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Abstract

Atoms under pressure undergo a number of modifications of their electronic struc-

ture. Good examples are the spontaneous ionization, stabilization of excited-state

configurations, and contraction of atomic-shells. In this work, we study the effects of

confinement with harmonic potentials on the electronic structure of atoms from H to

Ne. Dynamic and static correlation is taken into account with coupled cluster with

single and double excitations and CASSCF calculations. Because the strength of har-

monic confinement cannot be translated into pressure, we envisioned a “calibration”

method to transform confinement into pressure. We focused on the effect of con-

finement on: (a) changes of electron distribution and localization within the K and L

shells, (b) confinement-induced ionization pressure, (c) level crossing of electronic

states, and (d) correlation energy. We found that contraction of valence and core-

shells are not negligible and that the use of standard pseudopotentials might be not

adequate to study solids under extreme pressures. The critical pressure at which

atoms ionize follows a periodic trend, and it ranges from 28 GPa for Li to 10.8 TPa

for Ne. In Li and Be, pressure induces mixing of the ground state configuration with

excited states. At high pressure, the ground states of Li and Be become a doublet

and a triplet with configurations 1s22p and 1s22s2p, respectively, which could change

the chemistry of Be. Finally, it is observed that atoms with fewer electrons correla-

tion increases, but for atoms with more electrons, the increasing of kinetic energy

dominates over electron correlation.
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1 | INTRODUCTION

A matter of research interesting to physics and chemistry is the study of electronic systems (atoms, molecules, clusters, and solids) under extreme

conditions such as high pressures or confinement. Electronic systems under confinement are not only crucial for simulation of the effects of high-

pressure on electronic properties, but they also are interesting by itself in the study of quantum dots or encapsulated atoms or molecules. Exam-

ples are atoms or molecules encapsulated in cages like fullerenes or zeolites. The confinement sometimes produces essential changes in the elec-

tronic structure of the system. It affects its bonding pattern, it is possible catalytic properties and in the solid state can dramatically change the

stability of crystallographic phases. One interesting example is the high-pressure electrides, for which a unified theoretical model has been

presented.[1]
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The physical and chemical properties of systems under high pressure (strong confinement) can be quite different from their free partners and

elude intuition. For instance, at enough high pressure, atoms change their valence state, implying, for instance, a change in the coordination num-

ber and the appearance of new phases of solids under pressure. This happens because there is a crossing between different atomic energy levels

and orbitals that are unoccupied in the free atom could be filled in the compressed one. This type of transitions was experimentally detected.[2–4]

An excellent review of those effects in solids has the striking title of “The Chemical Imagination at Work in Very Tight Places.”[5] Another known

phenomenon occurs when the PV term (P is the pressure and V the volume) in the equation-of-state works against the binding of the electron

and confinement-induced electron detachment occurs. Connerade wrote an interesting review of the topic.[6] There are a variety of computa-

tional and experimental studies on the effect of high pressure on phase stability of solids.[7]

Electronic confinement can be explicitly simulated by including the agent that exerts the reduction of the available volume, such as placing an

atom inside a molecular cage or simulating high pressure by changing the size of the unitary cell in a solid. Nevertheless, if the confinement is strong

or there is a substantial overlap of the wavefunctions of the system under confinement with the one of its surroundings, it may not be possible to

distinguish them. Hence, modeling the confining agent with an external potential has the advantage that the intrinsic response of the system to con-

finement can be always characterized. Two types of potentials are most used: (a) infinite barriers on the surface of a cavity which imposes Dirichlet

boundary conditions to the wavefunction (hard walls), and (b) soft (penetrable) potentials in which the wavefunction has finite amplitude in classically

forbidden regions. A prototypical example of the last type of potentials is the harmonic oscillator, and it is the one used in this work.

