginzburg Landau equation, k = Qx̂ + P ŷ is
a phase disturbance and W are small nonlinear corrections.
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Inserting the ansatz into the equation we obtain to the leading order

−ẋ0∂xR− ẏ0∂yR = (εW −R2W̄ − 2|R|2 +∇2W ) + 2iQ∂xR + 2iP∂yR

− (Q2 + P 2)R + αe−γr
2

R + βre−γr
2

eiθ

The linear operator acting on W is

L =

(
ε− 2|R|2 +∇2 −R2

−R̄2 ε− 2|R|2 +∇2

)
and the Kernel of its conjugate is

Ker{L†} =

{(
∂xR
∂xR̄

)
,

(
∂yR
∂yR̄

)}

Using solvability condition with the first and the second of the kernel elements we obtain
respectively

0 = ẋ0 (〈∂xR|∂xR〉+ 〈∂xR̄|∂xR̄〉) + 2iP ((〈∂xR|∂yR〉+ 〈∂xR̄|∂yR̄〉)
+ α(〈∂xR|e−γr

2

R〉+ 〈∂xR̄|e−γr
2

R̄〉) + β(〈∂xR|re−γr
2〉+ 〈∂xR̄|re−γr

2〉)δ(θ − ~k · ~r)
0 = ẏ0 (〈∂yR|∂yR〉+ 〈∂yR̄|∂yR̄〉) + 2iP ((〈∂yR|∂xR〉+ 〈∂yR̄|∂xR̄〉)

+ α(〈∂yR|e−γr
2

R〉+ 〈∂yR̄|e−γr
2

R̄〉) + β(〈∂yR|re−γr
2〉+ 〈∂yR̄|re−γr

2〉)δ(θ − ~k · ~r)

where the first inner product in each equation corresponds to the mobility of the solution
and requires a renormalization in the phase in order to be calculated [63]. Solving the
inner products is possible to obtain the kinetic equation. In this case numerical integration
is needed and results are in progress, but we expect as in the one-dimensional case the
emergence of new equilibria position for the vortex solution.
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Chapter 7

Variational Approach

In this chapter we study the qualitative properties of global minimizers of the Ginzburg-
Landau energy which describes light-matter interaction; the principal results accounts for
the symmetry breaking phenomenon as the physical parameters of the problem vary. This
section it is based mainly in the articles by Clerc, Kowalczyk and Smyrnelys [55],[54].

7.1 Euler Lagrange Equations

To the describe the formation of defects in liquid crystal starting form the classical Frank-
Ossen energy near the Freédericksz transition, one can reduce the problem to considering the
Ginzburg Landau equation [1]. After some transformations involving scaling to nondimen-
sional variables the energy takes the form

E(u) =

∫
R2

1

2
|∇u|2 − 1

2ε2
µ(x)|u|2 +

1

4ε
|u|4 − a

ε
f(x) · u,

where u = (u1, u2) ∈ H1(R2,R2), and ε > 0, 1a ≥ 0 are real parameters. In the physical
context of Chapter 4. the functions µ and f are specific

µ(x) = e−|x|
2 − χ, with some χ ∈ (0, 1), f(x) = −1

2
∇µ(x).

Under more general hypothesis on µ and f , we suppose that µ ∈ C∞(R2,R) is radial, i.e.
µ(x) = µrad(|x|),with µrad ∈ C∞(R,R) an even function. We take f = (f1, f2) ∈ C∞(R2,R2)
also to be radial, i.e. f(x) = frad(|x|) x

|x| , with frad ∈ C∞(R.,R) an odd function. In addition
we assume that:

{
µ ∈ L∞(R2,R), µ′rad < 0 in (0,∞), and µrad(ρ) = 0 for a unique ρ > 0

f ∈ L1(R2,R2) ∩ L∞(R2,R2), and frad > 0 on (0,∞)

1Keep in mind that ε plays the role of 1/ω
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The Euler-Lagrange equation of E is:

ε2∇2u+ µ(x)u− |u|2u+ εaf(x) = 0, x ∈ R2. (7.1)

Figure 7.1: µ(x) = e−|x|
2 − χ

Some properties of the global minimizers are stated in

Theorem 7.1 Let vε,a be a global minimizer of E, let a ≥ 0 be bounded (possilbly dependent
on ε), let ρ > 0 be the zero of µrad and let µ1 = µ′rad(ρ) < 0. The following statements hold:

1. Let Ω ⊂ D(0; ρ) be an open set such that vε,a 6= 0 on Ω, for every ε � 1. Then
|vε,a| →

√
µ in C0

loc(Ω).
2. For every ξ = ρeiθ, we consider the local coordinates s = (s1, s2) in the basis (eiθ, ieiθ),

and the rescaled minimizers:

wε,a(s) = 2−1/2(−µ1ε)
−1/3vε,a

(
ξ + ε2/3 s

(−µ1)1/3

)
.

Assuming that limε→0 a(ε) = a0, then as ε→ 0 the function wε,a converges in C2(R2,R2)
up to subsequence to a function y bounded in [s0,∞)× R for every s0 ∈ R, which is a
minimal solution of:

∆y(s)− s1y(s)− 2|y(s)|2y(s)− α = 0 ∀s = (s1, s2) ∈ R2, (7.2)

with α = a0f(ξ)√
2µ1
∈ R2

3. Assuming that limε→0 a(ε) = a0, then for every r0 > ρ, we have limε→0
vε,a((r0+tε)eiθ)

ε
=

− a0
µrad(r0)

f(r0eiθ) uniformly when t remains bounded and θ ∈ R.

