SELECTIVIDAD DE LÍQUENES POR GRUPOS BACTERIANOS DE SU MICROBIOMA

Tesis

Entregada a la Universidad de Chile en cumplimiento parcial de los requisitos para optar al grado de

Doctor en Ciencias con mención en Microbiología

Facultad de Ciencias por Diego Leiva Cáceres Noviembre, 2019

Directora de Tesis Dra. Julieta Orlando Co-directora de Tesis Dra. Margarita Carú Co-director de Tesis Dr. Alex Fajardo

A mis abuelos

RESUMEN BIOGRÁFICO

Nací en la ciudad de Linares, donde egresé de enseñanza media y luego me instalé en Santiago para iniciar mis estudios universitarios. Siendo estudiante de Magister en Bioquímica en esta Universidad, me interesó el estudio de los líquenes y realicé mi tesis evaluando relaciones bioquímicas entre líquenes y sus comunidades bacterianas en el Laboratorio de Ecología Microbiana. Durante mi estadía en este laboratorio asistí a numerosos eventos científicos nacionales e internacionales, dicté clases en distintos cursos, colaboré con investigadores de otras áreas y participé en la publicación de cuatro artículos revisados por pares.

AGRADECIMIENTOS

Agradezco a los directores de esta tesis por su guía y apoyo constante en todo el proceso, a la comisión evaluadora por sus valiosas sugerencias, a Becas CONICYT, Fundación María Ghilardi Venegas, Proyecto UCH-1566 y Proyecto FONDECYT 1181510 por el financiamiento, a los compañeros de trabajo en el Laboratorio de Ecología Microbiana por su colaboración y compañía, a CONAF por los permisos para la toma de muestras y a nuestros colaboradores en las Universidades Karl-Franzens y Técnica de Graz por su ayuda en el tratamiento de datos de secuenciación masiva y microscopía.

Finalmente agradezco a mi familia y amigos por su preocupación y apoyo, y especialmente a mi esposa por su compañía y consejos a lo largo de este proceso.

ÍNDICE

RESUMEN BIOGRÁFICO	III
AGRADECIMIENTOS	IV
ÍNDICE	V
LISTA DE TABLAS	VI
LISTA DE FIGURAS	VII
LISTA DE ABREVIATURAS	VIII
RESUMEN	1
ABSTRACT	2
INTRODUCCIÓN	3
HIPÓTESIS	9
OBJETIVO GENERAL	10
OBJETIVOS ESPECÍFICOS	10
MATERIALES Y MÉTODOS	11
RESULTADOS	16
Objetivo específico 1: Identificar los pares simbióticos de líquenes de la especie <i>Peltigera frig</i> un bosque de lenga en la Reserva Nacional Coyhaique.	<i>gida</i> en 18
Objetivo específico 2: Determinar el rango de especificidad que presenta <i>P. frigida</i> por las b Sphingomonadales y Rhizobiales de su microbioma.	acterias 35
Objetivo específico 3: Determinar el éxito ecológico de las bacterias Sphingomonadales y Rhizobiales en los talos de <i>P. frigida</i> .	41
Objetivo específico 4: Determinar la disponibilidad de las bacterias Sphingomonadales y Rhizobiales en el sustrato subyacente a <i>P. frigida</i> .	42
Objetivo específico 5: Determinar el grado de selectividad de <i>P. frigida</i> sobre las bacterias Sphingomonadales y Rhizobiales relacionando los factores especificidad, éxito ecológico y disponibilidad	45
DISCUSIÓN	43 53
CONCLUSIONES	65
REFERENCIAS	66
ANEXO 1 - SCRIPT ANÁLISIS DE SECUENCIAS EN R	76
$\frac{1}{1} = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = $	70 QE
	60
ANEXO 3 – TARLAS SUPLEMENTARIAS	Q 2

LISTA DE TABLAS

Tabla 1. Información de recolección de las muestras de líquenes.	16
Tabla 2. Alineamiento de la región hipervariable de ITS (ITS-HR).	20
Tabla 3. Estadísticas de los datos crudos de la obtención de secuencias por Illumina MiSeq. Tabla 4. Estadísticas de las secuencias obtencias luego de la limpieza y tratamiento con	23
DADA2.	24
Tabla 5. Valores de ∝ i para los géneros del orden Sphingomonadales calculados para las muestras de líquenes.	37
Tabla 6. Valores de nci para los géneros del orden Sphingomonadales calculado para las muestras de líquenes.	37
Tabla 7. Valores de ∝ i para los géneros del orden Rhizobiales para todas las muestras de líquenes	38
Tabla 8. Valores de nci para los géneros del orden Rhizobiales calculado para las muestras d líquenes	de 39
Tabla 9. Valor de especificidad básica (n) géneros de Sphingomonadales y Rhizobiales de las muestras de líquenes.	40
Tabla 10. Valores de WSD para Sphingomonadales y Rhizobiales de las muestras de líquenes	s. 41
Tabla 11. Valores de WSD para Sphingomonadales y Rhizobiales de las muestras de líquenes	s. 42
Tabla 12. Valores de Sei (primer criterio) para los géneros del orden Sphingomonadales	45
Tabla 13. Valores de Sei (segundo criterio) para los géneros del orden Sphingomonadales.	45
Tabla 14. Valores de Sei (primer criterio) para los géneros del orden Rhizobiales.	46
Tabla 15. Valores de Sei (segundo criterio) para los géneros del orden Rhizobiales.	47

LISTA DE FIGURAS

Figura 1. Ubicación de las muestras de líquenes	_ 17
Figura 2. Identificación filogenética de los micobiontes de las muestras de líquenes	_ 19
Figura 3. Identificación filogenética de los cianobiontes de las muestras de líquenes	_ 21
Figura 4. Asignación taxonómica de las lecturas de muestras de líquenes	_ 26
Figura 5. Asignación taxonómica de las lecturas de muestras de sustratos	_ 27
Figura 6. NMDS de los ASVs agrupados por tipo de muestra y subsitio	_ 28
Figura 7. NMDS de los géneros bacterianos agrupados por tipo de muestra y subsitio	_ 29
Figura 8. Frecuencia relativa de los filos bacterianos agrupados por tipo de muestra	_ 30
Figura 9. Árbol filogenético y abundancia relativa de los filos bacterianos	_ 31
Figura 10. Árbol filogenético y abundancia relativa de los órdenes bacterianos pertenecien	tes a
la clase Alphaproteobacteria	_ 33
Figura 11. Microscopía FISH-CLSM de las alfaproteobacterias presentes en los líquenes.	_ 34
Figura 12. Árbol filogenético y selectividad por los géneros bacterianos del orden	
Sphingomonadales	_ 49
Figura 13. Árbol filogenético y selectividad por los géneros bacterianos del orden Rhizobia	les.
	_ 50
Figura 14. NMDS de los géneros bacterianos pertenecientes al orden Sphingomonadales	_ 52
Figura 15. NMDS de los géneros bacterianos pertenecientes al orden Rhizobiales.	52

LISTA DE ABREVIATURAS

% p/v	Porcentaje peso/volumen
α_i	Índice de distancia filogenética
ASV	Amplicon sequence variant
CLSM	Confocal laser scanning microscopy
DE	Desviación estándar
$d_{i \; promedio}$	Distancia cofenética promedio
d _{máxima}	Distancia cofenética máxima
DNA	Ácido desoxirribonucleico
EDTA	Ácido etilendiaminotetraacético
FISH	Fluorescence in situ hybridization
GTDB	Genome Taxonomy Database
HR	Hypervariable region
iTOL	Interactive Tree Of Life
ITS	Internal transcribed spacer
LAR1	Lichen-associated Rhizobiales 1
m.s.n.m.	Metros sobre el nivel del mar
n	Especificidad básica (riqueza)
nci	Índice de especificidad filogenética
NMDS	Non-metric multidimensional scaling
nt	Nucleótido
OTU	Operational taxonomic unit
pb	Pares de bases
PCR	Polymerase chain reaction
p_i	Frecuencia (abundancia relativa)
qPCR	Quantitative polymerase chain reaction
RN	Reserva Nacional
rRNA	Ácido ribonucleico ribosomal
Sei	Índice de selectividad filogenética
T-BAS	Tree-Based Alignment Selector
TRIS	Tris(hidroximetil)aminometano
Wi	Coeficiente de selectividad filogenética
WSD	Weighted Shannon diversity

RESUMEN

La diversidad de los simbiontes clásicos de los líquenes (micobiontes y fotobiones) ha sido ampliamente estudiada, pero el funcionamiento y origen de las comunidades bacterianas asociadas a éstos han recibido menos atención. Se ha propuesto que ciertas bacterias (e.g. Sphingomonadales) provienen de los propágulos reproductivos de los líquenes, que transportarían bacterias altamente dependientes de la composición del talo, pero también podrían provenir del ambiente en el que se desarrollan los líquenes (e.g. Rhizobiales), cuya contribución dependería principalmente de las condiciones ambientales. Diez líquenes de una misma especie (*Peltigera frigida*) y sus sustratos fueron muestreados en bosques de la Reserva Nacional Coyhaique, al sur de Chile. La identidad del micobionte y del cianobionte fue confirmada usando marcadores moleculares, confirmando que la especie corresponde a P. frigida y que se asocia con la misma cianobacteria. Luego, tanto desde los líquenes como desde los sustratos, se realizó una secuenciación de amplicones de 16S utilizando partidores que excluyen las cianobacterias. En los líquenes, las Proteobacterias fueron el filo más abundante, mientras que en sustratos las del filo Acidobacteriota fueron más numerosas, lo que sugiere que los líquenes actúan como un filtro seleccionando parte de su microbioma desde el sustrato. Utilizando un índice de selectividad, se determinó que *P. frigida* preferiría bacterias quimioheterótrofas tanto del orden Sphingomonadales como del orden Rhizobiales, probablemente atraídas por la materia orgánica presente en el liquen; mientras que rechazaría bacterias fijadoras de nitrógeno, probablemente porque el cianobionte ya aporta con dicha función.

ABSTRACT

The diversity of classical lichen symbionts (mycobionts and photobionts) has been widely studied, but the functioning and origin of the associated bacterial communities have received less attention. It has been proposed that certain bacteria (e.g. Sphingomonadales) come from the reproductive propagules of lichens, which would carry bacteria highly dependent on the composition of the thallus but could also come from the environment in which lichens develop (e.g. Rhizobiales), whose contribution would depend mainly on the environmental conditions. Ten lichens of the same species (Peltigera frigida) and their substrates were sampled in forests of the Coyhaique National Reserve, in southern Chile. The identity of the mycobiont and cyanobiont was confirmed using molecular markers, confirming that the species corresponds to P. frigida and that it is associated with the same cyanobacterium. Then, the 16S amplicons from both lichens and substrates were sequenced using primers that exclude cyanobacteria. In lichens, Proteobacteria were the most abundant phylum, while in substrates those of the phylum Acidobacteriota were more numerous, suggesting that lichens act as a filter by selecting part of their microbiome from the substrate. Using a selectivity index, it was determined that *P. frigida* would prefer chemoheterotrophic bacteria of both the orders Sphingomonadales and Rhizobiales, probably attracted by the organic matter present in the lichen; whereas it would reject nitrogen-fixing bacteria, probably because the cyanobiont already provides such a function.

INTRODUCCIÓN

Los líquenes, según su definición tradicional, son sistemas simbióticos mutualistas en los que el micobionte (componente fúngico) otorga un microhábitat para el fotobionte (alga verde o cianobacteria), el cual contribuye con compuestos carbonados obtenidos mediante fotosíntesis y, en caso de ser una cianobacteria, además proporciona compuestos nitrogenados por su capacidad para fijar nitrógeno molecular. Recientemente, se propuso que basidiomicetes que habitan en la corteza de algunos líquenes podrían formar parte del sistema simbiótico cuyo rol sería la producción de metabolitos secundarios típicamente asociados al micobionte (Spribille et al., 2016). Sin embargo, una mirada más generalizada postula que sería el conjunto de microrganismos que crecen en la superficie el involucrado en la expresión de fenotipos distintos a los determinados por los simbiontes clásicos de los líquenes (Spribille, 2018).

La asignación taxonómica de los líquenes se realiza exclusivamente en base al componente fúngico ascomicete, por lo que en clasificaciones modernas son tratados como "hongos formadores de líquenes" (Gargas et al., 1995; Nash, 2008). Aproximadamente un quinto de todos los hongos conocidos se describen como formadores obligados de líquenes (Ainsworth, 2008), lo cual refleja el éxito evolutivo de esta asociación simbiótica. Sin embargo, debido a que la diversidad liquénica descrita se basa principalmente en caracteres morfológicos del componente fúngico de los líquenes, es probable que el número total de especies de hongos formadores de líquenes se encuentre subestimado (Crespo y Lumbsch, 2010). Además, una misma especie de hongo formador

de líquenes puede asociarse con distintos fotobiontes y presentar morfologías características, lo que complejiza su nomenclatura (Ranft et al., 2018).

En los últimos años, diversas investigaciones han transformado la visión de los líquenes desde organismos bi- o tri-partitos a la de simbiosis multi-especies, considerando a los microorganismos asociados al talo liquénico como nuevos socios, los cuales se han detectado mediante el uso de herramientas moleculares (Cardinale et al., 2006; Grube y Berg, 2009; Hodkinson y Lutzoni, 2009; Bates et al., 2012). En estos ensambles microbianos se encuentran hongos (Bates et al., 2012), arqueas (Bjelland et al., 2011) y bacterias asociadas a líquenes de distintos tipos. Debido probablemente a su diversidad taxonómica y funcional, las bacterias han recibido la mayor parte de la atención en este aspecto (Cardinale et al., 2008; Grube et al., 2009; Hodkinson et al., 2012). La diversidad de bacterias en el microbioma liquénico, determinada mediante metagenómica y proteómica, sugiere que las bacterias realizarían funciones de obtención de nutrientes como nitrógeno, fósforo, azufre y metales, los cuales podrían ser aprovechados por los simbiontes principales para su crecimiento (Grube et al., 2015). Más aún, estas comunidades bacterianas estarían involucradas también en funciones como el control de potenciales patógenos (Cernava et al., 2015), estimulación del crecimiento (Sigurbjörnsdóttir et al., 2016) o degradación de partes viejas del talo (Grube et al., 2015). Las alfaproteobacterias se han descrito como la clase bacteriana con mayor abundancia relativa en el microbioma de diversos líquenes (Cardinale et al., 2008; Bjelland et al., 2011; Cardinale, Grube, et al., 2012; Hodkinson et al., 2012). En el caso particular del

género *Peltigera*, al cual pertenece la especie de líquenes a estudiar en este trabajo, los

dos grupos de alfaproteobacterias más abundantes corresponden a los órdenes Sphingomonadales y Rhizobiales (Hodkinson et al., 2012; Sigurbjörnsdóttir et al., 2015). Las bacterias pertenecientes al orden Sphingomonadales tienen la capacidad de degradar materia orgánica y compuestos recalcitrantes (Balkwill et al., 2006; Glaeser y Kämpfer, 2014), y se han encontrado más representadas en las partes centrales que en los bordes de talos de crecimiento radial (Mushegian et al., 2011), por lo que se sugiere que su presencia en los líquenes podría estar relacionada a la obtención de nutrientes producto de la degradación de partes viejas del talo (Lee et al., 2014; Aschenbrenner et al., 2016). Por otra parte, dentro de los Rhizobiales se ha encontrado un grupo asociado predominantemente a líquenes, denominado LAR1 por las siglas de "Lichen-Associated Rhizobiales" (Hodkinson y Lutzoni, 2009; Bates et al., 2011; Hodkinson et al., 2012; Aschenbrenner et al., 2017), y aunque no se conocen las capacidades metabólicas de estas bacterias, se sugiere que podrían tener la capacidad de fijar nitrógeno molecular, como otras especies pertenecientes al orden Rhizobiales (Hodkinson y Lutzoni, 2009). Cuando forman parte del microbioma de los líquenes, las bacterias de estos dos órdenes presentan un comportamiento biogeográfico distinto. Las bacterias del orden Sphingomonadales han sido reportadas como las más abundantes en los propágulos vegetativos de líquenes (Aschenbrenner et al., 2014) y sus funciones dependerían del microhábitat otorgado por el liquen (Cardinale, Steinová, et al., 2012). Por lo tanto, su distribución depende de la presencia del liquen en un determinado ambiente y son considerados generalistas a nivel de hábitat (habitat generalists) (Aschenbrenner et al., 2016). Por otro lado, las bacterias del orden Rhizobiales también están presentes en los propágulos vegetativos (Aschenbrenner et al., 2014) pero estarían involucradas en funciones dependientes de las condiciones ambientales (e.g. fijación de nitrógeno). Por lo tanto, los líquenes podrían cambiarlas por otras mejor adaptadas al ambiente donde están creciendo (Cardinale, Grube, et al., 2012) y serían consideradas especialistas a nivel de hábitat (*habitat specialists*) (Aschenbrenner et al., 2016).

A pesar de que las estrategias de reproducción de los líquenes han sido ampliamente estudiadas, poco se conoce acerca de cómo éstos adquieren, estructuran y transmiten su microbioma. Se ha planteado que los líquenes podrían llevar consigo parte de la comunidad bacteriana original al propagarse a un nuevo sitio cuando se reproducen vegetativamente (Hodkinson et al., 2012; Aschenbrenner et al., 2014), aunque no se puede descartar que parte del microbioma también podría ser reclutado desde el sustrato donde los líquenes crecen (Berg y Smalla, 2009; Aschenbrenner et al., 2016). De hecho, se ha encontrado que, si bien comparten ciertos componentes bacterianos, las comunidades del talo liquénico son diferentes a las del sustrato donde ellos crecen (Ramírez-Fernández et al., 2014; Leiva et al., 2016; Almendras, García, et al., 2018), y donde la producción de metabolitos y actividades enzimáticas del liquen podrían actuar como "filtro" ambiental para seleccionar la comunidad bacteriana del microbioma (Leiva et al., 2016; Almendras, Leiva, et al., 2018), ya que estos productos pueden tener actividades antibióticas y citotóxicas (Parrot et al., 2016).

Los líquenes se reproducen tanto sexual como asexualmente, siendo la transmisión de los componentes tradicionales distinta en cada caso. Si el liquen se reproduce *asexualmente* mediante la producción de propágulos vegetativos que incluyen ambos componentes, se produce la transmisión vertical de los mismos simbiontes. Si lo hace *sexualmente*

mediante la producción de esporas por parte del micobionte, entonces las esporas germinadas deben restablecer la simbiosis con un fotobionte compatible (transmisión horizontal o reliquenización) (Nash, 2008). Este fotobionte puede estar disponible en vida libre (Beck et al., 1998; Zúñiga et al., 2017), asociado simbióticamente a otros líquenes (Rikkinen et al., 2002; Muggia, Vancurova, et al., 2013) o incluso a otros organismos (Cornejo y Scheidegger, 2016). En resumen, si los pares se transmiten verticalmente, la asociación simbiótica se mantiene por varias generaciones, pero si se transmiten horizontalmente, la asociación se desacopla y debe restablecerse tras la reproducción del hongo. Aún en el caso de reproducción asexual, es posible que ocurra una separación entre los componentes principales de la simbiosis, permitiendo que el fotobionte sea reemplazado por otros disponibles en el ambiente (Fedrowitz, 2011). Esta sustitución permitiría una reacción más individualizada y rápida a los cambios ambientales comparado con procesos evolutivos como mutación y selección (Printzen et al., 2012).

Basado en las estrategias de reproducción de los líquenes, se ha propuesto un modelo conceptual que explica los factores que determinan la formación de una simbiosis exitosa (Yahr et al., 2006). Según este modelo, durante la reliquenización debe existir un fotobionte disponible en el nuevo ambiente con el cual el micobionte establezca la simbiosis (*disponibilidad del fotobionte*); lo que depende de los factores geográficos y ecológicos del lugar. Si no existe un fotobionte adecuado disponible, el hongo no será capaz de sobrevivir en vida libre. Luego del encuentro de ambos pares, para el establecimiento exitoso de la simbiosis se requiere que el fotobionte sea genéticamente compatible con el micobionte (*especificidad del micobionte*); es decir, el grado de

diferenciación taxonómica existente entre los compañeros con los cuales se asocia cada micobionte. Un tercer factor para considerar es la adecuación de los pares simbióticos compatibles (selectividad del micobionte); es decir, la asociación preferencial con los fotobiontes específicos disponibles mejor adaptados al nuevo ambiente. Así, según el ambiente, el hongo seleccionaría preferentemente un determinado compañero entre los fotobiontes compatibles disponibles en el medio, formando con éste parejas estables con mayor frecuencia (éxito ecológico del fotobionte) (Orlando et al., 2011). Basándose en este modelo, en un trabajo previo de nuestro laboratorio se determinaron los factores que intervienen en el proceso de liquenización y se adaptó un índice de elegibilidad para evaluar la selectividad de micobiontes del género Peltigera por sus fotobiontes cianobacterianos del género Nostoc (Orlando et al., 2015; Zúñiga, 2015). Este índice originalmente incluye en su cálculo ecuaciones ampliamente utilizadas en otros campos de la ecología, como relaciones hospedero-parásito (Poulin et al., 2011) y depredadorpresa (Lechowicz, 1982), que se adaptaron para medir la disponibilidad, la especificidad y el éxito ecológico, y luego se utilizaron como términos del índice para cuantificar la selectividad.

En este trabajo estudiamos la selectividad de líquenes de la especie *Peltigera frigida* (Santesson, 1944) por bacterias de los órdenes Sphingomonadales y Rhizobiales presentes en el microbioma del talo. Para ello, evaluamos la especificidad de los líquenes por dichos integrantes de su microbioma bacteriano, el éxito ecológico de estas bacterias en el talo liquénico, y su disponibilidad en el sustrato donde crecen los líquenes. El sitio de estudio corresponde a la región de Aysén, donde se ha reportado la presencia de *P. frigida* (Quilhot

et al., 2012), una especie encontrada preferentemente en bosques y reportada únicamente en el extremo sur de Sudamérica (Miadlikowska y Lutzoni, 2000; Martínez et al., 2003; Magain et al., 2018). Particularmente, en la Reserva Nacional Coyhaique, esta especie fue la segunda más abundante del género *Peltigera* asociada a bosques de lenga (*Nothofagus pumilio* (Poepp. & Endl.) Krasser 1896) (Leiva et al., 2016), a pesar de su nula o poca abundancia en otros sitios del sur de Chile y la Antártica (Ramírez-Fernández et al., 2013; Rubio et al., 2013; Zúñiga et al., 2015).

HIPÓTESIS

Considerando que las bacterias asociadas al talo liquénico del orden Sphingomonadales se transmitirían más bien verticalmente entre los individuos y que las del orden Rhizobiales serían preferentemente adquiridas de forma horizontal, proponemos que: Peltigera frigida *será más selectiva por aquellas bacterias de su microbioma*

pertenecientes al orden Sphingomonadales que por aquellas del orden Rhizobiales, y estas últimas tendrán un patrón de diversidad mayormente asociado a la distribución espacial de los líquenes.

OBJETIVO GENERAL

Determinar la selectividad de líquenes de la especie *Peltigera frigida* por las bacterias de los órdenes Sphingomonadales y Rhizobiales presentes en su microbioma, a partir de la determinación de la especificidad, la disponibilidad y el éxito ecológico de dichas comunidades bacterianas.

OBJETIVOS ESPECÍFICOS

- Identificar los pares simbióticos de líquenes de la especie *P frigida* en un bosque de lenga en la Reserva Nacional Coyhaique.
- 2. Determinar el rango de especificidad que presenta *P. frigida* por las bacterias Sphingomonadales y Rhizobiales de su microbioma.
- Determinar el éxito ecológico de las bacterias Sphingomonadales y Rhizobiales en los talos de *P. frigida*.
- 4. Determinar la disponibilidad de las bacterias Sphingomonadales y Rhizobiales en el sustrato subyacente a *P. frigida*.
- 5. Determinar el grado de selectividad de *P. frigida* sobre las bacterias Sphingomonadales y Rhizobiales relacionando los factores especificidad, éxito ecológico y disponibilidad.

MATERIALES Y MÉTODOS

Diez muestras de líquenes de la especie *Peltigera frigida* y sus sustratos fueron recolectados en la Reserva Nacional Coyhaique, Región de Aysén, Chile, donde esta especie fue previamente caracterizada como abundante (Zúñiga et al., 2015; Leiva et al., 2016). Las muestras recolectadas se reconocieron inicialmente por características morfológicas y posteriormente se confirmaron por caracteres moleculares.

Las muestras se llevaron al laboratorio donde los talos liquénicos se separaron mediante pinzas y pinceles del sustrato (i.e. suelo) adherido a ellos. Los líquenes se almacenaron en bolsas de papel a temperatura ambiente, mientras que el sustrato adyacente se mantuvo en tubos plásticos a 4°C. Se extrajo DNA de las 10 muestras de líquenes y las 10 de sustrato con el kit PowerSoil® DNA Isolation Kit (Mo Bio). Para confirmar molecularmente la identificación de la especie de liquen, se secuenció el gen que codifica para el rRNA 28S. Las reacciones de PCR se realizaron con los partidores específicos para hongos LIC24R (Miadlikowska y Lutzoni, 2000) y LR7 (Vilgalys y Hester, 1990) y el siguiente programa: 1 min a 94 °C, 30 ciclos de 30 s a 94 °C, 30 s a 52 °C y 1 min 30 s a 72 °C, y finalmente 4 min a 72 °C. Además, la identificación del micobionte se complementó con la secuenciación de la región ITS. Las reacciones de PCR se realizaron con los partidores específicos para hongos ITS1F (Gardes y Bruns, 1993) e ITS4 (White et al., 1990) y el siguiente programa: 5 min a 95 °C, 35 ciclos de 45 s a 95 °C, 90 s a 52 °C y 90 s a 72 °C, y finalmente 10 min a 72 °C. Para identificar el cianobionte se utilizó como marcador molecular el gen que codifica para el rRNA 16S, las reacciones de PCR se realizaron con los partidores específicos para cianobacterias PCR1 y PCR18 (Wilmotte et al., 1993) y el siguiente programa: 1 min a 94 °C, 30 ciclos de 1 min a 94 °C, 1 min a 55 °C y 4 min a 72 °C, y finalmente 7 min a 72 °C. La comprobación tanto de la calidad de las extracciones de DNA como del tamaño de los amplicones generados en las reacciones de PCR se realizó en geles de agarosa según la concentración y tiempos de corrida indicados para cada uno, se visualizaron con GelRed (Biotium) y se corrieron en amortiguador TAE (TRIS + Ácido acético + EDTA, pH = 8,3).

Para caracterizar la comunidad bacteriana presente en los líquenes y en sus sustratos, se secuenció mediante la plataforma Illumina MiSeq la región V4-V5 del gen que codifica para el rRNA 16S bacteriano, utilizado ampliamente como marcador molecular para este tipo de organismos. En este caso se utilizaron partidores que excluyen de la amplificación a cianobacterias y plastidios, con el fin de aumentar la profundidad del análisis para las bacterias distintas al fotobionte que habitan en el liquen, incluyendo las de los órdenes Sphingomonadales y Rhizobiales. Los partidores utilizados fueron Unibac-II-515F y 902R (Grube et al., 2012), con las secuencias correspondientes de adaptadores Illumina (TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-Unibac-II-515F y

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-902R). Se utilizó el programa de PCR según Hodkinson y Lutzoni (2009), y consistió en un PCR tipo *touchdown* con una desnaturalización inicial de 3 min a 94 °C, seguida de 24 ciclos (30 s a 94 °C; 30 s a 55 °C, disminuyendo en 0,4 °C con cada ciclo; 72 °C durante 60 s, aumentando en 2 s cada ciclo) y posteriormente 12 ciclos (30 s a 94 °C; 30 s a 45 °C; 72 °C durante 120 s, aumentando en 3 s cada ciclo) seguidos de 10 min de extensión final a 72 °C. Para disminuir la presencia de amplicones no específicos en la secuenciación, se procedió a

cortar la banda de interés desde geles de mayor capacidad de carga. Luego, dichas bandas se purificaron con el kit Wizard Genomic DNA Purification (Promega).

Las bandas purificadas se enviaron a Macrogen Inc (Korea) para ser secuenciadas en formato de extremos pareados 300 bp x 2, es decir 2 lecturas de 300 pares de bases por cada extremo para cada amplicón. Previo a la secuenciación, en Macrogen realizaron un análisis de distribución de tamaño de amplicones mediante un equipo Agilent Technologies 2100 Bioanalyzer usando un chip DNA 1000. Además, realizaron una cuantificación mediante qPCR según lo recomendado por Illumina.

Las secuencias obtenidas se optimizaron mediante el conjunto de paquetes (pipeline) QIIME2 (Bolyen et al., 2018), para lo cual primero se importaron, visualizaron y luego se filtraron por calidad mediante el algoritmo DADA2 (Callahan et al., 2016) a diferentes largos de secuencia según los resultados de calidad observados para las lecturas directas e inversas. Primero, se realizó un corte a las primeras 5 bases, dado que corresponden a adaptadores del método de secuenciación. Luego, dado que las secuencias directas presentaron mejor calidad que las inversas, se procedió a optimizar el largo ideal de las primeras. Para ello, se llevó a cabo una estrategia de corte escalonado cada 10 posiciones nucleotídicas: desde 300 a 210 y desde 200 a 110. En caso de encontrar máximos de riqueza dentro de ese rango, se procedió a reducir la ventana de corte a 5 nt y finalmente a 1 nt. Para el caso de las secuencias pareadas, primero se realizaron cortes a distintas combinaciones de largos de secuencia tanto del extremo directo (169, 238, 270 y 290 nt) como del inverso (300 y 260 nt, 220 y 180 nt). La mejor pareja se usó como referencia para el siguiente análisis, en el que se probó a distintos largos de secuencia cada 10 nt tanto del extremo directo (rango de 260 a 300 nt) como del inverso (rango de 190 a 150 nt), manteniendo la misma suma en el largo de las secuencias del mejor resultado del análisis anterior. Luego se refinó la búsqueda variando cada 5 nt tanto del extremo directo (rango de 280 a 300 nt) como del inverso (rango de 170 a 150 nt), y cada 1 nt tanto del extremo directo (rango de 285 a 295 nt) como del inverso (rango de 165 a 155 nt). Seleccionando el largo de secuencia de lectura inversa que entregara mayor riqueza de ASVs, se varió el largo de la directa cada 1 nt entre 280 y 289 nt y entre 269 y 279 nt. Luego, se varió el largo de la lectura inversa en el rango de 159 a 163 nt, manteniendo el mejor resultado para el largo de la lectura directa del análisis anterior. Finalmente, manteniendo la misma suma en el largo de las secuencias del mejor resultado del análisis previo, se refinó la búsqueda variando cada 1 nt ambas lecturas en el rango de 269 a 273 nt para la lectura directa y en el rango de 163 a 159 nt para la inversa.