In a series of papers, Diercksen et al. studied the electronic states and their density for low-lying states of atoms and diatomic molecules con-

fined by harmonic oscillator potentials.[8–12] They looked for different degrees of confinement varying the frequency of the oscillator. Perhaps the

most important point of their works was the use of very accurate wave functions. For instance, for He atom they employed a full configuration

interaction, CI, with a pervasive basis set, and for Li atom an extensive multireference configuration interaction wavefunction. Very interestingly,

they showed that Gaussian basis set could be extremely accurate to expand the atomic orbitals in the presence of harmonic confinement. The

basis set, however, has to be balanced in the sense that it should provide a good representation of both, the bound states of the Coulomb poten-

tial and the bound state of the harmonic oscillator. For instance, for Li they used a basis set as large as [13s7p5d] + [1s1p1d1f1g1h]. The results

they obtained are significant as a benchmark for the use of simpler models. They also show that Gaussian basis sets are suitable for a quasi-two

dimensional attractive Gaussian quantum dot.

Cioslowski et al.[13–19] have studied the effects of harmonic confinement in the so called harmonium atoms. One striking finding of the

authors is the emergence of Wigner molecules in three-dimensional Coulombic systems, which takes place over several orders of magnitude of

confinement.[20,21]

Years ago, Chattaraj et al. began to study the effects of confinement on the chemical reactivity.[22] One of their first work was on the chemi-

cal reactivity of atoms confined in a spherical box. They calculated the variations of some indices derived in the density functional theory of chem-

ical reactivity[23,24] and the variation of the atomic dipolar polarizability. They did numerical calculations with Dirichlet boundary conditions and

found that in general, confinement decreases the dipolar polarizability. Later on, they used a variety of theoretical methodologies to show that

confinement has a significant effect on many classical chemical reactions. For example, they used a relative big molecular host to confine some

model Diels-Alder reactions and find the catalytic changes due to the confinement.[25–27] The theoretical models they used range from numerical

Hartree-Fock (HF) to more sophisticated quantum-fluid-dynamics time-dependent density functional methods developed by his group. Very

recently, they wrote a feature article summarizing their results.[28]

Other kind of works have been done by Garza et al.[29–33] They also began with the study of confined atoms in a hard spherical cavity. How-

ever, they interpreted the results in terms of pressure by using the thermodynamic relation P= − ∂E
∂V and they also derived an equation to calculate

the Gibbs free energy. They obtained variations of electronic properties under pressure changes.[34] Later on, they extended the results to the

pressure changes with soft spherical walls. They also constructed special basis sets to be used with this potential. This is a critical point many

times overlooked (exceptions are the cited works by Diercksen et al. and Cioslowski et al.). Note that commonly-used Gaussian basis sets for free

atoms do not take into account that a wall/potential changes the way the wavefunction decays. Furthermore, the contraction scheme of the core

in atomic-free basis set does not give enough flexibility to the wavefunction to capture the reorganization of the inner region of atoms under

strong confinement.

In this work, we study the effects of the confinement/pressure on the electronic structure of atoms from hydrogen to neon. Electrons are

confined with an isotropic harmonic potential. Variations of the total energy and the electron density under confinement are discussed and a

scheme to translate confinement strength into pressure is introduced. The electron distribution is also analyzed with the aid of the Electron Local-

ization Function (ELF), which captures the changes in the electron-shells due to confinement. It is found that the required pressure to ionize the

atoms follows a periodic behavior. In some atoms, an energy level crossing occurs before ionization. It is also found that the impact of the confine-

ment on the electronic correlation depends on the number of electrons of the atoms and its behavior is qualitatively explained in terms of the

LDA-RPA model of correlation energy at the high-density limit. To compare the importance of the degree of approximation in the solution of the

electronic Hamiltonian, HF, Kohn-Sham with the Perdew–Burke-Ernzerhof (PBE) exchange-correlation functional (DFT), and Coupled Cluster with

single and double excitations (CCSD) calculations have been implemented. The change of configuration of Li and Be with confinement is charac-

terized by CASSCF calculations, and it is discussed in detail.
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2 | COMPUTATIONAL METHODS

The Born-Oppenheimer Hamiltonian of atoms under isotropic harmonic confinement is, in atomic units,

Ĥ= −
1
2

X
r2

i −
XZ

ri
+
1
2

X 1
rij

+
1
2

X
ω2r2i , ð1Þ

where the first term is the electron kinetic energy, followed by the nuclei-electron attraction and the electron-electron repulsion. The last term is

the harmonic potential that confines electrons and it is centered in the nucleus position. The parameter ω controls the strength of confinement.