Theorem 5.1 gives account on how nonsmoothness of the limit of |vε,a| is mediated near
the circumference |x| = ρ, where µ changes sign, through equation (5.1). This equation is a
generalization of the second Painlevé equation:

y′′ − sy − 2y3 − α = 0, s ∈ R. (7.3)

We state now the following theorem due to Clerc-Smyrnelis-Kowalczyk [54] that shows
existence of topological defects of the global minimizers of E in several regimes of the pa-
rameters (ε, a):
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Theorem 7.2 Let vε,a be a global minimizer. Assume that a(ε) > 0, a is bounded and
limε→0 ε

1− 3γ
2 ln a = 0 for some γ ∈ [0, 2/3).

1. For ε� 1, vε,a has at least one zero x̄ε such that

|x̄ε| ≤ ρ+ o(εγ). (7.4)

In addition, any sequence of zeros of vε,a, either satisfies (5.3) or it diverges to ∞.
2. For every ρ0 ∈ (0, ρ), there exist b∗ > 0 such that when lim supε→0

a
ε| ln ε| < b∗, then any

limit point l ∈ R2 of the set of zeros of vε,a satisfies:

ρ0 ≤ |l| ≤ ρ.

In adition, if a = o(ε| ln ε|), then |l| = ρ.
3. On the other hand, for every ρ0 ∈ (0, ρ), there exist b∗ > 0 such that when lim supε→0

a
ε| ln ε|2 >

b∗, the set of zeros of vε,a has a limit point l such that

|l| ≤ ρ0.

If vε,a(x̄ε) = 0 and x̄ε → l, then up to a subsequence

lim
ε→0

vε,a(x̄ε + εs)→
√
µ(l)(g ◦ η)(

√
µ(l)s),

in C2
loc(R2), for some g ∈ O(2). In addition, if lim supε→0

a
ε| ln ε|2 =∞ then l = 0.

Theorem 7.3 (i) When a = 0, the global minimizer can be written as v(x) = (vrad(|x|), 0)
with vrad ∈ C∞(R) positive. It is unique up to change of v by gv with g ∈ SO(2)2.

(ii) Given ε > 0, there exists A > 0 such that for every a > A, the global minimizer vε,a is
unique and radial,i.e. v(x) = vrad(|x|) x

|x| .

Theorem 5.3 shows that when a = 0 the global minimizer of E inherits the one dimensional
radial profile of µ. On the other hand, it would be natural to expect that when a > 0 the
forcing term εaf induces a global minimizer v in the class H1

rad(R2,R2) = {u ∈ H1(R2,R2) :
gu(x) = u(gx),∀g ∈ O(2)} of radial maps; this is not the case unless µ < 0 when the global
minimizers corresponds with the Rayleigh vortex solution introduced in Chapter 4.

7.2 General Results for Minimizers and Solutions

In this section we state general results for minimizers and solutions that are valid for any
values of the parameters ε > 0 and a ≥ 0.

Lemma 7.4 Existence of global minimizwr
For every ε > 0 and a ≥ 0, there exists v ∈ H1(R2,R2) such that E(v) = minH1(R2,R2) E. As
a consequence, v is a C∞ classical solution of (5.1), and moreover v(x)→ 0 as |x| → ∞.

2Special orthogonal group of the 2× 2 orthogonal matrices of determinant 1
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Proof. We first show that inf E(u) : u ∈ H1(R2,R2) > −∞. To see this, we regroup the
last three terms in the integral of E(u). Setting Iδ = {x ∈ R2 : µ(x) + δ > 0}, for δ > 0
sufficiently small such that Iδ is bounded, we have:

− 1

2ε2
µ(x)|u|2 +

1

8ε2
|u|4 < 0⇔ u2 < 4µ⇒ x ∈ Iδ,

thus
− 1

2ε2
µ(x)|u|2 +

1

8ε2
|u|4 ≥ − 2

ε2
‖µ‖2

L∞χδ,

where χδ is the characteristic function of Iδ. On the other hand,

1

8ε2
|u|4 − a

ε
f(x) · u ≥ −81/3a4/3

ε2/3
|f |4/3.

Next, we notice that E(u) ∈ R for every u ∈ H1(R2,R2), thanks to the imbedding H1(R2) ⊂
Lp(R2), for 2 ≤ p < ∞. Now, let m = infH1 E > −∞, and let un be a sequence such that
E(un)→ m. Repeating the previous computation, we can bound∫

R2

1

2
|∇un|2 +

δ

2ε2
|un|2 = E(un) +

∫
R2

1

2ε2
(µ(x) + δ)|un|2 −

1

4ε2
|un|2 +

a

ε
f(x) · u

≤ E(un) +
2

ε2
(‖µ‖L∞ + δ)2|Iδ|+

81/3a4/3

ε2/3
|f |4/3.

From this expression it follows that ‖un‖H1(R2,R2) is bounded. As a consequence, for a subse-
quence still called un,un ⇀ v weakly in H1, and thanks to a diagonal argument we also have
un → v in L2

loc, and almost everywhere in R2. Finally, by lower semicontinuity∫
R2

|∇v|2 ≤ lim inf
n→∞

∫
R2

|∇un|2,

and by Fatou’s Lemma [64] we have:∫
R2

|v|4 ≤ lim inf
n→∞

∫
R2

|un|4.

∫
µ≤0

− 1

2ε2
µ|v|2 ≤ lim inf

n→∞

∫
µ≤0

− 1

2ε2
µ|un|2.

