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MODELING AND ANALYSIS OF ELECTRICITY AUCTIONS

Este trabajo consiste principalmente en desarrollar y analizar algoritmos, para encontrar las
estrategias óptimas en mercados de electricidad modelados de manera realista.

En el Capítulo 1, se presenta el modelo general y el problema de optimización a estudiar
junto con resultados teóricos previos que prueban la existencia del óptimo. Se resuelve este
problema para tamaños pequeños y medianos en el caso en el que las funciones de costo son
lineales por pedazos y cuadráticas utilizando algoritmos desarrollados en esta tesis, los cuales
se presentan y prueban su correctitud en este mismo capítulo. Éstos se basan en explotar la
forma en la cual se asignan las cantidades óptimas dependiendo de la demanda y estrategias
de cada jugador. Se muestran resultados para ambos tipos de funciones de costo y se hace
un análisis de sensibilidad.

En el Capítulo 2, se presenta un problema de optimización alternativo basado en un
enfoque moderno, el cual, simplifica el problema al suponer que los generadores obtienen
información sobre sus rivales luego de haber jugado, de manera que una empresa puede
asignar probabilidades a los escenarios posibles de sus competidores y optimizar su pago
esperado. Se muestra una heurística basada en un método de penalización para resolver
el problema en el caso linear por partes y se prueba que es un esquema de penalización
exacto. Además, se dan ideas de como aplicar heurísticas similares a otros casos. En este
capítulo, se comparan ambos enfoques y se muestra que si las probabilidades asignadas a
los distintos escenarios son cercanas a las del equilibrio en estrategias mixtas, entonces los
valores óptimos obtenidos en ambas formulaciones son cercanos, con diferencias del orden
del 0.001%, de manera que al utilizar información pública del mercado, juegos anteriores
y resultados para tamaños pequeños - medianos, se pueden extrapolar las probabilidades y
resolver el problema para tamaños mayores, para los cuales, no era posible utilizar el enfoque
del cálculo de equilibrios de Nash en estrategias mixtas.
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MODELING AND ANALYSIS OF ELECTRICITY AUCTIONS

This work consists mainly in developing and analyzing algorithms, to find the optimal strate-
gies in realistically modeled electricity markets.

In Chapter 1, the general model and the optimization problem to be studied are presented
together with previous theoretical results that prove the existence of the optimum. This
problem is solved for small and medium sizes in the case where the cost functions are piecewise
linear and quadratic using algorithms developed in this thesis, which are presented and prove
their correctness in this chapter. These are based on exploiting the way in which the optimal
amounts are allocated depending on the demand and strategies of each player. Results are
shown for both types of cost functions and a sensitivity analysis is performed.

In Chapter 2, an alternative optimization problem is presented based on a modern ap-
proach, which simplifies the problem by assuming that the generators obtain information
about their rivals after playing, so that a company can assign probabilities to the scenarios
possible from your competitors and optimize your expected payment. A heuristic is shown
based on a penalty method to solve the problem in the piecesise linear case and it is proved
that it is an exact penalty scheme. In addition, ideas are given on how to apply similar heuris-
tics to other cases. In this chapter, both approaches are compared and it is shown that if
the probabilities assigned to the different scenarios are close to those of equilibrium in mixed
strategies, then the optimal values obtained in both formulations are close, with differences
of the order of 0.001% , so that by using public market information, previous games and
results for small - medium sizes, It’s possible to extrapolate the odds and solve the problem
for larger sizes, for which it was not possible to use the Nash equilibrium approach.
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Introduction

During the past twenty years many countries have liberalized their electricity sector. Reform
began in the 1980’s when the Chilean goverment introduced new legislation that privatized
the majority of the electrical generators. However, it was the structual reform to the elec-
tricity industry introduced in Britain (1990) that became the most paradigmatic. These
institutional reforms introduced markets as a recurring term in the modern literature of the
electricity sector and have raised fundamental questions to economists, operation researches,
engineers, and mathematicians. Even more recently, the massive entry of renewable energies
has increased the number of questions without answers in energy markets there are few results
in both the theoretical and numerical fields. Therefore his study can be a great contribution
to a country like Chile where these energy sources increase every year and is one of the main
motivations of this work.

In this thesis an electricity spot market is modeled and it is provided a game theorical
and a scenario approach framework for its study.

In the first part the model is presented following the paper from A. Jofré and J.Escobar
[13]. While not considering any specific actual market design, that paper focuses on a spot
market which functions similarly to markets in Britain, New Zealand, the Us, Spain and
Colombia. In the model, firms bid functions representing their cost functions. In principe,
these functions may or may not reflect actual cost but must belong to a set of functions
exogenously defined. Then, given the information revealed by producers during the auction
process, a central agent runs a minimum cost program that respects physical network con-
straints. Firms are dispatched according to solutions for the minimum cost program and are
paid the marginal cost of energy at their nodes.

Then a game theory approach is studied in the game among producers,i.e, a nash equilib-
rium outcome for a strategic form game among producers that fully foresee the consequences
of their actions is studied. In particular, firms are aware that in order to get revenues as high
as possible they can manipulate the minimum cost program during the auction process.

For the numerical results of the first chapter, quadratic and piecewise linear bids are
studied when there are few number of players with a few numbers of steps in the discretization
in the cost functions.

The quadractic case is similar to the one from the papers from D. Aussel, P. Bendotti and
M. Pištěk [4] and [5] they study quadratic bids aiqi + biq

2
i with ai > 0 and bi ≥ 0, characterize

the equilibria depending on a different values of the demand and the best response of a
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producers, that is, the optimal bids maximizing his profit. The main differences with these
works are: First the demand in our model is unknown, although the demand probability
distribution is known by the ISO, while in the paper the demand is deterministic and it is
known both by the ISO and by the players. Second, they only considered the case when
there are no resistance losses. Third they did not provide any algorithms from the problem.

The piecewise linear case is similar to the paper from M. Fampa , L.A. Barroso, D. Candal
and L. Simonetti [14] here they only consider the case when the bids are linear functions and
there are not resistance losses, although they have 3 different models, the one they solve is
the one similar to ours and provide a heuristic to find the optimum of the bilevel problem for
a fixed demand an generator on the simplified model. The ideas of this paper are considered
to extend them to the case of piecewise linear bids and stochastic demand.

2



Chapter 1

Nash Equilibrium Approach

1.1 The Model

This section is based on the paper from A. Jofré, J. Escobar [13]. We describe the model
and the main result of the paper is presented.

There is a network that consists of a set of nodes {1, ..., N} and a set of edges. {1, ..., E} ⊆
{1, ..., N}×{1, ..., N}. G ⊆ {1, ..., N} is the set of nodes where there is an electricity producer.
We also consider a central agent that can set production plans while respecting some network
constraints.

Transactions are organized by means of an auction, which takes place as follows. First,
firms submit simultaneously functions c = (cn)n∈G, which must belong to a set exogenously
given. Second, a vector of demands d = (dn)Nn=1, where dn ≥ 0 is realized. Third, after
observing the vectors of bids c and demands d the central agent runs a minimum cost program
subject to a number of network constraints. Fourth, firms produce as mandated by the
minimum cost program and are paid marginal cost of electricity at their nodes. Finally,
payoffs accrue.

1.1.1 The Dispatch Program

This subsection details the minimum cost program. Roughly speaking, after observing the
bids c = (cn)n∈N and the state of the demand d, the central agent minimizes the total cost
of production:

∑
n∈G

cn(qn)

Subject to the technological and physical constraints. These constraints are specified
below.

3



NODAL BALANCES. At each node, avaible power must satisfy nodal demand. Due to thermal
considerations, there are power flow losses in the transmission lines. A good approximation
for the losses is a quadratic function of the flow. Indeed, if the flow over e ∈ E is fe, the loss
is given by ref

2
e , where re ≥ 0 is the line resistance. Assuming that losses are split between

the nodes associated to each line, the nodal power balances are:

∑
e∈Kn

re

2
f 2

e + dn ≤ qn +
∑
e∈Kn

fesgn(e, n), n ∈ G (1.1)

∑
e∈Kn

re

2
f 2

e + dn ≤
∑
e∈Kn

fesgn(e, n), n /∈ G (1.2)

Where Kn is the set of transmission lines connecting node n and sgn(e, n) is equal to
1 or −1 depending on the orientation of the graph and whenever e = (n,m), sgn(e, n) =
−sgn(e,m). We also denote K = ∪n∈GKn. The left hand side of (1) is half the sum of all the
losses related to node n plus nodal demand dn. The right hand side of (1) is the production
of generator n plus the sum of effective flows. The interpretation of (2) is similar, but for
nodes n /∈ G there is no local producer at the local demand must be satisfied with external
production.