The basis set for expanding atomic orbitals should include both, functions for the bound states of the Coulomb potential and functions for the

states of the harmonic oscillator. For the part of the harmonic oscillator we chose Gaussian functions with suitable exponential. Diercksen

et al.[35] found that the optimal exponents follow the approximated series ω, ω/2, ω/4…ω/2n. We have used the first four exponents of the series

and included basis set with angular momentum l = 0, 1, 2 and 3. For the Coulombic part of the potential, we used a decontracted 6-311G(d,p)

basis set. To have an idea of the size of basis set of this scheme, in the case of Fluorine there are 67 basis functions. We expect the effect of the

basis set to be more important in atoms with more electrons and open-shell configurations. Hence, for Fluorine we checked the convergence of

the CCSD energy with highest angular momentum in the basis set of the harmonic potential with lmax = 0, 1, …, 5 (Figure S2). It is observed that

for ω < 0.46 the energy is converged to the μHartree. For the confinement strength for which ionization occurs, this value rises only to 9 × 10−5

Eh. Figure S2 suggests that the energy converges following a negative power law of the maximum angular momentum (l−nmax). If that were the case,

an extrapolation to the complete basis would be possible. However, such a power law is accurate enough only for ω<0.4 and n = 3. For larger

values of ω, the quality of the fitting rapidly degrades (Figure S3). Moreover, for ω<0.4, the extrapolation corrects the energy in much less than

1μHartree. Therefore, we find unnecessary to apply a complete-basis set correction.

All the necessary integrals and diagonalization of Hamiltonians were done using tools of the quantum chemistry code Gaussian09.[36] Electron

density and ELF analysis was done with HORTON[37] and ChemTools[38] programs. The calculation of the ELF in correlated wavefunctions

(CCSD) was done in term of the natural orbitals that diagonalize the variational (relaxed) density matrix, following the procedure of Matito

et al.[39]

Different levels of theory were used. HF, Coupled Cluster with all (core included) single and double excitations, CCSD, and Kohn-Sham calcu-

lations with the PBE exchange-correlation functional.[40] Further, for Li and Be atoms, a CASSCF calculations with four active orbitals and one and

two electrons, respectively, were done around the ω value at which crossing of states occurs.

Confinement with penetrable walls, contrary to hard walls, comes with the difficulty of defining the pressure associated with a given strength

of confinement. However, the pressure is a measurable quantity, while the strength of confinement (ω) is a parameter of a model. To express con-

finement in terms of pressure instead of ω, one needs a measure of the volume. When confinement is done with hard walls the volume is well

defined. In the case of penetrable walls, a criterion has to be chosen to select the volume of the confined atom. We choose this volume, V, to be

the one of a sphere enclosing most of the electron density. The pressure is then computed from its thermodynamic definition,

P= −
dE
dV

=
1

V2

dE

d V−1� �
 !

: ð2Þ

We observed that evaluating the pressure from the slope of a linear regression of dE
d V−1ð Þ with V2 (last term in Equation (2)) produces better fits

than an non-linear regression of E vs V. The quality of the fit is almost independent (R2 > 0.999547) of the volume provided that the sphere

encloses more than 90% of the electrons. To have a non-arbitrary scale of pressure, we tuned the radius of the sphere such that the pressure of

ionization of H in the harmonic potential equals that of the H in hard walls. This pressure, 620GPa, has been accurately determined by Aquino[41]

and Rubinstein et al.[42] We found that the best sphere contains 96.648% of the electrons (Figure S4). The pressure in other atoms is computed

by fitting Equation (2) with the volume defined as above. However, all tables are also available in terms of ω in the supplementary material.