El análisis de los datos para realizar el cálculo de los índices se incluye en extenso en el ANEXO 1, que fue principalmente en R con el uso de diversos paquetes. En resumen, el análisis taxonómico de las secuencias se realizó utilizando el paquete DADA2 en R (Callahan et al., 2016), con referencia en la base de datos GTDB (Parks et al., 2018) curada para su utilización en R (Alishum, 2019). Los gráficos se realizaron en R con el paquete *ggplot2* (Wickham, 2009), y los colores para el gráfico de barras de abundancia relativa de filos se realizaron con ayuda del paquete *randomcoloR* (Ammar, 2017). El manejo de los datos taxonómicos y de variables categóricas de las muestras se realizó en *phyloseq* (McMurdie y Holmes, 2013), los análisis multivariados se realizaron con el paquete *vegan* (Oksanen et al., 2019), la importación de árboles a R se hizo con el paquete

ape (Paradis y Schliep, 2019), y la exportación de datos se vio facilitada con el uso del paquete *tidyverse* (Wickham, 2017). La cobertura de secuencias obtenidas para Sphingomonadales y Rhizobiales se calculó con el índice homólogo de cobertura $C_X = 1$ - (N_X/n), donde N_X es el número de secuencias únicas en la muestra (es decir, secuencias sin réplica) y n es el número total de secuencias.

El análisis filogenético de las secuencias de micobionte se realizó en la plataforma T-BAS (Carbone et al., 2016), que contiene, entre otras, filogenias previamente curadas por liquenólogos con experiencia en la definición de especies en el género *Peltigera* realizadas en base a 7 loci (ITS, β-tubulina, RPB1, 28S, COR1b, COR3 y COR16). Para el caso de los cianobiontes, la historia evolutiva se infirió usando el método Neighbor-Joining. Las distancias evolutivas se calcularon utilizando el método de Kimura de 2 parámetros según lo sugerido por el programa jModelTest v2 (Darriba et al., 2012). La variación de la tasa entre sitios se modeló con una distribución gamma (parámetro gamma = 0,5). El análisis incluyó 59 secuencias de nucleótidos, incluyendo las de este trabajo y secuencias de referencia obtenidas tanto de cianolíquenes como de cianobacterias de vida libre. Se eliminaron todas las posiciones que contenían deleciones. Hubo un total de 615 posiciones en el conjunto de datos final. Los análisis evolutivos se realizaron en el programa MEGA7 (Kumar et al., 2016). Los árboles se curaron en el programa TreeGraph v2 (Stöver y Müller, 2010), y se editaron en la plataforma iTOL (Letunic y Bork, 2016) para la incorporación de datos como abundancias relativas y selectividad.

RESULTADOS

En total se recolectaron 10 muestras de líquenes y su respectivo sustrato, distantes al menos 10 metros entre sí, con el fin de disminuir el muestreo de muestras genéticamente idénticas (Figura A1, Tabla 1). Las 5 primeras muestras se muestrearon desde el borde de un sendero o en las cercanías de una laguna (Figura 1.A.) y a una altitud de entre 730 y 740 m.s.n.m. (Figura 1.D., Tabla 1). Las siguientes cinco muestras se recolectaron al borde de un sendero, cercanas a la ladera de un cerro (Figura 1.B.) y a una altitud de entre 700 y 710 m.s.n.m. (Figura 1.D., Tabla 1). Estos subsitios se encuentran aproximadamente 1200 metros distantes entre sí (Figura 1.C.). El procedimiento de extracción de DNA de las 10 muestras de líquenes y las 10 de sustrato se realizó exitosamente y la calidad del DNA se muestra en la Figura A2.

Tabla 1. Información de recolección de las muestras de líquenes pertenecientes a la especie *Peltigera frigida*. La primera columna indica el código de recolección dentro del conjunto de muestras tomadas en la Reserva Nacional Coyhaique, Región de Aysén, Chile (abreviado con la letra C). Dentro de este sitio se incluyeron muestras de 2 subsitios (A y B) con diferentes características de cobertura arbórea, según lo indicado en el texto. Se incluye también información de geolocalización y los nombres de numeración consecutiva utilizados en esta Tesis para cada muestra de liquen y sustrato.

Código recolección	Subsitio	Latitud (°)	Longitud (°)	Altitud (m)	Nombre liquen	Nombre sustrato
C57	А	-45,5271	-72,0427	740	L01	S01
C58	А	-45,5269	-72,0420	740	L02	S02
C67	А	-45,5266	-72,0408	730	L03	S03
C73	А	-45,5264	-72,0403	730	L04	S04
C74	А	-45,5263	-72,0401	730	L05	S05
C85	В	-45,5319	-72,0222	710	L06	S06
C87	В	-45,5320	-72,0220	710	L07	S 07
C94	В	-45,5328	-72,0212	700	L08	S08
C95	В	-45,5329	-72,0210	700	L09	S09
C98	В	-45,5328	-72,0214	700	L10	S10

Figura 1. Ubicación de las muestras de *Peltigera frigida* con su numeración para esta Tesis en un mapa satelital (A, B y C) y topográfico (D). A: Ubicación de las muestras en el subsitio A. B: Ubicación de las muestras en el subsitio B. C: Ubicación de las 10 muestras dentro de la reserva. D: Mismo mapa que en C pero con topografía en vez de imagen satelital.

<u>Objetivo específico 1:</u> Identificar los pares simbióticos de líquenes de la especie *Peltigera frigida* en un bosque de lenga en la RN Coyhaique.

Para identificar el micobionte y fotobionte se procedió a amplificar marcadores moleculares para la identificación de estos organismos: 28S (Figura A3) e ITS (Figura A4) para el caso de los hongos y 16S (Figura A5) para el caso de las cianobacterias. Los análisis filogenéticos de los marcadores 28S e ITS muestran que los líquenes pertenecen a la sección *Peltigera*, y se agrupan con las muestras del clado de *P. frigida y P. patagonica* (Figura 2). Se ha propuesto que la región hipervariable del marcador ITS puede ser utilizada como "código de barras" para diferenciar las especies de *Peltigera* (Magain et al., 2018), y un análisis de dicha región para nuestras secuencias confirma que se trata de la especie fúngica *P. frigida* para todas las muestras Tabla 2). Para el caso de la cianobacteria, el análisis del marcador 16S (Figura 3) confirma que para todas las muestras se trata del cianobionte *Nostoc* sp. C01 de Zúñiga *et al.* (2015); el cual en ese estudio fue, concordantemente, el más abundante en Coyhaique asociado con esta especie.

Figura 2. Filogenia del género *Peltigera* obtenida desde la plataforma T-BAS y editada en iTOL con las ocho secciones monofiléticas resaltadas en distintos grupos. Las secuencias de los marcadores 28S e ITS de las muestras de este trabajo (L01 a L10) se analizaron junto a las del género y se ubicaron dentro de la sección *Peltigera* (abajo) y junto a la especie *P. frigida*. Los nodos con soporte de bootstrap de 90% o más se destacan con un círculo.

Tabla 2. Alineamiento de la región hipervariable de ITS (ITS-HR). Se incluyen las 10 muestras de líquenes de este trabajo (L01 a L10) y las publicadas por Magain *et al.* (2018) para el clado de las especies *Peltigera* sp. 16, *P. frigida* y *P. patagonica*.

Peltigera sp. 16	GGG <mark>CGGGTTC</mark> TTTGG <mark>CCTTAAAC</mark> AAAAAATATATATATATATATATATTTTTTTT
L01	GGGCGCGGTCCTTTGGCTTCTAAAAAAATAAAAAATAAAAAATAA: TTTTTTTTTT
L02	GGGCGCGGTCCTTTGGCCTCCTAAAAAAAATAAAAAAATAAA:TTTTTTTTTT
L03	GGGCGCGGTCCTTTGGCCTCCTAAAAAAAATAAAAAAATAAAAAATTTTTTTT
L04	GGGCGCGGTTCTTTGGCTTCTAAAAAAATAAAAAATAAAAAATAAA:TTTTTTTTT
L05	GGGCGCGGTCCTTTGGCCTCCTAAAAAAAATAAAAAAATAAA:TTTTTTTTTT
L06	GGGCGCGGTCCTTCGGCTTCTAAAAAAATAAAAAATAAAAAATAAA:TTTTTTTTT
L07	GGGCGCGGTCCTTCGGCTTCTAAAAAAATAAAAAATAAAAAATAAA:TTTTTTTTT
L08	GGGCGCGCGCTCCTTTGGCCTTCCTAAAAAAAATAAAAAAAA
L09	GGGCGCGCGCTCCTTCCTAAAAAAATAAAAAATAAAAAATAAAAAATTTTTT
L10	GGGCGCGCGCTCCTTTGGCCTCCTAAAAAAATAAAAAATAAAAAATAAA:TTTTTTTT
Peltigera frigida 1	GGGCGCGGTCCTTCGGCTTCTAAAAAAATAAAAAATAAAAAATTTTTTTT
Peltigera frigida 2	GGGCGCGCGCTCCTTCGGCTTCTAAAAAAATAAAAAATAAAAAATAAA:TTTTTTTTT
Peltigera frigida 3	GGGCGCGCGCTCCTTCCTAAAAAAATAAAAAATAAAAAATAAAAATTTTTT
Peltigera patagonica 1	GGGCGCGGTTCTTTGGCTTTT: AAAAAAAAAAAAAAAAAAAATTTTTTTTTTTTT
Peltigera patagonica 2	GG:::CGGTTCTTTGGCTTTT:AAAAAAAAAAAAAAAAAAAA :TTTTTTTTTTTTT
Peltigera patagonica 3	GGGCG <mark>CGCTTCTTGGCTTTTT</mark> AAAAAAAAAAAAAAAAAA::TTTTTTTTTTTTT
Peltigera patagonica 4	GGGCG <mark>CGCTCTTTGGCTTTT</mark> :AAAAAAAAAAAAAAAAA::TTTTTTTTTTTTTT

Figura 3. Árbol filogenético de las secuencias de cianobiontes de las muestras de líquenes utilizando el método de *Neighbor-Joining*. El análisis incluyó 59 secuencias de nucleótidos: 10 muestras de este trabajo (L01 a L10, en negrita); 15 haplotipos encontrados por Zúñiga *et al.* (2015) asociados a líquenes del género *Peltigera* en el sur de Chile y la Antártica (C01 a C15, en negrita); 30 secuencias de referencia del género *Nostoc* obtenidas tanto de cianolíquenes, plantas y cianobacterias de vida libre, en las que se indica el hospedero al que se encontraron asociadas, su ubicación geográfica y el código de GenBank; 4 secuencias utilizadas como grupos externos pertenecientes a los géneros *Tolypothrix* (2) y *Microcoleus* (2). El árbol se dibujó en el programa TreeGraph v2 (Stöver y Müller, 2010). El soporte de *bootstrap* de los nodos mayor a 0.75 se indica a la derecha, con llaves y corchetes respectivamente. La escala de distancia filogenética se muestra en la esquina inferior izquierda.

La caracterización de las comunidades bacterianas asociadas a las muestras de líquenes y sustratos se llevó a cabo amplificando la región V4-V5 del marcador molecular 16S, utilizando partidores que excluyen cianobacterias y plastidios. Los amplicones de dicha reacción se muestran en la Figura A6. Para disminuir la presencia de amplicones no específicos en la secuenciación, se procedió a cortar la banda de interés desde geles de mayor capacidad de carga (Figura A7) y luego, dichas bandas se purificaron (Figura A8). El procedimiento de secuenciación Illumina entregó los datos de secuencia brutos que se muestran en la Tabla 3. Se obtuvieron en promedio 126.082 lecturas únicas por muestra (distribución en histograma en Figura A9), y un total de 2.521.647 para las 20 muestras. Además, se observa que el porcentaje promedio de GC fue de 55,9%, siendo ligeramente más alto, aunque no estadísticamente diferente (p = 0.39), en las muestras de sustrato que en las de liquen. En cuanto a la calidad de las lecturas, en promedio un 87,5% presentan una calidad phred sobre 20, y un 80% una calidad sobre 30. Si se analiza separadamente la calidad de las secuencias según la lectura (directa o inversa), se observa que las lecturas directas tienen mejor calidad (Figura A10, arriba a la izquierda) que las inversas (Figura A10, arriba a la derecha), lo que puede deberse tanto a un defecto propio de la técnica como a la decisión de utilizar un partidor degenerado como inverso para lograr la exclusión de las cianobacterias. Ambos tipos de lecturas presentan 5 nt de baja calidad al inicio, correspondientes a adaptadores del proceso de secuenciación (Figura A10, abajo) y que fueron eliminados para los análisis posteriores.

Nombre muestra	Bases totales (pb)	Lecturas totales	Lecturas únicas	GC (%)	AT (%)	Q20 (%)	Q30 (%)
L01	84.528.626	280.826	140.413	54,6	45,4	87,7	80,5
L02	77.785.624	258.424	129.212	54,3	45,7	87,6	80,5
L03	74.114.628	246.228	123.114	56,0	44,0	86,7	79,2
L04	77.973.448	259.048	129.524	54,7	45,3	87,4	80,1
L05	81.229.064	269.864	134.932	55,3	44,7	86,8	79,3
L06	74.024.930	245.930	122.965	55,6	44,4	87,3	79,9
L07	74.303.054	246.854	123.427	55,5	44,5	88,7	81,5
L08	74.947.194	248.994	124.497	55,5	44,5	88,5	81,0
L09	86.032.422	285.822	142.911	54,7	45,3	87,2	79,8
L10	72.909.424	242.224	121.112	55,2	44,8	88,2	80,9
S01	77.132.454	256.254	128.127	55,9	44,2	87,7	80,1
S02	72.658.390	241.390	120.695	56,9	43,1	87,5	79,9
S03	70.218.484	233.284	116.642	56,6	43,4	87,2	79,4
S04	69.956.012	232.412	116.206	56,8	43,2	87,3	79,5
S05	70.488.782	234.182	117.091	56,8	43,2	86,5	78,4
S06	74.096.568	246.168	123.084	56,9	43,1	87,2	79,5
S 07	76.404.034	253.834	126.917	56,9	43,1	87,4	79,9
S 08	80.273.088	266.688	133.344	56,6	43,4	88,0	80,5
S09	82.386.710	273.710	136.855	56,8	43,2	88,1	80,6
S10	66.568.558	221.158	110.579	56,5	43,5	88,1	80,5
Promedio	75.901.575	217.918	126.082	55,9	44,1	87,5	80,1
Suma	1.518.031.494	5.043.294	2.521.647	-	-	-	-

Tabla 3. Estadísticas de los datos crudos de la obtención de secuencias por Illumina MiSeq (300 bp x 2). Bases totales: Número total de bases secuenciadas, Lecturas totales: lectura 1 y 2 sumadas, GC (%): contenido de GC, AT (%): contenido de AT, Q20 (%): Porcentaje de lecturas con índice de calidad phred sobre 20, Q30 (%): Porcentaje de lecturas con índice de calidad phred sobre 30.

Para el filtrado de calidad de las lecturas (Tabla A2 a Tabla A16) se obtuvo el máximo de riqueza en la combinación obtenida con un largo de 272 nt para la lectura directa y de 160 nt para la lectura inversa (Tabla A16). Al replicar dichos parámetros en el algoritmo de DADA2 en R (para proceder a los análisis mediante el paquete *phyloseq*), se obtuvo más del doble del total de secuencias y más de 3 veces el número final de riqueza de ASVs (Tabla 4 vs Tabla A16). Esta diferencia ocurrió posiblemente por la mejora continua en la actualización del algoritmo de DADA2 directamente en su paquete de R, comparado con

la plataforma QIIME2. En cuanto a la optimización realizada previamente en QIIME2, se

verificó en R que la combinación de largos de secuencias corresponde al óptimo de riqueza

en la vecindad de los largos de secuencia encontrados previamente (datos no mostrados).

Tabla 4. Estadísticas de las secuencias obtenidas luego de la limpieza y tratamiento con DADA2. Se incluye el número total de secuencias para cada paso y la riqueza de ASVs en las secuencias finales (sin quimeras).

	Original	Filtradas	Sin ruido D	Sin ruido I	Combinadas	Sin quimeras
L01	140.413	125.982	122.800	124.923	104.096	68.781
L02	129.212	116.602	114.129	116.084	99.023	61.276
L03	123.114	108.600	105.164	107.825	86.544	54.474
L04	129.524	116.259	113.380	115.601	95.319	59.381
L05	134.932	119.252	117.167	118.722	101.598	66.839
L06	122.965	109.489	106.461	109.048	88.665	55.620
L07	123.427	112.039	109.433	111.567	93.304	57.561
L08	124.497	112.094	108.549	111.234	89.086	54.976
L09	142.911	128.319	125.130	127.530	105.387	64.836
L10	121.112	108.915	105.208	108.337	85.194	51.070
S01	128.127	113.006	106.812	111.815	82.048	53.726
S02	120.695	107.273	100.875	106.381	74.598	49.515
S03	116.642	102.409	96.532	101.588	71.505	48.407
S04	116.206	102.802	96.531	102.059	70.496	47.311
S05	117.091	99.863	93.791	99.078	66.992	41.831
S06	123.084	107.944	99.806	106.945	67.224	41.482
S07	126.917	112.141	106.228	110.939	80.404	54.610
S08	133.344	118.018	110.154	116.713	78.515	48.792
S09	136.855	122.786	114.991	121.555	81.897	47.217
S10	110.579	98.200	92.667	97.409	70.238	39.783
Total	2.521.647	2.241.993	2.145.808	2.225.353	1.692.133	1.067.488
					ASVs	75.982

La composición bacteriana a nivel de género se realizó aglomerando los ASVs a este nivel taxonómico y se analizó mediante gráficos de abundancia relativa promedio entre las muestras de liquen (Figura 4) y sustrato (Figura 5). Se observan tres casos interesantes al comparar entre líquenes y sustratos la abundancia relativa de géneros que representan más del 2% de la abundancia relativa con respecto a los ASVs totales: (1) liquen > sustrato: *Friedmanniella, Pseudonocardia* (phylum Actinobacteria), géneros desconocidos de la

familia Chitinophagaceae (phylum Bacteroidota), *Methylibium*, *Rhizobacter*, *Acidisphaera* y *Sphingomonas* (phylum Proteobacteria); (2) liquen = sustrato: *Rubrivirga* (phylum Bacteroidota), *Fimbriiglobus* y *Paludisphaera* (phylum Planctomycetota); y (3) liquen < sustrato: *Conexibacter* A, *Solirubrobacter* (phylum Actinobacteriota), UBA969, *Singulisphaera*, PALSA-1355 (phylum Planctomycetota), Gp7-AA6, *Sulfotelmatobacter*, QHXM01, *Luteitalea* y SCN-69-37 (phylum Acidobacteriota). En promedio, un 72% y un 73% de los ASV recibieron una asignación taxonómica a nivel de género para líquenes y sustratos, respectivamente.

Figura 4. Representación gráfica de torta (Krona) de la asignación taxonómica GTDB para las lecturas de muestras de líquenes. Desde el anillo interno hacia el anillo externo, se representan los niveles taxonómicos de Filo, Clase, Orden, Familia y Género. Los nombres de los niveles de género incluyen el porcentaje de abundancia relativa entre todas las muestras de líquenes.

Figura 5. Representación gráfica de torta (Krona) de la asignación taxonómica GTDB para las lecturas de muestras de sustrato. Desde el anillo interno hacia el anillo externo, se representan los niveles taxonómicos de Filo, Clase, Orden, Familia y Género. Los nombres de los niveles de género incluyen el porcentaje de abundancia relativa entre todas las muestras de sustrato.

Para verificar la influencia del origen de las muestras (por tipo de muestra y subsitio) en la variabilidad entre éstas, se realizaron análisis multivariados en R, incluyendo un NMDS basado en una matriz de distancia Bray-Curtis a nivel de ASV (Figura 6), y NMDS basado en una matriz de distancia euclideana a nivel de género (Figura 7). En ellas se observa que las diferencias se explican mayoritariamente por el tipo de muestra (liquen o sustrato), más que por el subsitio de donde provienen (A o B). Para el caso de los ASV, la diferencia por tipo de muestra es significativa en un análisis de ANOSIM (R = 1, p = 0,001), no así para el caso de la diferencia por subsitio (R = -0,0024, p = 0,346).

Figura 6. NMDS basado en distancia Bray-Curtis, calculada a partir de las abundancias de ASVs por muestra. Las muestras de liquen se muestran en verde y las de sustrato en naranjo. Las muestras del subsitio A se representan por un círculo y las del subsitio B por un triángulo.

Figura 7. NMDS basado en matriz de distancia euclideana, calculada a partir de las abundancias relativas de géneros bacterianos por muestra. Las muestras de liquen se muestran en verde y las de sustrato en naranjo. Las muestras del subsitio A se representan por un círculo y las del subsitio B por un triángulo.

Para visualizar de modo general la identidad taxonómica de las bacterias encontradas en las muestras de liquen y sustrato, se realizó una aglomeración de los datos de secuencia al nivel taxonómico de Filo. Luego, se realizó una transformación de la abundancia neta de secuencias a abundancia relativa, debido a que el número total de secuencias en las muestras es variable. Con el fin de dar importancia a los filos que sean persistentes a nivel de liquen o sustrato, se descartó aquellos que estuvieran presentes en menos de un 50% de las muestras, según el gráfico de prevalencia (Figura A11). Los resultados de abundancia relativa de filos bacterianos en las muestras de este trabajo se muestran en la Figura 8.

Figura 8. Gráfico de barras de la frecuencia relativa de los filos bacterianos prevalentes en al menos el 50% de las muestras. Se muestran agrupados por tipo de muestra (liquen o sustrato) y se indican según el color correspondiente a cada filo de acuerdo a la leyenda de la derecha.

En la Figura 8, se observa que los cinco filos más abundantes tanto en las muestras de líquenes como de sustratos corresponden a Acidobacteriota, Actinobacteria, Bacteroidota, Planctomycetota y Proteobacteria. Comparativamente, se observa más presencia de bacterias de los filos Bacteroidota y Proteobacteria en líquenes, y de Acidobacterias y Planctomycetota en sustratos.

Para visualizar las relaciones taxonómicas entre los filos más abundantes en las muestras de líquenes y de sustratos, se obtuvo un árbol filogenético a nivel de filos bacterianos desde la plataforma AnnoTree (Mendler et al., 2019), para ello se filtraron los filos de interés y en la plataforma iTOL (Letunic y Bork, 2016) se incluyó la información de la abundancia relativa promedio de cada filo en líquenes y sustratos. Para el caso de las

proteobacterias, se desglosó a nivel de clase para observar la abundancia relativa de Alphaproteobacteria, clase a la que pertenecen los órdenes bacterianos de interés: Sphingomonadales y Rhizobiales (Figura 9). La cobertura de ASVs para los Sphingomonadales fue en promedio de $0,93 \pm 0,03$ para las muestras de líquenes y de $0,38 \pm 0,15$ para las muestras de sustratos; para el caso de los Rhizobiales, $0,89 \pm 0,04$ en promedio para líquenes y $0,69 \pm 0,05$ para sustratos.

Figura 9. Árbol filogenético de los filos bacterianos prevalentes en al menos el 50% de las muestras, obtenido desde la plataforma AnnoTree (Mendler et al., 2019) y personalizado en iTOL (Letunic y Bork, 2016). Se incluye la abundancia relativa promedio en las muestras de líquenes y sustratos, indicados con barras verdes y naranjas, respectivamente. Para el caso del filo Proteobacteria, se separó en las abundancias de Gammaproteobacteria y Alphaproteobacteria, dado que los órdenes de interés pertenecen a ésta última.

Por otra parte, se realizó un ensayo de microscopía confocal laser de fluorescencia con sondas de hibridación *in situ* (FISH-CLSM, por sus siglas en inglés), para verificar la presencia de bacterias en general y alfaproteobacterias en particular en talos de *P. frigida* utilizados en este trabajo. Los resultados de este ensayo se muestran en la Figura 11 y en el Video 1 (https://figshare.com/articles/Video_1/8226170). Se observa una alta presencia de bacterias en las capas inferiores del talo liquénico (Figura 11, abajo), en comparación a la corteza superior (Figura 11, arriba).

Los órdenes bacterianos de interés (Sphingomonadales y Rhizobiales) pertenecen al filo Proteobacteria (el más abundante en líquenes, Figura 8) y a la clase Alphaproteobacteria, que es más abundante, incluso, que el resto de los filos bacterianos encontrados en las muestras de líquenes (Figura 9). Para evaluar la abundancia de los órdenes bacterianos de interés, se construyó un árbol filogenético con los órdenes de alfaproteobacterias presentes en las muestras de este trabajo, y se agregó información acerca de su abundancia relativa promedio en muestras de líquenes y sustratos (Figura 10).

Para los objetivos siguientes, se definió trabajar con los géneros bacterianos debido a que la asignación taxonómica a este nivel taxonómico es más confiable y permite discutir acerca del rol biológico de estas bacterias en los líquenes y sus sustratos, junto con consideraciones operacionales. Estas consideraciones incluyen que GTDB tiene información confiable acerca de la relación taxonómica entre los géneros (distancias filogenéticas normalizadas) y que los árboles filogenéticos fueron generados a partir de un alineamiento de 120 proteínas de copia única, extraídas desde genomas bacterianos, lo cual es más robusto que las filogenias de 16S que utilizan las bases de datos tradicionales.

Además, como se observará más adelante, al nivel taxonómico de género aún es posible realizar los cálculos de los índices ecológicos propuestos en el proyecto.

Figura 10. Árbol filogenético de los órdenes bacterianos pertenecientes a la clase Alphaproteobacteria, obtenido desde la plataforma AnnoTree (Mendler et al., 2019) y personalizado en iTOL (Letunic y Bork, 2016). Se incluye la abundancia relativa promedio en las muestras de líquenes y sustratos, indicados con barras verdes y naranjas, respectivamente.

Figura 11. Imágenes de microscopía confocal laser obtenidas luego de realizar la técnica de FISH, tanto de la corteza superior (reconstrucción 3D, arriba) como de la inferior (imágenes apiladas, abajo) de una muestra de liquen *P. frigida*. Con flechas blancas se indica a presencia de bacterias (sonda de color rojo) y con flechas amarillas se indica la presencia de alfaproteobacterias (sonda de color verde, que junto a la roja emite color amarillo).

<u>Objetivo específico 2:</u> Determinar el rango de especificidad que presenta *P. frigida* por las bacterias Sphingomonadales y Rhizobiales de su microbioma.

Para determinar la especificidad de *P. frigida* por las bacterias de los órdenes Sphingomonadales y Rhizobiales de su microbioma, se utilizó el índice nc_i propuesto por Zúñiga (2015) que tiene en cuenta, además del número de géneros distintos al que se asocia cada liquen (*n*), la distancia filogenética \propto_i entre los miembros de cada orden, según:

$$nc_i = \frac{1}{n} + \left(1 - \frac{1}{n}\right) \propto_i \tag{1}$$

donde \propto_i corresponde a la distancia filogenética promedio de los géneros en cada muestra para cada orden bacteriano, dividido por la distancia filogenética máxima entre los géneros de ese orden, como se muestra en la siguiente fórmula:

$$\alpha_i = \frac{d_{i\,promedio}}{d_{máxima}}$$
[2].

El cálculo de dicho índice se realizó en R aglomerando los ASVs a nivel de género, relativizando las abundancias y filtrando las secuencias en los órdenes bacterianos de interés: Sphingomonadales y Rhizobiales.

Para el cálculo del índice \propto_i , se utilizaron los datos de una matriz de distancias cofenéticas calculadas desde un árbol de los géneros existentes en cada orden. Los árboles fueron descargados desde la plataforma AnnoTree (Mendler et al., 2019). $d_{i \ promedio}$ se calculó como la distancia promedio de cada género bacteriano con respecto al resto de los géneros

de cada orden, para cada muestra. $d_{máxima}$ se calculó como la distancia cofenética máxima existente entre todos los géneros de cada orden. El índice \propto_i , calculado a partir de la división de los dos términos anteriores, se muestra, para cada género y muestra, en la Tabla 5 para los Sphingomonadales y en la Tabla 7 para los Rhizobiales. Se observa que los valores de distancia son, en general, mayores para el caso de los Rhizobiales. Esto quiere decir que las distancias filogenéticas encontradas entre los géneros del orden Rhizobiales de los líquenes de este trabajo son más cercanas a la distancia máxima existente entre ellos.

El índice nc_i fue calculado para cada género según la fórmula [1] y en base al valor de n (especificidad básica o no ponderada) que se incluye en la Tabla 9 agrupada por orden y muestra. Además, se incluye el porcentaje de géneros específicos por muestra, con respecto al total de géneros en cada orden según GTDB (46 para Sphingomonadales y 123 para Rhizobiales). El valor de nc_i por género se muestra en la Tabla 6 y Tabla 8, incluyendo la suma para cada muestra. El cálculo de este índice ponderado pretende reflejar las diferencias filogenéticas entre las bacterias específicas de los líquenes, en los órdenes estudiados. Como se observa en las Tabla 6 y Tabla 8, este valor es menor que el de la especificidad básica para todas las muestras (Tabla 9). En promedio el valor de nc_i para los Sphingomonadales es de 3 versus 10 para la especificidad básica; y para los Rhizobiales 17,5 versus 34.

Tabla 5. Valores de \propto_i para los géneros del orden Sphingomonadales calculados para las muestras de líquenes, incluyendo la familia a la que pertenecen. Los géneros se muestran en orden alfabético para cada familia. Aquellos géneros que no fueron encontrados se indican con el término "-" en la columna de la muestra correspondiente.

Familia	Género	L01	L02	L03	L04	L05	L06	L07	L08	L09	L10
Sphingomonadaceae	B12	-	-	-	-	-	-	-	0,222	-	-
Sphingomonadaceae	Blastomonas	0,256	0,249	0,256	0,262	0,239	0,245	0,245	0,266	0,253	0,236
Sphingomonadaceae	Erythrobacter_B	-	-	-	0,298	0,290	-	-	-	-	-
Sphingomonadaceae	Novosphingobium	0,239	0,231	0,239	0,236	0,220	0,241	0,241	0,251	0,248	0,232
Sphingomonadaceae	Porphyrobacter	0,383	0,371	0,383	0,375	-	-	-	0,402	-	-
Sphingomonadaceae	Rhizorhabdus	0,208	0,206	0,208	0,223	0,196	0,179	0,179	0,203	0,182	0,172
Sphingomonadaceae	Sandarakinorhabdus	0,309	0,306	0,309	0,320	0,296	0,279	0,279	0,305	0,278	0,272
Sphingomonadaceae	Sphingobium	0,188	0,187	0,188	0,197	0,177	0,168	0,168	0,190	0,172	0,164
Sphingomonadaceae	Sphingomonas	0,188	0,192	0,188	0,199	0,182	0,162	0,162	0,186	0,164	0,164
Sphingomonadaceae	Sphingomonas_A	-	-	-	0,257	-	-	-	0,241	0,217	-
Sphingomonadaceae	Sphingomonas_D	0,247	-	0,247	0,261	-	0,220	0,220	0,248	0,224	-
Sphingomonadaceae	Sphingomonas_E	0,214	0,212	0,214	0,229	0,202	0,185	0,185	0,210	0,188	0,178
Sphingomonadaceae	W16RD	0,191	0,190	0,191	0,205	0,180	0,163	0,163	0,185	0,165	0,157

Tabla 6. Valores de nc_i para los géneros del orden Sphingomonadales calculado para las muestras de líquenes, incluyendo la familia a la que pertenecen. Los géneros se muestran en orden alfabético para cada familia. Aquellos géneros que no fueron encontrados se indican con el término "-" en la columna de la muestra correspondiente. En la última fila se indica la suma de los índices para cada muestra.