GENERATION CONSTRAINTS. Each generator has a nonempty production set:

qn ∈ [0, q̄n] (1.3)

Where q̄n ≥ 0.

TRANSMISSION CONSTRAINTS Each transmission line e ∈ E has a maximum capacity:
f

e
≤ fe ≤ f̄e. Where f

e
≤ 0 ≤ f̄e. More generally, we considerer the constraints

f ∈ F (1.4)

where F ⊆ RE is a convex compact set. This formulatios is general enough to include
Kirchhoff’s voltage law constraints and several other power network constraints.

Given a vector of demands d = (dn)Nn=1, we define :

Ω(d) =
{

(f, q) ∈ RE × RG : (f, q) satisfies (1.1), ..., (1.4)
}

Set of feasible plans which turns out to be compact convex set. thus, the central agent
solves the following dispatch program:

min

{∑
n∈G

cn(qn) : (f, q) ∈ Ω(d)

}
(1.5)

We denote its optimal value OPT (c, d), and define the set:
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Q(c, d) =
{
q ∈ RG : f ∈ RE, (f, q) is a solution of (1.5)

}
of optimally generated quantities q = (qn)n∈G.

Nodal prices are set as shadow values associated to the nodal power balances. That is,
the price at each node is a dual variable on the power balance constraint at this node.

1.1.2 The Bidders

Now we focus our attention on the interaction among producers. Broadly speaking, this game
consists of each firm independently manipulating the dispatch program (5) (and so quantities
q(c, d) ∈ Q(c, d) and prices α(c, d)) in order to obtaint revenues as high as possible.

Suppose that firm n produces qn and is paid a price pn per each unit produced, its payoff
is un(pn, qn) where: un : R2 → R is a continuous function. While un(pn, qn) = pnqn − ĉn(qn)
(where ĉn is the actual cost function) is the most important case in practice, at this stage
we keep the model as general as possible. For p, q ∈ R|G| we also define u by: u(p, q) =(
u1(p1, q1), ..., u|G|(p|G|, q|G|)

)
.

At the beginning of the game, firms bid simultaneously their cost of production functions
c = (cn)Nn=1 to the central agent. the bid of firm n, cn may or may not reflect its actual cost.
Indeed, if a firm finds profitable lying in respect to its actual cost ĉn, then it will do it. We,
however, restrict the set of feasible decisions to firm n. Thus, firm n must choose a function
belonging to a nonempty set of fuctions Sn that is exogenously defined. We assume Sn only
contains functions cn that are convex real-valued (thus continuous), non-decreasing and, just
for simplicity, such that cn(0) = 0.

We note that firms bid functions that represent their cost functions. In contrast, in actual
markets firms bid supply functions, functions representing their marginal costs. Under the
assumption cn(0) = 0 for all cn ∈ Sn, there is no strategic difference between bidding cost
functions and supply functions. So, for the sake of brevity, we assume firm bid functions
representing their cost functions.

When submitting its function cn, firm n does not know the demand vector d. However,
each firm knows the probability distribution P of d and (in particular) its support D. All
aspects of the game are commond knowledge

Definition 1.1 Noncooperative Equilibrium

Let Γ be the described model. A noncooperative equilibrium (henceforth equilibrium) of
the game Γ is a 3-Tuple (q, λ, (m̄n)n∈G) such that:

• q is a selection from Q(·, ·), so a solution of the dispatch program.
• λ is a selection from Λ(·, ·), so a Lagrange multiplier of the dispatch program.
• m̄ = (m̄n)n∈G is a non-trivial mixed strategy Nash equilibrium of the normal form

5



game among producers Γ̄(λ, q) = (Sn, Vn)n∈G, where each generator chooses a strategy
cn belonging to the set of functions Sn and obtains a payoff given by the expected
profit:

Vn(cn, c−n) = E[un (λn(c, ·), qn(c, ·))] =

∫
un (λn(c, d), qn(c, d)) dP (d), c ∈ S

In this context, the selections λ and q supports the measure m̄ as a first stage Nash
equilibrium.

Therefore the problem can be written as:

(P ) =



max
∑
n∈G

En[un(λn(c, ·), qn(c, ·))]

s.t (λ, q) ∈ ISO(c, P ) =



min
∑
n∈G

cn(qn)

s.t
∑
e∈Kn

re

2
f 2

e + dn ≤ qn +
∑
e∈Kn

fesgn(e, n), n ∈ G∑
e∈Kn

re

2
f 2

e + dn ≤
∑
e∈Kn

fesgn(e, n), n /∈ G

qn ∈ [0, q̄n]
f ∈ F

These types of problems are known as Bilevel problems and they are of great importance
in different areas of engineering.
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1.2 Existence of Noncooperative Equilibrium

Consider the following assumptions.

ASSUMPTION 1 There exists p∗ such that for all cn ∈ Sn, all qn ∈ R, and all x ∈ ∂cn(qn) ,
|x| ≤ p∗. Put differently, for all cn ∈ Sn and all qn ∈ R, the derivative

c+
n (qn) := lim

h↘0

cn(qn + h)− cn(qn)

h
≤ p∗

ASSUMPTION 2 For all d ∈ D, there exists δd > 0 such that ∀d̂ ∈ B(d, δd), Ω(d̂) 6= ∅. (In
particular, the dispatch program is feasible.)

ASSUMPTION 3 One of the two assertions holds:

1. P is atomless;
2. For all convex compact sets M,N ⊆ RG, the set u(M ×N) ⊆ RG is convex.

ASSUMPTION 4 For all n ∈ G, Sn is closed under pointwise convergence.

Assumption 1 is reasonable. For example, p∗ can be set as a regulated price cap. (This
mitigation measure is common in power market designs; see Wilson [26]). On the other hand,
note that D must be compact. In fact. D is closed (by definition) and for all d ∈ D , Ω(d)
is nonempty and, as a consequence,

0 ≤
N∑
n=1

dn ≤
∑
n∈G

q̄n

Where the last inequality comes from the nodal balance:

N∑
n=1

dn +
∑
e∈E

re

2
f 2

2 ≤
∑
n∈G

qn ≤
∑
n∈g

q̄n

Assumption 2 together with compactness of D implies the existence of δ > 0 such that
for all d ∈ D,

∀d̂ ∈ B(d, δ),Ω(d̂) 6= ∅

Indeed, δ is a Lebesgue number associated to the open covering (B(d, δd) : d ∈ D). This
δ in a sense, reflect how tight the network is and it is called network slackness.

Theorem 1.2 Under assumptions (1) - (4) , the game Γ has a noncooperative equilibrium
(q, λ, (mn)n), where mn is a regular measure over the pointwise Borel σ-field on Sn

The proof of this theorem can be found in A. Jofré - J. Escobar [13].
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1.2.1 Example were no pure strategy Nash equilibrium exists

This example is also from the main paper from A. Jofré and J. Escobar [13]. Here we will see
that the mixed strategy equilibrium solution is weaker than the standard pure strategy Nash
equilibrium. In fact, a pure stratregy equilibrium is also a mixed strategy equilibrium (con-
sult Fundenberg and Tirole [12] for additional discussion). We consider the mixed strategy
equilibrium as a solution to the game among producers because very often the pure strategy
equilibrium fails to exist.

Figure 1.1: Three-node model

To see this, consider the following simplified case where we have a three-node model
ilustrated by figure 1.1. Demand d ∈ R is located at node 2 and distributed according to
F . Node 1 (resp. node 3) has a generator with production capacity q̄1 (resp. q̄3). There
are no transmisson constraints, and transmission losses are 0. For simplicity, consider the
symmetric case in which q̄1 = q̄3 = q̄. We assume that it is always feasible to satisfy the
demand : 2q̄ > d for all d ∈ D. Additionally, we assume that the probabilities that only one
generator is dispatched and that both generators are dispatches are stricly positive:

P [d < q̄] ∈ (0, 1)

Generator n’s payoff function is un(pn, qn) = pnqn (that is,costs are 0). The auction design
is such that each firm n is allowed to bid a single price pn ∈ [0, p∗], where p∗ is a price cap,
which represents its marginal cost function. Equivalently, each firm may be seen as bidding
a linear cost function. More formally, the set of bids can be written as:

Sn = {cn : R→ R+ : cn is linear, cn(0) = 0, and c′n(0) ∈ [0, p∗]}

There is no strategic difference between bidding prices representing marginal costs and
bidding costs. So, we identify each cn ∈ Sn with its derivative c′n = pn.