To conclude, it is clear that∫
µ>0

− 1

2ε2
µ|v|2 = lim

n→∞

∫
µ>0

− 1

2ε2
µ|un|2,

thus m ≤ E(v) ≤ lim infn→∞E(un) = m. Next, we check that v is bounded. This follows
from the fact that exists a constant M such that for every x ∈ R2 and i = 1, 2 the function

ui → −
1

2ε2
µ(x)|u|2 +

1

4ε2
|u|4 − a

ε
f(x) · u,
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is strictly increasing on [M,∞) (resp. strictly decreasing on (−∞,−M ]) independently of the
other variable uj. Thus, if we truncate a map u = (u1, u2) by setting ûi = min (M,max (ui,−M)),
the truncated map û has smaller energy than u. Clearly the boundedness of v implies the
boundedness of ∆v and ∇v. In particular, v and |v|4 are uniformly continuous. As a conse-
quence, is |v(xn)| > δ > 0 for a sequence |xn| → ∞, then we would have |v| > δ/2 on a ball
B(xn, r), and also

∫
R2 |v|4 =∞, which is impossible. This proves the asymptotic convergence

to 0.

Remark The existence of the global minimizer when µ ∈ L∞(R2,R) is such that µ(x) <
0,∀x (i.e. µ doesnt change signs); follows from the above calculations since

− 1

2ε2
µ(x)|u|2 +

1

8ε2
|u|4 > 0, ∀x.

Then, the functional

F : H1(R2,R2) → R

u →
∫
R2

1

2
|∇u|2 − 1

2ε2
µ(x)|u|2 +

1

4ε
|u|4 − a

ε
f(x) · u,

is convex, coercive and lower semicontinuous, and the existence of the global minimizer is
given by the following functional analysis theorem, since H1(R2,R2) is reflexive:

Theorem 7.5 If F : X → R is a convex, lower semicontinuous and coercive functional
defined on a reflexive Banach space, the F attains minimum on X i.e. there exists x∗ ∈ X
such that F [u∗] = infX F [u]. If in addition F is strictly convex, then the minimum is unique.

Remark In the sequel, we will always denote the global minimizer by v.

7.2.1 Uniform bounds

Lemma 7.6 For εa belonging to a bounded interval, let uε,a be a solution of (5.1) converging
to 0 as |x| → ∞. Then, the solutions uε,a and the maps ε∇uε,a are uniformly bounded.

Proof. Dropping the indexes and writing u := uε,a. Since |f |, µ and εa are bounded, the
roots of the cubic equation in the variable u1:

u3
1 + (u2

2 − µ(x))u1 − εaf1(x) = 0,

belong to a bounded interval, for all values of x, u2, ε, a. If u1 takes positive values, then it
attains its maximun 0 ≤ maxR2 u1 = u1(x0), at a point x0 ∈ R2. In view of (5.1):

0 ≥ ε2∆u1(x0) = u3
1(x0) + (u2

2(x0)− µ(x0))u1(x0)− εaf1(x0),

thus it follows that u1(x0) is uniformly bounded above. In the same way, we prove the
uniform lower bound for u1 and for u2.
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Lemma 7.7 For ε� 1 and a belonging to a bounded interval, let uε,a be a solution of (5.1)
converging to 0 as |x| → ∞. Then, there exists a constant K > 0 such that

|uε,a| ≤ K

(√
max (µ(x), 0) + ε1/3

)
, ∀x ∈ R2.

As a consequence, if for every ξ = ρeiθ, we consider the local coordinates s = (s1, s2) in
the basis (eiθ, ieiθ), then the rescaled maps u∗ε,a = uε,a

(ξ+sε2/3)
ε1/3 are uniformly bounded on the

half-planes [s0,∞)× R, ∀s0 ∈ R.

Lemma 7.8 Assume a is bounded and let uε,a be a solution of (5.1) uniformly bounded.
Then the maps uε,a

ε
and ∇uε,a are uniformly bounded on the sets {x : |x| ≥ ρ1} for every

ρ1 > ρ.

7.3 Proof Theorem 5.1

1. Suppose by contradiction that |v|9 √µ uniformly on a closed set F ⊂ Ω. Then, there
exist a sequence εn → 0 and a sequence {xn} ⊂ F such that:

||vεn(xn)| −
√
µ(xn)| ≥ δ, for some δ > 0. (7.5)

Assuming that up to a subsequence limn→∞ xn = x0 ∈ F and considering the reescaled
maps v∗n(s) = vεn(xn + εs):

∆v∗(s) + µ(xn + εns)v
∗(s)− |v∗(s)|2v∗(s) + εnaf(xn + εns), ∀s ∈ R2. (7.6)

In view of the Lemma 5.6 and (5.5), v∗n and its first derivatives are uniformly bounded
for ε� 1, differentianting (5.5), one also obtains the boundedness of the second deriva-
tives of v∗n on compact sets. Thus, by Ascoli theorem v∗n → V ∗ (for a subsequence still
called v∗n) in C2

loc(R2,R2).

Introducing the rescaled energy

E∗(u∗) =

∫
R2

(
1

2
|∇u∗(s)|2 − 1

2
µ(xn + εns)|u∗(s)|2 +

1

4
|u∗(s)|4 − εnaf(xn + εns) · u∗(s)

)
ds,

where u∗(s) = uεn(xn + εns). Let ξ∗ be a test function with support in the compact K.
We have:

E∗(v∗n + ξ∗, K) ≥ E∗(v∗n, K),

and at the limit:
G0(V ∗ + ξ∗, K) ≥ G0(V ∗, K),

where:
G0(ϕ,K) =

∫
K

[
1

2
|∇ϕ|2 − 1

2
µ(x0)|ϕ|2 +

1

4
|ϕ|4

]
,

or equivalently G(V ∗ + ξ∗, K) ≥ G(V ∗, K), where:

G(ϕ,K) = G0 +

∫
K

(µ(x0))2

4
=

∫
K

[
1

2
|∇ϕ|2 +

1

4
(|ϕ|2 − µ(x0))2

]
.
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Thus, we deduce that V ∗ is a bounded minimal solution of the P.D.E. associated with
the above functional:

∆V ∗(s) + (µ(x0)− |V ∗(s)|2)V ∗(s) = 0. (7.7)

Condition (5.5) excludes constant solutions. Therefore, up to orthogonal transforma-
tions: V ∗(s) =

√
µ(x0)η(

√
µ(x0)(s − s0)), where s ∈ R2 and η(s) is the radial vortex

solution to the Ginzburg-Landau equation:

−∆η = (1− |η|2)η.