Additionally, the ELF is also calculated. This function has been extensively studied and various reviews of it exist.[43–48] Here we use the inter-

pretation of the ELF due to Savin, which says that the ELF is a measure of the excess of kinetic energy due to the Pauli principle. As a conse-

quence, values of the ELF close to one represents the regions of the space where is more probable to find localized electrons.

3 | RESULTS AND DISCUSSION

Discussing the effect of confinement on the electronic structure of each atom could be lengthy and unnecessary. In this section, we discuss only

some representative results for different atoms while the full results for H to Ne can be found in the supplementary material. Let us start with the

variation of the energy of He atom as the confinement increases (Figure 1).
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It is first to notice that the way the energy varies with ω is quite independent of the method of calculation, from HF to CCSD calculations,

indicating that in He the correlation energy remains small compared with the total energy. However, the correlation energy at the strongest con-

finement doubles the one in the free atom. This is further discussed at the end of this section. For atoms different than He, the E vs ω curve fol-

lows the same trend as long as there is no level-crossing in the range of ω. Note that the energies of the neutral atom and its cation increase with

ω. However, the energy of the cation increases less sharply than that of the neutral. Therefore, there is an omega value in which both energies

are equal. Some authors call this confinement's strength the point of auto-ionization or ionization[6]) because beyond this point the energy of the

cation is less than the energy of the neutral. However, in our case, and in any hard walls potential, there is no real electron-detachment from the

neutral atom because the spectra of these potentials have only bound states. Nevertheless, we use the term ionization or ionization pressure

because in high-pressure experiments the electron can delocalize over large distances. In He the crossing occurs at ω = 1.44 a.u. (Figure 1), which

corresponds to a pressure of 5535 GPa. As would be expected, the ionization pressure of He is much higher than the one of H(620 GPa).

To look at the electron density variations, in Figure 2, the radial distribution of the electron density of nitrogen at different values of the con-

finement parameter is plotted. The density decays faster as the confinement increases, and the maximum of the outer shell (L) gets more compact

and, therefore, denser. The density at the minimum that separates the core shell (K) from the valence shell (L) also increases with the confinement,

making the population of both shells more correlated. Also, the size of the K shell slightly decreases with confinement. It is to recall that similar

results have been obtained for all atoms of the first and second periods.

Variations of the electron distribution and structure of the shells are more easily captured with the ELF, which is shown for lithium in

Figure 3. Again, the ELF shows that the core of the atom compacts upon confinement and that its size, measured by the position of minimum

between K and L shells, decreases almost a bohr for the range of confinement of Figure 3.

Note that the ELF of free lithium, and other alkaline metal atoms, is a particular case as it does not go asymptotically to zero as the distance

to the nuclei goes to infinity. This behavior is because the perfectly symmetric one-electron outer shell. However, the ELF of lithium under

enough confinement does go to zero with the distance because the fast decreasing of the density. Interestingly, the pattern of the ELF is quite dif-

ferent at strong confinement (ω = 1). Electron in the L shell is as delocalized as an electron in the non-interacting homogeneous gas (ELF = 0.5).

Delocalization also noticeably increases in the core shell, and its size decreases from almost 2a0 in the free atom to 1a0 at ω = 1. This change in

electron localization at strong confinement is associated with a change in the electron configuration of the atom, which passes from 1s22s to

1s22p. A CASSCF calculation with one electron and four active orbitals reveals that around ω = 0.806, both states become degenerate

(ΔE < 0.3 eV), and the atom lives in a mixed state of valence. The crossing between these two states was also predicted for lithium in the hard

sphere model.[49]
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The ELF of carbon under confinement is shown in Figure 4. Here, it is easier to see how the shells contract with confinement. The boundary

of the L shell decays sharply from ≈ 5.6 a0 for the free atom to ≈3.2 a0 for ω = 1. Also, as the outer shell gets closer to the nucleus, it also

squeezes the inner shell. The position of the maximum of the outer shell is affected by confinement as it changes from ≈1.6 a0 for the free atom

to ≈1.2 a0 for ω = 1. These changes in the electron distribution of the outer shell may have been being overlooked when standard pseudo-

potentials are used at very high pressures. For instance, the dashed vertical line in Figure 4 corresponds to the cutoff radius (1.1 a0) of the projec-

tor augmented wave method (PAW) pseudopotential of C with the smallest core in the Vienna Ab initio Simulation Package (VASP) program.[50]