Given bids p = (p1, p3) and demand d , the dispatch program can be written as:

min{p1q1 + p3q3 : q1 + q3 ≥ d, qi ∈ [0, q̄]}

The solution set to this program, Q(p, d), needs not to be a singleton. Indeed, if p1 = p3,
the dispatch problem has a continuoum of solutions. The shadow price of electricity is node-
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independent (this is so because in this simple model there are no transmission constraints),
and given by:

Λi(pi, pj, d) =


min{p1, p3} if d < q̄

[min{p1, p3},max{p1, p3}] if d = q̄
max{p1, p3} if d > q̄

Consider selections q(p, d) ∈ Q(p, d) and λ(p, d) ∈ Λ(p, d). We will show that the induced
game among generators cannot have a pure strategy equilibrium. If not, there is a pure
strategy equilibrium p1, p3 ∈ [0, p∗]. Suposse first that p1 < p3. Then, firm i could increase
its payoff by slightly increasing its bid. So, p1 = p3. If p1 = p3 = 0, then either firm could
increase its payoff by bidding the price cap p∗. So p1 = p3 > 0. Then, no matter what
selection q(p, d) is, there is one firm, say n, whose expected payoff is, at most,

pnE[d]/2

But firm n, by bidding pn − ε (with ε > 0 small), could get a payoff:

pmq̄(1− F (q̄)) + (pn − ε)
∫ q̄

0

ψdF (ψ)

Where we considered the normalized case (so that 0 ≤ q̄ ≤ 1) Note that:

2q̄ > sup{d : d ∈ D} >
∫ 1

q̄
ψdF (ψ)

1− F (q̄)
−
∫ q̄

0
ψdF (ψ)

1− F (q̄)

Where the inequalities follows from the feasiblility constraint, i.e, 2q̄ > 1.

Therefore,

q̄(1− F (q̄)) +
1

2

∫ q̄

0

ψdF (ψ)− 1

2

∫ 1

q̄

ψdF (ψ) > 0

which implies that:

q̄(1− F (q̄)) +

∫ q̄

0

ψdF (ψ) >
1

2

∫ 1

0

ψdF (ψ)

Therefore, for ε > 0 small enough

pnE[d]/2 < pmq̄(1− F (q̄)) + (pn − ε)
∫ q̄

0

ψdF (ψ)

9



i.e, bidding pn − ε is stricly more profitable than bidding pn for firm n. It follows that no
pure strategy equilibrium can exist.
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1.3 Bilevel Optimization

Here we follow Dempe’s Book [11]. Where he summarizes the state of the art in bilevel
problems.

Bilevel optimization problems are hierarchical optimization problems of two or more play-
ers. Consider f, gi : Rm × Rn → R, i = 1, ..., p and Y ⊆ Rn is a nonempty closed set, then
consider the parametric optimization problem:

min{f(x, y) : g(x, y) ≤ 0, y ∈ Y } (1.6)

This is the lower problem, also called follower’s problem. There can be more than one
decision maker/follower, for example in the case were we search for a Nash equilibrium. Let

φ(x) := min
y
{f(x, y) : g(x, y) ≤ 0, y ∈ Y } (1.7)

Denote the optimal value function of problem (1.6) and

Ψ(x) := {y ∈ Y : g(x, y) ≤ 0, f(x, y) ≤ φ(x)} (1.8)

the solution set mapping of problem (1.6).

Lets denote gph(Ψ) := {(x, y) : y ∈ Ψ(x)} to the graph of the solution set mapping Ψ,
the following bilevel optimization problem

min
x
{F (x, y) : G(x) ≤ 0, (x, y) ∈ gph(Ψ), x ∈ X} (1.9)

Can be formulated with X ⊆ Rm, F : Rm × Rn → R , Gj : Rm → R, j = 1, ..., q.
Sometimes, this is called the upper level optimization problem or leader’s problem.

Problem (1.6) , (1.9) was first formulated in an economic context by V. Stackelber [15].

Bilevel optimization problems are nonconvex and nondifferentiable optimization problems.
Also even the linear-linear bilevel optimization problem is NP-Hard as we can see in [7]

Notice that problem (1.9) is not well-defined in case of multiple lower level optimal solu-
tions. The usual approach to deal with this is using the Optimistic or pessimistic formulation.

Definition 1.3 The leader may assume that the follower can be motivated to select a best
optimal solution in Ψ(x) with respect to the leader’s objective function. This is the so-called
optimistic or weak formulation of the bilevel optimization problem, adopted in most of papers:

min{φ0(x) : G(x) ≤ 0, x ∈ X} (1.10)

11



Where
φ0(x) = min

y
{F (x, y) : y ∈ Ψ(x)} (1.11)

This problem is almost equivalent to

min
x,y
{F (x, y) : G(x) ≤ 0, x ∈ X, (x, y) ∈ gph(Ψ)} (1.12)

As it can be seen in [1]. If the upper level objective function is of a special type the op-
timistic bilevel optimization problem can be interpreted as an inverse optimization problem.
[2],[16] and [28].

If this is not possible or even not allowed, the leader is forced to bound the damage
resulting from an unwelcome selection of the follower resulting in the pessimistic or strong
formulation of the bilevel optimization problem.

Definition 1.4 The Pessimistic or strong formulation of the bilevel optimization problem is:

min{φp(x) : G(x) ≤ 0, x ∈ X} (1.13)

Where
φp(x) = max

y
{F (x, y) : y ∈ Ψ(x)} (1.14)

To investigate properties, for the formulation of optimality conditions and solutions algo-
rithms, the bilevel optimization problem can be transformed into a single level problem. For
this, different approaches are possible and are the ones that were used:

Use of the Karush-Kuhn-Tucker conditions of the lower level problem. If the functionts
y → f(x, y) , y → gi(x, y), i = 1, ..., p are differentiable and a regularity condition is satisfied
for the lower level problem for all (x, y) ∈ gph(Ψ), problem (1.12) can be replaced by:


minx,y,z{F (x, y) : G(x) ≤ 0}, x ∈ X
∇y{f(x, y) + uTg(x, y)} = 0

u ≥ 0
g(x, y) ≤ 0
uTg(x, y) = 0

(1.15)

It is shown in ([19]) that this approach is only possible if the lower level problem is
a convex one. Problem (1.15) is a so-called mathematical program with equilibrium (or
complementarity) constraints (MPEC).

There is also another techniques like the Use of necessary optimality conditions without
Lagrange multipliers or Use of the optimal value function. In the last case problem (1.12)
can be equivalently replaced by:

12



min{F (x, y) : G(x) ≤ 0, x ∈ X, g(x, y) ≤ 0, f(x, y) ≤ φ(x)} (1.16)

This transformation has first been used in [21],[20]. Problem (1.16) is a nonsmooth opti-
mization problem since the optimal value function φ(x) is, even under restrictive assumptions,
in general not differentiable. Moreover, the nonsmooth Mangasarian- Fromovitz constraint
qualification is violated at every feasible point [22], [27].

We will be mostly focus on the mathematical program with equilibrium constraints, since
it’s better for numerical purposes and having the Lagrange multipliers comes in handy with
the shadow prices.
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1.4 Algorithms for Nash Equilibrium

In this section we’ll see algorithms used to solve the Nash Equilibrium problem.

1.4.1 Lemke Howson Algorithm

The Lemke-Howson algorithm originally appeared in the paper [18] of Lemke and Howson, in
1964 and is able to deliver a Nash equilibria within all possible equilibria in a 2 player game.
This algorithm resembles the simplex algorithm (from linear programming). One similarity is
that both methods can take an exponential number of iterations (see Savani and von Stengel
2004 [24] ). Other techniques to solve linear programs are known that run in polynomial time
(e.g, the ellipsoid and interior point methods) but no such technique is known for finding
Nash equilibria.