Then, by C1
loc(R2,R2) convergence, v∗n has a zero in Dn ⊂ Ω, which for εn � 1 contra-

dicts the fact that vε 6= 0 on Ω.

2. For every ξ = ρeiθ, we consider de local coordinates s = (s1, s2) in the basis (eiθ, ieiθ)

and rescale the global minimizer by setting v∗ε,a(s) = vε,a(ξ+sε2/3)

ε1/3
. Clearly ∆v(s) =

ε∆(ξ + sε2/3), thus,

∆v∗(s) +
µ(ξ + sε2/3)

ε2/3
v∗(s)− |v∗(s)|2v∗(s) + af(ξ + sε2/3) = 0, ∀s ∈ R2.

Writing µ(ξ + h) = µ1h1 + h · A(h), with µ1 = µ′rad(ρ) < 0, A ∈ C∞(R2.R2) and
A(0) = 0, we obtain:

∆v∗(s)+(µ1s1+A(sε2/3)·s)v∗(s)−|v∗(s)|2v∗(s)+af(ξ+sε2/3) = 0, ∀s ∈ R2. (7.8)

Defining the rescaled energy by:

E∗(u∗) =

∫
R

(
1

1
|∇u∗(s)|2 − µ(ξ + sε2/3)

2ε2/3
u∗(s) +

1

4
|u∗|4(s)− af(ξ + sε2/3) · u∗(s)

)
ds.

We have that E∗(u∗) = 1
ε2/3

E(u). From Lemma () and (5.8), it follows that ∆v∗ and
∇v∗ are uniformly bounded on compact sets; and by differentiating (5.8) follows the
boudedness of the second derivatives of v∗. Aplying the Ascoli theorem via a diagonal
argument v∗ → V ∗ in C2

loc(R2,R2) (up to a subsequence), where V ∗ is a minimal solution
of the P.D.E. :

∆V ∗(s) + µ1s1V
∗(s)− |V ∗|2(s)V ∗(s) + a0f(ξ) = 0, ∀s ∈ R2,with a0 = lim

ε→0
a(ε). (7.9)

which is associated with the functional

E∗0(ϕ, J) =

∫
J

(
1

2
|∇ϕ(s)|2 − µ1

2
s1|ϕ|2(s) +

1

4
|ϕ|4(s)− a0f(ξ) · ϕ(s)

)
ds.

Setting y(s) = 1√
2(−µ1)1/3

V ∗
(

s
(−µ1)1/3

)
, (5.9) reduces to (5.) with α = a0f(ξ)√

2µ1
, and y is

still a minimal solution of (5.)
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3. For every x0 = r0eiθ0 fixed, with r0 > ρ, we consider the local coordinates s = (s1, s2)

in the basis (eiθ0 , ieiθ0), and the rescaled maps v∗ε,a(s) = vε,a(x0+εs)

ε
, satisfying:

∆v∗(s) + µ(x0 + εs)v∗(s)− ε2|v∗(s)|2v∗(s) + af(x0 + εs) = 0, ∀s ∈ R2.

By Lemma () and (5.10) the first derivatives of v∗ε,a are uniformly bounded on com-
pact sets for ε � 1, and by differentiating (5.10), one can also obtain the bounded-
ness of the second derivatives of v∗ on compact sets. As a consequence, we conclude
that limε→0,a→a0 v

∗
ε,a(s) = V ∗(s) in C2

loc, where V ∗(s) = − a0
µrad(r0)

f(r0eiθ0) is the unique
bounded solution of

∆V ∗(s) + µ(x0)V ∗(s) + a0f(x0) = 0,∀s ∈ R2. (7.10)

Indeed, consider a smooth and bounded solution u : R2 → R2 of ∆u = ∇W (u) where
the potential W : R2 → R is smooth and strictly convex. Then, we have ∆(W (u)) =
|∇W (u)|2 +

∑2
i=1 D

2W (u)(uxi , uxi) ≥ 0, and since W (u) is bounded we deduce that
W (u) is constant. Therefore, u = u0, where u0 ∈ R2 is such that ∇W (u0) = 0.
Finally, the uniform convergence limε→0,a→a0

uε,a((r0+tε)eiθ)

ε
= − a0

µrad(r0)
f(r0eiθ) when t

remains bounded and θ ∈ R follows from the invariance of equation (5.1) under the
transformation u(x) 7→ g−1u(gx), ∀g ∈ SO(2).

Remark When µ(x) < 0, ∀x, we can use the same argument for every x0 = r0eiθ0 with
r0 > 0 and obtain formally the Rayleigh vortex solution of chapter 4.

7.4 Proof Theorem 5.3

1. Let x0 ∈ R2 be such that v(x0) 6= 0. Without loss of generality, we may assume that
v(x0) = (v1(x0), 0) is contained in the open right half-plane P = {x1 > 0}. Next,
consider v∗ = (|v1|, v2) which is another global minimizer. Clearly, in a sufficiently
small disc D ⊂ P centred at v(x0) we have v1 = |v1| > 0, and as a consequence
of the unique continuation principle, we deduce that v = v∗ on R2 ⇒ v(R2) ⊂ P̄ .
Since the same conclusion holds for any open half-plane containing v(x0), we also ob-
tain v(R2) ⊂ {λv(x0 : λ ≥ 0)}. As a consequence, we have v = (v1, 0) with v1 ≥ 0
and ε2∆v1+µv1−v3

1 = 0. By the maximum principle, it follows that v1 > 0 since v1 6= 0.