Familia	Género	L01	L02	L03	L04	L05	L06	L07	L08	L09	L10
Sphingomonadaceae	B12	-	-	-	-	-	-	-	0,287	-	-
Sphingomonadaceae	Blastomonas	0,330	0,333	0,330	0,324	0,324	0,329	0,329	0,328	0,328	0,332
Sphingomonadaceae	Erythrobacter_B	-	-	-	0,357	0,369	-	-	-	-	-
Sphingomonadaceae	Novosphingobium	0,315	0,316	0,315	0,300	0,307	0,325	0,325	0,313	0,324	0,328
Sphingomonadaceae	Porphyrobacter	0,445	0,441	0,445	0,427	-	-	-	0,452	-	-
Sphingomonadaceae	Rhizorhabdus	0,288	0,294	0,288	0,288	0,285	0,270	0,270	0,270	0,264	0,276
Sphingomonadaceae	Sandarakinorhabdus	0,378	0,383	0,378	0,377	0,374	0,359	0,359	0,363	0,350	0,363
Sphingomonadaceae	Sphingobium	0,269	0,277	0,269	0,264	0,268	0,261	0,261	0,258	0,255	0,269
Sphingomonadaceae	Sphingomonas	0,269	0,282	0,269	0,266	0,273	0,255	0,255	0,254	0,248	0,269
Sphingomonadaceae	Sphingomonas_A	-	-	-	0,319	-	-	-	0,305	0,295	-
Sphingomonadaceae	Sphingomonas_D	0,322	-	0,322	0,322	-	0,307	0,307	0,310	0,301	-
Sphingomonadaceae	Sphingomonas_E	0,293	0,299	0,293	0,293	0,290	0,275	0,275	0,275	0,269	0,281
Sphingomonadaceae	W16RD	0,272	0,280	0,272	0,271	0,271	0,256	0,256	0,253	0,249	0,263
	<i>nc_i</i> promedio	0,318	0,323	0,318	0,317	0,307	0,293	0,293	0,306	0,288	0,298

Tabla 7. Valores de \propto_i para los géneros del orden Rhizobiales para todas las muestras de líquenes, incluyendo la familia a la que pertenecen. Los géneros se muestran en orden alfabético para cada familia. Aquellos géneros que no fueron encontrados se indican con el término "-" en la columna de la muestra correspondiente.

Familia	Género	L01	L02	L03	L04	L05	L06	L07	L08	L09	L10
Afifellaceae	A52C2	-	0,520	0,530	0,526	0,528	0,524	0,522	0,530	0,527	0,525
Amorphaceae	Acuticoccus	-	-	0,612	-	0,614	0,604	0,609	0,612	-	0,609
Beijerinckiaceae	Beijerinckia	0,537	0,518	0,539	0,538	0,540	0,529	0,538	0,537	0,541	0,552
Beijerinckiaceae	Bosea	0,483	0,463	0,484	0,484	0,486	0,476	0,485	0,483	0,489	0,493
Beijerinckiaceae	Chelatococcus	0,483	0,461	0,485	0,484	0,487	0,476	0,485	0,483	-	0,493
Beijerinckiaceae	Methylobacterium	0,490	0,466	0,492	0,491	0,493	0,482	0,491	0,490	0,497	0,499
Beijerinckiaceae	Methylocapsa	0,508	0,489	0,509	0,508	0,511	0,500	0,509	0,507	0,512	0,522
Beijerinckiaceae	Methylocystis	0,517	0,498	0,518	0,518	0,520	0,509	0,518	0,517	0,521	-
Beijerinckiaceae	Microvirga	0,447	0,423	0,448	0,447	0,450	0,439	0,448	0,447	0,454	0,456
Beijerinckiaceae	Salinarimonas	-	0,433	-	-	-	-	-	-	-	-
Devosiaceae	Devosia	0,527	0,516	0,526	0,526	0,528	0,519	0,524	0,527	0,525	0,525
Hyphomicrobiaceae	Filomicrobium	0,552	-	0,552	-	-	-	-	-	0,544	-
Hyphomicrobiaceae	Hyphomicrobium	0,543	0,542	0,543	0,549	0,556	0,540	0,563	0,555	0,535	0,549
Hyphomicrobiaceae	Hyphomicrobium_A	0,590	0,588	0,590	0,596	0,603	0,587	-	0,602	0,583	0,596
Kaistiaceae	Kaistia	0,459	0,446	0,455	0,457	0,457	0,448	0,453	0,456	0,456	0,452
Methyloligellaceae	Methyloceanibacter	-	-	-	0,524	-	0,516	0,528	-	0,518	0,524
Methylopilaceae	Methylopila	0,444	0,432	0,444	0,444	0,449	0,438	0,447	0,445	0,444	0,450
Pleomorphomonadaceae	Pleomorphomonas	-	0,523	0,532	-	-	0,524	-	0,532	-	0,529
Rhizobiaceae	Agrobacterium	0,467	-	0,494	-	0,474	0,498	0,465	-	0,483	0,467
Rhizobiaceae	Ahrensia	0,396	-	-	-	-	-	-	-	-	-
Rhizobiaceae	Aliihoeflea	-	-	0,533	0,511	0,508	-	0,501	-	0,517	0,515
Rhizobiaceae	Allorhizobium	0,445	0,467	0,473	0,451	0,453	0,476	0,444	0,466	0,462	0,446
Rhizobiaceae	Aquamicrobium	-	-	-	-	0,481	-	-	-	-	-
Rhizobiaceae	Aurantimonas	0,506	0,510	0,522	0,506	0,507	0,518	0,500	0,516	0,513	0,506
Rhizobiaceae	Aureimonas	0,439	0,444	0,455	0,439	0,441	0,451	0,433	0,449	0,446	0,440
Rhizobiaceae	Hoeflea	_	_	_	0,402	-	-	-	-	_	-
Rhizobiaceae	Leaf454	0,489	0,493	0,505	0,489	0,491	0,501	0,483	0,499	0,496	0,490
Rhizobiaceae	Mesorhizobium	0,501	0,517	0,526	0,505	0,494	0,532	0,492	0,517	0,508	0,508
Rhizobiaceae	Neorhizobium	0,470	0,491	0,497	0,475	0,477	-	0,468	0,490	0,486	0,470
Rhizobiaceae	Nitratireductor	0,455	_	0,477	0,456	-	-	0,448	0,471	0,463	0,460
Rhizobiaceae	Pararhizobium	0,447	0,468	0,476	0,450	0,456	0,478	0,447	0,465	0,465	0,447
Rhizobiaceae	Phyllobacterium	0,487	-	-	0,489	-	0,510	-	-	-	-
Rhizobiaceae	Pseudaminobacter	0,465	0,481	-	_	0,460	-	0,456	0,481	0,472	-
Rhizobiaceae	Rhizobium	0,426	0,447	0,453	0,430	0,434	0,456	0,425	0,446	0,442	0,427
Rhizobiaceae	Shinella	0,442	0,463	0,470	0,445	0,450	0,472	0,441	0,460	0,459	0,442
Rhizobiaceae	Sinorhizobium	0,468	-	-	0,472	-	-	-	0,487	-	0,469
Stappiaceae	Labrenzia	_	0,454	0,464	_	-	0,457	-	-	0,462	-
Xanthobacteraceae	Afipia	0,489	-	0,492	0,492	0,505	-	0,504	0,488	0,491	0,510
Xanthobacteraceae	Ancvlobacter	0.511	0.502	0.512	0.514	0.519	0.508	-	-	0.513	0.522
Xanthobacteraceae	Blastochloris	0.505	-	0.507	-	-	0.504	-	0.507	0.507	-
Xanthobacteraceae	Bradvrhizobium	0.506	0.516	0.508	0.507	0.522	0.522	0.521	0.504	0.507	0.527
Xanthobacteraceae	Nitrobacter	0,533	-	0,535	0,535	-	-	-	0,531	0,534	_
Xanthobacteraceae	Rhodoplanes	0,533	0,533	0,535	0,536	0,545	0,539	0,544	0,534	0,535	0,549
Xanthobacteraceae	Rhodopseudomonas	0,516	0,526	0,519	0,518	0,533	0,533	0,531	0,515	0,518	0,537
Xanthobacteraceae	Tardiphaga	0,540	0,550	0,542	0,542	0,556	0,556	0,555	0,538	0,541	0,561

Tabla 8. Valores de nc_i para los géneros del orden Rhizobiales calculado para las muestras de líquenes. Los géneros se muestran en orden alfabético para cada familia. Aquellos géneros que no fueron encontrados se indican con el término "-" en la columna de la muestra correspondiente. En la última fila se indica la suma de los índices para cada muestra.

Familia	Género	L01	L02	L03	L04	L05	L06	L07	L08	L09	L10
Afifellaceae	A52C2	-	0,535	0,543	0,540	0,542	0,538	0,537	0,543	0,541	0,539
Amorphaceae	Acuticoccus	-	-	0,623	-	0,626	0,616	0,621	0,623	-	0,620
Beijerinckiaceae	Beijerinckia	0,550	0,533	0,551	0,551	0,554	0,543	0,552	0,550	0,554	0,565
Beijerinckiaceae	Bosea	0,497	0,480	0,498	0,498	0,502	0,492	0,501	0,498	0,503	0,507
Beijerinckiaceae	Chelatococcus	0,498	0,479	0,499	0,499	0,502	0,492	0,501	0,498	-	0,508
Beijerinckiaceae	Methylobacterium	0,504	0,483	0,505	0,505	0,509	0,498	0,507	0,505	0,511	0,514
Beijerinckiaceae	Methylocapsa	0,522	0,505	0,523	0,523	0,526	0,515	0,524	0,522	0,525	0,536
Beijerinckiaceae	Methylocystis	0,530	0,515	0,531	0,531	0,535	0,524	0,533	0,531	0,534	-
Beijerinckiaceae	Microvirga	0,462	0,442	0,463	0,463	0,467	0,456	0,465	0,463	0,469	0,472
Beijerinckiaceae	Salinarimonas	-	0,451	-	-	-	-	-	-	-	-
Devosiaceae	Devosia	0,541	0,531	0,539	0,540	0,542	0,533	0,539	0,541	0,538	0,539
Hyphomicrobiaceae	Filomicrobium	0,564	-	0,564	-	-	-	-	-	0,557	-
Hyphomicrobiaceae	Hyphomicrobium	0,555	0,556	0,555	0,562	0,570	0,554	0,576	0,568	0,548	0,562
Hyphomicrobiaceae	Hyphomicrobium_A	0,601	0,602	0,601	0,608	0,615	0,600	-	0,614	0,594	0,608
Kaistiaceae	Kaistia	0,474	0,464	0,470	0,472	0,474	0,465	0,470	0,472	0,471	0,469
Methyloligellaceae	Methyloceanibacter	-	-	-	0,537	-	0,530	0,543	-	0,531	0,538
Methylopilaceae	Methylopila	0,459	0,451	0,459	0,460	0,465	0,455	0,464	0,461	0,460	0,466
Pleomorphomonadaceae	Pleomorphomonas	-	0,538	0,544	-	-	0,538	-	0,546	-	0,543
Rhizobiaceae	Agrobacterium	0,482	-	0,508	-	0,490	0,513	0,482	-	0,498	0,483
Rhizobiaceae	Ahrensia	0,413	-	-	-	-	-	-	-	-	-
Rhizobiaceae	Aliihoeflea	-	-	0,545	0,525	0,523	-	0,517	-	0,531	0,529
Rhizobiaceae	Allorhizobium	0,461	0,484	0,487	0,466	0,469	0,492	0,461	0,481	0,477	0,462
Rhizobiaceae	Aquamicrobium	-	-	-	-	0,497	-	-	-	-	-
Rhizobiaceae	Aurantimonas	0,520	0,526	0,535	0,520	0,522	0,532	0,515	0,530	0,527	0,521
Rhizobiaceae	Aureimonas	0,455	0,462	0,470	0,455	0,458	0,468	0,451	0,466	0,462	0,456
Rhizobiaceae	Hoeflea	-	-	-	0,419	-	-	-	-	-	-
Rhizobiaceae	Leaf454	0,503	0,510	0,518	0,503	0,506	0,516	0,499	0,514	0,510	0,505
Rhizobiaceae	Mesorhizobium	0,515	0,532	0,539	0,519	0,510	0,546	0,508	0,531	0,522	0,523
Rhizobiaceae	Neorhizobium	0,484	0,508	0,511	0,490	0,493	-	0,484	0,505	0,500	0,486
Rhizobiaceae	Nitratireductor	0,470	-	0,491	0,472	-	-	0,466	0,486	0,478	0,476
Rhizobiaceae	Pararhizobium	0,462	0,486	0,490	0,466	0,472	0,494	0,464	0,481	0,479	0,464
Rhizobiaceae	Phyllobacterium	0,501	-	-	0,503	-	0,525	-	-	-	-
Rhizobiaceae	Pseudaminobacter	0,480	0,498	-	-	0,477	-	0,473	0,496	0,487	-
Rhizobiaceae	Rhizobium	0,442	0,465	0,468	0,447	0,451	0,473	0,442	0,462	0,458	0,444
Rhizobiaceae	Shinella	0,457	0,480	0,484	0,461	0,467	0,488	0,458	0,476	0,474	0,459
Rhizobiaceae	Sinorhizobium	0,483	-	-	0,487	-	-	-	0,502	-	0,485
Stappiaceae	Labrenzia	-	0,472	0,478	-	-	0,474	-	-	0,477	-
Xanthobacteraceae	Afipia	0,504	-	0,506	0,506	0,520	-	0,520	0,503	0,505	0,524
Xanthobacteraceae	Ancylobacter	0,525	0,519	0,525	0,527	0,533	0,523	-	-	0,526	0,536
Xanthobacteraceae	Blastochloris	0,519	-	0,520	-	-	0,519	-	0,522	0,521	-
Xanthobacteraceae	Bradyrhizobium	0,519	0,532	0,521	0,522	0,537	0,537	0,536	0,519	0,521	0,541
Xanthobacteraceae	Nitrobacter	0,546	-	0,548	0,548	-	-	-	0,545	0,547	-
Xanthobacteraceae	Rhodoplanes	0,546	0,548	0,548	0,549	0,559	0,553	0,559	0,547	0,548	0,562
Xanthobacteraceae	Rhodopseudomonas	0,530	0,542	0,532	0,532	0,547	0,547	0,546	0,529	0,531	0,551
Xanthobacteraceae	Tardiphaga	0,553	0,564	0,555	0,555	0,570	0,570	0,569	0,552	0,554	0,574
	nc _i promedio	0,504	0,506	0,520	0,507	0,516	0,519	0,509	0,517	0,513	0,517

Tabla 9. Valor de especificidad básica (n) del número de géneros encontrados en ambos órdenes calculado para las muestras de líquenes. Se incluyen el porcentaje (%) del total de géneros existentes en los órdenes, su valor promedio y desviación estándar (DE).

Orden	L01	L02	L03	L04	L05	L06	L07	L08	L09	L10	Promedio	DE
Sphingomonadales ⁿ _%	10	9	10	12	9	9	9	12	10	8	10	1,3
	22	20	22	26	20	20	20	26	22	17	21	3,0
n	36	31	37	35	33	33	32	34	36	34	34	1,9
Rhizobiales %	29	25	30	28	27	27	26	28	29	28	28	2,0

<u>Objetivo específico 3:</u> Determinar el éxito ecológico de las bacterias Sphingomonadales y Rhizobiales en los talos de *P. frigida*.

Para determinar el *éxito ecológico* de cada orden bacteriano, se utilizó el índice de Shannon ponderado por la distancia filogenética (*WSD*) (adaptado de Casquilho et al., 1997) calculando la suma entre los géneros pertenecientes a cada orden presentes en el microbioma de los líquenes, según:

$$WSD = -\sum \propto_i p_i \ln p_i$$
[3],

donde \propto_i corresponde a la distancia filogenética especificada en [2], y p_i a la frecuencia (abundancia relativa) de cada género identificado en cada uno de los órdenes del microbioma.

El cálculo del índice de Shannon ponderado se realizó en R y en la Tabla 10 se incluye su valor para cada muestra y ambos órdenes con su respectivo promedio. En una prueba de t pareada, se observa que el valor del éxito ecológico es mayor para Rhizobiales que para Sphingomonadales (p = 0,00161).

Tabla 10. Valores de WSD para ambos órdenes calculado en base a los géneros encontrados en las muestras de líquenes. Se incluyen los valores del promedio y la desviación estándar (DE).

	Sphingomonadales	Rhizobiales
L01	0,10343	0,17211
L02	0,08283	0,17334
L03	0,05079	0,18172
L04	0,09870	0,21677
L05	0,06995	0,20992
L06	0,07523	0,13917
L07	0,05742	0,10064
L08	0,06492	0,12292
L09	0,05319	0,24339
L10	0,06067	0,12946
Promedio	0,07171	0,16894
DE	0,01834	0,04586

<u>Objetivo específico 4:</u> Determinar la disponibilidad de las bacterias Sphingomonadales y Rhizobiales en el sustrato subyacente a *P. frigida*.

Para determinar la *disponibilidad* de cada orden bacteriano, se utilizó el índice *WSD* calculando la suma del índice de Shannon ponderado entre los géneros pertenecientes a cada orden presentes en el sustrato, según las fórmulas [3] y [2] mencionadas anteriormente.

El cálculo del índice de Shannon ponderado para las muestras de sustrato se realizó en R y en la Tabla 11 se incluye su valor para cada muestra y ambos órdenes con su respectivo promedio. En una prueba de t pareada, se observa que el valor de disponibilidad es mayor para Rhizobiales que para Sphingomonadales (p = 0,00041).

	Sphingomonadales	Rhizobiales
S01	0,00677	0,07342
S02	0,00573	0,06345
S03	0,01068	0,07091
S04	0,00600	0,05993
S05	0,00536	0,05486
S06	0,00316	0,05624
S07	0,00755	0,05387
S08	0,00409	0,08028
S09	0,00105	0,05678
S10	0,00828	0,06195
Promedio	0,00587	0,06317
DE	0,00272	0,00891

Tabla 11. Valores de *WSD* para ambos órdenes calculado en base a los géneros encontrados en las muestras de sustratos. Se incluyen los valores del promedio y la desviación estándar (DE).

<u>Objetivo específico 5:</u> Determinar el grado de selectividad de *P. frigida* sobre las bacterias Sphingomonadales y Rhizobiales relacionando los factores especificidad, éxito ecológico y disponibilidad.

Para cuantificar la *selectividad* de *P. frigida* por las bacterias de los órdenes Sphingomonadales y Rhizobiales se utilizó el índice de selectividad propuesto por Zúñiga (2015):

$$Se_i = \frac{W_i^* - \frac{nc_i}{\sum nc_i}}{W_i^* + \frac{nc_i}{\sum nc_i}}$$
[4],

donde nc_i corresponde a la *especificidad* determinada según [1], y W_i^* al coeficiente de selectividad modificado, el cual se define como:

$$W_i^* = \frac{nc_i\left(\frac{r_i WSD}{p_i WSD}\right)}{\sum nc_i\left(\frac{r_i WSD}{p_i WSD}\right)}$$
[5],

donde r_{iWSD} corresponde a la diversidad ponderada de Sphingomonadales y Rhizobiales liquenizadas (*éxito ecológico*) y p_{iWSD} a la diversidad ponderada de Sphingomonadales y Rhizobiales disponibles en el sustrato (*disponibilidad*), obtenidas con la fórmula [3].

 Se_i varía entre -1 y 1, donde valores cercanos a -1 indican una selectividad negativa, i.e. baja frecuencia de ese género en el liquen y alta frecuencia comparativamente en el sustrato. Un valor de cero indica ausencia de selectividad, i.e. frecuencias similares tanto en liquen como en sustrato. Y un valor cercano a 1 indica selectividad positiva, i.e. alta frecuencia de ese género en el liquen y, comparativamente, baja frecuencia de éste en el sustrato.

Los cálculos se realizaron en R y el resultado del índice de selectividad para los géneros pertenecientes a los órdenes Sphingomonadales y Rhizobiales se incluye en la Tabla 12 y Tabla 14, respectivamente. Los valores de $Se_i = 1,00$ indican que ese género no se encontró en el sustrato para la muestra respectiva y genera una división por 0 en el cálculo del índice, por lo que se asignó arbitrariamente un valor de selectividad positiva máxima. Debido a que dicho criterio genera variabilidad excesiva entre las muestras en algunos géneros (e.g. *Sphingomonas_E, Neorhizobium*), también se incluyen la Tabla 13 y Tabla 15 donde dichos valores son excluidos del cálculo de promedios. Esto se realizó debido a que la variabilidad podría ser ocasionada porque, si bien se detecta su presencia en los líquenes, su abundancia sería relativamente baja y la abundancia de dichas bacterias en el sustrato estaría bajo el límite de detección de la técnica.

Como se observa en la Tabla 13, al analizar la selectividad promedio de los líquenes por los géneros de bacterias del orden Sphingomonadales, géneros como *Sphingomonas* y *Sandarakinorhabdus* serían preferidos por los líquenes, mientras que otros como *Novosphingobium* y *Blastomonas* serían rechazados.

Tabla 12. Valores de Se_i para los géneros del orden Sphingomonadales calculado para las muestras de este trabajo. Los géneros se muestran en orden decreciente de selectividad promedio, la cual se muestra junto a la desviación estándar (DE). Aquellos géneros que no fueron encontrados en algunos líquenes se indican con el término "-" en la columna de la muestra correspondiente. Los valores de Se_i = 1,00 indican que ese género no se encontró en el sustrato para la muestra respectiva.

Familia	Género	L01	L02	L03	L04	L05	L06	L07	L08	L09	L10	Promedio	DE
Sphingomonadaceae	B12	-	-	-	-	-	-	-	1,00	-	-	1,00	-
Sphingomonadaceae	W16RD	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00
Sphingomonadaceae	Sphingomonas	0,74	0,73	0,75	0,78	0,69	0,70	0,78	0,80	0,80	0,65	0,74	0,05
Sphingomonadaceae	Sphingomonas_D	1,00	-	1,00	-0,98	-	1,00	1,00	1,00	1,00	-	0,72	0,75
Sphingomonadaceae	Sphingomonas_E	1,00	1,00	-0,84	-0,85	1,00	1,00	-0,83	1,00	1,00	1,00	0,45	0,89
Sphingomonadaceae	Sandarakinorhabdus	0,40	0,42	0,40	0,55	0,50	0,52	0,07	0,43	-0,04	0,41	0,37	0,20
Sphingomonadaceae	Sphingomonas_A	-	-	-	-0,98	-	-	-	1,00	1,00	-	0,34	1,15
Sphingomonadaceae	Erythrobacter_B	-	-	-	-0,95	1,00	-	-	-	-	-	0,02	1,38
Sphingomonadaceae	Blastomonas	-0,81	-0,82	-0,76	-0,76	-0,86	1,00	-0,84	-0,78	1,00	1,00	-0,26	0,87
Sphingomonadaceae	Rhizorhabdus	-0,42	-0,74	-0,47	-0,68	1,00	1,00	-0,79	-0,60	-0,49	-0,65	-0,28	0,69
Sphingomonadaceae	Sphingobium	-0,01	-0,53	-0,28	-0,40	-0,67	-0,85	-0,80	-0,06	-0,13	-0,38	-0,41	0,30
Sphingomonadaceae	Novosphingobium	-0,67	-0,79	-0,53	-0,65	-0,74	-0,71	-0,72	-0,37	1,00	-0,66	-0,48	0,53
Sphingomonadaceae	Porphyrobacter	-0,97	1,00	-0,97	-0,98	-	-	-	-0,96	-	-	-0,58	0,88

Tabla 13. Valores de Se_i para los géneros del orden Sphingomonadales calculado para las muestras de este trabajo. Los géneros se muestran en orden decreciente de selectividad promedio, la cual se muestra junto a la desviación estándar (DE). Aquellos géneros que no fueron encontrados en líquenes o sustratos se indican con el término "-" en la columna de la muestra correspondiente.

Familia	Género	L01	L02	L03	L04	L05	L06	L07	L08	L09	L10	Promedio	DE
Sphingomonadaceae	B12	-	-	-	-	-	-	-	-	-	-	-	-
Sphingomonadaceae	W16RD	-	-	-	-	-	-	-	-	-	-	-	-
Sphingomonadaceae	Sphingomonas	0,74	0,73	0,75	0,78	0,69	0,70	0,78	0,80	0,80	0,65	0,74	0,05
Sphingomonadaceae	Sandarakinorhabdus	0,40	0,42	0,40	0,55	0,50	0,52	0,07	0,43	-0,04	0,41	0,37	0,20
Sphingomonadaceae	Sphingobium	-0,01	-0,53	-0,28	-0,40	-0,67	-0,85	-0,80	-0,06	-0,13	-0,38	-0,41	0,30
Sphingomonadaceae	Rhizorhabdus	-0,42	-0,74	-0,47	-0,68	-	-	-0,79	-0,60	-0,49	-0,65	-0,60	0,14
Sphingomonadaceae	Novosphingobium	-0,67	-0,79	-0,53	-0,65	-0,74	-0,71	-0,72	-0,37	-	-0,66	-0,65	0,13
Sphingomonadaceae	Blastomonas	-0,81	-0,82	-0,76	-0,76	-0,86	-	-0,84	-0,78	-	-	-0,80	0,04
Sphingomonadaceae	Sphingomonas_E	-	-	-0,84	-0,85	-	-	-0,83	-	-	-	-0,84	0,01
Sphingomonadaceae	Erythrobacter_B	-	-	-	-0,95	-	-	-	-	-	-	-0,95	-
Sphingomonadaceae	Porphyrobacter	-0,97	-	-0,97	-0,98	-	-	-	-0,96	-	-	-0,97	0,01
Sphingomonadaceae	Sphingomonas_D	-	-	-	-0,98	-	-	-	-	-	-	-0,98	-
Sphingomonadaceae	Sphingomonas_A	-	-	-	-0,98	-	-	-	-	-	-	-0,98	-

Tabla 14. Valores de Se_i para los géneros del orden Rhizobiales calculado para las muestras de este trabajo. Los géneros se muestran en orden decreciente de selectividad promedio, la cual se muestra junto a la desviación estándar (DE). Aquellos géneros que no fueron encontrados en algunos líquenes se indican con el término "-" en la columna de la muestra correspondiente. Los valores de $Se_i = 1,00$ indican que ese género no se encontró en el sustrato para la muestra respectiva.

Familia	Género	L01	L02	L03	L04	L05	L06	L07	L08	L09	L10	Promedi	o DE
Beijerinckiaceae	Salinarimonas	-	1,00	-	-	-	-	-	-	-	-	1,00	-
Pleomorphomonadaceae	Pleomorphomonas	-	1,00	1,00	-	-	1,00	-	1,00	-	1,00	1,00	0,00
Rhizobiaceae	Ahrensia	1,00	-	-	-	-	-	-	-	-	-	1,00	-
Rhizobiaceae	Aliihoeflea	-	-	1,00	1,00	1,00	-	1,00	-	1,00	1,00	1,00	0,00
Rhizobiaceae	Aquamicrobium	-	-	-	-	1,00	-	-	-	-	-	1,00	-
Rhizobiaceae	Aurantimonas	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00
Rhizobiaceae	Hoeflea	-	-	-	1,00	-	-	-	-	-	-	1,00	-
Rhizobiaceae	Nitratireductor	1,00	-	1,00	1,00	-	-	1,00	1,00	1,00	1,00	1,00	0,00
Rhizobiaceae	Phyllobacterium	1,00	-	-	1,00	-	1,00	-	-	-	-	1,00	0,00
Rhizobiaceae	Pseudaminobacter	1,00	1,00	-	-	1,00	-	1,00	1,00	1,00	-	1,00	0,00
Rhizobiaceae	Sinorhizobium	1,00	-	-	1,00	-	-	-	1,00	-	1,00	1,00	0,00
Stappiaceae	Labrenzia	-	1,00	1,00	-	-	1,00	-	-	1,00	-	1,00	0,00
Beijerinckiaceae	Methylobacterium	0,63	0,12	0,74	0,73	0,80	0,83	0,66	0,77	1,00	0,84	0,71	0,23
Methylopilaceae	Methylopila	1,00	0,18	0,61	0,51	0,52	1,00	0,26	1,00	1,00	1,00	0,71	0,33
Rhizobiaceae	Aureimonas	0,74	0,71	0,41	0,64	0,77	1,00	0,81	-0,10	1,00	1,00	0,70	0,33
Devosiaceae	Devosia	0,64	0,49	0,64	0,63	0,61	0,26	0,36	0,62	0,82	0,68	0,57	0,16
Beijerinckiaceae	Bosea	0,60	0,49	0,45	0,47	0,20	0,38	0,47	0,56	0,78	0,53	0,49	0,15
Rhizobiaceae	Agrobacterium	-0,88	-	1,00	-	1,00	1,00	-0,80	-	1,00	1,00	0,48	0,90
Amorphaceae	Acuticoccus	-	-	-0,66	-	1,00	1,00	1,00	-0,69	-	1,00	0,44	0,86
Rhizobiaceae	Pararhizobium	0,68	0,49	-0,24	0,59	1,00	0,20	-0,08	0,29	1,00	0,26	0,42	0,41
Rhizobiaceae	Neorhizobium	-0,78	1,00	-0,55	1,00	1,00	-	-0,92	1,00	1,00	1,00	0,42	0,88
Xanthobacteraceae	Tardiphaga	-0,27	0,72	0,46	0,50	0,35	0,54	0,48	0,60	0,81	-0,15	0,40	0,35
Beijerinckiaceae	Chelatococcus	1,00	-0,68	0,01	1,00	1,00	-0,65	1,00	1,00	-	-0,29	0,38	0,76
Rhizobiaceae	Leaf454	-0,13	-0,76	-0,23	1,00	-0,44	0,51	1,00	0,14	1,00	1,00	0,31	0,68
Xanthobacteraceae	Blastochloris	1,00	-	-0,94	-	-	-0,92	-	1,00	1,00	-	0,23	1,06
Rhizobiaceae	Mesorhizobium	0,46	0,29	0,13	-0,28	0,09	0,43	0,29	0,28	0,24	0,17	0,21	0,21
Rhizobiaceae	Shinella	0,33	-0,01	-0,19	-0,09	-0,57	1,00	-0,66	-0,09	1,00	1,00	0,17	0,63
Xanthobacteraceae	Rhodopseudomonas	-0,37	-0,13	0,45	0,04	0,35	-0,18	0,30	-0,07	0,07	0,64	0,11	0,32
Hyphomicrobiaceae	Hyphomicrobium	0,04	-0,04	0,11	-0,20	0,00	0,32	-0,41	0,34	-0,09	0,21	0,03	0,23
Xanthobacteraceae	Ancylobacter	-0,69	1,00	-0,71	1,00	-0,63	-0,79	-	-	1,00	-0,82	-0,08	0,90
Beijerinckiaceae	Microvirga	-0,81	-0,30	0,00	0,34	1,00	-0,22	-0,52	-0,32	-0,36	-0,03	-0,12	0,50
Rhizobiaceae	Allorhizobium	-0,61	-0,76	-0,83	1,00	-0,94	1,00	-0,75	-0,63	1,00	-0,62	-0,21	0,84
Xanthobacteraceae	Bradyrhizobium	-0,41	-0,23	-0,32	-0,38	-0,59	-0,20	-0,51	0,01	0,00	-0,18	-0,28	0,20
Beijerinckiaceae	Beijerinckia	-0,01	-0,67	-0,51	-0,53	-0,54	0,04	-0,45	-0,01	-0,55	-0,69	-0,39	0,28
Rhizobiaceae	Rhizobium	-0,12	-0,68	-0,39	-0,64	-0,85	-0,78	0,23	-0,59	-0,70	-0,49	-0,50	0,33
Afifellaceae	A52C2	-	-0,80	0,40	-0,79	-0,77	-0,42	-0,18	-0,50	-0,94	-0,67	-0,52	0,42
Xanthobacteraceae	Nitrobacter	1,00	-	-0,94	-0,95	-	-	-	-0,92	-0,87	-	-0,54	0,86
Xanthobacteraceae	Rhodoplanes	-0,64	-0,60	-0,51	-0,59	-0,75	-0,26	-0,84	-0,37	-0,30	-0,53	-0,54	0,19
Beijerinckiaceae	Methylocapsa	-0,84	-0,74	-0,63	-0,53	-0,77	-0,69	-0,91	-0,68	-0,75	1,00	-0,55	0,56
Xanthobacteraceae	Afipia	-0,91	-	-0,85	-0,91	-0,96	-	-0,91	1,00	-0,93	-0,81	-0,66	0,67
Kaistiaceae	Kaistia	-0,45	-0,63	-0,67	-0,45	-0,88	-0,68	-0,92	-0,74	-0,77	-0,84	-0,70	0,16
Beijerinckiaceae	Methylocystis	-0,18	-0,82	-0,78	-0,80	-0,90	-0,52	-0,85	-0,78	-0,71	-	-0,71	0,22
Hyphomicrobiaceae	Hyphomicrobium_A	-0,87	-0,71	-0,90	-0,75	-0,93	-0,69	-	-0,67	-0,79	-0,82	-0,79	0,09
Methyloligellaceae	Methyloceanibacter	-	-	-	-0,95	-	-0,92	-0,91	-	-0,94	-0,90	-0,93	0,02
Hyphomicrobiaceae	Filomicrobium	-0,95	-	-0,94	-	-	-	-	-	-0,94	-	-0,94	0,01

Tabla 15. Valores de Se_i para los géneros del orden Rhizobiales calculado para las muestras de este trabajo. Los géneros se muestran en orden decreciente de selectividad promedio, la cual se muestra junto a la desviación estándar (DE). Aquellos géneros que no fueron encontrados en líquenes o sustratos se indican con el término "-" en la columna de la muestra correspondiente.