Lets follow [23] in order to introduce the basic definitions, propeties and results.

Consider a two person bimatrix game where the payoff matrices are Am×n and Bm×n. A
pair of strategies (x, y) is a Nash equilibrium for game (A,B) if and only if:

∀1 ≤ i ≤ m,xi > 0 =⇒ (Ay)i = max
k

(Ay)k

∀m+ 1 ≤ j ≤ m+ n, yj > 0 =⇒ (x>B)j = max
k

(x>B)k

Let M = {1, 2, . . . ,m} and N = {m + 1,m + 2, . . . ,m + n}. Define the support of x by
S(x) = {i : xi > 0} and the support of y analogously.

Definition 1.5 A Bimatrix game (A,B) is non-degenerate if and only if for every strategy
x of the row player |S(x)| is at least the number of pure best responses to x and for every
strategy y of the column player, |S(y)| is bigger than or equal to the number of pure best
responses to y.

It can be assumed that the game is non-degenerate since we can slightly perturb the payoff
matrices to make the game that way.

Proposition 1.6 If (x, y) is a Nash equilibrium of a non-degenerate bimatrix game, then
|S(x)| = |S(y)|

Let Bj denote the column of B corresponding to action j and let Ai denote the row of A
corresponding to action i. We define the following polytopes:

P1 = {x ∈ RM : (∀i ∈M : xi ≥ 0) ∧ (∀j ∈ N : xtBj ≤ 1)}

P2 = {y ∈ RN : (∀i ∈M : Aiy ≤ 1) ∧ (∀j ∈ N : yj ≥ 0)}
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For a nonzero nonnegative x, we can normalize it to a stochastic vector norml(x) as
follows:

norml(x) :=
x

(
∑

i xi)

The inequalities that define P1 have the following meaning:

• If x ∈ P1 meets xi ≥ 0 with equality then i is not in the support of x.

• If x ∈ P1 meets xtBj ≤ 1 with equality then j is a best response to norml(x).

Let us say that x ∈ P1 has label k, where k ∈ MN = {1, ...,m + n}, if either k ∈ M and
xk = 0, or k ∈ N and xtBk = 1. Similarly y ∈ P2 has label k if either k ∈ N and yk = 0,
or k ∈ M and Aky = 1. As a consequence of the Support Characterization, we have the
following.

Theorem 1.7 Suppose that x ∈ P1 and y ∈ P2, and neither x nor y is the all-zero vector.
Then x and y together have all labels from 1 to k if and only if (nrml(x), nrml(y)) is a Nash
equilibrium. All Nash equilibria arise in this way.

A d − dimensional polytope is simple if every vertex meets exactly d of the defining
inequalities with equality.

Assumption : The polytopes P1 and P2 are simple.

As a consequence of the previous theorem we have the following:

Theorem 1.8 A non-degenerate bimatrix game has an odd number of Nash equilibria

Proposition 1.9 A 2-player finite strategic game is nondegenerate if and only if, for any
mixed strategy α of a player, the number of pure best responses by their opponent does not
exceed |supp(α)|.

Therefore we have the following algorithm for a nondegenerate 2 player game (A,B) which
returns a Nash equilibrium:

1. Start at (0, 0).

2. Choose a label to drop.

3. Remove this label from the corresponding vertex by traversing an edge of the corre-
sponding polytope to another vertex.

4. The new vertex will now have a duplicate label in the other polytope. Remove this
label from the vertex of the other polytope and traverse an edge of that polytope to
another vertex.

5. Repeat step 4 until the pair of vertices is fully labelled.
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1.4.2 Example

Conider the matching pennies game. It is played between two players, Even and Odd. Each
player has a penny and must secretly turn the penny to heads or tails. The players then
reveal their choices simultaneously. If the ppenies match (both heads or both tails), then
Even keeps both pennies, so wins one from Odd (+1 for Evenn -1 for odd). If the pennies
do not match (one heads and one tails) Odd keeps both pennies, so receives one from Even
(-1 for Even, +1 for Odd).

The payoff matrices are:

A =

(
1 −1
−1 1

)
B =

(
−1 1
1 −1

)

First we add 2 to all utilities:

A =

(
3 1
1 3

)
B =

(
1 3
3 1

)

We have the following inequalities:

−x1 ≤ 0

−x2 ≤ 0

x1 + 3x2 ≤ 1

3x1 + x2 ≤ 1

The intersection of the two non trivial constraints is at the point:

1/3− x1/3 = 1− 3x1

The vertices are:

V = {(0, 0), (1/3, 0), (1/4, 1/4), (0, 1/3)}

These vertices are no longer probability vectors. Recall the four inequalities of this poly-
tope:

1. x1 ≥ 0: if this inequality is "binding" (ie x1 = 0) that implies that the row player does
not play that strategy.

2. x2 ≥ 0: if this inequality is "binding" (ie x2 = 0) that implies that the row player does
not play that strategy.
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3. x1 + 3x21: if this inequality is binding then that implies that the utility to the column
player for that particular column is as big as it can be.

4. 3x1 + x21: if this inequality is binding then that implies that the utility to the column
player for that particular column is as big as it can be.

Lets label our vertices:

• (0, 0) has labels {0, 1}.
• (1/3, 0) has labels {1, 3}.
• (1/4, 1/4) has labels {2, 3}.
• (0, 1/3) has labels {0, 2}

Similarly the vertices and labels for P2 are:

• (0, 0) has labels {2, 3}.
• (1/3, 0) has labels {0, 3}.
• (1/4, 1/4) has labels {0, 1}.
• (0, 1/3) has labels {1, 2}

Let us apply the algorithm:

Figure 1.2: Lemke Howson

• (a, w) have labels: {0, 1}, {2, 3}. Drop 0 (arbitrary decision) in P1.
• (b, w) have labels: {1, 3}, {2, 3}. In P2 drop 3.
• (b, z) have labels: {1, 3}, {1, 2}. In P1 drop 1.
• (c, z) have labels: {2, 3}, {1, 2}. In P2 drop 2.
• (c, y) have labels: {2, 3}, {0, 1}. Fully labeled vertex pair.

Now we normalize these vertices and return the strategy pair:

((1/2, 1/2), (1/2, 1/2))
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1.4.3 Vertex Enumeration

For a nondegenerate 2 player game (A,B) the following algorithm returns all nash equilibria:

1. For all pairs of vertices of the best response polytopes, check if the vertices have full
labels.

2. Return the normalised probabilities.

For the previous example, the only par of vertices that is fully labeled is:

((1/4, 1/4), (1/4, 1/4))

which, when normalised correspond to:

((1/2, 1/2), (1/2, 1/2))

Vertex enumeration is important since most of the recent methods that improve the basic
Lemke Howson method are based on making an smarter enumeration, see for instance [6].

1.4.4 Tableau

To apply the tableau method to find a Nash equilibria using the Lemke-Howson algorithm,
we use the following four steps:

1. Proprocessing (elimination of stricly dominated strategies)
2. Initialization of tableaux.
3. Repeated pivoting.
4. Recover Nash equilibrium from final tableaux.

Let ri be the slack in the constraint Aiy ≤ 1 and let sj be the slack in the constraint
xtBj ≤ 1. We obtain the system:

Ay + r = 1, Btx+ s = 1, and x, y, r, s are nonnegative.

In the initial tableaux, the basis is {ri : i ∈M} ∪ {sj : j ∈ N}

p1 / p2 3 4
1 3,1 1,3
2 1,3 3,1
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The initial tableaux is:

r1 = 1− 3y3 − y4

r2 = 1− y3 − 3y4

s3 = 1− x1 − 3x2

s4 = 1− 3x1 − x2

We need to arbitrarily choose some x or y variable to bring in to the basis, corresponding
to the arbitrary choise k0 of label that we remove. Let’s bring x1 in. By considering the
min-ratio rule s4 must leave the basis.

x1 = 1/3(1− s4 − x2)

s3 = 1/3(2− 8x2 + s4)

Now let’s bring y4 in (because s4 was out). So r2 is out

y4 = 1/3(1− y3 − r2)

r1 = 1/3(2− 8y3 + r2)

x2 in and s3 out:

x2 = 3/8(2/3 + 1/3s4 − s3)

x1 = 1/3(1− 3/8(2/3 + 1/3s4 − s3))

y3 in and r1 out

y3 = 3/8(2/3 + 1/3r2 − r1)

y4 = 1/3(1− 3/8(2/3 + 1/3r2 − r1))

Since x1 was the initial variable to enter the basis, and r1 just left complementarity
conditions are now satisfied. (More generally, if xi was the initial variable to enter, we stop
when xi or its complement leaves). In a tableau, we obtain values for the basic variables by
setting the non-basic variables to zero. Hence the variables’ values are:

r = (0, 0), s = (0, 0), x = (1/4, 1/4), y = (1/4, 1/4)
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Therefore the Nash equilibrium we just found is:

(norml(x), norml(y)) = ((1/2, 1/2), (1/2, 1/2))

In practice the 3 implementations are used, however, the best versions that have come out
recently come from vertex enumeration.