Now to prove that v1 is radial consider the reflection with respect to the line x1 = 0.
We can check that E(v, {x1 > 0}) = E(v, {x1 < 0}), since otherwise by even reflection
we can construct a map in H1 with energy smaller than v. Thus, the map v∗(x) =
v(|x1|, x2) is also a minimizer, and since v∗ = v on R2. Repeating the same argument
for any line of reflection, we can deduce that v1 is radial. To complete the proof, it
remains to show the uniqueness of v up to rotations. Let v∗ = (v∗1, 0) be another global
minimizer with v∗1 > 0 and v∗1 6= v1. Considering the weak formulation of (5.1):∫

R2

−ε2
∑
j

∇uj∇ϕj + µu · ϕ− |u|2u · ϕ+ εaf · ϕ, ∀ϕ ∈ H1(R2,R2). (7.11)
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Evaluating in ϕ = v:∫
R2

−ε2|∇v|2 + µ|v|2 − |v|4 = 0⇒ E(v) = −
∫
R2

1

4ε2
|v|4,

we obtain an alternative expression of the energy that holds for every solution of (5.1)
beloging to H1. In particular, this formula implies that v1 and v∗1 intersect for |x| =
r > 0. However, setting:

w(x) =

{
v(x) for |x| ≤ r

v∗(x) for |x| ≥ r

we can see that w is another global minimizer, and again by the unique continuation
principle, we have w = v = v∗.

2. We need first to establish the following three Lemmas:

Lemma 7.9 If u is a solution of (5.1) belonging to H1(R2,R2), then for every ϕ ∈
H1(R2,R2), we have:

E(u+ ϕ)− E(u) =

∫
R2

(
1

2
|∇ϕ|2 +

(|u|2 − µ)

2ε2
|ϕ|2 +

(|ϕ|2 + 2(u · ϕ))2

4ε2

)
. (7.12)

Proof. From the weak formulation (5.11):∫
R2

(∑
j=1,2

∇ϕj · ∇uj

)
=

∫
R2

(
µ

ε2
ϕ · u− |u|

2ϕ · u
ε2

+
a

ε
f · ϕ

)
. (7.13)

On the other hand, we have the identity∫
R2

(
1

2
|∇ϕ+∇u|2 +

1

2
|∇u|2 −

∑
j=1,2

(∇ϕj +∇uj) · ∇uj

)
=

∫
R2

1

2
|∇ϕ|2. (7.14)

Adding (5.13) and (5.14), we obtain∫
R2

1

2

(
|∇(ϕ+ u)|2 − |∇u|2

)
=

∫
R2

(
1

2
|∇ϕ|2 − µ

ε2
ϕ · u− |u|

2ϕ · u
ε2

+
a

ε
f · ϕ

)
︸ ︷︷ ︸

=B

, (7.15)

and thus

E(u+ ϕ)− E(u) = B +

∫
R2

(
− µ

2ε2
(|u+ ϕ|2 − |u|2) +

1

4ε2
(|u+ ϕ|4 − |u|4)− a

ε
f · ϕ

)
=

∫
R2

(
1

2
|∇ϕ|2 +

(|u|2 − µ)

2ε2
|ϕ|2 +

(|ϕ|2 + 2(u · ϕ))2

4ε2

)
.
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Lemma 7.10 For every a > 0, let µa : R2 → R be a measurable function satisfying
µa ≤ µ, and lima→∞ µa = −∞ a.e, then given ε > 0 there exists A > 0 such that for
every a > A: ∫

R2

µa|ϕ|2 < ε2

∫
R2

|∇ϕ|2, ∀ϕ ∈ H1(R2,R2), ϕ 6= 0. (7.16)

Proof. By homegeneity, it is suffiecient to prove for ‖ϕ‖H1 = 1. Suppose by contra-
diction that (5.16) does not hold. Then, there exist a constant C0 > 0, a sequence
an →∞, and a sequence ϕn ∈ H1(R2,R2), with ‖ϕ‖H1 = 1, such that:∫

R2

µan|ϕn|2 ≥ C0

∫
R2

|∇ϕn|2. (7.17)

Since ‖ϕn‖H1 is bounded, we can extract a subsequence, still called ϕn, such that,
ϕn ⇀ Φ weakly in H1, and ϕn → Φ in L2

loc. Writing

C0

∫
R2

|∇ϕn|2 ≤
∫
R2

µan|ϕn|2 ≤
∫
Iδ

max (µan , 0)|ϕn|2,

where Iδ = {x ∈ R2 : µ(x) > −δ} and δ > 0 is small, we see that:

lim
n→∞

∫
R2

|∇ϕ2
n| = 0.

This implies by lower semicontinuity that
∫
R2 |∇Φ|2 ≤ lim inf

∫
R2 |∇ϕn|2 = 0, hence Φ =

0. In addition, we have limn→∞
∫
R2 |ϕ2

n| = 1, limn→∞
∫
Iδ
|ϕ2
n| = 0, and limn→∞

∫
R2\Iδ

|ϕ2
n| =

1. As a consequence∫
R2

µan|ϕn|2 ≤ ‖µ‖L∞
∫
Iδ

|ϕn|2 − δ
∫
R2\Iδ

|ϕn|2,

and taking the limit we find that
∫
R2 µan|ϕn|2 ≤ − δ

2
, for n big enough, which contradicts

(5.17)

Lemma 7.11 For ε > 0 and x0 ∈ R2 fixed, the global minimizer satisfy

lim
a→∞

a−1/3vε,a(x0 + a−1/3s) =
ε1/3f(x0)

|f(x0)|2/3
. (7.18)

in the C2
loc(R2,R2)

Proof. Considering the rescaled map v∗(s) = a−1/3v(x0 + a−1/3s), satisfying:

ε2∆v∗(s) + a−2/3µ(x0 + a−1/3s)v∗(s)− |v∗|2(s)v∗(s) + εf(x0 + a−1/3s) = 0,∀s ∈ R2

Repeating the arguments used in the proof of Lemaa, when ε is fixed and 1
a
remains

bounded, the maps v∗ε,a are uniformly bounded up to second derivatives. Therefore,
proceeding as before, it is possible to deduce the convergence of v∗ as a → ∞ to the
unique bounded solution of:

ε2∆V ∗(s)− |V ∗(s)|V ∗(s) + εf(x0) = 0, ∀s ∈ R2,

which is the constant V ∗ = ε1/3f(x0)

|f(x0)|2/3 .
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Now, to prove the second part of Theorem 5.3 let ε > 0 be fixed and let µa = µ− |v|2,
where v = vε,a is a global minimizer. By the previous lemma, we know that for every
x 6= 0, µa(x) converges pointwise to −∞, as a → ∞. Thus, by Lemma 5.10, there
exists A > 0, such that for every a > A we have∫

R2

(
1

2
|∇ϕ|2 +

(|v|2 − µ)

2ε2
|ϕ|2

)
> 0, ∀ϕ ∈ H1(R2,R2), ϕ 6= 0.

and also by Lemma 5.9 E(v + ϕ) > E(v). In particular, it follows that when a > A,
the global minimizer is unique and radial, since v = g−1vg, ∀g ∈ O(2)

Summarizing the previous results in 2 cases, we have:

• For µ ∈ L∞(R2,R), µ′rad < 0 in (0,∞), and µrad(ρ) = 0 for a unique ρ > 0:
When a = 0 the global minimizer is radially symmetric and unique and its symmetry is
instantly broken as a > 0 and then restored for sufficiently large values of a. Symmetry
breaking is associated with the presence of a new type of topological defect, namely the
shadow vortex discussed in Chapter 3. This symmetry breaking scenario is a rigorous
confirmation of experimental and numerical results obtained by Barboza and Clerc. []
• For µ ∈ L∞(R2,R), µrad(r) < 0, ∀r:

When a = 0 the global minimizer is the identically null function v = 0, and when a > 0
and limε→0 a(ε) = a0 the global minimizer is radially symmetric and coincides with the
Rayleigh vortex solution discussed in Chapter 4.

76



Conclusion

The results obtained in this thesis describes analytically the origin of the vortex lattices by
means of the Rayleigh vortex solution below the Frédericksz transition. When the system
is above the molecular reorientation transition, the Rayleigh vortex does not account for the
observed vortices. However, the position and configuration of the vortex lattices are qualita-
tively described by the lattices of the Rayleigh vortices. The amplitude equations describe
qualitatively and quantitatively the dynamics near the instability point. However, these
equations quantatively describe the dynamics away from the bifurcation point []. Hence, the
results and findings of this work are valid far from the Fréedericksz transition.

At the onset of the Fréedericksz transition, depending on the light intensity, the vortices
positioned at the center of the light beam can undergo instabilities and move to dark areas
(the area outside the illuminated region). These new topological defects known as shadow
vortices [] are characterized by having an exponentially small height. Experimentally they
are detected indirectly. The lattice created by these and the induced vortices is a problem
currently in progress.

By using an appropriate magnetic field arrangement in a nematic LC with homeotropic
geometry, we experimentally demonstrated a controlled vortex induction, which is, at the
same time, low cost, positionally stable and that allows direct observation of the induced
vortices. This suggests possible practical advantages in the experimental development of
optical devices.
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Optical vortices and lattices of these are attracting the
attention of the scientific community because of their
applications in various fields of optical processing, commu-
nications, enhanced imaging systems, and bio-inspired
devices. Programmable optical vortices lattices with arbi-
trary distributions have been achieved using illuminated
liquid crystals with photosensitive walls. Using an ampli-
tude equation that describes these optical valves close
to the Freédericksz transition allows us to characterize
analytically the vortices and the lattices they form. The
numerical simulations of the amplitude equation, analyt-
ical solutions, and experimental observations show good
agreement. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.002947

Optical vortices are point phase dislocations; that is, they are
singular points where the electromagnetic field goes to zero and
around which the phase distribution forms an N -armed spiral,
with N being the topological charge [1–3]. In the last decade,
optical vortices have attracted attention for their diverse pho-
tonic applications [4], ranging from the interchange of angular
momentum between light and matter [5], optical tweezers
[6–8], quantum computation [9], enhancement of astronomi-
cal images [10], the generation of optical beams by micro/nano
patterned in liquid crystals [11–16], and data transmission
[17]. In all these applications, optical vortex lattices are always
involved and required, because they contain multiple optical
vortices that supply information, flexibility, and manipulation
[17–19]. Indeed, the generation, detection, and manipulation
of optical vortex lattices are of fundamental relevance in the
research described and in future optical applications. The reali-
zation of programable lattices of optical vortices with arbitrary
distribution in space was demonstrated by exploiting reorienta-
tional nonlinearities in the nematic liquid crystal layer of a light
valve [20]. The vortex arrangements were determined qualita-
tively on the basis of consistent topological rules governing
light-induced matter defects of both signs. When a liquid crys-
tal light valve is illuminated by a Gaussian beam, a vortex in the

molecular orientation (umbilic defect) is induced [21,22]. The
umbilical defects are topological charges �1.

In this Letter, we establish analytically the origin of the vor-
tex lattices observed in illuminated liquid crystal layers with
photosensitive walls. Using a topologically driven Ginzburg–
Landau equation that describes illuminated liquid crystal
light valves close to the Fréedericksz transition, we model
the vortices and the lattices they form. Figure 1 shows typical
experimental, numerical, and analytical vortex lattices of an
illuminated liquid crystal light valve. The numerical simula-
tions of the amplitude equation, analytical solutions, and
experimental observations show good agreement.