Hence, for pressures greater than 300 GPa (ω = 0.1), the changes of electronic structure in the sphere defined by the cutoff radius are not negligi-

ble. It means that under enough pressure, the core-valence separation in pseudo-potentials needs to be tailored.[51,52]

Figure 5 shows the ionization pressure of atoms from H to Ne calculated with the CCSD method. Notice the perfect periodic variation of the

ionization pressure, which is largest for the noble gas atoms (He and Ne). Not surprisingly, lithium has the smallest ionization pressure (27 GPa). It

is so small, compared with other atoms, that in the scale of the plot it seems to be zero. The periodic behavior of the ionization pressure it is so

similar to other properties, such as the ionization potential, that it even shows the small kink of the nitrogen in the second period.[53]

Because ionization pressure depends on the total energies of the atom and its cation, it does not depend strongly on the method of calcula-

tion, HF, CCSD, or PBE. However, there is a trend of PBE to overestimate the pressure slightly, while HF does the opposite. This can be under-

stood because GGA functionals suffer from a delocalization error opposite to HF.[54] That is, DFT tends to delocalize electrons while HF tends to

localize them. Delocalized electrons have high kinetic energy and, therefore, high pressure. This suggests that a local density approximation (LDA)

and a HF calculation could be used to set “errors bars” to computational phase-transition pressures in solids.[55] Table 1 summarizes the ionization

pressure for all atoms. When interpreting the values of that table, it is important to keep in mind that those values have uncertainty associated

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

r (a0)

E
LF

ω = 0 u.a.

ω = 0.100 u.a.

ω ion = 0.192 u.a.

ω = 0.316 u.a.

ω = 1.00 u.a.

F IGURE 3 Electron localization function of the lithium at different
strength of confinements. ωion corresponds to the critical confinement
strength at which the atom ionizes

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

r (a0)

E
LF

VASP cut- off

ω = 0 u.a.

ω = 0.100 u.a.

ω = 0.316 u.a.

ω ion = 0.465 u.a.

ω = 1.00 u.a.

F IGURE 4 Electron localization function of carbon at different
confinements

0 2 4 6 8 10
0

2000

4000

6000

8000

10000

Z

P
io
n
(G

P
a)

0 2 4 6 8 10
0
5

10
15
20
25

Z

IP
(e
V
)

F IGURE 5 Ionization pressure of the atoms from H to Ne. The
ionization potential of the first and second row atoms is shown in the

inset

ROBLES-NAVARRO ET AL. 5 of 9



with the statistical error of the fitting of Equation 2 and that 1 GPa is only 3.4 × 10−5 a.u. Interestingly, our ionization pressures agree with the

prediction of Hoffmann et al.[1] that no element of the second period ionizes for pressures below than 500 GPa but lithium, which does below

80 GPa. We also estimate the ionization pressure of Li from recent HF calculations with hard walls done by Rodriguez et al.[33] Despite the

restricted data, we found that the ionization pressure (30 GPa) agrees very well with our HF value (27 GPa). This nice agreement strongly sup-

ports our scheme to translate values of ω into pressure. We agree on the ionization pressures despite the different nature of the confinements.

Data equivalent to Table 1, but written in terms of ω, is reported in Table S1 (hereafter label S in figures and tables stand for supplementary

material). This information is more useful for comparison with future calculations. Table S1 also shows the ionization ω for the Koopmans' approx-

imation within HF. If CCSD is taken as a reference value, the mean absolute percentage error of the ionization ω is 2.1%, 2.5%, and 5.5% for HF,

PBE, and Koopmans' approximation, respectively. Special mention deserves the error of Koopmans' approximation because it is commonly used

to estimate ionization and crossing of different atomic states. Although Koopmans' approximation is qualitatively correct, quantitatively its error is

not negligible.