1.4.5 N-Players Algorithm

Here we use an algorithm from from B.Chatterjee [10]. To explained it will be needed to
introduce the game formulation and notation as in the paper. The method is capable of
giving one sample Nash equilibrium out of probably many present in a given game.

GAME FORMULATION AND NOTATION.

A finite n-person non cooperative game in normal or strategic form is represented by a
tuple

Γ = (N, {Si}i∈N , {ui}i∈N)

Where N is a finite set of players, Si is space of pure strategies of player i and ui is the
payoff function of player i.

A mixed strategy of player i is interpreted as a probability distribution over the space Si

and the space of all mixed strategies of player i is denoted by
∑i = {σi ∈ Rmi+ :

∑mi

j=1 σ
i
j = 1}

where mi is the number of pure strategies player i has. For σi ∈
∑i, the probability assigned

to pure strategy si
j is σi

j. The strategy space of the game is
∑

=
∏

i∈N
∑i.

If a mixed strategy combination σ is played then the probability that the pure strategies
combination s = (si

j1 , s
2
j2 , ..., s

n
jn) occurs is given by σ(s) = Πi∈Nσ

i
ji . In such a situation the

payoff assigned to player i is given by ui(σ) =
∑

s∈S σ(s)ui(s), where ui(s) is the payoff to
player i at the pure strategies combination s.

If σ−i denotes the mixed strategy vector formed by all players except player i, then we
can replace the mixed strategies combination σ by (σ−i, σi).

Definition 1.10 A Mixed strategy profile σ∗ is called a Nash equilibrium of the game Γ if:

ui(σ∗) ≥ ui(σ∗−i, σi),∀i ∈ N,∀σi ∈
i∑

This means that each player i could not obtain a better payoff than the one he obtains at
Nash equilibrium, by changing only his own mixed strategy, i.e, leaving all other strategies
unchanged.
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The idea of the paper is to minimize the gap between the optimal payoff and the payoff
obtained by a possible mixed strategy combination.

EQUIVALENT OPTIMIZATION FORMULATION

If βi is the optimal payoff of player i then the optimization problem of player i, i ∈ N is:

(P i)


min βi − ui(σ)
s.t ui(σ−i, si

j)− βi ≤ 0 ∀j = 1, ...,mi∑mi

j=1 σ
i
j = 1

σi
j ≥ 0 ∀j = 1, ...,mi

where (σ−i, si
j) denotes the mixed strategies combination in which player i plays with his

jth pure strategy, that is, a mixed strategy in which the jth pure strategy of the ith player is
assigned the probability 1.

On the paper the following Lemma and Theorem are proved:

Lemma 1.11 A necessary and sufficient condition for σ to be a Nash equilibrium of the
game Γ is:

βi − ui(σ) ∀i ∈ N (1.17)

ui(σ−i, si
j)− βi ≤ 0 ∀j = 1, ...,mi,∀i ∈ N (1.18)

mi∑
j=1

σi
j = 1, ∀i ∈ N (1.19)

σi
j ≥ 0 ∀j = 1, ...,mi, ∀i ∈ N (1.20)

Therefore it can be seen that if such σ exists then it is an optimal solution of nonlinear
programming problems :

(P i) =


min βi − ui(σ)
s.t ui(σ−i, si

j)− βi ≤ 0 ∀j = 1, ...,mi,∀i ∈ N∑mi

j=1 σ
i
j = 1,∀i ∈ N

σi
j ≥ 0 ∀j = 1, ...,mi,∀i ∈ N

For i ∈ N , with global optimal value equals to 0. Then the theorem show us how to find
the Nash equilibrium strategy as the optimal solution of a single optimization problem.

Theorem 1.12 A necessary and sufficient condition for σ∗ to be a nash equilibrium of game
Γ is that it is an optimal solution of the following minimization problem:

(P ) =


min

∑
i∈N β

i − ui(σ)
s.t ui(σ−i, si

j)− βi ≤ 0 ∀j = 1, ...,mi,∀i ∈ N∑mi

j=1 σ
i
j = 1,∀i ∈ N

σi
j ≥ 0 ∀j = 1, ...,mi,∀i ∈ N
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So the problem of computing a Nash equilibrium of the game Γ, reduces to solve the
optimization problem (P ) with optimal value zero.

Let m =
∑

i∈N m
i, we need to rank the possible strategies combinations, thefore a vector

x of length m + n is created as follows. Arranging the strategies of players 1 to n in order,
we have a total of m strategies and we take xi’s in order as: x1 = σ1

1, x2 = σ1
2, ..., xmi =

σ1
mi , ..., xm = σnmm , where the subscripts in σ denote the strategies and superscripts stand for

the players. Then take xm+i = βi, i = 1, 2, ..., n. Performing this transformation of variables
in (P ), the optimization problem gets converted to the following form:

(P new) =


min f(x)
s.t g(x) ≤ 0

h(x) = 0
xi ≥ 0 ∀i = 1, ...m

xi are unrestricted ∀i = m+ 1, ...,m+ n

Where:

f(x) =
∑
i∈N

βi − ui(σ)

g(x) = ui(σ−i, si
j)− βi ≤ 0 ∀j = 1, ...,mi,∀i ∈ N

h(x) =
mi∑
j=1

σi
j − 1,∀i ∈ N

To get a solution of this nonlinear minimization problem with nonlinear constraints they
use the sequential quadratic programming based quasi Newton method. The steps for the
algorithms are the following:

1. Represent the game in normal form.
2. Rank the possible pure strategies combinations as desired.
3. Take varibles x1 to xm+n and form the optimization model (P new) .
4. Solve the problem (P new) using SQP based quasi Newton method.

By applying this formulation, we get the following bilevel problem to find the optimal
strategies:

For fixed demand d:

(Pd) =



min
∑
k∈G

δk − uk(σ) =
∑
k∈G

(δk −
∑
s∈S

σ(s)λqks )

s.t uk(σ−k, skj )− δk ≤ 0 ∀j = 1, ...,mk,∀k ∈ G∑mk

j=1 σ
k
j = 1,∀k ∈ G

σkj ≥ 0 ∀j = 1, ...,mk, ∀k ∈ G
(λ, qs) ∈ ISO(s, d)
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Where ISO(s, d) is the dispatch program solved by the ISO when the demand value is d
and the strategy profile s is played.

ISO(s, d) =



min
∑
n∈G

cns (qns )

s.t
∑

e∈Kn

re

2
f 2

e + dn ≤ qns +
∑

e∈Kn
fesgn(e, n), n ∈ G∑

e∈Kn

re

2
f 2

e + dn ≤
∑

e∈Kn
fesgn(e, n), n /∈ G

qns ∈ [0, q̄n]
f ∈ F

Here δk is the optimal payoff of player k, (σ−k, skj ) denotes the mixed strategies combina-
tion in which player k plays with his jth pure strategy, that is, a mixed strategy in which the
jth pure strategy of the kth player is assigned the probability 1. And uk(σ) =

∑
s∈S σ(s)uk(s),

where uk(s) is the payoff to player k at the pure strategies combination s. That is uk(s) = λqk
with λ the Lagrange multiplier associated to the nodal inequalities (1.1) and (1.2).

Remarks:

• Given a pure strategy combination s ∈ S = Πk∈GS
k, we write s = (s1

j1
, s2
j2
, ..., s

|G|
j|G|

)

meaning that player k plays his jk pure strategy skjk .