Familia	Género	L01	L02	L03	L04	L05	L06	L07	L08	L09	L10	Promedio	DE
Beijerinckiaceae	Salinarimonas	-	-	-	-	-	-	-	-	-	-	-	-
Pleomorphomonadaceae	Pleomorphomonas	-	-	-	-	-	-	-	-	-	-	-	-
Rhizobiaceae	Ahrensia	-	-	-	-	-	-	-	-	-	-	-	-
Rhizobiaceae	Aliihoeflea	-	-	-	-	-	-	-	-	-	-	-	-
Rhizobiaceae	Aquamicrobium	-	-	-	-	-	-	-	-	-	-	-	-
Rhizobiaceae	Aurantimonas	-	-	-	-	-	-	-	-	-	-	-	-
Rhizobiaceae	Hoeflea	-	-	-	-	-	-	-	-	-	-	-	-
Rhizobiaceae	Nitratireductor	-	-	-	-	-	-	-	-	-	-	-	-
Rhizobiaceae	Phyllobacterium	-	-	-	-	-	-	-	-	-	-	-	-
Rhizobiaceae	Pseudaminobacter	-	-	-	-	-	-	-	-	-	-	-	-
Rhizobiaceae	Sinorhizobium	-	-	-	-	-	-	-	-	-	-	-	-
Stappiaceae	Labrenzia	-	-	-	-	-	-	-	-	-	-	-	-
Beijerinckiaceae	Methylobacterium	0,63	0,12	0,74	0,73	0,80	0,83	0,66	0,77	-	0,84	0,68	0,22
Devosiaceae	Devosia	0,64	0,49	0,64	0,63	0,61	0,26	0,36	0,62	0,82	0,68	0,57	0,16
Rhizobiaceae	Aureimonas	0,74	0,71	0,41	0,64	0,77	-	0,81	-0,10	-	-	0,57	0,32
Beijerinckiaceae	Bosea	0,60	0,49	0,45	0,47	0,20	0,38	0,47	0,56	0,78	0,53	0,49	0,15
Methylopilaceae	Methylopila	-	0,18	0,61	0,51	0,52	-	0,26	-	-	-	0,42	0,19
Xanthobacteraceae	Tardiphaga	-0,27	0,72	0,46	0,50	0,35	0,54	0,48	0,60	0,81	-0,15	0,40	0,35
Rhizobiaceae	Pararhizobium	0,68	0,49	-0,24	0,59	-	0,20	-0,08	0,29	-	0,26	0,28	0,32
Rhizobiaceae	Mesorhizobium	0,46	0,29	0,13	-0,28	0,09	0,43	0,29	0,28	0,24	0,17	0,21	0,21
Xanthobacteraceae	Rhodopseudomonas	-0,37	-0,13	0,45	0,04	0,35	-0,18	0,30	-0,07	0,07	0,64	0,11	0,32
Hyphomicrobiaceae	Hyphomicrobium	0,04	-0,04	0,11	-0,20	0,00	0,32	-0,41	0,34	-0,09	0,21	0,03	0,23
Rhizobiaceae	Leaf454	-0,13	-0,76	-0,23	-	-0,44	0,51	-	0,14	-	-	-0,15	0,44
Rhizobiaceae	Shinella	0,33	-0,01	-0,19	-0,09	-0,57	-	-0,66	-0,09	-	-	-0,18	0,34
Beijerinckiaceae	Microvirga	-0,81	-0,30	0,00	0,34	-	-0,22	-0,52	-0,32	-0,36	-0,03	-0,25	0,33
Xanthobacteraceae	Bradyrhizobium	-0,41	-0,23	-0,32	-0,38	-0,59	-0,20	-0,51	0,01	0,00	-0,18	-0,28	0,20
Beijerinckiaceae	Beijerinckia	-0,01	-0,67	-0,51	-0,53	-0,54	0,04	-0,45	-0,01	-0,55	-0,69	-0,39	0,28
Beijerinckiaceae	Chelatococcus	-	-0,68	0,01	-	-	-0,65	-	-	-	-0,29	-0,40	0,33
Rhizobiaceae	Rhizobium	-0,12	-0,68	-0,39	-0,64	-0,85	-0,78	0,23	-0,59	-0,70	-0,49	-0,50	0,33
Afifellaceae	A52C2	-	-0,80	0,40	-0,79	-0,77	-0,42	-0,18	-0,50	-0,94	-0,67	-0,52	0,42
Xanthobacteraceae	Rhodoplanes	-0,64	-0,60	-0,51	-0,59	-0,75	-0,26	-0,84	-0,37	-0,30	-0,53	-0,54	0,19
Amorphaceae	Acuticoccus	-	-	-0,66	-	-	-	-	-0,69	-	-	-0,67	0,02
Kaistiaceae	Kaistia	-0,45	-0,63	-0,67	-0,45	-0,88	-0,68	-0,92	-0,74	-0,77	-0,84	-0,70	0,16
Beijerinckiaceae	Methylocystis	-0,18	-0,82	-0,78	-0,80	-0,90	-0,52	-0,85	-0,78	-0,71	-	-0,71	0,22
Beijerinckiaceae	Methylocapsa	-0,84	-0,74	-0,63	-0,53	-0,77	-0,69	-0,91	-0,68	-0,75	-	-0,73	0,11
Xanthobacteraceae	Ancylobacter	-0,69	-	-0,71	-	-0,63	-0,79	-	-	-	-0,82	-0,73	0,08
Rhizobiaceae	Allorhizobium	-0,61	-0,76	-0,83	-	-0,94	-	-0,75	-0,63	-	-0,62	-0,74	0,12
Rhizobiaceae	Neorhizobium	-0,78	-	-0,55	-	-	-	-0,92	-	-	-	-0,75	0,18
Hyphomicrobiaceae	Hyphomicrobium_A	-0,87	-0,71	-0,90	-0,75	-0,93	-0,69	-	-0,67	-0,79	-0,82	-0,79	0,09
Rhizobiaceae	Agrobacterium	-0,88	-	-	-	-	-	-0,80	-	-	-	-0,84	0,06
Xanthobacteraceae	Afipia	-0,91	-	-0,85	-0,91	-0,96	-	-0,91	-	-0,93	-0,81	-0,90	0,05
Xanthobacteraceae	Nitrobacter	-	-	-0,94	-0,95	-	-	-	-0,92	-0,87	-	-0,92	0,03
Methyloligellaceae	Methyloceanibacter	-	-	-	-0,95	-	-0,92	-0,91	-	-0,94	-0,90	-0,93	0,02
Xanthobacteraceae	Blastochloris	-	-	-0,94	-	-	-0,92	-	-	-	-	-0,93	0,02
Hyphomicrobiaceae	Filomicrobium	-0,95	-	-0,94	-	-	-	-	-	-0,94	-	-0,94	0,01

Como se observa en la Tabla 15, al analizar la selectividad promedio de los líquenes por los géneros de bacterias del orden Rhizobiales, se observa que géneros como *Methylobacterium, Devosia, Aureimonas y Bosea* serían preferidos por los líquenes, mientras que otros como *Methyloceanibacter, Afipia, Hyphomicrobium_A, Allorhizobium, Methylocapsa, Methylocystis y Kaistia* serían rechazados.

La comparación de la selectividad de los líquenes por los distintos géneros de ambos órdenes se puede observar en la Figura 12 y Figura 13 para Sphingomonadales y Rhizobiales, respectivamente.

Al analizar la selectividad de los líquenes por las bacterias pertenecientes al orden Sphingomonadales, observamos que todos los géneros encontrados pertenecen a una sola familia. El género *Sandarakinorhabdus*, el más cercano al ancestro común, es uno de los preferidos ya que presenta valores de selectividad cercanos a 1 en la mayoría de los casos excepto en 2 muestras del subsitio B en que es más neutro (L07 y L09). Además, se puede observar que la selectividad es muy alta y poco variable para el género *Sphingomonas*, y pudo ser calculada para todas las muestras. En el resto de los casos, la selectividad presenta valores neutros y mayoritariamente negativos, pudiéndose calcular solo en el caso de *Sphingobium* el valor de selectividad para todas las muestras.

En el caso de los Rhizobiales, los géneros detectados pertenecen a doce familias. Debido a la baja abundancia relativa de las bacterias de este orden, los valores de selectividad presentan una notable variación comparado con los Sphingomonadales. Si observamos los promedios, los géneros de Rhizobiales más preferidos por los líquenes (selectividad > 0,4) corresponden a *Methylobacterium*, *Devosia*, *Aureimonas*, *Bosea*, *Methylopila* y

Tardiphaga. De estos seis. dos cuentan representantes metilótrofos con (Methylobacterium y Methylopila). Methylobacterium destaca como el género con mayor valor de selectividad en este orden (0,68), aunque debido a que una de las muestras presentó un valor cercano a la neutralidad (L02) y otro sin calcular (L09) no es comparable a la selectividad por Sphingomonas en el orden Sphingomonadales. Coincidentemente, aquellos géneros que presentan menor variabilidad son negativamente seleccionados por el liquen, aunque en muchos casos no se pudo calcular el valor del índice para todas las muestras. En general, los géneros con especies diazotróficas presentan valores de selectividad negativos, a excepción de Pararhizobium (0,28).

Figura 12. Árbol filogenético de los géneros bacterianos pertenecientes al orden Sphingomonadales, obtenido desde la plataforma AnnoTree (Mendler et al., 2019) y personalizado en iTOL (Letunic y Bork, 2016). La columna H indica si todas las especies descritas del género son heterótrofas (cuadrado negro) o si además presenta autótrofas (cuadrado blanco) (*no hay información sobre B12). Se incluye la selectividad de los líquenes de este trabajo por cada uno de los géneros, expresado como *boxplot* y *heatmap* en el rango que varía el índice, de - 1 a 1. Para los géneros que presentaron menos de dos valores de selectividad en la Tabla 13 no se incluye información de selectividad y sus nombres se encuentran atenuados en gris.

Figura 13. Árbol filogenético de los géneros bacterianos pertenecientes al orden Rhizobiales, obtenido desde la plataforma AnnoTree (Mendler et al., 2019) y personalizado en iTOL (Letunic y Bork, 2016). La columna M indica si todas las especies descritas del género son metilótrofas (estrella negra), algunas son metilótrofas (estrella blanca) o no se han descrito metilótrofas (sin estrella). La columna H indica si todas las especies descritas del género son heterótrofas (cuadrado negro) o si además presenta autótrofas (cuadrado blanco). La columna N indica si todas las especies descritas del género son diazotrófas (círculo negro), algunas son diazotrófas (círculo blanco) o no se han descrito diazotrófas (sin círculo) (*no hay información funcional sobre A52C2 y Leaf454). Se incluye la selectividad de los líquenes de este trabajo por cada uno de los géneros, expresado como *boxplot* y *heatmap* en el rango que varía el índice, de -1 a 1. Para los géneros que presentaron menos de dos valores de selectividad en la Tabla 15 no se incluye información de selectividad y sus nombres se encuentran atenuados en gris.

Según los antecedentes entregados en la introducción y lo planteado en la hipótesis, esperábamos que la selectividad por Sphingomonadales fuera mayor que por Rhizobiales, y esto lo comprobamos mediante una comparación del valor absoluto promedio de selectividad entre los géneros de ambos grupos. Para el caso de los Sphingomonadales, se obtuvo un valor promedio de $|Se_i| = 0,621 \pm 0,114$ y para los Rhizobiales, $|Se_i| = 0,541 \pm 0,114$ y para los Rhizobiales, $|Se_i|$ 0,054, siendo significativamente mayor para el primer grupo en un test de t pareado (p =0,046). La segunda parte de la hipótesis planteaba que los Rhizobiales tendrían un patrón de diversidad más asociado a la distribución espacial de los líquenes, comparado con los Sphingomonadales. En la Figura 14 y Figura 15 se observa que la variabilidad de las muestras de líquenes es mucho mayor que las de sustrato para ambos órdenes, y para el caso de los Rhizobiales, efectivamente se observa una mayor dependencia del subsitio en la varianza de las muestras (en la Figura 14 los triángulos y círculos se agrupan más entre ellos que en la Figura 15). La separación por tipo de muestra (liquen o sustrato) fue complementada con análisis de ANOSIM, donde para el caso de los Sphingomonadales se obtuvo un R = 0.9036 y un valor de p = 0.001, mientras que para los Rhizobiales un R = 0.6507 y un valor de p = 0.001. Estas diferencias no se observan al agrupar por subsitio, donde para el caso de los Sphingomonadales se obtuvo un R = -0.0498 y un valor de p =0.756, mientras que para los Rhizobiales un R = -0.0140 y un valor de p = 0.448. Para el caso de las comunidades solamente asociadas a líquenes, al agrupar por subsitio para el caso de los Sphingomonadales se obtuvo un R = -0.0600 y un valor de p = 0.569, mientras que para los Rhizobiales un R = 0,0680 y un valor de p = 0,251.

Figura 14. NMDS basado en matriz de distancia euclideana, calculada a partir de las abundancias relativas de géneros de bacterias pertenecientes al orden Sphingomonadales, por muestra. Las muestras de liquen se muestran en verde y las de sustrato en naranjo. Las muestras del subsitio A se representan por un círculo y las del subsitio B por un triángulo.

Figura 15. NMDS basado en matriz de distancia euclideana, calculada a partir de las abundancias relativas de géneros de bacterias pertenecientes al orden Rhizobiales, por muestra. Las muestras de liquen se muestran en verde y las de sustrato en naranjo. Las muestras del subsitio A se representan por un círculo y las del subsitio B por un triángulo.

DISCUSIÓN

En esta tesis, evaluamos la selectividad de una misma especie de liquen por bacterias de su microbioma, considerando aquellas disponibles en sus sustratos. Los micobiontes y cianobiontes de las 10 muestras de líquenes analizadas pertenecen a los mismos haplotipos de los genes ribosomales correspondientes. La identidad de los simbiontes clásicos fue verificada para asegurarnos de que estudiamos réplicas biológicas del mismo liquen. Además del micobionte y el fotobionte, se han descrito componentes adicionales asociados a los líquenes, que consisten principalmente en comunidades microbianas altamente estructuradas que forman biopelículas sobre el talo liquénico (microbiomas) (Cardinale et al., 2008; Grube y Berg, 2009).

Según estudios anteriores (Bates et al., 2011), las diferencias entre las comunidades bacterianas de diferentes especies de líquenes no son simplemente el resultado de una extensión de la microbiota que se encuentra en el sustrato. De hecho, las comunidades microbianas del sustrato donde crecen los líquenes son claramente diferentes a las del talo liquénico (Ramírez-Fernández et al., 2014; Leiva et al., 2016; Almendras, Leiva, et al., 2018) y nuestros datos revelan diferencias en la composición de las comunidades bacterianas de estos microambientes, aunque comparten algunos componentes bacterianos. Anteriormente, se ha detectado que el contexto ambiental influye en la composición de las bacterias asociadas a los líquenes (Cardinale, Steinová, et al., 2012; Hodkinson et al., 2012; Ramírez-Fernández et al., 2014). Sin embargo, estos estudios no cumplieron la condición de que los principales componentes de la simbiosis fueran idénticos entre las muestras, lo que ha demostrado influir en la estructura de las

comunidades bacterianas de los líquenes (Hodkinson et al., 2012), e incluso de los sustratos (Leiva et al., 2016). A pesar de la proximidad de los subsitios (1,2 km) y el predominio de la misma cobertura arbórea en ambos bosques (*N. pumilio*), se encontraron más diferencias entre las comunidades presentes en los sustratos que en las comunidades asociadas con los líquenes. En este contexto, el liquen actuaría como un "filtro" para seleccionar los microorganismos mejor adaptados entre los disponibles en un contexto ambiental particular (Cardinale, Steinová, et al., 2012; Hodkinson et al., 2012; Almendras, Leiva, et al., 2018) mediante la producción de metabolitos y actividades enzimáticas (Hodkinson et al., 2012; Leiva et al., 2016).

La asignación taxonómica de los microorganismos se realizó con referencia a una nueva base de datos publicada en 2018, que corrige varios problemas taxonómicos y filogenéticos utilizando secuencias concatenadas de 120 proteínas de copia única para inferir la filogenia de bacterias y arqueas (Parks et al., 2018). La base de datos de taxonomía genómica (GTDB) está optimizada para su uso en la asignación taxonómica de secuencias del marcador 16S con el algoritmo DADA2 (Alishum, 2019). Luego de la asignación taxonómica, se realizaron otros análisis incorporando los datos en el paquete phyloseq (McMurdie y Holmes, 2013). Cabe señalar que la nomenclatura en esta base de datos sigue reglas más estrictas comparada con las ampliamente utilizadas en otras bases de datos bacterianas (Parks et al., 2018).

Al analizar la diversidad bacteriana a nivel de filo, encontramos que las proteobacterias eran el grupo más dominante en el talo de *P. frigida*, distribuidas principalmente en las clases Alphaproteobacteria y Gammaproteobacteria, aunque las primeras no alcanzan las altas abundancias descritas en estudios anteriores con otras especies de *Peltigera* (Hodkinson et al., 2012). Esta diferencia podría deberse a que *P. frigida* tiene un microbioma particular y diferente de las especies previamente estudiadas de este género de líquenes, pero no podemos descartar que pueda deberse a que Hodkinson et al. (2012) utilizara partidores que no excluyeron los cianobiontes secuenciados por la plataforma 454. Por otro lado, no todas las especies de líquenes exhiben predominio de proteobacterias en su microbioma, como es el caso del liquen folioso alpino *Solorina crocea* (Grube et al., 2012) y el liquen saxícola *Ophioparma* (Hodkinson et al., 2012) cuyas comunidades bacterianas están dominadas por acidobacterias, y de los cianolíquenes marinos del género *Lichina* dominados por bacteroidetes (West et al., 2018). Esto podría relacionarse con observaciones previas que sugieren que la identidad de los simbiontes (Leiva et al., 2016) o la forma de crecimiento de los líquenes (Almendras, García, et al., 2018) influyen en la estructura de la comunidad bacteriana asociada.

En estudios previos del microbioma de líquenes del género *Peltigera*, los dos grupos más abundantes de alfaproteobacterias corresponden a aquellas de los órdenes Sphingomonadales y Rhizobiales (Hodkinson et al., 2012; Sigurbjörnsdóttir et al., 2015; Garg et al., 2016; Cernava et al., 2018; Graham et al., 2018). En todos estos estudios se infiere que Sphingomonadaceae, dentro de los Sphingomonadales, es una de las familias más abundantes; sin embargo, dentro de los Rhizobiales el predominio de las diferentes familias varía con las especies de líquenes. Según nuestros análisis, *Sphingomonas* (del orden Sphingomonadales) fue el género más abundante en el talo de *P. frigida*. Las

bacterias del orden Sphingomonadales tienen la capacidad de degradar la materia orgánica y compuestos recalcitrantes (Balkwill et al., 2006; Glaeser y Kämpfer, 2014), presentan esfingolípidos en su pared celular que podrían ser útiles para la formación de biopelículas (Caesar-TonThat et al., 2007), y se ha encontrado que están más representados en las partes centrales de los talos de crecimiento radial (Mushegian et al., 2011), por lo que se ha sugerido que su presencia en los líquenes podría estar relacionada con la adquisición de nutrientes y la degradación de las partes antiguas del talo (Aschenbrenner et al., 2014, 2017; Lee et al., 2014). Por otro lado, los Rhizobiales no se detectaron tan abundantemente en *P. frigida* como en otros microbiomas de *Peltigera*, representando un 7% del total de secuencias, pero ninguno de los géneros superó el 1%. En otras especies de *Peltigera*, la familia Methylobacteriaceae fue una de las más abundantes entre los Rhizobiales (Hodkinson et al., 2012; Graham et al., 2018); en *P. frigida*, el género que alcanzó el porcentaje más alto dentro de este orden (0,9%) fue *Methylobacterium*, que según la base de datos utilizada en nuestro análisis pertenece ahora a la familia Beijerinckiaceae.

Entre las proteobacterias, otros tres géneros presentaron una abundancia relativa de al Acidisphaera (Alphaproteobacteria), Methylibium menos 2%: y Rhizobacter (Burkholderiaceae, Gammaproteobacteria). Acidisphaera corresponde а quimioorganótrofos aeróbicos obligados, fotoorganótrofos facultativos, bacterias mesófilas y acidófilas obligadas que crecen entre pH 3,5-6,0 y son capaces de utilizar una serie de compuestos orgánicos simples como fuentes de carbono (Hiraishi et al., 2000). Por otro lado, el género Methylibium incluye microorganismos metilotróficos que pueden utilizar compuestos reducidos de un solo carbono, como el metanol o el metano, como única fuente de carbono para su crecimiento (Nakatsu et al., 2006); mientras que el género *Rhizobacter* incluye especies reportadas como bacterias degradadoras de caucho (Imai et al., 2013).

El otro grupo bacteriano con mayor abundancia en talos que en sustratos correspondió a miembros no asignados de la familia Chitinophagaceae (Bacteroidota), que también fueron reportados como un grupo abundante en el microbioma del liquen *Lobaria pulmonaria*, utilizando secuenciación de amplicones 16S (Cernava et al., 2016). Algunas de las funciones asignadas a estos microorganismos que podrían contribuir al desarrollo de los líquenes son su contribución al metabolismo de la adquisición de potasio, azufre y hierro y el suministro de vitaminas y cofactores (Cernava et al., 2016).

En el caso del filo Actinobacteriota, las abundancias fueron relativamente similares cuando se comparó talos con sustratos; sin embargo, la clase Actinobacteria fue más abundante en talos. Dentro de esta clase, el género *Friedmanniella* exhibió una abundancia promedio de 6% en las muestras de talo. Los miembros de este género han sido aislados de diferentes hábitats como arena antártica (Schumann et al., 1997), espuma de lodo activado (Maszenan et al., 1999) y un lago antártico hipersalino (Lawson et al., 2000), pero las secuencias detectadas en el microbioma de *P. frigida* están estrechamente relacionadas con *F. luteola* y *F. flavus*, que fueron aisladas de arañas (Iwai et al., 2010) y suelo (Zhang et al., 2013), respectivamente. La presencia de actinobacterias en los líquenes podría aumentar potencialmente la producción de compuestos antimicrobianos que podrían mejorar la salud del talo liquénico. Contrastantemente, las actinobacterias están menos representadas en el sustrato, pero los géneros *Conexibacter* A y

Solirubrobacter exhibieron una abundancia relativa superior al 2% en este microambiente. Especies del género *Solirubrobacter* han sido aisladas del suelo de campos de ginseng en Corea del Sur (Kim et al., 2007), en la montaña de Baekdu en China (An et al., 2011) y como bacterias endófitas de la raíz de una planta medicinal tradicional china (Wei et al., 2014). Han recibido mucha atención porque son capaces de producir una variedad de metabolitos secundarios con propiedades antimicrobianas, de promoción del crecimiento de plantas, biocontrol y sideróforos (Yadav et al., 2018).

Entre los filos más representados en los sustratos que en los talos, Acidobacteriota mostró en general una baja abundancia en líquenes, y algunos miembros como Gp7-AA6, Sulfotelmatobacter y QHXM01 estuvieron prácticamente ausentes. En el sustrato, Acidobacteriota corresponde el filo más abundante, representado por miembros de las clases Vicinamibacteria (18%) y Acidobacteriae (12%). Concordantemente, muestras de líquenes recolectadas en rocas ácidas de cornisas tenían una alta abundancia de acidobacterias en aquellas zonas del talo cercanas al sustrato (rizinas) (Muggia, Klug, et al., 2013). A nivel de género, Luteitalea, Sulfotelmatobacter y los géneros aún no nombrados formalmente SCN 69-37, Gp7-AA6 y QHXM01, alcanzaron una abundancia relativa superior al 2% en sustratos. El único miembro conocido del género Luteitalea de la familia de las Vicinamibacteraceae (Huber y Overmann, 2018) es un quimioorganoheterótrofo aeróbico que crece en diferentes azúcares y compuestos proteicos complejos. Luteitalea tolera un amplio rango de pH (4.7 a 9.0) y temperatura (12 °C a 40°C) y es resistente a varios antibióticos (Vieira et al., 2017; Huber y Overmann, 2018). Por otro lado, Sulfotelmatobacter es un género candidato propuesto por Hausmann et al. (2018), el cual exhibe un metabolismo disimilativo del azufre basado en el análisis metatranscriptómico de los genes del metabolismo del azufre de acidobacterias de turberas ácidas. El otro filo más representado en sustratos que en talo fue Planctomycetota, siendo los géneros más abundantes en sustratos *Singulisphaera* y PALSA-1355, mientras que los géneros *Fimbriiglobus* y *Paludisphaera* no presentaron mayores diferencias en su abundancia relativa al comparar ambos microambientes. Los planctomicetes son organismos principalmente aeróbicos, mesófilos y neutrófilos que colonizan una amplia variedad de ecosistemas, desde hábitats acuáticos a terrestres, así como varios ambientes extremos. Se ha reportado la asociación de representantes de este filo con un gran número de organismos eucariotas, incluyendo esponjas (Pimentel-Elardo et al., 2003), camarones (Fuerst et al., 1997), turberas de *Sphagnum* (Kulichevskaya et al., 2006, 2012, 2016) y macroalgas (Bengtsson y Øvreås, 2010; Lage y Bondoso, 2011, 2014).

En el contexto del modelo ecológico de liquenización planteado por Yahr et al. (2006), la selectividad se define como la asociación preferente de los micobiontes por ciertos fotobiontes específicos que estarían mejor adaptados a las condiciones ambientales. En esta tesis, evaluamos la selectividad de líquenes de la especie *Peltigera frigida* por bacterias de los órdenes Sphinmonadales y Rhizobiales adaptando un índice de selectividad previamente postulado para la asociación de los simbiontes clásicos (Orlando et al., 2015; Zúñiga, 2015). La asignación de los micobiontes como organismos que seleccionan las bacterias de su microbioma se definió operacionalmente, debido a que la estructura simbiótica está conformada principalmente por el hongo, es éste el simbionte obligado en la interacción y además es el que otorga la denominación taxonómica. A pesar

de esta definición operacional, no podemos descartar que sean las bacterias presentes en el microbioma las que encuentran su nicho ecológico en la estructura liquénica. Finalmente, se mantuvo la terminología ecológica del índice de elegibilidad original (Lechowicz, 1982) en cuanto a la preferencia o rechazo de los líquenes por bacterias de su microbioma, teniendo en cuenta que esto no implica necesariamente una intencionalidad por parte del organismo hospedero.

Dos géneros de Sphingomonadales presentaron una alta preferencia por parte de los líquenes. Uno de ellos es el género Sphingomonas, para el que se puede observar que la selectividad es muy alta y poco variable entre las muestras. Estas bacterias se han encontrado en alta abundancia en otros líquenes (Grube et al., 2009; Aschenbrenner et al., 2016). Sin embargo, esta es la primera vez que su abundancia se contrasta sistemáticamente con aquella presente en el sustrato donde los líquenes crecen. La presencia de estas bacterias estaría relacionada funcionalmente con su capacidad para degradar compuestos carbonados complejos (Balkwill et al., 2006; Yabuuchi y Kosako, 2015). En el microambiente del liquen están en mayor abundancia en las partes senescentes del talo (Mushegian et al., 2011), y se ha propuesto que son parte de la simbiosis al estar involucradas en el reciclaje de nutrientes para el liquen (Aschenbrenner et al., 2016). En este trabajo, demostramos que se trata de un componente bacteriano estable en todas las muestras de líquenes, y su presencia en el sustrato es reducida a pesar de que son un componente conocido en suelos (Delgado-Baquerizo et al., 2018). Por ello planteamos que bacterias de este género podrían provenir de los mismos propágulos por los cuales se reproduce el liquen, en concordancia con el reporte de que bacterias de la misma familia están presentes en propágulos vegetativos de otros líquenes foliosos (Aschenbrenner et al., 2014). El otro género de este orden seleccionado por el liquen corresponde a Sandarakinorhabdus, cuyas dos especies descritas presentan en cultivo un metabolismo quimioheterótrofo, y fueron aisladas desde ambientes lacustres (Gich y Overmann, 2006; Cai et al., 2018). Una de ellas, Sandarakinorhabdus cyanobacteriorum, se encontró asociada a agregados cianobacterianos en un lago eutrófico, por lo que su presencia en los líquenes podría estar asociada a la presencia del cianobionte (Cai et al., 2018). Para este orden bacteriano, no se observó una preferencia dependiente del tipo de metabolismo representativo de cada género. La mayoría de los géneros (nueve) presenta un metabolismo puramente quimioheterotrófico, y los tres géneros con representantes autótrofos presentan valores dispares de selectividad (Sandarakinorhabdus es preferido y Blastomonas y Porphyrobacter son rechazados). De acuerdo con las características nutricionales en el microambiente liquénico, podría esperarse que la mayoría de las bacterias tengan un comportamiento saprótofo, aprovechando la producción de compuestos de carbono orgánico producidos por el fotobionte. La preferencia por Sandarakinorhabdus, género que cuenta con solo dos especies descritas y una de ellas con un posible mecanismo fotoautotrófico, requiere de estudios con mayor profundidad (i.e. genómicos o de cultivo).