The liquid crystal light valve is composed of a thin nematic
liquid crystal film sandwiched between a glass and a photocon-
ductive plate. The liquid crystal light valve is filled with a nem-
atic mixture exhibiting negative dielectric anisotropy. The
transparent interfaces are treated in order to provide a homeo-
tropic alignment of the liquid crystals, that is, close to the walls,
the liquid crystal molecules are perpendicular to the confining
layers, one of which is the photoconductive slab. The director
~n�z, x, y, t� accounts for the orientational organization of the
molecules, where z and fx, yg, respectively, are the longitudinal
and transverse coordinates. Owing to the photoconductive sub-
strate and transparent electrodes, when the liquid crystal light
valve is illuminated, the effective voltages V �z, x, y� drop across
the liquid crystal layer which acquires a profile proportional
to the light intensity I�x, y� on the liquid crystal layer,
V �z, x, y� � z∕d �V 0 � αI�x, y�� [21]. Where V 0 is the voltage
applied to the liquid crystal light valve, d and α are the thick-
ness of the valve and the phenomenological dimensional
parameter, respectively, that describe the linear response of
the photoconductor.

The elongated molecules of the liquid crystal start to reor-
ient as a result of the torque exerted by the induced electric field
and tend to align perpendicularly to it. The homeotropic state,
~n � ẑ, undergoes an stationary instability for a critical voltage.
Indeed, this molecular reorientation instability corresponds to
the Fréedericksz transition [23]. Close to this transition, one
can use the following ansatz for the amplitude of the critical
spatial mode ~n ≈ �u�x, y, t� sin�πz∕d �, v�x, y, t� sin�πz∕d �,
1 − �u2 � v2�sin2�πz∕d �∕2�. Substituting it in the director
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equation—which contains the effects of elasticity and electro-
magnetic couplings—integrating in z coordinate over the
sample thickness and, considering the complex amplitude
A ≡ �u� iv�, after straightforward calculations, one obtains
the topologically driven Ginzburg–Landau equation [20,21]

γ∂tA � μA − aAjAj2 � ∇2
⊥A� δ∂ηηĀ� bI 0eiθ, (1)

where μ�r� ≡ −K 3�π∕d�2 − ϵa�V 0 � αI�2∕d 2 is the bifurca-
tion parameter; a≡−�K 3�π∕d�2∕4�3ϵa�V 0�αI�2∕4d 2�>0
is the nonlinear response; b ≡ 2ϵadαV 0∕π, ∂η ≡ ∂x � i∂y,
and δ ≡ �K 1 − K 2�∕�K 1 � K 2� stand for the anisotropy
elasticity of the system; θ is the amplitude phase; I 0≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�∂xI�2 � �∂yI�2
q

; γ is the rotational viscosity; and fK 1,K 2,

K 3g are the elastic anisotropy constants of the liquid crystal.
The numerical simulations of the amplitude Eq. (1) with a

forcing term consisting of a superposition of Gaussians equiv-
alent to illuminating the optical valve with several light beams
give vortex lattices as a stable equilibrium. The middle panels of
Fig. 1 show the typical lattices. Circles account for the waist of
the Gaussian forcing. When the liquid crystal light valve is

forced with a single beam of sufficiently intense light, it always
induces a vortex of positive charge at the center of the beam
[22]. This result is easily understood as a consequence of the
voltage induced by a single ray being an electric field with a
positively charged vortex [21]. Figure 1 shows the vortices in-
duced by a green laser. Illuminating the sample with a red laser,
we analyze other areas of response of the optical valve. In the
case of two light beams, the positive charges must be accom-
panied by negative charges, since the total topological charge
must be conserved. To characterize analytically the origin of
these vortices we assume μ < 0 (i.e., we are below the
Fréedericksz transition) and consider a single ray of light with
intensity I � I 0e−r

2
⊥∕w

2
, where I0 and w, respectively, are the

strength and waist of the light beam, and r⊥ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
is

the radial coordinate with its origin in the center of the beam.
When w ≫ 1, Eq. (1) has the following approximate stationary
solution:

AR�r⊥,ϕ� � −
bI 0�x, y�

μ
eiϕ � 2bI 0

w2μ
r⊥e−r

2
⊥∕w

2eiϕ, (2)
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Fig. 1. Optical vortex lattices in nematic liquid crystals. The left panels correspond to snapshots of vortex lattices obtained in an illuminated
nematic liquid crystal light valve with (a) two, (b) four, and (c) six light beams (courtesy of R. Barboza). The �1 account for the respective topo-
logical charges. The intermediate panels correspond to the numerical simulations of the topological driven Ginzburg–Landau Eq. (1) with μ � −3,
a � 1, δ � 0, and b � 0.1, forced, respectively with (a) two, (b) four, and (c) six Gaussians beams. The right panels correspond to analytical vortex
lattices obtained using formula A � −4b∇r⊥hV i∕α with (a) two, (b) four, and (c) six Gaussians beams. The circles account for the waist of the
respective Gaussian beams.
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where ϕ is the angular coordinate with its origin in the center of
the Gaussian. It can be checked that the error of this approxi-
mate solution is of the order O� 1

w6�; in other words, both the
nonlinear term and the Laplacian are negligible in this limit.
Since AR�r⊥,ϕ� grows linearly around the origin and decays
as a Gaussian, we have called this solution a Rayleigh vortex.
Figure 2 show the surface plot, vectorial representation, and
phase of the Rayleigh vortex. The maximum value h that the
vortex reaches corresponds to vortex height, h�2bI0∕μw

ffiffiffiffiffi
2e

p
,

and the width of the vortex core is l � w∕
ffiffiffi
2

p
. Figure 3 shows a

comparison between the numerical solutions of the topologi-
cally driven Ginzburg–Landau equation (1) and the approxi-
mate solution (2). From this figure, we infer that for the
light beam of the big waist, the Rayleigh vortex is is a very good
approximation of the topologically driven Ginzburg–Landau
vortex. For light beam waists of the order one, the effect of

the Laplacian and the nonlinear term begins to play a role, and
the Rayleigh solution ceases to be dominant. Experimentally,
the standard width used for the waist of the light beam
(250 μm) is 50 times larger than the length associated with
the elastic constant (5 μm), that is, in our dimensionless units
w � 50. Then, below the Fréedericksz transition, the Rayleigh
vortex describes the umbilical defects.