• Given a pure strategy combination s ∈ S, we use the notation cks(qks ) to represent the
cost function for player k when playing the strategy combination s ∈ S. Here qks is
the quantity player k dispatch when the strategy combination s is played. Therefore
qs is a vector who has the quantities given by the dispatch program when the strategy
combination s ∈ S is played.

• In reality qks also depends on the fixed demand value d, but it is not written explicitly
so the notation is not to overload and because it is understood.

• Since λ is the shadow price associated to (1.1) and (1.2) then it depends on the demand
d and on the profile strategy s ∈ S,i.e, λ = λ(s, d).

• If s = (s1
j1 , s

2
j2 , ..., s

|G|
j|G|

), then σ(s) =
∏
k∈G

σkjk

• If we want a parametrization of the lower level problem in terms of σ(s) instead of
s, we need to define for s ∈ S, qkσ(s) := qks1{σk

s>0} + 2q̄1{σk
s =0} so it’s just qks when the

probability σks > 0 and 2q̄ in other case, the idea is that the system is infeasible in the
later case.

But the general model uses a probablity distribution P of d, and the expected payoff is
optimized.
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(P ) =



min
∑
k∈G

(
δk −

∑
s∈S

∫
σ(s)λ(s, d)qksdP (d)

)
s.t uk(σ−k, skj )− δk ≤ 0 ∀j = 1, ...,mk,∀k ∈ G∑mk

j=1 σ
k
j = 1, ∀k ∈ G

σkj ≥ 0 ∀j = 1, ...,mk,∀k ∈ G
(λ, qs) ∈ ISO(s, d)

As we will see later, the problems with fixed d are important for numerical purpuses
specially when we want to approximate an expectation.
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1.5 Piecewise linear strategies

It is studied now the case when the bids are piecewise linear, in particular, when they have
2 pieces. Generators choose two slopes α and β with α < β which define the cost function.

So if generator n ∈ G chooses the slopes α and β then:

cn(qn) =

{
αqn if 0 ≤ q ≤ q′

(q − q′)β + αq′ if q′ < q ≤ q̄

1.5.1 Modeling Piecewise linear functions

In this subsection we see how to model a 2 pieces continous linear function in order to obtain
a mixed integer programming problem.

cn(qn) =

{
αqn if 0 ≤ q ≤ q′

(q − q′)β + αq′ if q′ < q ≤ q̄

Just to simplify notation we get rid of the n and define two binary variables y1 and y2

which are going to tell us if we are in the inverval [0, q′] or [q′, q̄].

• If y1 = 1 then we are in [0, q′], and every point in that interval can be written as a
convex combination of 0 and q′, lets say x ∈ [0, q′] then x = 0× x1 + q′x2 = q′x2 with
x1 + x2 = 1.
• If y2 = 1 then x ∈ [q′, q̄] =⇒ x = q′x2 + q̄x3

Now we need to add the restrictions y1 +y2 = 1 , x1 ≤ y1 ,x3 ≤ y2. which means that if we
take a point x ∈ [0, q̄] ,x 6= q′ it can only be in [0, q′] or in [q′, q̄], and if its the first case then
x3 = 0 and in the second case x1 = 0. Also , since we want to write every point in [0, q̄] as a
convex combination of 0, q′ and q̄ we can add the restriction x1 + x2 + x3 = 1, and thanks to
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the other restrictions we don’t need to write x1 + x2 = 1 and x2 + x3 = 1 separately, since x1

and x3 can’t be greater than 0 simultaneously (SOS2). Now the function in terms of x1, x2

and x3 is just x1c(0) + x2c(q
′) + x3c(q̄) = αq′x2 + [(q̄ − q′)β + αq′]x3.

Its important to notice that the SOS2 condition has to be included, otherwise we can have
x1 = x3 = 0.5 then x = q̄/2 and c(q̄/2) 6= [(q̄ − q′)β + αq′]/2 , unless q̄/2 ≤ q′ and [(α = β)
or q̄ = q′] or q̄/2 > q′ and [q′ = 0 or α = β]. Since in our model α < β, q̄ > q′ and q′ 6= 0,
none of those conditions can happen.

Then we can write cn in terms of xn as:

cn(xn) =



αq′xn2 + [(q̄ − q′)β + αq′]xn3
s.t xn1 + xn2 + xn3 = 1

xn1 ≤ yn1
xn3 ≤ yn2

yn1 + yn2 = 1
yni ∈ {0, 1} for i = 1, 2
xni ≥ 0 for i = 1, 2, 3

xn = q′xn2 + q̄xn3

1.5.2 ISO solution for 2 pieces linear bid

Lets define the following variables and notation:

• |G| = n.

• For k = 1, . . . , n we’ll use αn+k := βk.

• We define the quantities vector q = 0 ∈ Rn. So at the start everyone is dispatching 0.

• For i = 1, . . . 2n, we define X i :=

k ∈ {1, . . . , 2n} \
i−1⋃
j=1

Xj : αk = min
j∈{1,... ,2n}\

i−1⋃
j=1

Xj

αj


So in the case when we have repeated strategies, some of the last X i will be empty.

• τ = min{i ∈ {1, . . . , 2n} : X i = ∅} This index represent worst case scenario. When we
finish in the iteration τ .

• For i = 1, ...τ we define Ai = {j ∈ X i : j ≤ n} and Bi = {j ∈ X i : j > n}, so
X i = Ai ∪Bi.

• We also define Ai
f = {j ∈ {1, . . . , n} : qj = q′} and Bi

f = {j ∈ {n+ 1, . . . , 2n} : qj−n =
q̄}
• For each i = 1, . . . , τ :

if j ∈ Ai

26



1. if Bi = ∅ and di 6= 0 then:

qj = min

(
di

|X i|
, q′
)

2. if Bi 6= ∅ and di 6= 0 then:

max

(
sign(q̄ − 2q′)

[
min

(
di

|X i|
, q′
)
,−min

(
di

|X i|
,
di − (q̄ + q′)|Bi|

|Ai|
, q′
)])

3. Otherwise qj = 0

if j ∈ Bi

1. if Ai = ∅ and di 6= 0 then:

qj−n = min

(
di + |Bi|q′

|X i|
, q̄

)
2. if Ai 6= ∅ and di 6= 0 then:

max

(
sign(q̄ − 2q′)

[
min

(
di

|X i|
+ q′,

di + (|Bi| − |Ai|)q′

|Bi|1di>q′|Xi|
, q̄

)
,−min

(
di

|X i|
+ q′, q̄

)])
3. Otherwise qj = 0

Where di is the residual demand defined by d1 = d and for i ≥ 2

di = di−1 −
∑
j∈Ai

qj −
∑
j∈Bi

qj−n

• The last iteration is i∗ = min
{

i ∈ {1, . . . , 2n} : di = 0
}
− 1

• The shadow price is λ = αi∗ , except, when d is writen as jq′ + kq̄ with j, k = 1, . . . , n.
In which case, λ ∈ [αi∗ , αi∗+1

]. When this happends we will consider λ = αi∗ as the
shasdow price, since de ISO wants to minimize the overall cost.

Remark: This can be seen in the case we have 2 firms with α1 < α2 and d < 2q′ , we
can see the problems as one where firms bid linear functions.

ISO(a, d) =


min
q

α1q1 + α2q2

s.t q1 + q2 ≥ d
qi ≤ q̄ ∀i ∈ G = {1, 2}
qi ≥ 0 ∀i ∈ G = {1, 2}

Then from the KKT conditions we get:

λ(α1, α2, d) =


min{α1, α2} if d < q′

[α1, α2] if d = q′

max{α1, α2} if 2q′ > d > q

So the shadow price is not unique when we fill the transmission line of all generators
that use the same strategy β or when the demand is just the breaking point of all the
generators that use the strategy α multiplied by the number of generators who use that
strategy.
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Then the solution to the dispatch program is the vector q at iteration i∗ ≤ τ − 1

It is important to notice that q is just the vector that assigns as much as possible to
generators with low bids until the demand is satisfied.