En el caso de los Rhizobiales, los géneros detectados pertenecen a doce familias. Debido a la baja abundancia relativa de las bacterias de este orden, los valores de selectividad presentan una notable variación comparado con los Sphingomonadales. Si nos fijamos en los promedios, los géneros de bacterias del orden Rhizobiales más preferidos por los líquenes (selectividad > 0,4) corresponden a *Methylobacterium, Devosia, Aureimonas*, Bosea, Methylopila y Tardiphaga. De estos seis, solo Methylobacterium ha sido reportado previamente como un componente bacteriano importante en líquenes. Methylobacterium destaca como el género con el mayor valor promedio de selectividad en este orden (0,68), aunque una de las muestras presentó un valor cercano a la neutralidad (L02) y otro sin calcular (L09), por lo que no es comparable con la alta selectividad por Sphingomonas en el orden Sphingomonadales. Como ya se discutió en la sección de análisis taxonómico, en otras especies de *Peltigera* la familia Methylobacteriaceae es una de las más abundantes entre los Rhizobiales (Hodkinson et al., 2012; Graham et al., 2018) y en P. frigida el género que alcanzó el porcentaje más alto dentro de este orden (0,9%) fue justamente Methylobacterium, aunque según la base de datos utilizada en nuestro análisis pertenece ahora a la familia Beijerinckiaceae. Las bacterias del género Methylobacterium son quimioheterótrofas y metilótrofas facultativas, y se encuentran en la mayoría de los ambientes, incluyendo muestras de aire (Green, 2015). Además, presentan resistencia a la desecación (Green, 2015), una característica esperable para los microorganismos asociados a líquenes, ya que constantemente están expuestos a cambios en su estado de hidratación (Green et al., 2011). De hecho, los transcritos de bacterias del orden Rhizobiales son los que presentan un mayor cambio en un estudio que compara la microbiota de líquenes en distintos estados de hidratación (Cernava et al., 2018). Devosia corresponde a un género de bacterias heterótrofas mótiles (Nakagawa et al., 2015), común en suelos (Delgado-Baquerizo et al., 2018). Aureimonas corresponde a un género bacteriano de metabolismo heterótrofo cuyas especies se han aislado principalmente desde tejidos de plantas (Madhaiyan et al., 2013). Bosea contiene especies aisladas de distintos ambientes, como raíces de algunas plantas (De Meyer y Willems, 2012) y suelo agrícola

(Das, 2015), presentando la especie, en este último caso, un metabolismo del tipo quimiolitoautótrofo. Methylopila es un género bacteriano aislado desde suelo, con metabolismo quimioheterótrofo y metilótrofas facultativas (Doronina y Trotsenko, 2015). Por último, Tardiphaga es un género con solo una especie descrita, Tardiphaga robinae, correspondiente a una bacteria quimioheterótrofa aislada de nódulos radiculares y que no cuenta con capacidades diazotróficas (De Meyer et al., 2012). A excepción de Pararhizobium (0,28), los géneros con especies diazotróficas presentan valores promedio de selectividad negativos o cercanos a la neutralidad, lo que es esperable ya que el cianobionte provee de nitrógeno combinado a la simbiosis. Para el caso de los géneros con especies metilótrofas, dos de ellos presentan un alto valor de selectividad, lo que abre interrogentes acerca de la importancia de esta parte del ciclo del carbono en líquenes. La variabilidad en la selectividad de las bacterias pertenecientes al orden Rhizobiales podría estar relacionada con la selección de bacterias mejor adaptadas en una escala espacial menor a la muestreada (Cardinale, Steinová, et al., 2012). En este sentido, en futuros estudios sería util enfocarse en los grupos mayormente representados en el talo liquénico. Sin embargo, la aproximación utilizada en este trabajo mediante la utilización del índice de selectividad permite identificar grupos bacterianos que no necesariamente están en alta abundancia en los líquenes, sino que también aquellos que presentan un cambio importante con respecto a su abundancia en el sustrato. Los valores de cobertura obtenidos tanto para Sphingomonadales como para Rhizobiales resultaron ser altos para el caso de los líquenes y medios o bajos para el caso de los sustratos. La menor cobertura en sustratos puede deberse a que haya una mayor riqueza de tipos bacterianos de estos órdenes o a que otros grupos bacterianos estén en alta abundancia. Para futuros trabajos evaluando estos

grupos bacterianos, sería pertinente utilizar partidores con mayor especificidad, ya sea para la clase Alphaproteobacteria como para cada uno de estos órdenes bacterianos.

El índice de selectividad aplicado en este trabajo nos permitió comparar la preferencia de líquenes de una misma especie por bacterias pertenecientes a dos órdenes pertenecientes a la clase Alphaproteobacteria. Según nuestros cálculos, y confirmando lo que planteamos en la primera parte de la hipótesis, efectivamente *P. frigida* presenta una mayor selectividad por Sphingomonadales que por Rhizobiales. Sin embargo, la segunda parte de la hipótesis, sobre la correlación entre la diversidad de Rhizobiales y la ubicación espacial de las muestras no recibió soporte estadístico, a pesar de que los subsitios estudiados presentan diferencias edáficas (Muster, 2019). Esto puede deberse a que las funciones esperadas para este grupo bacteriano pueden ser llevadas a cabo por otro grupo (Almendras, García, et al., 2018), o a que la diferencia esperada deba analizarse entre muestras a una escala espacial distinta a la realizada en este trabajo (Cardinale, Steinová, et al., 2012).
CONCLUSIONES

El modelo experimental planteado en esta tesis, en el que comparamos la comunidad bacteriana de líquenes de una misma especie y sus sustratos en el marco del modelo de liquenización, nos permite obtener las siguientes conclusiones:

- El filo bacteriano más abundante en los sustratos de *Peltigera frigida* es Acidobacteriota, mientras que el asociado a sus talos es Proteobacteria. Entre éstas, la clase bacteriana con mayor abundancia es Alphaproteobacteria (órdenes Sphingomonadales, Acetobacterales y Rhizobiales).
- *P. frigida* preferiría bacterias quimioheterótrofas, probablemente atraídas por la materia orgánica presente en el liquen; mientras que rechazaría bacterias fijadoras de nitrógeno, probablemente porque el cianobionte ya aporta con dicha función.
- La selectividad de *P. frigida* por bacterias del orden Sphingomonadales sería mayor que por aquellas del orden Rhizobiales.
- La diversidad de Rhizobiales no se relaciona con la distribución espacial de *P*.
 frigida, lo que podría deberse a que este grupo no aportaría con funciones dependientes del ambiente.

REFERENCIAS

- Ainsworth, G.C. 2008. Dictionary of the Fungi. 10.^a ed. Kirk, P. M., Cannon, P. F., Minter, D. W., Stalpers, J. A. (eds.), CABI Bioscience, Cambridge.
- Alishum, A. 2019. DADA2 formatted 16S rRNA gene sequences for both bacteria & archaea (Version 2) [Data set]. Zenodo. Disponible en: https://zenodo.org/record/3266798.
- Almendras, K., García, J., Carú, M., Orlando, J. 2018. Nitrogen-fixing bacteria associated with *Peltigera* cyanolichens and *Cladonia* chlorolichens. *Molecules* 23: 3077.
- Almendras, K., Leiva, D., Carú, M., Orlando, J. 2018. Carbon consumption patterns of microbial communities associated with *Peltigera* lichens from a Chilean temperate forest. *Molecules* 23: 2746.
- Ammar, R. 2017. randomcoloR: Generate Attractive Random Colors.
- An, D.-S., Wang, L., Kim, M.S., Bae, H.-M., Lee, S.-T., Im, W.-T. 2011. Solirubrobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field. International Journal of Systematic and Evolutionary Microbiology 61: 2606-9.
- Aschenbrenner, I.A., Cardinale, M., Berg, G., Grube, M. 2014. Microbial cargo: do bacteria on symbiotic propagules reinforce the microbiome of lichens? *Environmental Microbiology* 16: 3743-3752.
- Aschenbrenner, I.A., Cernava, T., Berg, G., Grube, M. 2016. Understanding microbial multi-species symbioses. *Frontiers in Microbiology* 7: 1-9.
- Aschenbrenner, I.A., Cernava, T., Erlacher, A., Berg, G., Grube, M. 2017. Differential sharing and distinct co-occurrence networks among spatially close bacterial microbiota of bark, mosses and lichens. *Molecular Ecology* 26: 2826-2838.
- Balkwill, D.L., Fredrickson, J.K., Romine, M.F. 2006. *Sphingomonas* and related genera. En *The Prokaryotes*, pp. 605-629. Springer, New York, NY.
- Bates, S.T., Berg-Lyons, D., Lauber, C.L., Walters, W.A., Knight, R., Fierer, N. 2012. A preliminary survey of lichen associated eukaryotes using pyrosequencing. *The Lichenologist* 44: 137-146.
- Bates, S.T., Cropsey, G.W.G., Caporaso, J.G., Knight, R., Fierer, N. 2011. Bacterial communities associated with the lichen symbiosis. *Applied and Environmental Microbiology* 77: 1309-1314.
- Beck, A., Friedl, T., Rambold, G. 1998. Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. *New Phytologist* 139: 709-720.
- Bengtsson, M.M., Øvreås, L. 2010. Planctomycetes dominate biofilms on surfaces of the kelp *Laminaria hyperborea*. *BMC microbiology* 10: 261.

- Berg, G., Smalla, K. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. *FEMS Microbiology Ecology* 68: 1-13.
- Bjelland, T., Grube, M., Hoem, S., Jorgensen, S.L., Daae, F.L., Thorseth, I.H., Øvreås, L. 2011. Microbial metacommunities in the lichen-rock habitat. *Environmental Microbiology Reports* 3: 434-442.
- Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C., Al-Ghalith, G.A., Alexander, H. et al. 2018. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. *PeerJ Preprints* 6: e27295v2.
- Caesar-TonThat, T.C., Caesar, A.J., Gaskin, J.F., Sainju, U.M., Busscher, W.J. 2007. Taxonomic diversity of predominant culturable bacteria associated with microaggregates from two different agroecosystems and their ability to aggregate soil *in vitro*. *Applied Soil Ecology* 36: 10-21.
- Cai, H., Cui, H., Zeng, Y., An, M., Jiang, H. 2018. Sandarakinorhabdus cyanobacteriorum sp. nov., a novel bacterium isolated from cyanobacterial aggregates in a eutrophic lake. International Journal of Systematic and Evolutionary Microbiology 68: 730-735.
- Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. *Nature Methods* 13: 581-583.
- Carbone, I., White, J.B., Miadlikowska, J., Arnold, A.E., Miller, M.A., Kauff, F., U'Ren, J.M. et al. 2016. T-BAS: Tree-Based Alignment Selector toolkit for phylogeneticbased placement, alignment downloads and metadata visualization: an example with the Pezizomycotina tree of life. *Bioinformatics* 33: btw808.
- Cardinale, M., Grube, M., Castro Jr, J.V., Müller, H., Berg, G. 2012. Bacterial taxa associated with the lung lichen *Lobaria pulmonaria* are differentially shaped by geography and habitat. *FEMS Microbiology Letters* 329: 111-115.
- Cardinale, M., Puglia, A.M., Grube, M. 2006. Molecular analysis of lichen-associated bacterial communities. *FEMS Microbiology Ecology* 57: 484-495.
- Cardinale, M., Steinová, J., Rabensteiner, J., Berg, G., Grube, M. 2012. Age, sun and substrate: triggers of bacterial communities in lichens. *Environmental Microbiology Reports* 4: 23-28.
- Cardinale, M., Vieira de Castro, J., Müller, H., Berg, G., Grube, M. 2008. *In situ* analysis of the bacterial community associated with the reindeer lichen *Cladonia arbuscula* reveals predominance of Alphaproteobacteria. *FEMS microbiology ecology* 66: 63-71.
- Casquilho, J., Neves, M., Rego, F. 1997. Extensões da função de Shannon e equilibrios de proporções uma aplicação ao mosaico da paisagem. *Anais do Instituto Superior*

de Agronomia77-99.

- Cernava, T., Berg, G., Grube, M. 2016. High life expectancy of bacteria on lichens. *Microbial Ecology* 72: 510-513.
- Cernava, T., Müller, H., Aschenbrenner, I. a., Grube, M., Berg, G. 2015. Analyzing the antagonistic potential of the lichen microbiome against pathogens by bridging metagenomic with culture studies. *Frontiers in Microbiology* 6: 1-11.
- Cernava, T., Vasfiu, Q., Erlacher, A., Aschenbrenner, I.A., Francesconi, K., Grube, M., Berg, G. 2018. Adaptions of lichen microbiota functioning under persistent exposure to arsenic contamination. *Frontiers in Microbiology* 9: 2959.
- Cornejo, C., Scheidegger, C. 2016. Cyanobacterial gardens: the liverwort *Frullania* asagrayana acts as a reservoir of lichen photobionts. *Environmental Microbiology Reports* 8: 352-357.
- Crespo, A., Lumbsch, H.T. 2010. Cryptic species in lichen-forming fungi. *IMA Fungus* 1: 167-70.
- Darriba, D., Taboada, G.L., Doallo, R., Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. *Nature methods* 9: 772.
- Das, S.K. 2015. *Bosea*. En *Bergey's Manual of Systematics of Archaea and Bacteria*, pp. 1-4. John Wiley & Sons, Ltd, Chichester, UK.
- Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-González, A., Eldridge, D.J., Bardgett, R.D., Maestre, F.T. et al. 2018. A global atlas of the dominant bacteria found in soil. *Science* 359: 320-325.
- Doronina, N. V., Trotsenko, Y.A. 2015. Incertae Sedis IV. *Methylopila*. En *Bergey's Manual of Systematics of Archaea and Bacteria*, pp. 1-4. John Wiley & Sons, Ltd, Chichester, UK.
- Fedrowitz, K. 2011. *Insights into the ecology and genetics of lichens with a cyanobacterial photobiont*. Swedish University of Agricultural Sciences, Ph.D. Thesis.
- Fuerst, J.A., Gwilliam, H.G., Lindsay, M., Lichanska, A., Belcher, C., Vickers, J.E., Hugenholtz, P. 1997. Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, *Penaeus monodon. Applied and Environmental Microbiology* 63: 254-62.
- Gardes, M., Bruns, T.D. 1993. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. *Molecular Ecology* 2: 113-118.
- Garg, N., Zeng, Y., Edlund, A., Melnik, A. V, Sanchez, L.M., Mohimani, H., Gurevich, A. et al. 2016. Spatial molecular architecture of the microbial community of a *Peltigera* lichen Jansson, J. K. (ed.), *mSystems* 1: 1-17.

- Gargas, A., DePriest, P., Grube, M., Tehler, A. 1995. Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. *Science* 268: 1492-1495.
- Gich, F., Overmann, J. 2006. *Sandarakinorhabdus limnophila* gen. nov., sp. nov., a novel bacteriochlorophyll a-containing, obligately aerobic bacterium isolated from freshwater lakes. *International Journal of Systematic and Evolutionary Microbiology* 56: 847-854.
- Glaeser, S.P., Kämpfer, P. 2014. The Family Sphingomonadaceae. En Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F. (eds.), *The Prokaryotes*, pp. 641-707. Springer Berlin Heidelberg, Berlin, Heidelberg.
- Graham, L.E., Trest, M.T., Will-Wolf, S., Miicke, N.S., Atonio, L.M., Piotrowski, M.J., Knack, J.J. 2018. Microscopic and metagenomic analyses of *Peltigera ponojensis* (Peltigerales, Ascomycota). *International Journal of Plant Sciences* 179: 241-255.
- Green, P.N. 2015. *Methylobacterium*. En *Bergey's Manual of Systematics of Archaea and Bacteria*, pp. 1-8. John Wiley & Sons, Ltd, Chichester, UK.
- Green, T.G.A., Sancho, L.G., Pintado, A. 2011. Ecophysiology of Desiccation/Rehydration Cycles in Mosses and Lichens. En Lüttge, U., Beck, E., Bartels, D. (eds.), *Plant Desiccation Tolerance*, Ecological Studies, pp. 89-120. Springer Berlin Heidelberg, Berlin, Heidelberg.
- Grube, M., Berg, G. 2009. Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. *Fungal Biology Reviews* 23: 72-85.
- Grube, M., Cardinale, M., de Castro Jr, J., Müller, H., Berg, G., de Castro, J.V., Müller, H., Berg, G. 2009. Species-specific structural and functional diversity of bacterial communities in lichen symbioses. *The ISME journal* 3: 1105-1115.
- Grube, M., Cernava, T., Soh, J., Fuchs, S., Aschenbrenner, I., Lassek, C., Wegner, U. et al. 2015. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. *The ISME Journal* 9: 412-424.
- Grube, M., Köberl, M., Lackner, S., Berg, C., Berg, G. 2012. Host-parasite interaction and microbiome response: effects of fungal infections on the bacterial community of the Alpine lichen Solorina crocea. FEMS Microbiology Ecology 82: 472-481.
- Hausmann, B., Pelikan, C., Herbold, C.W., Köstlbacher, S., Albertsen, M., Eichorst, S.A., Glavina del Rio, T. et al. 2018. Peatland Acidobacteria with a dissimilatory sulfur metabolism. *The ISME Journal* 12: 1729-1742.
- Hiraishi, A., Matsuzawa, Y., Kanbe, T., Wakao, N. 2000. Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. International Journal of Systematic and Evolutionary Microbiology 50: 1539-1546.
- Hodkinson, B.P., Gottel, N.R., Schadt, C.W., Lutzoni, F.F. 2012. Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse

bacterial communities in the lichen microbiome. *Environmental Microbiology* 14: 147-161.

- Hodkinson, B.P., Lutzoni, F. 2009. A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. *Symbiosis* 49: 163-180.
- Huber, K.J., Overmann, J. 2018. Vicinamibacteraceae fam. nov., the first described family within the subdivision 6 Acidobacteria. *International Journal of Systematic and Evolutionary Microbiology* 68: 2331-2334.
- Imai, S., Yoshida, R., Endo, Y., Fukunaga, Y., Yamazoe, A., Kasai, D., Masai, E., Fukuda, M. 2013. *Rhizobacter gummiphilus* sp. nov., a rubber-degrading bacterium isolated from the soil of a botanical garden in Japan. *The Journal of General and Applied Microbiology* 59: 199-205.
- Iwai, K., Aisaka, K., Suzuki, M. 2010. Friedmanniella luteola sp. nov., Friedmanniella lucida sp. nov., Friedmanniella okinawensis sp. nov. and Friedmaniella sagamiharensis sp. nov., isolated from spiders. International Journal of Systematic and Evolutionary Microbiology 60: 113-20.
- Kim, M.K., Na, J.-R., Lee, T.-H., Im, W.-T., Soung, N.-K., Yang, D.-C. 2007. Solirubrobacter soli sp. nov., isolated from soil of a ginseng field. International Journal of Systematic and Evolutionary Microbiology 57: 1453-5.
- Kulichevskaya, I.S., Detkova, E.N., Bodelier, P.L.E., Rijpstra, W.I.C., Damsté, J.S.S., Dedysh, S.N. 2012. Singulisphaera rosea sp. nov., a planctomycete from acidic Sphagnum peat, and emended description of the genus Singulisphaera. International Journal of Systematic and Evolutionary Microbiology 62: 118-23.
- Kulichevskaya, I.S., Ivanova, A.A., Suzina, N.E., Rijpstra, W.I.C., Sinninghe Damsté, J.S., Dedysh, S.N. 2016. *Paludisphaera borealis* gen. nov., sp. nov., a hydrolytic planctomycete from northern wetlands, and proposal of Isosphaeraceae fam. nov. *International Journal of Systematic and Evolutionary Microbiology* 66: 837-844.
- Kulichevskaya, I.S., Pankratov, T.A., Dedysh, S.N. 2006. [Detection of representatives of the Planctomycetes in *Sphagnum* peat bogs by molecular and cultivation methods]. *Mikrobiologiia* 75: 389-96.
- Kumar, S., Stecher, G., Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution* 33: 1870-1874.
- Lage, O.M., Bondoso, J. 2014. Planctomycetes and macroalgae, a striking association. *Frontiers in Microbiology* 5: 267.
- Lage, O.M., Bondoso, J. 2011. Planctomycetes diversity associated with macroalgae. *FEMS Microbiology Ecology* 78: 366-75.
- Lawson, P.A., Collins, M.D., Schumann, P., Tindall, B.J., Hirsch, P., Labrenz, M. 2000. New LL-diaminopimelic acid-containing actinomycetes from hypersaline,

heliothermal and meromictic Antarctic Ekho Lake: *Nocardioides aquaticus* sp. nov. and *Friedmanniella* [correction of *Friedmannielly*] *lacustris* sp. nov. *Systematic and Applied Microbiology* 23: 219-29.

- Lechowicz, M.J. 1982. The sampling characteristics of electivity indices. *Oecologia* 52: 22-30.
- Lee, Y.M., Kim, E.H., Lee, H.K., Hong, S.G. 2014. Biodiversity and physiological characteristics of Antarctic and Arctic lichens-associated bacteria. *World Journal of Microbiology and Biotechnology* 30: 2711-2721.
- Leiva, D., Clavero-León, C., Carú, M., Orlando, J. 2016. Intrinsic factors of *Peltigera* lichens influence the structure of the associated soil bacterial microbiota Sessitsch, A. (ed.), *FEMS Microbiology Ecology* 92: fiw178.
- Letunic, I., Bork, P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. *Nucleic Acids Research* 44: W242-W245.
- Madhaiyan, M., Hu, C.J., Jegan Roy, J., Kim, S.J., Weon, H.Y., Kwon, S.W., Ji, L. 2013. Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leafassociated bacteria isolated from Jatropha curcas L. International Journal of Systematic and Evolutionary Microbiology 63: 1702-1708.
- Magain, N., Truong, C., Goward, T., Niu, D., Goffinet, B., Sérusiaux, E., Vitikainen, O. et al. 2018. Species delimitation at a global scale reveals high species richness with complex biogeography and patterns of symbiont association in *Peltigera* section *Peltigera* (lichenized Ascomycota: Lecanoromycetes). *Taxon*.
- Martínez, I., Burgaz, A.R., Vitikainen, O., Escudero, A. 2003. Distribution patterns in the genus *Peltigera* Willd. *Lichenologist* 35: 301-323.
- Maszenan, A.M., Seviour, R.J., Patel, B.K., Schumann, P., Burghardt, J., Webb, R.I., Soddell, J.A., Rees, G.N. 1999. *Friedmanniella spumicola* sp. nov. and *Friedmanniella capsulata* sp. nov. from activated sludge foam: gram-positive cocci that grow in aggregates of repeating groups of cocci. *International Journal of Systematic Bacteriology* 49 Pt 4: 1667-80.
- McMurdie, P.J., Holmes, S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data Watson, M. (ed.), *PLoS ONE* 8: e61217.
- Mendler, K., Chen, H., Parks, D.H., Lobb, B., Hug, L.A., Doxey, A.C. 2019. AnnoTree: visualization and exploration of a functionally annotated microbial tree of life. *Nucleic Acids Research* 47: 4442-4448.
- De Meyer, S.E., Coorevits, A., Willems, A. 2012. *Tardiphaga robiniae* gen. nov., sp. nov., a new genus in the family Bradyrhizobiaceae isolated from *Robinia pseudoacacia* in Flanders (Belgium). *Systematic and Applied Microbiology* 35: 205-214.

- De Meyer, S.E., Willems, A. 2012. Multilocus sequence analysis of *Bosea* species and description of *Bosea lupini* sp. nov., *Bosea lathyri* sp. nov. and *Bosea robiniae* sp. nov., isolated from legumes. *International Journal of Systematic and Evolutionary Microbiology* 62: 2505-2510.
- Miadlikowska, J., Lutzoni, F. 2000. Phylogenetic revision of the genus *Peltigera* (lichenforming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. *International Journal of Plant Sciences* 161: 925-958.
- Muggia, L., Klug, B., Berg, G., Grube, M. 2013. Localization of bacteria in lichens from Alpine soil crusts by fluorescence in situ hybridization. *Applied Soil Ecology* 68: 20-25.
- Muggia, L., Vancurova, L., Škaloud, P., Peksa, O., Wedin, M., Grube, M. 2013. The symbiotic playground of lichen thalli a highly flexible photobiont association in rock-inhabiting lichens. *FEMS Microbiology Ecology* 85: 313-323.
- Mushegian, A. a., Peterson, C.N., Baker, C.C.M., Pringle, A. 2011. Bacterial diversity across individual lichens. *Applied and Environmental Microbiology* 77: 4249-4252.
- Muster, C. 2019. Microorganismos solubilizadores de fosfato asociados a cianolíquenes, sus sustratos y los suelos aledaños en un gradiente de recuperación de boque nativo de lenga mediante regeneración natural y reforestación con pinos. Universidad de Chile.
- Nakagawa, Y., Sakane, T., Yokota, A. 2015. *Devosia*. En *Bergey's Manual of Systematics* of Archaea and Bacteria, pp. 1-6. John Wiley & Sons, Ltd, Chichester, UK.
- Nakatsu, C.H., Hristova, K., Hanada, S., Meng, X.-Y., Hanson, J.R., Scow, K.M., Kamagata, Y. 2006. *Methylibium petroleiphilum* gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. *International Journal of Systematic and Evolutionary Microbiology* 56: 983-9.
- Nash, T. 2008. *Lichen Biology*. 2.^a ed. Nash, T. H. (ed.), Cambridge University Press, Cambridge.
- Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R. et al. 2019. vegan: Community Ecology Package.
- Orlando, J., Zúñiga, C., Carú, M. 2015. Cianolíquenes, la elección del compañero determina el éxito de la relación. *Boletín Antártico Chileno* 34: 13-16.
- Orlando, J., Zúñiga, C., Carú, M. 2011. Cianolíquenes antárticos y subantárticos: estrategias de unión y supervivencia. *Boletín Antártico Chileno* 30: 1-3.
- Paradis, E., Schliep, K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R Schwartz, R. (ed.),. *Bioinformatics* 35: 526-528.
- Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P., Hugenholtz, P. 2018. A standardized bacterial taxonomy based on genome

phylogeny substantially revises the tree of life. Nature Biotechnology 36: 996-1004.

- Parrot, D., Legrave, N., Delmail, D., Grube, M., Suzuki, M., Tomasi, S. 2016. Review Lichen-associated bacteria as a hot spot of chemodiversity: focus on uncialamycin, a promising compound for future medicinal applications. *Planta Medica*1-10.
- Pimentel-Elardo, S., Wehrl, M., Friedrich, A., Jensen, P., Hentschel, U. 2003. Isolation of planctomycetes from *Aplysina* sponges. *Aquatic Microbial Ecology* 33: 239-245.
- Poulin, R., Krasnov, B.R., Mouillot, D. 2011. Host specificity in phylogenetic and geographic space. *Trends in parasitology* 27: 355-61.
- Printzen, C., Fernández-Mendoza, F., Muggia, L., Berg, G., Grube, M. 2012. Alphaproteobacterial communities in geographically distant populations of the lichen *Cetraria aculeata*. *FEMS Microbiology Ecology* 82: 316-325.
- Quilhot, W., Cuellar, M., Díaz, R., Riquelme, F., Rubio, C. 2012. Lichens of Aisen, Southern Chile. *Gayana Botanica* 69: 57-87.
- Ramírez-Fernández, L., Zúñiga, C., Carú, M., Orlando, J. 2014. Environmental context shapes the bacterial community structure associated to *Peltigera* cyanolichens growing in Tierra del Fuego, Chile. *World Journal of Microbiology and Biotechnology* 30: 1141-1144.
- Ramírez-Fernández, L., Zúñiga, C., Méndez, M.A., Carú, M., Orlando, J. 2013. Genetic diversity of terricolous *Peltigera* cyanolichen communities in different conservation states of native forest from southern Chile. *International Microbiology* 16: 243-252.
- Ranft, H., Moncada, B., De Lange, P.J., Lumbsch, H.T., Lücking, R. 2018. The *Sticta filix* morphodeme (Ascomycota: Lobariaceae) in New Zealand with the newly recognized species *S. dendroides* and *S. menziesii*: indicators of forest health in a threatened island biota? *The Lichenologist* 50: 185-210.
- Rikkinen, J., Oksanen, I., Lohtander, K. 2002. Lichen guilds share related cyanobacterial symbionts. *Science (New York, N.Y.)* 297: 357.
- Rubio, C., Saavedra, M., Cuéllar, M., Díaz, R., Quilhot, W. 2013. Epiphytic lichens of Conguillío National Park, southern Chile. *Gayana Botanica* 70: 66-81.
- Santesson, R. 1944. Contribution to the lichen flora of South America. *Arkiv før Botanik* 31A: 1-28.
- Schumann, P., Prauser, H., Rainey, F.A., Stackebrandt, E., Hirsch, P. 1997. *Friedmanniella antarctica* gen. nov., sp. nov., an LL-diaminopimelic acidcontaining actinomycete from Antarctic sandstone. *International Journal of Systematic Bacteriology* 47: 278-83.
- Sigurbjörnsdóttir, M.A., Andrésson, Ó.S., Vilhelmsson, O. 2015. Analysis of the *Peltigera membranacea* metagenome indicates that lichen-associated bacteria are involved in phosphate solubilization. *Microbiology* 161: 989-996.