Besides ionization, confinement can also induce a level crossing. That is, the electronic configuration of the ground state of the confined

atoms can be different from the free atom. In an orbital picture, such as in HF and DFT, this manifest in the change of order of the atomic orbital

energies. For instance, for Be, there is critical confinement for which the orbitals 2s and 2p become degenerate. This level crossing has already

been reported with HF and DFT methods.[30,56] However, in a degenerate state, no single determinant can be a good approximation to the quan-

tum state because static correlation becomes dominant. Hence, we resort to CASSCF calculations with two electrons and four active orbitals (2s

and 2p) to find the best value of ω for which the crossing occurs and the electronic configuration of the ground state and its (pseudo-) degenerate

states. The crossing occurs around ω = 0.790, (Figure 6). In the free atom, the first two excited state, two triplets with configuration 1s22s2p and

1s22p2, are well separated (2.42 and 7.14 eV) from the singlet ground state 1s22s2. Contrary, at ω = 0.790 the singlet 1s22s2 is degenerate with

the triplet 1s22s2p (ΔE < 0.3 eV), while the other triplet lies only 3.22 eV above the degenerate states. When the confinement increases beyond

ω = 0.790, the ground state of Be becomes the triplet 1s22s2p, as it can be seen for ω = 1.0 in Figure 6). The ground state becomes a triplet as a

result of the Hund's rule, which operates independently of the strength of the confinement. Sarsa et al.[57] have recently addressed this matter. If

the confinement keeps increasing beyond ω = 1.1, the low lying excited state 1s22p2 becomes the ground state, which agrees with HF calculations

recently reported by Sañu-Ginarte et al.[56] for hard spherical walls. Note that capturing correlation energy of free Be is a classic, challenging situa-

tion because both static and dynamic correlations are important. Therefore, that HF, CCSD, and CASSCF calculations predict the same ground

state in the limit of strong confinement (with soft and hard walls) reinforces the idea that in that limit the increasing of kinetic energy prevails over

correlation energy.

The chemical importance of level crossing is not to diminish. At a pressure equivalent to the confinement of the crossing, the chemistry of

beryllium would be completely different. It will behave no longer as an earth alkaline metal. It would be a very reactive species able of sp hybridi-

zation that would resemble boron. Of course, at high-pressure one does not expect to have a gaseous phase. However, the new configuration

would dictate new solid-state phases or exotic molecules.

3.1 | Correlation energy

Most calculations of confined atoms resort on HF or DFT methods. Therefore, there is little numerical evidence on the effect of the confinement

on the ab initio correlation energy (Eexact − EHF < 0). CCSD is, within the basis set, an exact solution for He because it recovers most of the

TABLE 1 Ionization pressure of the
first and second row atoms

Atom

Pion (GPa)

HF CCSD PBE

H 620 — —

He 5262 5535 5541

Li 27.0 27.8 31.8

Be 216 273 262

B 511 491 540

C 1279 1271 1308

N 2757 2759 2756

O 3386 3476 3640

F 6202 6332 6437

Ne 10 656 10 871 10 864
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correlation energy for atoms of the second period. An exception is Be because in this atom static correlation is crucial and CCSD includes mostly

dynamic correlation. Hence, excluding Be, one observes that confinement can either increase or decrease correlation energy. For Ne, F, and O the

correlation energy becomes less negative (increases) with confinement, while it becomes more negative (decreases) for Li, B, C, and N. The

change, with respect to the free atom, of the correlation energy as a function of ω is plotted in Figure 7. The correlation becomes significant for

atoms with fewer electrons. For instance, for the strongest confinement (ω = 1.0), the correlation energy of boron decreases 1.5 eV (0.055 Eh),

which corresponds to a change of 152% of the correlation energy with respect to the free atom. On the contrary, in Ne and F, the reduction of

correlation translates in an increment of 96% of the correlation energy. In other atoms, the relative change is −79% for Li, −120% for C, −105%

for N, and 99% for O.