Remarks:

• Notice that in the general case, we have
di

|X i|
≤ q′ and

di

|X i|
+ q′ ≤ q̄. So the condition

is:

q′
(
|X i|+ |Ai

f |
)

+ q̄|Bi
f | ≤ q̄

(
|X i|+ |Bi

f |
)

+ q′
(
|Ai

f | − |X i|
)

Which is equivalent to
2|X i|q′ ≤ |X i|q̄ ⇐⇒ 2q′ ≤ q̄

So the inequality 2q′ ≤ q̄ is key.
• To compute the residual demand at iteration i in the general case, we use the fact that

if we are computing iteration i then all generators in iteration i− 1 have quantities q̄, q′
or 0 otherwise the demand is smaller than q′|Ai

f | + q̄|Bi
f | and we would have finished

at iteration i∗ ≤ i− 1.

Example:

Suppose we have 3 players and α1 < β1 < α2 < α3 = β2 < β3.

• Step 1: Define α = (α1, α2, α3, α4 = β1, α5 = β2, α6 = β3) , d1 = d and q = 0 ∈ R3

• Iteration 1: X1 = {1} , A1 = {1} y B1 = ∅, so j ∈ A =⇒ j = 1 then q1 = min(d, q′)
and d2 = d− q1. if d ≤ q′ then d2 = 0 and we finish, otherwise d2 = d− q′ > 0.
• Iteration 2: X2 = {4} , A2 = ∅ ,B2 = {4}. Then q4−3 = q1 = min(d − q′ + q′, q̄) and

d3 = d2− q1 + q′ = d− q1. If q′ < d ≤ q̄ then q1 = d and d3 = 0 so we finish, otherwise
d > q̄ , q1 = q̄ and d3 = d− q̄ > 0.
• Iteration 3: X3 = {2} , A3 = {2} ,B3 = ∅. Then q2 = min(d− q̄, q′}. If d ≤ q′+ q̄ then
q2 = d− q̄ and d4 = d3 − q2 = d− q̄ − (d− q̄) = 0 and we finish, otherwise d > q′ + q̄ ,
q2 = q′ and d4 = d− q̄ − q′

• Iteration 4: This is the hardest iteration, since X4 = {3, 5} , A4 = {3} ,B4 = {5}.
We also have d > q′ + q̄ otherwise we would have finished already and d4 = d− q̄ − q′,
so we want to give each player an extra quantity of d4/2 if possible, and that’s the
problem, since in the general case 2q′ 6= q̄.

Notice the following:
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1.
d4

2
=

d− q̄ − q′

2
≤ q′ ⇐⇒ d ≤ 3q′ + q̄ and in this case q3 = min(d4/2, q′) = d4/2

then q2 = min(d4/2 + q′, q̄) = d4/2 + q′, since
d− q̄ − q′

2
+ q′ ≤ q̄ ⇐⇒ d ≤ 3q̄− q′

and 3q′ + q̄ ≤ 3q̄ − q′ ⇐⇒ 2q′ ≤ q̄

2. If q3 = min(d4/2, q′) = q′ then q2 = min(d4 − q′ + q′, q̄) . Notice that d4 =
d− q̄ − q′ ≤ q̄ ⇐⇒ d ≤ 2q̄ + q′ and 2q̄ + q′ ≤ 3q̄ − q′ ⇐⇒ 2q′ ≤ q̄.

– Suppose 2q′ ≤ q̄:

∗ Case q′ + q̄ ≤ d ≤ 3q′ + q̄: Then q2 =
d− q̄ − q′

2
+ q′ and q3 =

d− q̄ − q′

2
∗ Case 3q′ + q̄ < d ≤ 2q̄ + q′ then q3 = q′ and q2 = d− q̄ − q′.
∗ Case 2q̄ + q′ < d then q2 = q̄ , q3 = q′ and d5 = d− 2q̄ − q′ > 0

– Suppose 2q′ > q̄:

∗ q′ + q̄ ≤ d ≤ 3q̄ − q′: Then q3 =
d− q̄ − q′

2
and q2 = q′ +

d− q̄ − q′

2
∗ 3q̄ − q′ < d < q′ + 2q̄: Then q3 = d− 2q̄ y q2 = q̄

∗ q′ + 2q̄ ≤ d: Then q3 = q′ , q2 = q̄ and d5 = d− 2q̄ − q′ > 0

• Iteration 5: Now X5 = {6} , A5 = ∅ and B5 = {6}. So q3 = min(d − 2q̄, q̄) = d − 2q̄
(Since d < 3q̄), and d6 = 0

• Notice that X6 = ∅ ,τ = 6 and i∗ = 5.

Theorem 1.13 If we define q as before then q at iteration i∗ is the optimal solution to the
ISO problem.

Proof. We’ll first proof that at optimality,
∑

j∈G qj = d. Indeed, suppose q∗ ∈ Rn is the
optimum and

∑
j∈G q

∗
j > d, define ε =

∑
j∈G q

∗
j −d, P = {j ∈ G : q∗j > 0}. Considerer k ∈ P ,

ε < min(q∗k,
∑
j∈G

q∗j − d) and

q̃k =

{
q∗k − ε if j = k
q∗j if j 6= k

Then we can see the following

• q̃j ∈ [0, q̄] ∀j ∈ G, therefore q̃ 6= q∗ is feasible
• Every function cj(qj) is stricly increasing in qj. Therefore∑

j∈G

cj(q̃j) =
∑
j∈P

cj(q̃j) <
∑
j∈P

cj(q
∗
j ) =

∑
j∈G

cj(q
∗
j )

Which contradicts the fact that q∗ is the optimal solution.

So the optimum q∗ is such that:

∑
j∈G

cj(q
∗
j ) ≤

∑
j∈G

c(qj) ∀q ∈ Rn feasible (1.21)
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∑
j∈G

q∗j = d (1.22)

q∗j ∈ [0, q̄], ∀j ∈ G (1.23)

q∗ Satisfy the equipartition property (1.24)

Lets call q ∈ Rn the vector of quantities given by our construction. This is the vector that
assigns as much as possible to generators with low bids until the demand is satisfied (the idea
is that if the quantities are assign that way, generators with the lowest bids will have values
q′ or q̄ and the others will have to share the residual demand). We want to proof that q = q∗

Without loss of generality take α1 ≤ α2 ≤ . . . ≤ αn and suppose by contradiction that
q 6= q∗ . Then ∃k1, k2 such that q∗k1 < qk1 and q∗k2 > qk2 . Indeed from

∑
j∈G

q∗j =
∑
j∈G

qj = d we

can’t have an strict inequality without having the other one too and since q 6= q∗ we can’t
have only equalities.

We can conclude the following inequalities: qk1 > 0 , q∗k1 < q̄, qk2 < q̄ and q∗k2 > 0.

• If q∗k1 ∈ [q′, q̄): we have two cases:

1. if there exits k̃1 ∈ G such that q∗
k̃1
> q∗k1 and βk̃1 ≥ βk1 then we can considerer

q̃j = q∗j if j 6= k1, k̃1. q̃k1 = q∗k1 + ε and q̃k̃1 = q∗
k̃1
− ε, then is easy to see that:

∑
j∈G

(c(q∗j )− c(q̃j)) =(q∗k1 − q
′)βk1 + αk1q

′ + (q∗
k̃1
− q′)βk̃1 + αk̃1q

′

−
[
(q∗k1 + ε− q′)βk1 + αk1q

′ + (q∗
k̃1
− ε− q′)βk̃1 + αk̃1q

′
]

= ε(βk̃1 − βk1) > 0

Where the strict inequality comes from the equity property (if βk̃1 = βk1 then
q∗
k̃1

= q∗k1). →←.
2. ∀j ∈ G : q∗j ≤ q∗k1 or βj < βk1

– Let’s take j = k2,if q∗k2 ≤ q∗k1 is true then qk2 < q∗k2 ≤ q∗k1 < qk1 . We have 2
cases, if qk2 ≥ q′ then βk1 < βk2 . Therefore q∗k2 < q∗k1 , but since q

∗
k1
< q̄ we can

find ε > 0 such that q̃ as before is better than the optimum. Now if qk2 < q′

then αk1 < βk1 < αk2 (because qk1 > q′), then again we can find ε > 0 such
that q̃ is better than the optimum.→←. Therefore βk2 < βk1 must be true,
since qk1 > q∗k1 ≥ q′ we should have qk2 = q̄ before having qk1 > q′, but since
q̄ ≥ q∗k2 > qk2 we have a contradiction.