- Sigurbjörnsdóttir, M.A., Andrésson, Ó.S., Vilhelmsson, O. 2016. Nutrient scavenging activity and antagonistic factors of non-photobiont lichen-associated bacteria: a review. *World Journal of Microbiology and Biotechnology* 32: 68.
- Spribille, T. 2018. Relative symbiont input and the lichen symbiotic outcome. *Current Opinion in Plant Biology* 44: 57-63.
- Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M.C., Schneider, K. et al. 2016. Basidiomycete yeasts in the cortex of ascomycete macrolichens. *Science* 353: 488-492.
- Stöver, B.C., Müller, K.F. 2010. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. *BMC Bioinformatics* 11: 7.
- Vieira, S., Luckner, M., Wanner, G., Overmann, J. 2017. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. International Journal of Systematic and Evolutionary Microbiology 67: 1408-1414.
- Vilgalys, R., Hester, M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* 172: 4238-4246.
- Wei, L., Ouyang, S., Wang, Y., Shen, X., Zhang, L. 2014. Solirubrobacter phytolaccae sp. nov., an endophytic bacterium isolated from roots of *Phytolacca acinosa* Roxb. *International Journal of Systematic and Evolutionary Microbiology* 64: 858-62.
- West, N.J., Parrot, D., Fayet, C., Grube, M., Tomasi, S., Suzuki, M.T. 2018. Marine cyanolichens from different littoral zones are associated with distinct bacterial communities. *PeerJ* 6: e5208.
- White, T.J., Bruns, S., Lee, S., Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR Protocols: A Guide to Methods and Applications* 315-322.
- Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer New York, New York, NY.
- Wickham, H. 2017. tidyverse: Easily Install and Load the «Tidyverse».
- Wilmotte, A., Van der Auwera, G., De Wachter, R. 1993. Structure of the 16 S ribosomal RNA of the thermophilic cyanobacterium *Chlorogloeopsis* HTF ('*Mastigocladus laminosus* HTF') strain PCC7518, and phylogenetic analysis. *FEBS Letters* 317: 96-100.
- Yabuuchi, E., Kosako, Y. 2015. Sphingomonas. En Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-39. John Wiley & Sons, Ltd, Chichester, UK.
- Yadav, A.N., Verma, P., Kumar, S., Kumar, V., Kumar, M., Kumari Sugitha, T.C., Singh, B.P. et al. 2018. Actinobacteria from rhizosphere. En *New and Future Developments*

in Microbial Biotechnology and Bioengineering, pp. 13-41. Elsevier.

- Yahr, R., Vilgalys, R., DePriest, P.T. 2006. Geographic variation in algal partners of *Cladonia subtenuis* (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. *New Phytologist* 171: 847-860.
- Zhang, X., Zhang, J., Zhang, Y., Xin, Y., He, H. 2013. *Friedmanniella flava* sp. nov., a soil actinomycete. *International Journal of Systematic and Evolutionary Microbiology* 63: 1771-5.
- Zúñiga, C. 2015. Measuring the factors involved in the successful establishment of the cyanolichen Peltigera. Universidad de Chile, Ph.D. Thesis.
- Zúñiga, C., Leiva, D., Carú, M., Orlando, J. 2017. Substrates of *Peltigera* lichens as a potential source of cyanobionts. *Microbial Ecology* 74: 561-569.
- Zúñiga, C., Leiva, D., Ramírez-Fernández, L., Carú, M., Yahr, R., Orlando, J. 2015. Phylogenetic diversity of *Peltigera* cyanolichens and their photobionts in Southern Chile and Antarctica. *Microbes and environments* 30: 172-179.

ANEXO 1 - SCRIPT ANÁLISIS DE SECUENCIAS EN R

```
library(dada2); packageVersion("dada2")
#[1] '1.12.1'
citation(package = "dada2") #para ver como citar el paquete
path <- "~/dada2R" #segun donde se encuentren los archivos de secuencia
#crear lista con archivos de secuencia, segun su extension
fnFs <- sort(list.files(path, pattern="1.fastq.gz", full.names = TRUE))</pre>
fnRs <- sort(list.files(path, pattern="2.fastq.gz", full.names = TRUE))</pre>
#extraer nombres de muestras
sample.names <- sapply(strsplit(basename(fnFs), "_"), `[`, 1)</pre>
#crear directorio de salida para secuencias filtradas
filtRs_PE <- file.path(path, "filtered_272-170PE", paste0(sample.names, "_R_filt.fastq.gz"))
filtFs_PE <- file.path(path, "filtered_272-170PE", paste0(sample.names, "_F_filt.fastq.gz"))
#comando de limpieza como tal, con parametros estandar y largos de secuencias previamente</pre>
analizados
#en herramientas bioinformaticas como FastQC
out_PE <- filterAndTrim(fnFs, filtFs_PE, fnRs, filtRs_PE, truncLen=c(272,160), trimLeft=c(5,5),</pre>
                           maxN=0, maxEE=c(2,2), truncQ=2, rm.phix=TRUE, compress=TRUE,
multithread=20)
#revisamos
head(out PE)
#guardamos informacion de errores
errF_PE <- learnErrors(filtFs_PE, multithread=20)</pre>
errR_PE <- learnErrors(filtRs_PE, multithread=20)</pre>
#se puede graficar de ser necesario
plotErrors(errR PE, nominalQ=TRUE)
#dereplicamos
derepFs PE <- derepFastq(filtFs PE, verbose=TRUE)</pre>
derepRs_PE <- derepFastq(filtRs_PE, verbose=TRUE)</pre>
#nombramos los dereplicados segun los nombres de muestras
names(derepFs_PE) <- sample.names</pre>
names(derepRs PE) <- sample.names</pre>
#vemos si hay secuencias en comun entre las muestras
#en este caso con el metodo de pseudo pooling que es mas rapido
dadaFs_PE_pool <- dada(derepFs_PE, err=errF_PE, pool="pseudo", multithread=20)</pre>
dadaRs_PE_pool <- dada(derepRs_PE, err=errR_PE, pool="pseudo", multithread=20)</pre>
#revisamos
dadaFs_PE_pool[[1]]
#unimos extremos
mergers <- mergePairs(dadaFs_PE_pool, derepFs_PE, dadaRs_PE_pool, derepRs_PE, verbose=TRUE)
#revisamos
head(mergers[[1]])
#generamos tabla de secuencias
seqtab <- makeSequenceTable(mergers)</pre>
#revisamos dimensiones
dim(seqtab)
table(nchar(getSequences(seqtab)))
#quitamos quimeras
seqtab.nochim <- removeBimeraDenovo(seqtab, method="consensus", multithread=20, verbose=TRUE)</pre>
#revisamos dimensiones
dim(seqtab.nochim)
#revisamos porcentaje general de no-quimeras
sum(seqtab.nochim)/sum(seqtab)
#generamos tabla de estadisticas
getN <- function(x) sum(getUniques(x))</pre>
track <- cbind(out_PE, sapply(dadaFs_PE_pool, getN), sapply(dadaRs_PE_pool, getN),</pre>
sapply(mergers, getN), rowSums(seqtab.nochim))
colnames(track) <- c("input", "filtered", "denoisedF", "denoisedR", "merged", "nonchim")</pre>
rownames(track) <- sample.names</pre>
head(track)
#exportamos
write.csv(track, "track272-160PE(pseudopool).csv")
#asignamos taxonomia segun GTDB, el archivo debe estar descargado en la carpeta de trabajo
taxa <- assignTaxonomy(seqtab.nochim, "~/dada2R/GTDB_bac-arc_ssu_r86.fa.gz", multithread=20)</pre>
```

```
taxa.print <- taxa #removemos nombres de filas solo para mostrar
rownames(taxa.print) <- NULL</pre>
head(taxa.print)
#importar a phyloseq
library(phyloseq); packageVersion("phyloseq")
citation(package = "phyloseq")
library(ggplot2); packageVersion("ggplot2")
citation(package = "ggplot2")
library(vegan)
citation(package = "vegan")
#definimos tema para los graficos
theme_set(theme_bw())
#importamos metadatos (variables categoricas)
metadata = read.table("sample-metadata_86_nuevo_esp.tsv", row.names = 1)
#agregamos nombre a los niveles taxonomicos
colnames(taxa) <- c('Reino', 'Filo', 'Clase', 'Orden', 'Familia', 'Género', 'Especie')</pre>
#y a las variables de metadatos
colnames(metadata) <- c("Nombre_muestreo", "Tipo_de_muestra", "Subsitio", "Nombre_de_muestra",</pre>
                          "Latitud", "Longitud", "Altitud", "Filotipo_ITS")
#importamos a phyloseq como tal
ps <- phyloseq(otu table(seqtab.nochim, taxa are rows=FALSE), tax table(taxa),</pre>
sample_data(metadata))
#verificamos
ps
#hacemos primero una tabla para ver abundancia por filo
table_filos <- table(tax_table(ps)[, "Filo"], exclude = NULL)</pre>
table filos
#aglomeramos y relativizamos abundancia
filo.ps = tax_glom(ps, "Filo", NArm = FALSE #incluimos no clasificados a nivel de filo para ver
su abundancia)
rel.filo.ps = transform_sample_counts(filo.ps, function(x) x/sum(x))
#grafico de filos por tipo de muestra
library(randomcoloR)
citation(package = "randomcoloR")
random.palette <- distinctColorPalette(ntaxa(rel.filo.ps))</pre>
p = plot_bar(rel.filo.ps, x="Nombre_muestreo", fill="Filo")
p + facet_grid(. ~ Tipo_de_muestra) + scale_fill_manual(values=random.palette) +
  geom_bar(stat="identity", color="black", size=0) +
  labs(x="Número de muestra", y="Frecuencia relativa") + #definimos nombre de ejes
  scale_y_continuous(labels = scales::number_format(accuracy = 0.01, decimal.mark = ",")) +
#comas para decimales
  theme(text = element_text(size = 20))
#exportamos
ggsave("filos-NA-GDTB-272-160PE-pseudopool.png", path = "~/Dropbox/figuras",
       width = 12.5, height = 7.3, dpi = 300)
#filtros de prevalencia y filos no clasificados
#primero sacamos los sin clasificacion (f1)
ps.f1 <- subset_taxa(ps, !is.na(Filo) & !Filo %in% c(""))</pre>
ps.f1
#aprovechamos de hacer algunos analisis antes del filtro de prevalencia
#aglomeramos otus a nivel de genero
generos.ps.f1 <- tax_glom(ps.f1, "Género")</pre>
#transformamos a abundancia relativa
rel.generos.ps.f1 = transform_sample_counts(generos.ps.f1, function(x) x/sum(x))
table_filos <- table(tax_table(ps.f1)[, "Filo"], exclude = NULL)</pre>
table filos
#analisis multivariados
#por ASV
ps.f1.nmds <- ordinate(ps.f1, "NMDS", "bray")</pre>
p1 = plot_ordination(ps.f1, ps.f1.nmds, color="Tipo_de_muestra", shape = "Subsitio")
p1 + geom_point(size=5) + theme(text = element_text(size = 15)) +
  scale_colour_manual(values=c("#06971F", "#F06C09")) +
  scale_y_continuous(labels = scales::number_format(accuracy = 0.1, decimal.mark = ",")) +
scale_x_continuous(labels = scales::number_format(accuracy = 0.1, decimal.mark = ","))
ggsave("NMDSbray-phyla-GDTB-272-160PE.png", path = "~/Dropbox/figuras",
       width = 12.5, height = 7.3, dpi = 300)
```

```
#por genero
rel.generos.ps.f1.nmds <- ordinate(rel.generos.ps.f1, "NMDS", "euclidean")</pre>
p1g = plot ordination(rel.generos.ps.f1, rel.generos.ps.f1.nmds, color="Tipo de muestra", shape =
"Subsitio")
p1g + geom_point(size=5) + theme(text = element_text(size = 15)) +
  scale_colour_manual(values=c("#06971F", "#F06C09")) +
  scale_y_continuous(labels = scales::number_format(accuracy = 0.01, decimal.mark = ",")) +
  scale_x_continuous(labels = scales::number_format(accuracy = 0.1, decimal.mark = ","))
ggsave("NMDSeuclidean-generos-GDTB-272-160PE.png", path = "~/Dropbox/figuras",
       width = 12.5, height = 7.3, dpi = 300)
#siguiendo con filtros de prevalencia, creamos una funcion
prev.ps = apply(X = otu_table(ps.f1), MARGIN=ifelse(taxa_are_rows(ps.f1), yes=1, no=2),
                FUN=function(x) \{sum(x > 0)\})
#y ordenamos en un dataframe
df.prev = data.frame(Prevalencia=prev.ps, AbundanciaTotal=taxa_sums(ps.f1),
                     tax_table(ps.f1))
#graficamos
ggplot(df.prev, aes(AbundanciaTotal, Prevalencia / nsamples(ps.f1))) +
  geom_hline(yintercept = 0.05, alpha = 0.5, linetype = 2) +
  geom_point(size = 2, alpha = 0.7) +
  scale x log10() + xlab("Abundancia Total") +
  ylab("Prevalencia (Fracción de las muestras)") +
  facet wrap(~Filo) + theme(legend.position="none") +
  scale_y_continuous(labels = scales::number_format(accuracy = 0.1, decimal.mark = ","))
#exportamos
ggsave("prev-GDTB-272-160PE-pseudopool-byn.png", path = "~/Dropbox/figuras", width = 14,
       height = 10, dpi = 300)
#creamos vector con nombres de filos descartados por prevalencia (50%)
#aplicamos el filtro (f2)
ps.f2 <- subset_taxa(ps.f1, !is.na(Filo) & !Filo %in% filtroFilos)</pre>
ps.f2
#verificamos cuantos filos guedaron
length(get_taxa_unique(ps.f2, taxonomic.rank = "Filo"))
#aglomeramos y relativizamos para graficos
filo.ps.f2 = tax_glom(ps.f2, "Filo")
rel.filo.ps.f2 = transform_sample_counts(filo.ps.f2, function(x) x/sum(x))
#exportamos para revisar en excel y crear dataset para iToL
write.csv(psmelt(rel.filo.ps.f2), "rel.filo.ps.f2.csv")
#graficamos
random.palette <- distinctColorPalette(ntaxa(rel.filo.ps.f2))</pre>
p = plot_bar(rel.filo.ps.f2, x="Nombre_muestreo", fill="Filo")
p + facet_grid(. ~ Tipo_de_muestra) + scale_fill_manual(values=random.palette) +
    geom bar(stat="identity", color="black", size=0) + labs(x="Número de muestra", y="Frecuencia
relativa") +
    scale_y_continuous(labels = scales::number_format(accuracy = 0.01, decimal.mark = ",")) +
    theme(text = element_text(size = 20))
ggsave("filos-f2-GDTB-272-260PE.png", path = "~/Dropbox/figuras", width = 12.5, height = 7.3, dpi
= 300)
#aglomeramos por clase para verificar alphaproteobacterias, relativizamos, y filtramos
proteobacterias
clase.ps.f2 = tax_glom(ps.f2, "Clase")
rel.clase.ps.f2 = transform_sample_counts(clase.ps.f2, function(x) x/sum(x))
proteo.rel.clase.ps.f2 = subset_taxa(rel.clase.ps.f2, Filo=="Proteobacteria")
#exportamos para revisar en excel y creamos dataset para iToL
write.csv(psmelt(proteo.rel.clase.ps.f2), "proteo.rel.clase.ps.f2")
#aglomeramos por orden y relativizamos
orden.ps.f2 = tax_glom(ps.f2, "Orden")
rel.orden.ps.f2 = transform_sample_counts(orden.ps.f2, function(x) x/sum(x))
rel.orden.ps.f2
#exportamos para revisar en excel y creamos dataset para iToL
write.csv(psmelt(rel.orden.ps.f2), "rel.orden.ps.f2.csv")
#aglomeramos por genero, relativizamos y filtramos rhizobiales
genero.ps.f2 = tax_glom(ps.f2, "Género")
rel.genero.ps.f2 = transform_sample_counts(genero.ps.f2, function(x) x/sum(x))
```

```
rel.genero.ps.f2
rhizo.rel.genero.ps.f2 = subset_taxa(rel.genero.ps.f2, Orden=="Rhizobiales")
#exportamos para revisar en excel y creamos dataset para iToL
write.csv(psmelt(rhizo.rel.genero.ps.f2), "rhizo.rel.genero.ps.f2.csv")
#multivariado para rhizobiales
rhizo.rel.genero.ps.f2.nmds <- ordinate(rhizo.rel.genero.ps.f2, "NMDS", "euclidean")</pre>
pr = plot_ordination(rhizo.rel.genero.ps.f2, rhizo.rel.genero.ps.f2.nmds,
                      color="Tipo_de_muestra", shape = "Subsitio")
pr + geom_point(size=5) + theme(text = element_text(size = 15)) +
  scale_colour_manual(values=c("#06971F", "#F06C09")) +
  scale_y_continuous(labels = scales::number_format(accuracy = 0.005,
                                                      decimal.mark = ",")) +
  ggsave("NMDSbray-rhizo-generos-GDTB-272-160PE.png", path = "~/Dropbox/figuras",
       width = 12.5, height = 7.3, dpi = 300)
#anosim rhizobiales, para ver separacion por tipo de muestra o subsitio
ls_rhizo = get_variable(rhizo.rel.genero.ps.f2, "Tipo_de_muestra")
ls_rhizo_ano = anosim(distance(rhizo.rel.genero.ps.f2, "euclidean"), ls_rhizo)
ls rhizo ano
ab rhizo = get variable(rhizo.rel.genero.ps.f2, "Subsitio")
ab_rhizo_ano = anosim(distance(rhizo.rel.genero.ps.f2, "euclidean"), ab_rhizo)
ab rhizo ano
#anosim solo muestras de liquenes
liq.rhizo.rel.genero.ps.f2 <- subset_samples(rhizo.rel.genero.ps.f2,</pre>
                                          Tipo_de_muestra=="liquen")
liq.ab_rhizo = get_variable(liq.rhizo.rel.genero.ps.f2, "Subsitio")
liq.ab_rhizo_ano = anosim(distance(liq.rhizo.rel.genero.ps.f2, "euclidean"), liq.ab_rhizo)
liq.ab_rhizo_ano
#reimportamos para calculos
rhizo_generos <- read.csv("rhizo.rel.genero.ps.f2.csv")</pre>
#importamos arbol de generos de rhizobiales descargado desde annotree
library(ape)
citation(package = "ape")
tree rhizo <- read.tree("rhizo generos.nwk")</pre>
dist_rhizo <- data.frame(cophenetic(tree_rhizo))</pre>
#calculamos distancia maxima entre generos del orden para su uso posterior
max(dist rhizo)
#cambio de nombre recursivo
rownames(dist_rhizo)[rownames(dist_rhizo) == "RS_GCF_001579845.1"] <- "Rhodoplanes"
colnames(dist_rhizo)[colnames(dist_rhizo) == "RS_GCF_001579845.1"] <- "Rhodoplanes"</pre>
rownames(dist_rhizo)[rownames(dist_rhizo) == "RS_GCF_900110915.1"] <- "A52C2"</pre>
colnames(dist rhizo)[colnames(dist rhizo) == "RS GCF 900110915.1"] <- "A52C2"
rownames(dist_rhizo)[rownames(dist_rhizo) == "RS_GCF_000497755.1"] <- "Aliihoeflea"</pre>
colnames(dist_rhizo)[colnames(dist_rhizo) == "RS_GCF_000497755.1"] <- "Aliihoeflea"
#comenzamos con calculos de indices para rhizobiales, se repite el mismo procedimiento para cada
muestra
#se muestra ejemplo para primera
#subset L01
rhizo generos L01 <- rhizo generos[rhizo generos$Nombre de muestra %like% "L01", ]
#sacamos ceros
rhizo generos L01 <- rhizo generos L01[rhizo generos L01$Abundance != 0, ]
#dejamos columnas de interes
rhizo_generos_L01 <- cbind(rhizo_generos_L01[,17:18], rhizo_generos_L01[4])</pre>
row.names(rhizo_generos_L01) <- rhizo_generos_L01[,2]</pre>
#especificidad basica
bsp_r_L01 <- nrow(rhizo_generos_L01)</pre>
#extraemos nombres de generos
nombres_rhizo_generos_L01 <- as.character(unique(rhizo_generos_L01$Género))</pre>
#filtramos matriz de distancia para los generos que nos interesan
dist_rhizo_filtro_LO1 <- dist_rhizo[row.names(dist_rhizo) %in% nombres_rhizo_generos_LO1,
                                 colnames(dist_rhizo) %in% nombres_rhizo_generos_L01]
#calculamos alpha, dividiendo la distancia por la maxima entre los generos del orden
alpha_rhizo_L01 <- dist_rhizo_filtro_L01/max(dist_rhizo)</pre>
#juntamos los promedios con lista de generos
rhizo_generos_L01_alpha <- merge(rhizo_generos_L01, rowMeans(alpha_rhizo_L01), by=0, all=TRUE)</pre>
```

```
colnames(rhizo generos L01 alpha)[colnames(rhizo generos L01 alpha) == "y"] <- "alpha"</pre>
#si en esta etapa queda alguno sin datos de distancia, hay que volver a revisar el arbol
descargado y
#compararlo con el de annotree, para los generos representados por un solo genoma se cambia el
nombre
#luego se hace el cambio de nombre recursivo indicado en las filas anteriores
#borramos la primera columna utilizada para el merge
rhizo_generos_L01_alpha <- rhizo_generos_L01_alpha[, 2:5]</pre>
#calculamos la especificidad
nci_rhizo_L01 <- 1/bsp_r_L01 + (1 - 1/bsp_r_L01)*rhizo_generos_L01_alpha[,4]</pre>
#juntamos
rhizo_generos_L01_alpha_nci <- cbind(rhizo_generos_L01_alpha, nci_rhizo_L01)</pre>
colnames(rhizo_generos_L01_alpha_nci)[colnames(rhizo_generos_L01_alpha_nci) == "nci rhizo L01"]
<- "nci"
#calculamos especificidad como la suma de los nci
sp_r_L01 <- sum(nci_rhizo_L01)</pre>
#continuamos con los sphingomonadales
sphingo.rel.genero.ps.f2 = subset_taxa(rel.genero.ps.f2, Orden=="Sphingomonadales")
#multivariados
sphingo.rel.genero.ps.f2.nmds <- ordinate(sphingo.rel.genero.ps.f2, "NMDS", "euclidean")</pre>
p.sph = plot_ordination(sphingo.rel.genero.ps.f2, sphingo.rel.genero.ps.f2.nmds,
color="Tipo de muestra",
                      shape = "Subsitio")
p.sph + geom_point(size=5) + theme(text = element_text(size = 15)) +
scale_colour_manual(values=c("#06971F", "#F06C09")) +
  scale_y_continuous(labels = scales::number_format(accuracy = 0.005, decimal.mark = ",")) +
  scale_x_continuous(labels = scales::number_format(accuracy = 0.01, decimal.mark = ","))
ggsave("NMDSbray-sphingo-generos-GDTB-272-160PE.png", path = "~/Dropbox/figuras",
       width = 12.5, height = 7.3, dpi = 300)
write.csv(psmelt(sphingo.rel.genero.ps.f2), "sphingo.rel.genero.ps.f2.csv")
#anosim
ls_sphingo = get_variable(sphingo.rel.genero.ps.f2, "Tipo_de_muestra")
ls_sphingo_ano = anosim(distance(sphingo.rel.genero.ps.f2, "euclidean"), ls_sphingo)
summary(ls sphingo ano)
ab_sphingo = get_variable(sphingo.rel.genero.ps.f2, "Subsitio")
ab_sphingo_ano = anosim(distance(sphingo.rel.genero.ps.f2, "euclidean"), ab_sphingo)
ab sphingo ano
#anosim solo a muestras de liquenes
liq.sphingo.rel.genero.ps.f2 <- subset_samples(sphingo.rel.genero.ps.f2,</pre>
                                               Tipo de muestra=="liquen")
liq.ab_sphingo = get_variable(liq.sphingo.rel.genero.ps.f2, "Subsitio")
liq.ab_sphingo_ano = anosim(distance(liq.sphingo.rel.genero.ps.f2, "euclidean"), liq.ab_sphingo)
liq.ab_sphingo_ano
#reimportamos para calculos
sphingo_generos <- read.csv("sphingo.rel.genero.ps.f2.csv")</pre>
#importamos y calculamos distancias desde arbol de annotree
tree_sphingo <- read.tree("sphingo_generos.nwk")</pre>
dist_sphingo <- data.frame(cophenetic(tree_sphingo))</pre>
#calculamos distancia maxima entre generos del orden para su uso posterior
max(dist_sphingo)
#cambio de nombre recursivo
rownames(dist_sphingo)[rownames(dist_sphingo) == "RS_GCF_000512205.2"] <- "Sphingomonas_D"</pre>
colnames(dist sphingo)[colnames(dist sphingo) == "RS GCF 000512205.2"] <- "Sphingomonas D"</pre>
#subset L01
sphingo_generos_L01 <- sphingo_generos[sphingo_generos$Nombre_de_muestra %like% "L01", ]</pre>
#sacamos ceros
sphingo_generos_L01 <- sphingo_generos_L01[sphingo_generos_L01$Abundance != 0, ]</pre>
#dejamos columnas de interes
sphingo_generos_L01 <- cbind(sphingo_generos_L01[,17:18], sphingo_generos_L01[4])</pre>
row.names(sphingo_generos_L01) <- sphingo_generos_L01[,2]</pre>
#especificidad basica
bsp_s_L01 <- nrow(sphingo_generos_L01)</pre>
#extraemos nombres de generos
nombres_sphingo_generos_L01 <- as.character(unique(sphingo_generos_L01$Género))</pre>
#filtramos matriz de distancia para los generos que nos interesan
```

```
dist sphingo filtro L01 <- dist sphingo[row.names(dist sphingo) %in% nombres sphingo generos L01,
                                      colnames(dist_sphingo) %in% nombres_sphingo_generos_L01]
#calculamos alpha, dividiendo la distancia por la maxima entre los generos del orden
alpha_sphingo_L01 <- dist_sphingo_filtro_L01/max(dist_sphingo)</pre>
#juntamos los promedios con lista de generos
sphingo_generos_L01_alpha <- merge(sphingo_generos_L01, rowMeans(alpha_sphingo_L01), by=0,
all=TRUE)
colnames(sphingo_generos_L01_alpha)[colnames(sphingo_generos_L01_alpha) == "y"] <- "alpha"</pre>
#si en esta etapa queda alguno sin datos de distancia, hay que volver a revisar el arbol
descargado y
#compararlo con el de annotree, para los generos representados por un solo genoma se cambia el
nombre
#luego se hace el cambio de nombre recursivo indicado en las filas anteriores
#borramos la primera columna utilizada para el merge
sphingo_generos_L01_alpha <- sphingo_generos_L01_alpha[, 2:5]</pre>
#calculamos la especificidad
nci sphingo L01 <- 1/bsp s L01 + (1 - 1/bsp s L01)*sphingo generos L01 alpha[,4]
#juntamos
sphingo_generos_L01_alpha_nci <- cbind(sphingo_generos_L01_alpha, nci_sphingo_L01)</pre>
colnames(sphingo_generos_L01_alpha_nci)[colnames(sphingo_generos_L01_alpha_nci) ==
"nci sphingo L01"] <- "nci"
#calculamos especificidad como la suma de los nci
sp s L01 <- sum(nci sphingo L01)</pre>
#luego de completados para todas las muestras, unimos todos los datos de especificidad
sp_r <- c(sp_r_L01, sp_r_L02, sp_r_L03, sp_r_L04, sp_r_L05, sp_r_L06, sp_r_L07, sp_r_L08,
sp_r_L09, sp_r_L10)
sp_s <- c(sp_s_L01, sp_s_L02, sp_s_L03, sp_s_L04, sp_s_L05, sp_s_L06, sp_s_L07, sp_s_L08,</pre>
sp_s_L09, sp_s_L10)
#exito ecologico
#ejemplo para L01
#calculamos diversidad de shannon ponderada
wsd_rhizo_LO1 <- -rhizo_generos_LO1_alpha_nci$alpha*rhizo_generos_LO1_alpha_nci$Abundance*
  log(rhizo_generos_L01_alpha_nci$Abundance)
wsd_sphingo_LO1 <- -sphingo_generos_LO1_alpha_nci$alpha*sphingo_generos_LO1_alpha_nci$Abundance*
  log(sphingo_generos_L01_alpha_nci$Abundance)
#calculamos wsd total para cada orden
wsd_r_L01 <- sum(wsd_rhizo_L01)</pre>
wsd s_L01 <- sum(wsd_sphingo_L01)</pre>
#ampliamos tabla, incluyendo diversidad de shannon tipica
sd_rhizo_L01 <- -rhizo_generos_L01_alpha_nci$Abundance*log(rhizo_generos_L01_alpha_nci$Abundance)</pre>
rhizo generos L01 rel alpha nci sd wsd <- cbind(rhizo generos L01 alpha nci[,1:5],
                                                   sd_rhizo_L01, wsd_rhizo_L01)
colnames(rhizo_generos_L01_rel_alpha_nci_sd_wsd) <- c("Familia", "Género", "Abundancia relativa",
                                                         "Alfa", "Especificidad ponderada",
"Shannon",
                                                         "Shannon ponderado")
sd sphingo L01 <- -
sphingo_generos_L01_alpha_nci$Abundance*log(sphingo_generos_L01_alpha_nci$Abundance)
sphingo_generos_L01_rel_alpha_nci_sd_wsd <- cbind(sphingo_generos_L01_alpha_nci[,1:5],</pre>
                                                     sd_sphingo_L01, wsd_sphingo_L01)
colnames(sphingo_generos_L01_rel_alpha_nci_sd_wsd) <- c("Familia", "Género", "Abundancia</pre>
relativa",
                                                         "Alfa", "Especificidad ponderada",
"Shannon",
                                                         "Shannon ponderado")
#especificidad
#modificacion recursiva de nombres de generos
rownames(dist_rhizo)[rownames(dist_rhizo) == "RS_GCF_000385335.1"] <- "Methyloferula"
colnames(dist_rhizo)[colnames(dist_rhizo) == "RS_GCF_000385335.1"] <- "Methyloferula"</pre>
#ejemplo para S01
rhizo_generos_S01 <- rhizo_generos[rhizo_generos$Nombre_de_muestra %like% "S01", ]
#sacamos ceros
rhizo generos S01 <- rhizo generos S01[rhizo generos S01$Abundance != 0, ]
#dejamos columnas de interes
rhizo_generos_S01 <- cbind(rhizo_generos_S01[,17:18], rhizo_generos_S01[4])
row.names(rhizo_generos_S01) <- rhizo_generos_S01[,2]</pre>
```

```
#especificidad basica
bsp_r_S01 <- nrow(rhizo_generos_S01)</pre>
#extraemos nombres de generos
nombres_rhizo_generos_S01 <- as.character(unique(rhizo_generos_S01$Género))</pre>
#filtramos matriz de distancia para los generos que nos interesan
dist_rhizo_filtro_S01 <- dist_rhizo[row.names(dist_rhizo) %in% nombres_rhizo_generos_S01,
                                     colnames(dist rhizo) %in% nombres rhizo generos S01]
#calculamos alpha, dividiendo la distancia por la maxima entre los generos del orden
alpha_rhizo_S01 <- dist_rhizo_filtro_S01/max(dist_rhizo)</pre>
#juntamos los promedios con lista de generos
rhizo_generos_S01_alpha <- merge(rhizo_generos_S01, rowMeans(alpha_rhizo_S01), by=0, all=TRUE)</pre>
colnames(rhizo generos_S01 alpha)[colnames(rhizo generos S01 alpha) == "y"] <- "alpha"</pre>
#si en esta etapa queda alguno sin datos de distancia, hay que volver a revisar el arbol
descargado y
#compararlo con el de annotree, para los generos representados por un solo genoma se cambia el
nombre
#luego se hace el cambio de nombre recursivo indicado en las filas anteriores
#borramos la primera columna utilizada para el merge
rhizo_generos_S01_alpha <- rhizo_generos_S01_alpha[, 2:5]</pre>
#calculamos la especificidad
nci rhizo S01 <- 1/bsp r S01 + (1 - 1/bsp r S01)*rhizo generos S01 alpha[,4]
#juntamos
rhizo generos S01 alpha nci <- cbind(rhizo generos S01 alpha, nci rhizo S01)
colnames(rhizo_generos_S01_alpha_nci)[colnames(rhizo_generos_S01_alpha_nci) == "nci_rhizo_S01"]
<- "nci"
#calculamos especificidad como la suma de los nci
sp r S01 <- sum(nci rhizo S01)</pre>
#sphingomonadales
#ejemplo para S01
sphingo generos S01 <- sphingo generos[sphingo generos$Nombre de_muestra %like% "S01", ]</pre>
#sacamos ceros
sphingo_generos_S01 <- sphingo_generos_S01[sphingo_generos_S01$Abundance != 0, ]</pre>
#dejamos columnas de interes
sphingo_generos_S01 <- cbind(sphingo_generos_S01[,17:18], sphingo_generos_S01[4])
row.names(sphingo_generos_S01) <- sphingo_generos_S01[,2]</pre>
#especificidad basica
bsp_s_S01 <- nrow(sphingo_generos_S01)</pre>
#extraemos nombres de generos
nombres_sphingo_generos_S01 <- as.character(unique(sphingo_generos_S01$Género))</pre>
#filtramos matriz de distancia para los generos que nos interesan
dist sphingo filtro S01 <- dist sphingo[row.names(dist sphingo) %in% nombres sphingo generos S01,
                                         colnames(dist_sphingo) %in% nombres_sphingo_generos_S01]
#calculamos alpha, dividiendo la distancia por la maxima entre los generos del orden
alpha_sphingo_S01 <- dist_sphingo_filtro_S01/max(dist_sphingo)</pre>
#juntamos los promedios con lista de generos
sphingo_generos_S01_alpha <- merge(sphingo_generos_S01, rowMeans(alpha_sphingo_S01), by=0,
all=TRUE)
colnames(sphingo_generos_S01_alpha)[colnames(sphingo_generos_S01_alpha) == "y"] <- "alpha"</pre>
#si en esta etapa queda alguno sin datos de distancia, hay que volver a revisar el arbol
descargado y
#compararlo con el de annotree, para los generos representados por un solo genoma se cambia el
nombre
#luego se hace el cambio de nombre recursivo indicado en las filas anteriores
#borramos la primera columna utilizada para el merge
sphingo_generos_S01_alpha <- sphingo_generos_S01_alpha[, 2:5]</pre>
#calculamos la especificidad
nci_sphingo_S01 <- 1/bsp_s_S01 + (1 - 1/bsp_s_S01)*sphingo_generos_S01_alpha[,4]</pre>
#juntamos
sphingo_generos_S01_alpha_nci <- cbind(sphingo_generos_S01_alpha, nci_sphingo_S01)</pre>
colnames(sphingo_generos_S01_alpha_nci)[colnames(sphingo_generos_S01_alpha_nci) ==
"nci_sphingo_S01"] <- "nci"</pre>
#calculamos especificidad como la suma de los nci
sp_s_S01 <- sum(nci_sphingo_S01)</pre>
#disponibilidad
#ejemplo para S01
#calculamos diversidad de shannon ponderada
```

```
wsd rhizo S01 <- -rhizo generos S01 alpha nci$alpha*rhizo generos S01 alpha nci$Abundance*
  log(rhizo_generos_S01_alpha_nci$Abundance)
wsd_sphingo_S01 <- -sphingo_generos_S01_alpha_nci$alpha*sphingo_generos_S01_alpha_nci$Abundance*</pre>
  log(sphingo_generos_S01_alpha_nci$Abundance)
#calculamos wsd total para cada orden
wsd_r_S01 <- sum(wsd_rhizo_S01)</pre>
wsd_s_S01 <- sum(wsd_sphingo_S01)</pre>
#ampliamos tabla, incluyendo diversidad de shannon tipica
sd_rhizo_S01 <- -rhizo_generos_S01_alpha_nci$Abundance*log(rhizo_generos_S01_alpha_nci$Abundance)</pre>
rhizo_generos_S01_rel_alpha_nci_sd_wsd <- cbind(rhizo_generos_S01_alpha_nci[,1:5],</pre>
                                                   sd_rhizo_S01, wsd_rhizo_S01)
colnames(rhizo_generos_S01_rel_alpha_nci_sd_wsd) <- c("Familia", "Género", "Abundancia relativa",
                                                          "Alfa", "Especificidad ponderada",
"Shannon",
                                                          "Shannon ponderado")
sd_sphingo_S01 <- -</pre>
sphingo_generos_S01_alpha_nci$Abundance*log(sphingo_generos_S01_alpha_nci$Abundance)
sphingo_generos_S01_rel_alpha_nci_sd_wsd <- cbind(sphingo_generos_S01_alpha_nci[,1:5],</pre>
                                                     sd_sphingo_S01, wsd_sphingo_S01)
colnames(sphingo_generos_S01_rel_alpha_nci_sd_wsd) <- c("Familia", "Género", "Abundancia</pre>
relativa",
                                                            "Alfa", "Especificidad ponderada",
"Shannon",
                                                            "Shannon ponderado")
#y finalmente calculamos selectividad
#ejemplo para LS01
rhizo generos LS01 <- merge(rhizo generos L01 rel alpha nci sd wsd,
                                rhizo_generos_S01_rel_alpha_nci_sd_wsd, by = "Género", all.x =
TRUF)
sphingo_generos_LS01 <- merge(sphingo_generos_L01_rel_alpha_nci_sd_wsd,</pre>
                                sphingo_generos_S01_rel_alpha_nci_sd_wsd, by = "Género", all.x =
TRUE)
#borramos columna repetida (familia) y renombramos el resto
rhizo_generos_LS01 <- cbind(rhizo_generos_LS01[,1:7], rhizo_generos_LS01[,9:13])</pre>
colnames(rhizo_generos_LS01) <- c("Género", "Familia", "Frecuencia_L", "Alfa_L",</pre>
                                       "Especificidad_ponderada_L", "Shannon_L",
"Shannon_ponderado_L",
                                       "Frecuencia_S", "Alfa_S", "Especificidad_ponderada S",
                                      "Shannon_S", "Shannon_ponderado_S")
sphingo_generos_LS01 <- cbind(sphingo_generos_LS01[,1:7], sphingo_generos_LS01[,9:13])
colnames(sphingo_generos_LS01) <- c("Género", "Familia", "Frecuencia_L", "Alfa_L",</pre>
                                      "Especificidad_ponderada_L", "Shannon_L",
"Shannon ponderado L",
                                       "Frecuencia_S", "Alfa_S", "Especificidad_ponderada_S",
                                      "Shannon_S", "Shannon_ponderado_S")
#calculamos numerador de Wi
n Wi rhizo LO1 <- rhizo generos LSO1$Especificidad ponderada L*
  (rhizo generos LS01$Shannon ponderado L/rhizo generos LS01$Especificidad ponderada S)
n_Wi_sphingo_L01 <- sphingo_generos_LS01$Especificidad_ponderada_L*
  (sphingo_generos_LS01$Shannon_ponderado_L/sphingo_generos_LS01$Especificidad_ponderada_S)
#dividimos por la suma, sin considerar NAs
Wi_rhizo_L01 <- n_Wi_rhizo_L01/sum(n_Wi_rhizo_L01, na.rm = TRUE)</pre>
Sei_rhizo_L01 <- (Wi_rhizo_L01 - rhizo_generos_LS01$Especificidad_ponderada_L/sp_r_L01)/</pre>
  (Wi_rhizo_L01 + rhizo_generos_LS01$Especificidad_ponderada_L/sp_r_L01)
Wi_sphingo_L01 <- n_Wi_sphingo_L01/sum(n_Wi_sphingo_L01, na.rm = TRUE)</pre>
Sei_sphingo_L01 <- (Wi_sphingo_L01 - sphingo_generos_LS01$Especificidad_ponderada_L/sp_s_L01)/</pre>
  (Wi_sphingo_L01 + sphingo_generos_LS01$Especificidad_ponderada_L/sp_s_L01)
#reemplazamos NAs de selectividad por 1 (si no esta en sustrato se infiere selectividad maxima)
Sei_rhizo_L01[is.na(Sei_rhizo_L01)] <- 1</pre>
Sei_sphingo_L01[is.na(Sei_sphingo_L01)] <- 1</pre>
#agregamos a la matriz final
rhizo_generos_LS01_Sei <- cbind(rhizo_generos_LS01, Wi_rhizo_L01, Sei_rhizo_L01)
sphingo generos LS01 Sei <- cbind(sphingo generos LS01, Wi sphingo L01, Sei sphingo L01)
#renombramos columnas nuevas
colnames(rhizo generos LS01_Sei)[colnames(rhizo generos LS01_Sei) == "Wi_rhizo L01"] <- "Wi"</pre>
colnames(rhizo_generos_LS01_Sei)[colnames(rhizo_generos_LS01_Sei) == "Sei_rhizo_L01"] <- "Sei"</pre>
```

```
colnames(sphingo generos LS01 Sei)[colnames(sphingo generos LS01 Sei) == "Wi sphingo L01"] <-</pre>
"Wi"
colnames(sphingo_generos_LS01_Sei)[colnames(sphingo_generos_LS01_Sei) == "Sei_sphingo_L01"] <-</pre>
"Sei"
#juntamos los indices para todas las muestras
library(tidyverse)
rhizo generos indices <- list(rhizo generos LS01 Sei, rhizo generos LS02 Sei,
rhizo_generos_LS03_Sei,
                               rhizo_generos_LS04_Sei, rhizo_generos_LS05_Sei,
rhizo_generos_LS06_Sei,
                               rhizo_generos_LS07_Sei, rhizo_generos_LS08_Sei,
rhizo_generos_LS09_Sei,
                               rhizo_generos_LS10_Sei) %>% reduce(full_join, by = "Género")
#exportamos para analizar en excel
write_csv(rhizo_generos_indices, "rhizo_generos_indices.csv")
#sphingos
sphingo_generos_indices <- list(sphingo_generos_LS01_Sei, sphingo_generos_LS02_Sei,</pre>
sphingo_generos_LS03_Sei,
                               sphingo_generos_LS04_Sei, sphingo_generos_LS05_Sei,
sphingo_generos_LS06_Sei,
                               sphingo generos LS07 Sei, sphingo generos LS08 Sei,
sphingo_generos_LS09_Sei,
                               sphingo generos LS10 Sei) %>% reduce(full join, by = "Género")
#exportamos para analizar en excel
write_csv(sphingo_generos_indices, "sphingo_generos_indices.csv")
#creamos y exportamos especificidad basica
bsp_rhizo_sphingo_LS <- cbind(c(bsp_r_L01, bsp_r_L02, bsp_r_L03, bsp_r_L04, bsp_r_L05,</pre>
                                 bsp_r_L06, bsp_r_L07, bsp_r_L08, bsp_r_L09, bsp_r_L10,
                                 bsp_r_S01, bsp_r_S02, bsp_r_S03, bsp_r_S04, bsp_r_S05,
                                 bsp_r_S06, bsp_r_S07, bsp_r_S08, bsp_r_S09, bsp_r_S10),
                               c(bsp_s_L01, bsp_s_L02, bsp_s_L03, bsp_s_L04, bsp_s_L05,
                                 bsp_s_L06, bsp_s_L07, bsp_s_L08, bsp_s_L09, bsp_s_L10,
bsp_s_S01, bsp_s_S02, bsp_s_S03, bsp_s_S04, bsp_s_S05,
                                 bsp_s_S06, bsp_s_S07, bsp_s_S08, bsp_s_S09, bsp_s_S10))
write_csv(data.frame(bsp_rhizo_sphingo_LS), "bsp_rhizo_sphingo_LS.csv")
#creamos y exportamos exito ecologico
wsd_rhizo_sphingo_LS <- cbind(c(wsd_r_L01, wsd_r_L02, wsd_r_L03, wsd_r_L04, wsd_r_L05,</pre>
                                 wsd_r_L06, wsd_r_L07, wsd_r_L08, wsd_r_L09, wsd_r_L10,
                                 wsd_r_S01, wsd_r_S02, wsd_r_S03, wsd_r_S04, wsd_r_S05,
                                 wsd_r_S06, wsd_r_S07, wsd_r_S08, wsd_r_S09, wsd_r_S10),
                               c(wsd s L01, wsd s L02, wsd s L03, wsd s L04, wsd s L05,
                                 wsd_s_L06, wsd_s_L07, wsd_s_L08, wsd_s_L09, wsd_s_L10,
                                 wsd_s_S01, wsd_s_S02, wsd_s_S03, wsd_s_S04, wsd_s_S05,
                                 wsd_s_S06, wsd_s_S07, wsd_s_S08, wsd_s_S09, wsd_s_S10))
write_csv(data.frame(wsd_rhizo_sphingo_LS), "wsd_rhizo_sphingo_LS.csv")
```