The dependence of the correlation energy on the confinement-strength and number of electrons reveals that for a given confinement-

strength, in the atoms with more electrons, the increment of the kinetic energy with the density becomes dominant over the correlation energy.

4 | CONCLUSIONS

In this work, we have studied the effect of confinement, with a harmonic potential, on atoms from H to Ne. In many previous works on confine-

ment, electron correlation was neglected or introduced at the LDA and GGA levels of approximation within DFT. Here we performed calculations

at the HF, PBE, CCSD, and CASSCF to also understand the importance of electron correlation on the electronic structure of confined atoms. We

focused on the following properties: (a) changes of electron distribution and electron localization within the K and L atomic shells,

(b) confinement-induced ionization pressure, (c) level crossing of electronic states, and (d) the behavior of the electron correlation energy. As for

the electron distribution, it is observed that upon confinement, the external L shell is much compressed than the inner shell. Also, the position of

the maximum of the L shell moves towards the nuclei by non-negligible amounts. However, the size of the inner shell also decreases at strong

confinement, and the density at the inter-shells regions increases under pressure. An extreme case is lithium, for which the separation between

the inner and outer shell vanishes at strong confinement (ω ≥ 0.7). That is revealed by the ELF and the radial distribution function of the electron

density (Figure S6). These changes in electron distribution and localization in what is customarily considered the core region of atoms, bring
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attention to the use of standard pseudopotentials to study materials under extreme pressures. For instance, in Carbon, significant changes in the

electron density are observed at distances from the nucleus smaller than the cutoff radius of typical hard PAW pseudopotentials.

A disadvantage of using harmonic confinement is that the strength of confinement cannot be translated into pressure because the volume of

the confined atom is not well defined. Here we envisioned a “calibration” method, using the ionization pressure of hydrogen, for establishing an

adequate volume to convert strength of confinement into pressure. The technique results accurate enough to match the ionization pressure of

lithium with hard-walls confinement. The ionization pressure follows a periodic trend that parallels other properties, such as the ionization poten-

tial. The ionization pressure ranges from as low as 28 GPa for lithium to 10.8 TPa for neon. In HF, the lack of electron correlation tends to under-

estimate the ionization pressure, while delocalization error in PBE does the opposite.

In all atoms but Li and Be, slow confinement can be thought of as an adiabatic process in the sense that the nature of the ground state of the

neutral atom does not change. However, in Li and Be, low laying excite states, associated with the promotion of 2s electrons to 2p orbitals, mix

with the ground state configuration. There is a critical confinement at which the ground state becomes degenerate. In the case of Be, this happens

at ω = 0.79, where the singlet configuration 1s22s2 becomes degenerate with the triplet 2s22s2p. For confinements stronger than ω = 0.79, the

Hund's rule dictates that the triplet 2s22s2p becomes the ground state. If ω increases beyond 1.1, a new crossing occurs and the ground state

changes to the triplet 1s22p2. In the case of Li, the doublet states 1s22s and 1s22p become degenerate at ω = 0.81. Beyond this point, the ground

state is the doublet 1s22p. These changes of configuration upon confinement come with potential modifications of the chemical properties of

atoms and its molecules. For instance, Be under pressure would be a very reactive species able of sp hybridization that would resemble boron.

Similarly, Li under pressure would readily form antiferromagnetic bonds, which are sustained by the ability of Li to adopt a 1s22p configura-

tion.[58,59] Interestingly, at large ω, the ground state configurations of Li and Be are the same of the three and four-electron harmoniums, respec-

tively.[21] This is expected because for large confinement the harmonic potential dominates over the Coulomb one.

The effect of confinement on the correlation energy depends on the number of valence electron of the atoms. In the atoms with more elec-

trons, such as O, F, and Ne, the increment of the kinetic energy with the density becomes dominant over the correlation energy. Contrary, in

atoms with fewer electrons, such as Li, B, and C, the increment of kinetic energy is limited, and correlation effects increase with the reduction of

electron-electron distance.
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