To explain the origin of Rayleigh vortex, we note that the
liquid crystal light valve is a thin film and, thus, one should
consider averaged quantities. The voltage averaged over the
thickness hV �r⊥�i takes the form

hV �r⊥�i �
1

d

Z
d

0

V �z, r⊥�dz �
V 0 � αI�r⊥�

2
: (3)

Likewise, calculating the electric field averaged in the
vertical direction, we obtain hE�r⊥,ϕ�i � −∇r⊥hV i �
αI0�r⊥∕2w2�e−r2⊥∕w2

eiϕ, where the electric vector is represented
in complex variable notation. Therefore, the Rayleigh vortex is
proportional to the averaged electric field or, equivalently the
gradient of the averaged potential AR�r⊥,ϕ� � 4bhEi∕α �
−4b∇r⊥hV i∕α.

Generalizing the previous analysis, one can consider two
light beams illuminating the optical light valve in different
positions (r1 and r2). The averaged potential hV �r⊥�i �
�V 0 � αI�x, y, r1� � αI�x, y, r2��∕2, where I�x, y, ri� is a
Gaussian beam centered at ri, corresponds to a surface with
two mounds. Since the equilibrium amplitude is the gradient
of the averaged potential, we identify maxima or minima of the
potential with positively charged vortices and the saddle points
with vortices of negative charge. Figure 4 illustrates this in the
case of two Gaussian beams. Note that a negative vortex is
located between the positive vortices. By decreasing the
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Fig. 2. Rayleigh vortex of the topologically driven Ginzburg–
Landau equation (1) with μ � −3, a � 1, δ � 0, b � 1, I 0 � 0.01,
and w � 30. (a) Surface plot of the Rayleigh vortex, Eq. (2).
(b) Vector representation of the vortex solution. The colors show
the magnitude of the amplitude jAj. (c) Counter-plot of the phase
of amplitude A, arg�A� � Im�A�∕Re�A�. (d) Rayleigh vortex profile;
h and l account for the height and width of the core of the vortex,
respectively.

Fig. 3. Log-log plot of the height of the vortex as a function of beam
waist w. The heights obtained by numerical simulation of the topo-
logically forced Ginzburg–Landau Eq. (1) (crosses) with μ � −3,
a � 1, δ � 0, b � 1, and I 0 � 0.01 are compared with h �
2bI0∕μw
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(continuous line).
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Fig. 4. Analytical vortices induced by two Gaussians. The total
topological charge is N � 1. The complex amplitude A was obtained
using formula A � −4b∇r⊥hV i∕α. The left panels correspond to the
vector representation of the complex amplitude. The colors account
for the magnitude of the amplitude. The contour plot of the phase
of the amplitude is shown on the left panel. (a), (b), and (c) correspond
to Gaussians with different distances.
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distance between the centers of the Gaussians, the charges ap-
proach each other [see Fig. 4(b)]. When this distance is of the
order of the beam waist, the vortices merge, leaving a single
vortex of positive charge [see Fig. 4(c)]. Based on the same strat-
egy, one can build configurations with more Gaussian beams
using the formula A � −4b∇r⊥hV i∕α. Figure 1 (right panels)
shows vortex lattices obtained by superposing two, four, and six
equally spaced Gaussian beams. An excellent agreement is
observed with the vortex lattices obtained by numerical simu-
lations of the topologically driven Ginzburg–Landau equa-
tion (1). Likewise, there is excellent agreement with the
experimental observations. However, due to the anisotropic
effects that are not accounted for in the Rayleigh vortex
approximation, the experimental positive vortices exhibit swirl-
ing arms [24]. Note that in the case of four light beams, the
averaged potential has four saddle points on the sides of the
square formed by the maxima and a minimum on the intersec-
tion of the diagonals. This explains why in the experiment a
swirling vortex is induced on the diagonal between the topo-
logically forced vortices [see the left panels of Figs. 1(b)
and 1(c)].

In conclusion, we have been able to establish analytically the
origin of the vortex lattices observed in illuminated liquid crys-
tal layers with photosensitive walls below the Fréedericksz tran-
sition. The numerical simulations of the amplitude equation,
analytical solutions, and experimental observations show good
agreement. When the system is above the molecular reorienta-
tion transition, the elastic couplings (taken into account in (1)
by the Laplacian and the second-order differential operator de-
scribing anisotropic spatial variations with δ ≠ 0) determine
the vortex core size, which is now of the order of few microns.
In this regime, the Rayleigh vortex does not account for the
observed vortices. However, the position and configuration
of the vortex lattices are qualitatively described by the lattices
of the Rayleigh vortices. The amplitude equations describe
qualitatively and quantitatively the dynamics near the instabil-
ity point. However, these equations qualitatively describe the
dynamics away from the bifurcation point [2,25]. Hence, ana-
lytically presented findings are valid far from the Fréedericksz
transition.

At the onset of the Fréedericksz transition, depending on the
light intensity, the vortices positioned in the center of the light
beam can undergo instabilities and move to dark areas (the area
outside the illuminated region). These new topological defects
known as the shadow vortices [26] are characterized by having
an exponentially small height. Experimentally they are detected
indirectly. The lattice created by these and the induced vortices
is a problem currently in progress.
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