	Con regla	Sin regla	Detalle 1	Detalle 2	Detalle 3
L01					
L02					
L03					
L04					
L05					
L06					
L07					
L08					
L09					
L10					

ANEXO 2 – FIGURAS SUPLEMENTARIAS

Figura A1. Fotografías tomadas en terreno de las muestras de líquenes utilizadas en esta tesis. En las filas se indica el nombre definitivo correspondiente a la muestra de liquen. Las dos primeras columnas muestran el individuo de forma general (con y sin regla, para referencia del tamaño), mientras que las restantes lo hacen con mayor detalle en las estructuras del talo.

Figura A2. Geles de agarosa al 0,8% p/v (45 min, 80 V) de las extracciones de DNA de las muestras de líquenes y sustratos. Marcador de peso molecular (M): 1 Kb (las bandas más concentradas corresponden a 1000, 3000 y 6000 pb). Las muestras se indican por su código de recolección (C por Coyhaique y luego el número de recolección) y su tipo (-L si es de liquen, -S si es de sustrato). También se incluye el nombre definitivo de la muestra en la segunda fila.

Figura A3. Geles de agarosa al 1,2% p/v (45 min, 80 V) de los amplicones del marcador 28S fúngico de las muestras de líquenes. Marcador de peso molecular (M): 100 bp plus (las bandas más concentradas corresponden a 500 y 1000 pb). Las muestras se indican por su código de recolección (C por Coyhaique y luego el número de recolección) y su tipo (-L de liquen). También se incluye el nombre definitivo de la muestra en la segunda fila.

М	C57-L	C58-L	C67-L	C73-L	C74-L	C85-L	C87-L	C94-L	C95-L	C98-L	c (-)
	L01	L02	L03	L04	L05	L06	L07	L08	L09	L10	
		-									
-											
ed.											

Figura A4. Geles de agarosa al 1,2% p/v (45 min, 80 V) de los amplicones de ITS fúngicos de las muestras de líquenes. Marcador de peso molecular (M): 50 bp (las bandas más concentradas corresponden a 250 y 500 pb). Las muestras se indican por su código de recolección (C por Coyhaique y luego el número de recolección) y su tipo (-L de liquen). También se incluye el nombre definitivo de la muestra en la segunda fila.

Figura A5. Geles de agarosa al 1,2% p/v (45 min, 80 V) de los amplicones del marcador 16S de cianobacterias de las muestras de líquenes. Marcador de peso molecular (M): 100 bp plus (las bandas más concentradas corresponden a 500 y 1000 pb). Las muestras se indican por su código de recolección (C por Coyhaique y luego el número de recolección) y su tipo (-L de liquen). También se incluye el nombre definitivo de la muestra en la segunda fila.

М	C57-L	C58-L	C67-L	C73-L	C74-L	C85-L	C87-L	C94-L	C95-L	C98-L	c (-)
	L01	L02	L03	L04	L05	L06	L07	L08	L09	L10	
M	C57-S	C58-S	C67-S	C73-S	C74-S	C85-S	C87-S	C94-S	C95-S	C98-S	c (-)
	S01	S02	S03	S04	S05	S06	S07	S08	S09	S10	
			-	-	-	-	-	-	-	-	
	-	-									

Figura A6. Geles exploratorios de agarosa 1,2% p/v de los amplicones para la secuenciación Illumina (45 min, 80 V). Marcador de peso molecular (M): 100 bp (la banda más concentrada corresponde a 500 pb). Las muestras se indican por su código de recolección (C por Coyhaique y luego el número de recolección) y su tipo (-L si es de liquen, -S si es de sustrato). También se incluye el nombre definitivo de la muestra en la segunda fila.

M	C57-L L01	C58-L	C67-L L03	C73-L	C74-L	M	C85-L L06	C87-L L07	C94-L	C95-L L09	C98-L
								1			
Μ	C57-S	C58-S	C67-S	C73-S	C74-S	Μ	C85-S	C87-S	C94-S	C95-S	C98-S
	S01	S02		S04	<u> </u>		S06		S08	<u> </u>	<u>S10</u>
					-						-

Figura A7. Geles de agarosa 1,2% p/v de los amplicones concentrados (120 min, 100 V). Las bandas centrales se extrajeron y purificaron para la secuenciación por Illumina. Marcador de peso molecular (M): 100 bp (la banda más concentrada corresponde a 500 pb). Las muestras se indican por su código de recolección (C por Coyhaique y luego el número de recolección) y su tipo (-L si es de liquen, -S si es de sustrato). También se incluye el nombre definitivo de la muestra en la segunda fila.

М	C57-L	C58-L	C67-L	C73-L	C74-L	М	C85-L	C87-L	C94-L	C95-L	C9
	L01	L02	L03	L04	L05 .		L06	L07	L08	L09	L
	-										
M	C57-S	C58-S	C67-S	C73-S	C74-S	М	C85-S	C87-S	C94-S	C95-S	C9
	S01	S02	S03	S04	S05		S06	S07	S08	S09	S
	-	-	-	-	-		Neuritada	-	Section and	-	-
and a first											

Figura A8. Geles de agarosa 1,2% p/v de los amplicones obtenidos desde muestras de líquenes y sustratos, luego de la purificación de la banda intermedia de los geles correspondientes de la Figura A7. Marcador de peso molecular (M): 100 bp (la banda más concentrada corresponde a 500 pb). Las muestras se indican por su código de recolección (C por Coyhaique y luego el número de recolección) y su tipo (-L si es de liquen, -S si es de sustrato). También se incluye el nombre definitivo de la muestra en la segunda fila.

Figura A9. Histograma de la distribución del número de secuencias (eje x) de acuerdo a su frecuencia (eje y) en las 20 muestras de líquenes y sustratos.

Figura A10. Gráficos de calidad de las secuencias directas (izquierda) e inversas (derecha), generados al azar para representar 10.000 de un total de 2.521.647 secuencias. Arriba: se representa la distribución en cada posición nucleotídica (eje x) del puntaje de calidad de las secuencias (eje y) para un total de 301 bases por lectura. Abajo: acercamiento a la calidad de las primeras 12 bases por lectura. Las líneas claras (punteadas) representan los percentiles 9° y 91°; las líneas negras (cajas), el cuartil 1° y 3° de la distribución.

Figura A11. Prevalencia de los ASVs (representados por puntos) identificados en las muestras de líquenes y sustratos, agrupados por filo bacteriano. En el eje de las abscisas se indica la abundancia y en el eje de las coordenadas su prevalencia (expresado como fracción del total de las muestras) de cada ASV.

ANEXO 3 – TABLAS SUPLEMENTARIAS

Tabla A1. Lista de secuencias del marcador 16S de cianobacacterias utilizadas en la reconstrucción filogenética de la Figura 3, incluyendo su origen (especie de liquen o planta hospedero, de corresponder). Se incluyen las 10 secuencias obtenidas en este trabajo (L01 a L10), 15 distintos haplotipos encontrados por Zúñiga et al. (2015) asociados a líquenes del género *Peltigera* en el sur de Chile y la Antártica (C01 a C15), 30 secuencias de referencia del género *Nostoc* obtenidas tanto de cianolíquenes o plantas como de cianobacterias de vida libre y 4 secuencias utilizadas como grupo externo pertenecientes al género *Tolypothrix* (2) (familia Nostocaceae) y al género *Microcoleus* (2) (familia Phormidiaceae).

Nombre de muestra / especie	Origen	Ubicación	Número de acceso
L01	Peltigera frigida	Chile	-
L02	Peltigera frigida	Chile	-
L03	Peltigera frigida	Chile	-
L04	Peltigera frigida	Chile	-
L05	Peltigera frigida	Chile	-
L06	Peltigera frigida	Chile	-
L07	Peltigera frigida	Chile	-
L08	Peltigera frigida	Chile	-
L09	Peltigera frigida	Chile	-
L10	Peltigera frigida	Chile	-
C01	Peltigera spp.	Chile	KF718389
C02	Peltigera spp.	Chile	KC514624
C03	Peltigera spp.	Chile	KF718419
C04	Peltigera rufescens	Chile	KC514666
C05	Peltigera extenuata	Chile	KC514634
C06	Peltigera extenuata	Chile	KC514636
C07	Peltigera spp.	Chile	KC514662
C08	Peltigera sp.	Chile	KC514661
C09	Peltigera rufescens	Chile	KF718507
C10	Peltigera truculenta	Chile	KF718408
C11	Peltigera truculenta	Chile	KF718457
C12	Peltigera truculenta	Chile	KF718392
C13	Peltigera antarctica	Chile	KF718501
C14	Peltigera spp.	Chile	KF718412
C15	Peltigera spp.	Chile	KC514644
Nostoc sp.	Peltigera praetextata	USA	AY333639
Nostoc sp. SAG 41.87	Peltigera aphtosa	Switzerland	DQ185253
Nostoc sp.	Peltigera evansiana	USA	KF359715
Nostoc sp.	Peltigera frigida	Argentina	KF359716
Nostoc sp.	Peltigera canina	Germany	DQ185222
Nostoc sp.	Peltigera rufescens	Finland	KF359709
Nostoc sp.	Peltigera canina	Germany	DQ185221

Nostoc sp.	Peltigera didactyla	Germany	DQ185220
Nostoc sp.	Peltigera rufescens	Unknown	DQ185214
Nostoc commune	free-living	Japan	AB933329
Nostoc sp.	Pannaria pezizoides	Finland	AY566855
Nostoc sp.	Peltigera membranacea	Iceland	JX975209
Nostoc sp.	Peltigera malacea	Iceland	JX219483
Nostoc sp.	Peltigera leucophlebia	Finland	KF359706
Nostoc sp.	Peltigera extenuata	Finland	KF359710
Nostoc sp.	free-living	Finland	AJ630453
Nostoc sp.	Peltigera lepidophora	Canada	DQ185246
Nostoc sp. PCC 9709	Peltigera membranacea	Canada	AF027654
Nostoc sp.	Peltigera membranacea	Canada	DQ185248
Nostoc sp.	Peltigera canina	Finland	KF359697
Nostoc sp.	Peltigera membranacea	USA	KF359698
Nostoc sp.	Sticta fulginosa	USA	AY333632
Nostoc sp.	Nephroma helveticum	Canada	DQ185237
Nostoc sp.	Pannaria isabellina	Chile	EF174226
Nostoc punctiforme	free-living	Ukraine	MK211227
Nostoc commune	free-living	Spain	MK478701
Nostoc sp. SAG 29.90	Cycas circinalis	Brazil	DQ185250
Nostoc sp.	Encephalartos natalensis	Italy	DQ185210
Nostoc sp.	Collema crispum	Germany	DQ185216
Nostoc sp. SAG 36.92	Stangeria paradoxa	England	DQ185251
Tolypothrix sp. PCC 7601	free-living	USA	JX827161
Tolypothrix distorta SAG 93.79	free-living	Spain	GQ287651
<i>Microcoleus vaginatus</i> PCC 9802	free-living	USA	AF284803
Microcoleus vaginatus	free-living	USA	EF654072

Tabla A2. Número de secuencias obtenidas tras la limpieza con DADA2 de un solo extremo para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia cada 10 nt en el rango de 300 a 210 nt. La primera columna indica el número de secuencias obtenidas en bruto (original).

Nombre muestra	Original	300	290	280	270	260	250	240	230	220	210
L01	140.413	97.642	112.587	120.141	123.867	126.213	126.879	127.949	130.398	132.465	133.050
L02	129.212	89.581	101.788	107.671	110.687	112.341	113.186	114.060	115.858	117.390	118.323
L03	123.114	82.555	96.206	103.058	107.347	109.357	110.802	112.111	113.742	115.533	116.013
L04	129.524	89.660	101.768	108.374	111.574	113.748	114.762	115.726	118.842	120.475	121.599
L05	134.932	89.851	105.681	113.594	117.593	120.040	121.188	121.968	124.440	125.995	126.989
L06	122.965	81.602	95.429	101.945	105.689	107.355	108.230	109.481	113.157	114.680	115.242
L07	123.427	82.162	95.180	101.695	105.359	107.290	108.742	110.475	111.819	114.274	115.257
L08	124.497	79.999	93.576	100.951	105.711	108.419	109.111	110.140	113.616	115.662	116.344
L09	142.911	94.192	109.252	116.490	120.916	123.206	124.777	126.275	129.622	131.453	132.206
L10	121.112	80.671	92.909	99.712	103.677	105.675	106.841	108.356	110.792	112.723	112.875
S01	128.127	84.368	97.277	104.903	109.099	111.507	112.788	113.178	116.096	117.281	118.008
S02	120.695	81.923	94.610	101.245	105.058	106.821	108.336	108.877	110.695	111.882	112.444
S03	116.642	76.782	89.782	97.357	101.849	104.149	105.091	106.324	108.332	109.133	109.988
S04	116.206	77.913	90.893	97.702	102.133	103.785	104.533	105.033	106.937	108.015	108.580
S05	117.091	65.789	80.578	88.155	93.292	96.948	98.295	99.344	101.310	102.892	103.562
S06	123.084	78.845	91.969	99.154	103.704	106.013	107.520	107.497	109.029	110.154	111.400
S07	126.917	86.231	99.481	107.212	111.161	113.859	114.092	114.634	116.086	116.967	117.453
S08	133.344	84.250	97.205	104.693	108.087	109.681	111.098	111.376	114.789	116.252	117.706
S09	136.855	83.895	96.869	103.362	106.661	108.294	109.289	108.138	112.166	114.535	115.406
S10	110.579	68.482	78.985	85.918	89.035	90.614	91.540	92.902	95.144	97.265	97.896
Abundancia total	2.521.647	1.656.393	1.922.025	2.063.332	2.142.499	2.185.315	2.207.100	2.223.844	2.272.870	2.305.026	2.320.341
Riqueza	total (ASVs)	7.344	8.205	8.634	8.938	9.083	9.213	9.220	8.957	9.017	9.108

Nombre muestra	Original	200	190	180	170	160	150	140	130	120	110
L01	140.413	133.504	134.449	134.683	134.206	134.296	135.233	134.304	135.476	134.543	134.545
L02	129.212	120.414	121.020	121.158	121.319	121.561	122.127	121.664	121.776	122.725	122.222
L03	123.114	116.504	116.942	117.226	117.711	118.092	118.781	117.702	118.587	117.410	116.649
L04	129.524	122.435	122.794	122.909	122.747	122.837	123.600	122.758	124.090	123.730	121.885
L05	134.932	127.457	128.299	128.619	128.761	128.756	129.423	129.802	130.094	128.940	128.806
L06	122.965	116.009	116.903	117.226	117.532	117.745	118.739	117.654	118.586	118.023	118.002
L07	123.427	115.622	115.151	115.641	115.788	116.001	117.485	114.205	118.293	117.417	114.157
L08	124.497	116.767	117.510	117.802	118.294	118.542	119.100	118.712	118.209	118.181	116.940
L09	142.911	133.028	133.571	133.684	134.068	134.466	135.249	132.707	136.588	135.423	134.082
L10	121.112	113.240	113.840	114.515	114.809	114.864	115.193	114.741	116.529	115.663	114.650
S01	128.127	118.057	118.663	119.043	119.238	119.357	119.687	119.809	120.536	116.567	117.562
S02	120.695	113.145	113.697	113.973	114.131	114.162	114.129	114.603	114.235	112.249	112.705
S03	116.642	110.708	110.177	110.508	110.657	110.865	111.660	111.849	111.864	109.697	110.153
S04	116.206	109.109	109.282	109.467	109.708	109.557	110.103	111.036	111.309	108.990	109.462
S05	117.091	104.983	106.058	106.396	107.049	107.087	106.595	108.768	108.288	106.551	105.646
S06	123.084	112.125	111.752	111.647	111.926	112.564	112.795	114.656	113.705	111.914	111.979
S 07	126.917	117.955	118.386	118.658	118.974	118.846	119.085	118.602	119.232	115.745	117.091
S08	133.344	119.330	119.913	120.408	120.188	119.890	119.209	122.524	120.731	119.001	118.143
S09	136.855	117.779	119.548	119.993	120.062	119.207	119.978	122.420	120.924	119.446	118.912
S10	110.579	96.380	97.664	97.886	98.073	98.301	100.906	102.014	103.505	101.393	100.653
Abundancia total	2.521.647	2.334.551	2.345.619	2.351.442	2.355.241	2.356.996	2.369.077	2.370.530	2.382.557	2.353.608	2.344.244
Riqueza to	otal (ASVs)	9.123	9.246	9.370	9.429	9.279	8.773	8.018	6.613	5.885	5.129

Tabla A3. Número de secuencias obtenidas tras la limpieza con DADA2 de un solo extremo para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia cada 10 nt en el rango de 200 a 110 nt. La primera columna indica el número de secuencias obtenidas en bruto (original).

Tabla A4. Número de secuencias obtenidas tras la limpieza con DADA2 de un solo extremo para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia cada 5 nt en el rango de 260 a 230 nt. La primera columna indica el número de secuencias obtenidas en bruto (original).

Nombre muestra	Original	260	255	250	245	240	235	230
L01	140.413	126.213	126.461	126.879	127.411	127.949	129.242	130.398
L02	129.212	112.341	112.820	113.186	113.649	114.060	113.685	115.858
L03	123.114	109.357	110.170	110.802	111.789	112.111	112.923	113.742
L04	129.524	113.748	114.352	114.762	115.418	115.726	116.022	118.842
L05	134.932	120.040	120.566	121.188	121.625	121.968	122.965	124.440
L06	122.965	107.355	107.620	108.230	108.667	109.481	110.156	113.157
L07	123.427	107.290	108.249	108.742	109.790	110.475	109.448	111.819
L08	124.497	108.419	108.809	109.111	109.773	110.140	110.520	113.616
L09	142.911	123.206	124.064	124.777	125.707	126.275	127.121	129.622
L10	121.112	105.675	106.505	106.841	107.531	108.356	108.732	110.792
S01	128.127	111.507	112.290	112.788	113.130	113.178	114.323	116.096
S02	120.695	106.821	107.492	108.336	108.262	108.877	109.435	110.695
S03	116.642	104.149	104.487	105.091	105.448	106.324	107.660	108.332
S04	116.206	103.785	104.234	104.533	104.788	105.033	105.971	106.937
S05	117.091	96.948	97.472	98.295	98.870	99.344	100.700	101.310
S06	123.084	106.013	107.093	107.520	108.049	107.497	108.179	109.029
S 07	126.917	113.859	113.685	114.092	114.327	114.634	115.167	116.086
S08	133.344	109.681	110.570	111.098	112.641	111.376	113.852	114.789
S09	136.855	108.294	109.054	109.289	109.321	108.138	110.155	112.166
S10	110.579	90.614	91.118	91.540	92.800	92.902	93.506	95.144
Abundancia total	2.521.647	2.185.315	2.197.111	2.207.100	2.218.996	2.223.844	2.239.762	2.272.870
Riqueza t	total (ASVs)	9.083	9.153	9.213	9.214	9.220	9.207	8.957

Tabla A5. Número de secuencias obtenidas tras la limpieza con DADA2 de un solo extremo para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia cada 5 nt en el rango de 190 a 160 nt. La primera columna indica el número de secuencias obtenidas en bruto (original).

Nombre muestra	Original	190	185	180	175	170	165	160
L01	140.413	134.449	134.639	134.683	134.136	134.206	134.391	134.296
L02	129.212	121.020	121.121	121.158	121.093	121.319	121.551	121.561
L03	123.114	116.942	117.312	117.226	117.443	117.711	117.877	118.092
L04	129.524	122.794	123.039	122.909	122.646	122.747	122.779	122.837
L05	134.932	128.299	128.524	128.619	128.705	128.761	128.666	128.756
L06	122.965	116.903	117.086	117.226	117.345	117.532	117.671	117.745
L07	123.427	115.151	116.247	115.641	115.620	115.788	115.896	116.001
L08	124.497	117.510	117.841	117.802	117.991	118.294	118.389	118.542
L09	142.911	133.571	133.809	133.684	133.914	134.068	134.356	134.466
L10	121.112	113.840	114.120	114.515	114.570	114.809	114.848	114.864
S01	128.127	118.663	118.949	119.043	119.206	119.238	119.461	119.357
S02	120.695	113.697	113.982	113.973	113.922	114.131	114.249	114.162
S03	116.642	110.177	110.491	110.508	110.531	110.657	110.991	110.865
S04	116.206	109.282	109.637	109.467	109.554	109.708	109.709	109.557
S05	117.091	106.058	106.217	106.396	106.800	107.049	107.128	107.087
S06	123.084	111.752	111.606	111.647	111.771	111.926	112.400	112.564
S07	126.917	118.386	118.793	118.658	118.801	118.974	118.857	118.846
S08	133.344	119.913	120.260	120.408	120.070	120.188	119.553	119.890
S09	136.855	119.548	119.844	119.993	119.871	120.062	119.371	119.207
S10	110.579	97.664	97.821	97.886	97.957	98.073	97.900	98.301
Abundancia total	2.521.647	2.345.619	2.351.338	2.351.442	2.351.946	2.355.241	2.356.043	2.356.996
Riqueza to	otal (ASVs)	9.246	9.345	9.370	9.409	9.429	9.335	9.279

Nombre muestra	Original	245	244	243	242	241	240	239	238	237	236	235
L01	140.413	127.411	127.525	127.600	127.731	127.790	127.949	127.964	128.101	128.179	128.290	129.242
L02	129.212	113.649	113.707	113.838	113.945	114.016	114.060	114.131	114.298	113.316	113.524	113.685
L03	123.114	111.789	111.685	111.808	111.972	112.079	112.111	112.177	112.257	112.307	112.527	112.923
L04	129.524	115.418	115.437	115.490	115.571	115.641	115.726	115.781	115.808	115.703	115.831	116.022
L05	134.932	121.625	121.704	121.852	121.856	121.932	121.968	122.039	122.093	122.319	122.682	122.965
L06	122.965	108.667	108.816	109.098	109.207	109.276	109.481	109.530	109.600	109.491	109.901	110.156
L07	123.427	109.790	109.882	109.984	110.063	110.235	110.475	110.542	110.464	109.966	110.288	109.448
L08	124.497	109.773	109.858	109.973	110.009	110.089	110.140	110.204	110.163	109.930	110.363	110.520
L09	142.911	125.707	125.804	125.890	126.014	126.155	126.275	126.365	126.463	126.467	126.717	127.121
L10	121.112	107.531	107.702	107.990	108.071	108.124	108.356	108.326	108.353	108.009	108.231	108.732
S01	128.127	113.130	113.223	113.234	113.390	113.322	113.178	113.748	113.797	113.971	114.060	114.323
S02	120.695	108.262	108.329	108.423	108.521	108.585	108.877	109.361	109.406	109.306	109.405	109.435
S03	116.642	105.448	105.531	105.505	105.590	105.769	106.324	107.004	107.065	107.055	107.134	107.660
S 04	116.206	104.788	104.870	104.911	105.021	104.839	105.033	105.536	105.574	105.590	105.491	105.971
S05	117.091	98.870	98.996	99.103	99.238	99.101	99.344	100.268	100.164	100.404	100.107	100.700
S06	123.084	108.049	108.230	108.345	108.337	108.234	107.497	108.250	108.469	108.738	108.067	108.179
S07	126.917	114.327	114.371	114.443	114.554	114.411	114.634	115.106	115.138	115.260	115.348	115.167
S08	133.344	112.641	112.801	112.764	112.717	112.102	111.376	112.139	113.552	113.420	113.395	113.852
S09	136.855	109.321	109.616	109.650	109.430	109.171	108.138	108.814	109.345	109.143	109.192	110.155
S 10	110.579	92.800	92.878	93.045	93.070	92.843	92.902	93.453	93.469	93.710	93.543	93.506
Abundancia total	2.521.647	2.218.996	2.220.965	2.222.946	2.224.307	2.223.714	2.223.844	2.230.738	2.233.579	2.232.284	2.234.096	2.239.762
Riqueza	total (ASVs)	9.214	9.222	9.226	9.228	9.230	9.220	9.231	9.247	9.246	9.247	9.207

Tabla A6. Número de secuencias obtenidas tras la limpieza con DADA2 de un solo extremo para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia cada 1 nt en el rango de 245 a 235 nt. La primera columna indica el número de secuencias obtenidas en bruto (original).

Nombre muestra	Original	175	174	173	172	171	170	169	168	167	166	165
L01	140.413	134.136	134.171	134.203	134.854	134.221	134.206	134.914	134.337	134.300	134.960	134.391
L02	129.212	121.093	121.132	121.205	121.413	121.244	121.319	121.588	121.443	121.468	121.695	121.551
L03	123.114	117.443	117.483	117.572	117.698	117.686	117.711	117.781	117.728	117.784	117.936	117.877
L04	129.524	122.646	122.709	122.731	123.042	122.705	122.747	123.122	122.805	122.902	123.152	122.779
L05	134.932	128.705	128.734	128.759	128.902	128.832	128.761	128.899	128.877	128.947	129.075	128.666
L06	122.965	117.345	117.369	117.350	117.547	117.442	117.532	117.625	117.598	117.599	117.707	117.671
L07	123.427	115.620	115.643	115.667	115.921	115.761	115.788	116.005	115.869	115.896	116.063	115.896
L08	124.497	117.991	118.041	118.061	118.323	118.266	118.294	118.559	118.370	118.378	118.647	118.389
L09	142.911	133.914	133.946	133.989	134.205	134.047	134.068	134.299	134.156	134.196	134.416	134.356
L10	121.112	114.570	114.611	114.636	114.858	114.734	114.809	114.977	114.814	114.830	115.053	114.848
S01	128.127	119.206	119.213	119.159	119.203	119.219	119.238	119.466	119.461	119.459	119.470	119.461
S02	120.695	113.922	113.950	113.974	114.210	114.119	114.131	114.390	114.298	114.285	114.354	114.249
S03	116.642	110.531	110.581	110.580	110.631	110.658	110.657	110.701	110.732	111.081	110.943	110.991
S04	116.206	109.554	109.556	109.532	109.719	109.686	109.708	109.902	109.837	109.753	109.680	109.709
S05	117.091	106.800	106.812	106.871	106.922	106.973	107.049	107.099	107.117	107.286	107.062	107.128
S06	123.084	111.771	111.790	111.821	111.861	111.901	111.926	111.952	111.963	112.650	112.382	112.400
S 07	126.917	118.801	118.769	118.796	118.861	118.898	118.974	119.040	119.043	118.824	118.818	118.857
S08	133.344	120.070	120.089	120.155	120.209	120.179	120.188	120.574	120.609	120.254	119.524	119.553
S09	136.855	119.871	119.502	119.523	119.596	119.641	120.062	120.201	120.235	120.340	119.374	119.371
S10	110.579	97.957	97.976	97.997	98.027	98.051	98.073	98.343	98.338	98.003	98.018	97.900
Abundancia total	2.521.647	2.351.946	2.352.077	2.352.581	2.356.002	2.354.263	2.355.241	2.359.437	2.357.630	2.358.235	2.358.329	2.356.043
Riqueza to	tal (ASVs)	9.409	9.419	9.416	9.421	9.426	9.429	9.434	9.427	9.396	9.349	9.335

Tabla A7. Número de secuencias obtenidas tras la limpieza con DADA2 de un solo extremo para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia cada 1 nt en el rango de 175 a 165 nt. La primera columna indica el número de secuencias obtenidas en bruto (original).

Nombre muestra	Original	169-300	238-300	270-300	290-300	169-260	238-260	270-260	290-260
L01	140.413	3.407	3.429	3.259	3.339	4.603	23.187	22.602	22.495
L02	129.212	3.172	3.270	3.296	3.350	5.399	17.654	17.453	16.952
L03	123.114	2.437	2.601	2.518	2.632	2.667	20.482	20.194	19.738
L04	129.524	2.970	2.960	2.915	2.941	3.753	18.287	18.061	17.676
L05	134.932	4.056	4.085	4.118	4.094	3.897	20.445	20.479	19.742
L06	122.965	3.158	3.125	3.136	3.185	3.574	18.928	18.664	18.542
L07	123.427	4.736	4.685	4.691	4.748	3.794	20.704	20.321	19.635
L08	124.497	3.310	3.446	3.345	3.425	3.632	24.414	23.795	22.456
L09	142.911	3.199	3.185	3.186	3.156	6.837	21.331	21.259	19.972
L10	121.112	3.346	3.263	3.377	3.331	4.145	20.145	19.858	19.118
S 01	128.127	3.298	3.439	3.372	3.442	1.567	23.365	22.416	22.478
S02	120.695	2.546	2.370	2.432	2.469	858	19.545	18.754	18.361
S03	116.642	2.237	2.300	2.326	2.383	1.037	19.285	18.536	18.199
S04	116.206	1.946	2.129	2.336	2.219	927	17.444	17.016	17.253
S05	117.091	2.800	2.870	3.027	2.928	693	17.169	16.045	15.553
S06	123.084	2.496	2.702	2.626	2.673	306	18.886	17.564	17.124
S 07	126.917	3.714	3.750	3.696	3.719	1.495	24.751	23.846	23.304
S08	133.344	3.705	4.074	4.038	4.109	1.060	22.030	21.058	20.783
S09	136.855	3.445	3.702	3.754	3.890	558	17.597	17.166	16.956
S10	110.579	3.721	3.757	3.658	3.765	729	20.463	19.673	19.599
Abundancia total	2.521.647	63.699	65.142	65.106	65.798	51.531	406.112	394.760	385.936
Riqueza total (ASVs)		969	976	951	953	1.014	6.208	5.417	5.185

Tabla A8. Número de secuencias obtenidas tras la limpieza con DADA2 de ambos extremos para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia tanto del extremo directo (169, 238, 270 y 290 nt) como del inverso (300 y 260 nt). La primera columna indica el número de secuencias obtenidas en bruto (original).
Nombre muestra	Original	169-220	238-220	270-220	290-220	169-180	238-180	270-180	290-180
L01	140.413	0	34.579	33.618	30.883	0	0	36.893	34.021
L02	129 212	0	26 848	26 222	24 279	0	0	27.616	26 581
L02	123.114	0	30.086	29 277	26.439	0 0	0 0	30.847	28.734
L04	129.524	0	26.464	26.256	24.129	0	0	27.342	26.647
L05	134.932	0	29.000	28.691	25.059	0	0	28.856	25.697
L06	122.965	8	26.427	26.293	23.279	9	9	28.286	25.517
L07	123.427	0	27.574	27.621	24.438	0	14	27.339	25.376
L08	124.497	5	32.257	31.242	28.261	6	6	31.895	29.417
L09	142.911	0	30.227	29.413	25.261	0	0	29.599	26.373
L10	121.112	0	26.174	25.551	23.969	0	0	27.550	24.596
S01	128.127	0	31.454	30.637	28.112	0	0	32.580	29.790
S02	120.695	0	27.255	26.337	24.686	0	1	28.922	27.107
S03	116.642	0	27.035	26.238	24.432	0	0	27.736	25.572
S04	116.206	0	26.944	25.813	24.284	0	0	27.056	24.716
S05	117.091	0	24.130	23.253	20.340	0	0	23.177	20.746
S06	123.084	0	23.478	22.195	21.329	0	0	24.164	22.149
S07	126.917	0	32.491	31.553	29.406	0	0	32.805	30.480
S08	133.344	0	27.715	26.634	24.668	0	0	29.170	26.456
S09	136.855	0	23.986	23.821	22.409	0	0	25.554	24.024
S10	110.579	0	26.331	25.851	23.644	0	0	27.025	24.673
Abundancia total	2.521.647	13	560.455	546.516	499.307	15	30	574.412	528.672
Riqueza to	otal (ASVs)	2	8.393	7.255	6.683	2	5	9.718	8.791

Tabla A9. Número de secuencias obtenidas tras la limpieza con DADA2 de ambos extremos para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia tanto del extremo directo (169, 238, 270 y 290 nt) como del inverso (220 y 180 nt). La primera columna indica el número de secuencias obtenidas en bruto (original).

Tabla A10. Número de secuencias obtenidas tras la limpieza con DADA2 de ambos extremos para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia cada 10 nt tanto del extremo directo (rango de 260 a 300 nt) como del inverso (rango de 190 a 150 nt), manteniendo la misma suma en el largo de las secuencias del mejor resultado de la Tabla 11 (270+180 nt). La primera columna indica el número de secuencias obtenidas en bruto (original).

N	0-1-1-1	2(0.100	270 100	200 170	200 1 (0	200 150
Nombre muestra	Original	260-190	270-180	280-170	290-160	300-150
L01	140.413	36.354	36.893	36.838	35.194	30.317
L02	129.212	27.234	27.616	28.277	27.594	25.947
L03	123.114	31.677	30.847	29.993	29.550	25.608
L04	129.524	27.835	27.342	28.023	27.263	23.807
L05	134.932	28.412	28.856	27.920	28.311	25.441
L06	122.965	27.599	28.286	27.668	26.848	22.933
L07	123.427	27.388	27.339	26.181	26.163	23.161
L08	124.497	33.461	31.895	31.346	29.280	26.122
L09	142.911	29.065	29.599	29.888	28.578	27.506
L10	121.112	27.579	27.550	26.461	25.017	22.257
S01	128.127	32.158	32.580	32.025	30.576	26.407
S02	120.695	30.022	28.922	30.620	29.380	25.697
S03	116.642	29.226	27.736	28.535	27.088	22.866
S04	116.206	27.482	27.056	27.337	26.780	22.828
S05	117.091	24.434	23.177	23.106	22.332	18.099
S06	123.084	24.200	24.164	24.695	23.555	20.078
S07	126.917	33.534	32.805	32.449	31.973	27.766
S08	133.344	29.522	29.170	29.407	27.645	24.265
S09	136.855	26.398	25.554	26.513	25.524	22.123
S10	110.579	27.254	27.025	27.281	25.469	22.988
Abundancia total	2.521.647	580.834	574.412	574.563	554.120	486.216
Riqueza to	otal (ASVs)	8.824	9.7 <u>1</u> 8	13.753	15.4 <u>3</u> 9	12.861

Nombre muestra	Original	280-170	285-165	290-160	295-155	300-150
L01	140.413	36.838	36.061	35.194	32.768	30.317
L02	129.212	28.277	27.292	27.594	26.409	25.947
L03	123.114	29.993	29.985	29.550	28.180	25.608
L04	129.524	28.023	28.073	27.263	25.491	23.807
L05	134.932	27.920	27.289	28.311	25.741	25.441
L06	122.965	27.668	26.189	26.848	24.651	22.933
L07	123.427	26.181	26.113	26.163	25.213	23.161
L08	124.497	31.346	31.046	29.280	28.000	26.122
L09	142.911	29.888	28.211	28.578	27.802	27.506
L10	121.112	26.461	25.947	25.017	24.329	22.257
S01	128.127	32.025	31.099	30.576	29.327	26.407
S02	120.695	30.620	30.010	29.380	28.074	25.697
S03	116.642	28.535	28.100	27.088	25.720	22.866
S04	116.206	27.337	27.182	26.780	25.214	22.828
S05	117.091	23.106	22.823	22.332	20.510	18.099
S06	123.084	24.695	24.319	23.555	22.507	20.078
S07	126.917	32.449	32.254	31.973	30.556	27.766
S08	133.344	29.407	29.157	27.645	26.448	24.265
S09	136.855	26.513	26.338	25.524	25.051	22.123
S10	110.579	27.281	26.878	25.469	24.685	22.988
Abundancia total	2.521.647	574.563	564.366	554.120	526.676	486.216
Riqueza to	otal (ASVs)	13.753	13.655	15.439	14.882	12.861

Tabla A11. Número de secuencias obtenidas tras la limpieza con DADA2 de ambos extremos para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia cada 5 nt tanto del extremo directo (rango de 280 a 300 nt) como del inverso (rango de 170 a 150 nt). La primera columna indica el número de secuencias obtenidas en bruto (original).

Nombre muestra	Original	285-165	286-164	287-163	288-162	289-161	290-160	291-159	292-158	293-157	294-156	295-155
L01	140.413	36.061	36.061	35.710	36.383	36.130	35.194	34.953	34.766	34.817	33.205	32.768
L02	129.212	27.292	27.570	27.673	28.450	27.372	27.594	27.601	27.601	27.282	26.732	26.409
L03	123.114	29.985	29.979	30.251	29.708	29.850	29.550	29.642	29.447	28.905	28.100	28.180
L04	129.524	28.073	27.575	27.662	27.860	27.257	27.263	27.068	26.426	26.264	25.467	25.491
L05	134.932	27.289	26.888	27.074	27.156	27.190	28.311	28.528	28.133	26.199	25.722	25.741
L06	122.965	26.189	26.032	25.730	26.804	26.353	26.848	26.496	26.262	25.672	24.969	24.651
L07	123.427	26.113	25.649	25.244	25.824	26.051	26.163	26.102	26.019	26.045	25.242	25.213
L08	124.497	31.046	30.459	30.322	30.413	30.481	29.280	29.272	29.051	28.612	27.833	28.000
L09	142.911	28.211	28.304	28.232	29.581	27.919	28.578	28.649	28.091	27.789	27.734	27.802
L10	121.112	25.947	25.915	25.861	25.644	25.516	25.017	25.108	25.010	24.664	24.125	24.329
S01	128.127	31.099	31.304	30.843	31.476	31.326	30.576	30.253	30.116	30.053	29.737	29.327
S02	120.695	30.010	30.323	29.477	30.013	30.009	29.380	29.325	29.492	28.987	28.605	28.074
S03	116.642	28.100	27.934	27.302	27.393	27.488	27.088	27.081	26.637	26.562	26.514	25.720
S04	116.206	27.182	27.243	27.032	27.217	27.235	26.780	26.484	26.313	26.311	25.933	25.214
S05	117.091	22.823	22.709	22.586	23.042	22.868	22.332	21.917	22.035	21.371	21.056	20.510
S06	123.084	24.319	24.577	24.126	23.952	24.005	23.555	23.243	23.114	22.850	23.045	22.507
S 07	126.917	32.254	32.287	32.021	32.645	32.420	31.973	31.415	31.619	30.902	31.230	30.556
S 08	133.344	29.157	28.995	28.523	28.639	28.512	27.645	27.540	27.269	26.905	27.253	26.448
S09	136.855	26.338	26.567	26.119	26.225	26.264	25.524	25.554	25.527	25.222	25.320	25.051
S10	110.579	26.878	26.897	26.444	26.534	26.640	25.469	25.244	25.268	24.897	24.896	24.685
Abundancia total	2.521.647	564.366	563.268	558.232	564.959	560.886	554.120	551.475	548.196	540.309	532.718	526.676
Riqueza to	otal (ASVs)	13.655	14.268	14.772	15.423	15.624	15.439	15.384	15.472	15.233	15.060	14.882

Tabla A12. Número de secuencias obtenidas tras la limpieza con DADA2 de ambos extremos para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia cada 1 nt tanto del extremo directo (rango de 285 a 295 nt) como del inverso (rango de 165 a 155 nt). La primera columna indica el número de secuencias obtenidas en bruto (original).

Nombre muestra	Original	280-161	281-161	282-161	283-161	284-161	285-161	286-161	287-161	288-161	289-161
L01	140.413	37.047	37.018	36.629	36.731	36.909	36.567	36.541	36.858	36.372	36.130
L02	129.212	28.706	28.700	28.219	28.217	28.041	27.743	28.154	28.119	27.673	27.372
L03	123.114	30.560	30.551	30.314	30.272	30.110	30.077	30.092	30.155	29.621	29.850
L04	129.524	29.749	29.955	29.145	28.544	28.254	28.156	28.075	27.884	27.413	27.257
L05	134.932	27.699	27.716	27.425	27.438	27.344	27.293	27.458	27.520	27.195	27.190
L06	122.965	27.400	27.180	26.876	26.843	26.879	26.662	26.474	26.601	26.255	26.353
L07	123.427	26.751	27.129	27.079	26.916	26.949	26.868	26.608	26.376	25.899	26.051
L08	124.497	31.481	31.642	31.598	31.676	31.578	31.520	31.128	30.925	30.529	30.481
L09	142.911	28.750	28.776	28.504	28.461	28.512	28.188	28.613	28.531	27.941	27.919
L10	121.112	26.685	26.762	26.535	26.698	26.458	26.308	26.117	25.979	25.549	25.516
S01	128.127	32.829	32.700	32.600	32.647	32.032	31.652	31.443	31.478	31.509	31.326
S02	120.695	31.266	31.056	30.970	30.602	30.621	30.664	30.312	30.297	30.126	30.009
S03	116.642	29.506	29.290	29.086	28.697	28.347	28.211	28.012	27.867	27.524	27.488
S04	116.206	28.041	27.736	27.766	27.384	26.869	26.604	26.945	27.000	26.998	27.235
S05	117.091	25.019	24.741	24.774	24.583	23.872	23.738	23.659	23.069	22.935	22.868
S06	123.084	25.184	24.956	24.809	24.723	24.723	24.407	24.338	24.019	23.917	24.005
S07	126.917	33.243	33.052	33.138	32.684	32.769	32.406	32.319	32.427	32.541	32.420
S08	133.344	30.439	30.024	30.129	29.803	29.376	28.963	28.583	28.403	28.444	28.512
S09	136.855	27.609	27.136	27.249	26.883	26.767	26.384	26.294	25.972	25.893	26.264
S10	110.579	27.909	27.633	27.602	27.101	26.785	26.748	26.743	26.610	26.516	26.640
Abundancia total	2.521.647	585.873	583.753	580.447	576.903	573.195	569.159	567.908	566.090	560.850	560.886
Riqueza to	otal (ASVs)	16.505	16.448	16.411	16.394	16.079	15.887	15.871	15.735	15.650	15.624

Tabla A13. Número de secuencias obtenidas tras la limpieza con DADA2 de ambos extremos para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia cada 1 nt para el extremo directo (rango de 280 a 289 nt) manteniendo el mejor resultado del extremo inverso de la Tabla 14 (161 nt). La primera columna indica el número de secuencias obtenidas en bruto (original).

Nombre muestra	Original	269-161	270-161	271-161	272-161	273-161	274-161	275-161	276-161	277-161	278-161	279-161
L01	140.413	10.944	21.638	29.807	34.856	37.219	37.259	37.149	37.301	37.300	37.410	37.407
L02	129.212	17.596	21.325	25.447	28.506	29.323	29.076	29.134	28.994	28.973	28.919	28.993
L03	123.114	9.411	14.832	21.478	30.454	31.722	31.265	31.385	31.193	31.131	30.832	30.704
L04	129.524	11.727	16.293	21.839	28.661	29.857	29.760	29.795	29.896	29.792	29.868	30.007
L05	134.932	13.399	18.377	23.268	27.324	28.533	28.130	28.165	27.949	27.842	27.521	27.745
L06	122.965	9.789	17.248	22.398	26.384	27.993	27.663	27.743	27.717	27.636	27.466	27.679
L07	123.427	10.447	15.166	21.688	27.031	27.656	27.097	27.182	27.007	26.977	26.971	27.088
L08	124.497	10.085	14.929	21.641	31.227	32.109	31.863	31.974	31.834	31.738	31.815	31.742
L09	142.911	17.783	21.927	26.406	28.680	29.101	29.014	29.215	29.099	29.029	28.839	28.989
L10	121.112	9.936	13.916	20.309	26.385	27.389	27.264	27.509	27.278	27.214	27.124	26.932
S01	128.127	9.141	13.256	29.122	32.088	33.353	32.966	32.852	32.753	32.643	33.013	32.949
S02	120.695	8.082	12.502	26.283	30.622	31.747	31.385	31.462	31.484	31.478	31.269	31.263
S03	116.642	7.538	10.935	24.191	29.122	30.081	29.643	29.630	29.645	29.483	29.620	29.538
S04	116.206	7.195	10.820	23.677	27.674	28.577	28.214	28.346	28.170	28.143	28.231	28.132
S05	117.091	5.281	8.027	21.402	24.549	25.417	25.424	25.388	25.454	25.505	24.905	25.013
S06	123.084	5.437	8.461	21.729	24.606	25.529	25.245	25.247	25.196	25.180	25.148	25.249
S07	126.917	8.518	13.637	27.704	32.705	33.963	33.643	33.785	33.656	33.675	33.524	33.416
S 08	133.344	7.710	11.272	26.547	29.553	30.564	30.653	30.738	30.632	30.716	30.735	30.526
S09	136.855	6.213	9.255	23.736	26.435	27.489	27.804	27.858	27.715	27.698	27.822	27.580
S10	110.579	6.207	9.092	25.747	27.721	28.723	28.636	28.478	28.250	28.218	28.103	28.040
Abundancia total	2.521.647	192.439	282.908	484.419	574.583	596.345	592.004	593.035	591.223	590.371	589.135	588.992
Riqueza to	otal (ASVs)	10.090	14.234	18.799	17.917	17.052	16.845	16.729	16.702	16.644	16.622	16.547

Tabla A14. Número de secuencias obtenidas tras la limpieza con DADA2 de ambos extremos para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia cada 1 nt para el extremo directo (rango de 269 a 279 nt) manteniendo el mejor resultado del extremo inverso de la Tabla 14 (161 nt). La primera columna indica el número de secuencias obtenidas en bruto (original).

Nombre muestra	Original	271-159	271-160	271-161	271-162	271-163
L01	140.413	11.363	23.432	29.807	36.520	37.745
L02	129.212	17.771	21.357	25.447	28.208	29.374
L03	123.114	9.787	14.824	21.478	30.635	31.597
L04	129.524	11.944	16.781	21.839	28.991	29.174
L05	134.932	13.410	18.256	23.268	27.718	29.112
L06	122.965	9.939	17.351	22.398	26.893	27.968
L07	123.427	10.392	15.270	21.688	27.244	27.563
L08	124.497	10.343	14.982	21.641	31.293	32.324
L09	142.911	17.965	22.157	26.406	28.993	30.412
L10	121.112	10.198	14.045	20.309	26.125	27.414
S01	128.127	9.327	13.257	29.122	32.109	33.256
S02	120.695	8.650	12.861	26.283	30.457	32.318
S03	116.642	7.864	11.020	24.191	28.667	30.253
S04	116.206	7.675	11.285	23.677	27.929	29.436
S05	117.091	5.423	7.913	21.402	24.382	25.834
S06	123.084	5.605	8.599	21.729	24.844	26.240
S07	126.917	8.796	13.712	27.704	32.930	35.070
S 08	133.344	8.055	11.520	26.547	29.702	31.242
S09	136.855	6.287	9.345	23.736	26.487	27.925
S10	110.579	6.366	9.130	25.747	27.786	28.672
Abundancia total	2.521.647	197.160	287.097	484.419	577.913	602.929
Riqueza to	otal (ASVs)	13.671	16.780	18.799	17.557	16.175

Tabla A15. Número de secuencias obtenidas tras la limpieza con DADA2 de ambos extremos para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia cada 1 nt para el extremo inverso (rango de 159 a 163 nt) manteniendo el mejor resultado del extremo directo de la Tabla 16 (271 nt). La primera columna indica el número de secuencias obtenidas en bruto (original).

Tabla A16. Número de secuencias obtenidas tras la limpieza con DADA2 de ambos extremos para cada muestra, suma total de abundancia de secuencias y riqueza de secuencias distintas, a distintos largos de secuencia cada 1 nt tanto para el extremo directo (rango de 269 a 273 nt) como para el inverso (rango de 163 a 159) manteniendo la misma suma en el largo de las secuencias del mejor resultado de la Tabla 17 (271+161 nt). La primera columna indica el número de secuencias obtenidas en bruto (original).

Nombre muestra	Original	269-163	270-162	271-161	272-160	273-159
L01	140.413	30.957	31.158	29.807	30.916	29.748
L02	129.212	25.581	25.296	25.447	25.303	25.128
L03	123.114	21.607	21.916	21.478	21.494	21.274
L04	129.524	22.196	22.122	21.839	22.129	21.809
L05	134.932	23.629	23.620	23.268	23.172	22.946
L06	122.965	22.461	22.899	22.398	22.418	21.780
L07	123.427	21.426	21.771	21.688	21.578	20.840
L08	124.497	21.382	21.693	21.641	21.687	21.150
L09	142.911	26.945	26.537	26.406	26.685	26.056
L10	121.112	19.880	19.993	20.309	20.301	19.759
S01	128.127	28.989	29.329	29.122	28.769	28.783
S02	120.695	26.371	26.179	26.283	26.239	26.128
S03	116.642	24.103	23.988	24.191	24.242	24.063
S04	116.206	24.068	23.875	23.677	23.787	23.501
S05	117.091	21.149	21.193	21.402	20.920	20.867
S06	123.084	21.710	21.737	21.729	21.322	21.223
S07	126.917	28.204	27.693	27.704	27.550	27.180
S08	133.344	26.658	26.479	26.547	26.267	25.961
S09	136.855	23.436	23.669	23.736	23.458	23.090
S 10	110.579	25.516	25.747	25.747	25.430	25.300
Abundancia total	2.521.647	486.268	486.894	484.419	483.667	476.586
Riqueza to	otal (ASVs)	16.369	17.922	18.799	19.437	18.192