• If q∗k1 ∈ (0, q′)

– Case αk1 ≥ αk2 .
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1. if qk2 < q′ then from the initial inequalities q∗k2 > qk2 ≥ qk1 > q∗k1 and the
residual demand is 0 after all generators with slope equal to αk2 are dispatched.
So if αk1 6= αk2 qk1 = 0 > q∗k1 > 0 →←. Then αk1 = αk2 < βk2 and qk1 = qk2
now if q∗k2 ≤ q′ then q∗k2 = q∗k1 but from the inequality q∗k2 > q∗k1 , therefore
q∗k2 > q′ but since q′ > qk2 = qk1 > q∗k1 we can take ε > 0 such that q̃ as before
is better than the optimum.

2. if qk2 = q′ then βk2 ≥ αk1 otherwise qk2 > q′ or qk1 = 0, also if βk2 > αk1
then q̃ is better than the optimum, so we just need to see the case βk2 = αk1
but since qk2 = q′ this means that the demand was satisfied before using the
slopes βk2 and αk1 therefore qk1 = 0 which is a contradiction.

3. if qk2 > q′ we have 3 cases, if βk2 < αk1 then since qk2 < q̄ the residual
demand is finished when qk2 uses the slope βk2 , therefore qk1 = 0 which is a
contradiction. If βk2 > αk1 then qk1 = q′ so q∗k1 < qk1 = q′ then exists ε > 0
such that q̃ is better than the optimum. Finally in the case βk2 = αk1 , since
qk2 < q̄ the residual demand is fully dispatched in this iteration, if qk2−q′ = qk1
then q∗ doesn’t satisfy the equipartition property, therefore we need to see the
following cases: if q̄ > 2q′ then qk1 = q′ and from the inequality q∗k1 < q′ so q̃
is better than the optimum. The last case is 2q′ > q̄ but this can’t happend
since it would mean that qk2 = q̄ < q∗k2 ≤ q̄.

– Case αk1 < αk2
1. Since 0 < q∗k1 < q′ we should have q∗k2 = 0 otherwise there exists ε > 0 such

that q̃ is better than the optimum, but from the initial inequality this would
mean qk2 < 0 which is a contradiction.

Therefore q = q∗.

It’s not hard to see that the same remains true if the maximum capacity depends on the
generator that we are considering,i.e, we have q̄n for n ∈ G instead of q̄ ∀n ∈ G. The same
idea can be extended to the case where we have a piecewise linear function with more than 2
pieces. The proof becomes more cumbersome because it increases the amount of combinations
to verify. Also in both cases, we are not be able to writte the qi values explicitly in each
iteration i, as we can in the simplified case.
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1.6 Procedure

Here we discuss the general procedure to compute the expected payoffs at equilibrium. We
compute the expected payoff by taking the average value of de payoffs for each demand d in
the discretization D which converges to the real expectation by the law of large numbers.

The following pseudocode gives the idea of the algorithms that are programmed for the
different cases in type of strategies or number of players

Result: Expected Payoffs at Nash Equilibrium in mixed strategies
initialization;
Input: Number of players |G| and Maximum capacity value q̄k for each player k ∈ G;
Step 1: Discretize the demand distribution D;
Step 2: Define the strategies vectors Sk of each player k ∈ G;
for d ∈ D do

for each strategy combination do
1. Assign the optimal amounts qk to each player k ∈ G and calculate the
shadow price λ using the ISO solution if we have it or by computing it using
an algorithm ;
2. Compute each player payoff Ud

k (s) for that strategy combination s
end

end
for each player k ∈ G do

1. Compute the Expected payoff matrix:

Ūk =
1

|D|
∑
d∈D

Ud
k

end
Step 3: Compute Nash equilibrium σ∗;
for each player k ∈ G do

1. Compute the expected payoff Ek =
∑
s∈S

σ∗(s)Ūk(s)

end
Step 5: Return Expected Payoffs at equilibrium in mixed strategies;

Algorithm 1: Expected Payoffs Algorithm

There is basically two important steps, first compute the expected payoff matrix and
second compute the Nash equilibrium given those matrices.
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1.7 Numerical Results For Piecewise Linear bids

1.7.1 2 pieces Linear function

We consider 2 parameters, α, β ∈ [0, 2] such that α < β this defines a piecewise linear function
c(q) = αq if q ≤ q′ and c(q) = β(x− q′) + αq′ otherwise.

We have 2 versions for this function, the first one using the dispatchProg function from
section 1 and the second one using the algorithm previously described

N is how many points are we going to use for the discretization and to have more intuition
about the results obtained, we consider the case symmetric.

We use the following slopes: The coordinate i from α is αi = 0.05 +
2− 0.05

N
i, we also

use this discretization for β. So we created a matrix of all feasible strategies x, in the first
column it has the α coeficient and in the second column β coeficient such that α < β. Since
is the symmetric case, player every other player has the same strategy space.

Now that we have the payoff matrices, we compute the nash equilibriums using Lemke-
Howson algorithm for the 2 players case and when we have 3 or more players, the code is
analogous, except that we use Bapti [10] algorithm to find the Nash equilibrium.

1.7.2 Changing discretization length

Discretization length Player 1’s Expected Payoff Player 2’s Expected Payoff
6 0.1733 0.1733
10 0.1458 0.1458
14 0.1366 0.1366
18 0.1414 0.1414

Table 1.1: Expected Payoffs for different discretizations length

The difference between the expected payoffs for N = 10 and 14 with respect to N = 18 is
≈ 3%.
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Figure 1.3: Expected payoffs vs N

1.7.3 Changing The PriceCap

Price-Cap value Player 1’s Expected Payoff Player 2’s Expected Payoff
1 0.1120 0.1110
1.1 0.1174 0.1193
1.2 0.1278 0.1278
1.3 0.1331 0.1236
1.4 0.1303 0.1275
1.5 0.1354 0.1349
1.6 0.1384 0.1376
1.7 0.1394 0.1394
1.8 0.1458 0.1458
1.9 0.1458 0.1458
2 0.1458 0.1458
3 0.1458 0.1458

Table 1.2: Expected Payoffs vs PriceCap
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Figure 1.4: Expected Payoffs vs PriceCap

Since the maximum price given by λ is 2, having a PriceCap higher than that doesn’t change
the expected payoffs.

1.7.4 Changing q̄

We fixed d = 0.5 and choose values of q̄ such that d < 2q̄.

q̄ value Player 1’s Expected Payoff Player 2’s Expected Payoff
0.3 0.1974 0.1974
0.35 0.1159 0.1159
0.4 0.0890 0.0890
0.45 0.0635 0.0635
0.5 0.0631 0.0634
1 0.0634 0.0634

Table 1.3: Expected Payoffs vs q̄
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Figure 1.5: Expected payoffs for different values of q̄

This makes sense given that decreasing the value of q̄ makes the competition stronger and
for q̄ > d. i.e, q̄ > 0.5 nothing chances since both generators can dispatch the entire demand
for every value q̄ > d.

1.7.5 Sensitivity Analisys

Let’s fix d = 0.7, q̄ = 0.5 and q′ = 0.25. We’ll first make a perturbation ±ε to the capacity
q̄.

The following table correspond to a perturbation in the capacity q̄ of +ε = 0.05 which is
0.1% of the capacity value.
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N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.5022 0.4804 4.3409 0.868261 1.099544
7 0.4171 0.4157 0.3357 1.368339 1.837789
8 0.3793 0.3661 3.4801 3.464493 3.482522
9 0.3966 0.3358 15.3303 6.735987 6.545159
10 0.3925 0.3676 6.3439 12.727476 12.418359
11 0.4019 0.3564 11.3212 21.866019 22.039640
12 0.3988 0.3512 11.9358 38.157141 37.754282

Table 1.4: Perturbation +ε = 0.05 corresponding to 10% of q̄

As we can see, we get payoffs from 0.3% to 15% lower just by increasing 10% the capacity,
which means more competition between firms. While computation time is pretty much the
same in all cases.

Now if we decrease q̄ in ε = 0.05, i.e, in 10%

N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.5022 0.5062 0.7902 0.868261 0.865619
7 0.4171 0.5010 16.7465 1.368339 1.848609
8 0.3793 0.4871 18.5765 3.464493 3.460056
9 0.3966 0.4874 18.6239 6.735987 6.543319
10 0.3925 0.4878 19.5365 12.727476 12.610643
11 0.4019 0.4896 17.9133 21.866019 21.837785
12 0.3988 0.4948 19.4087 38.157141 37.797952

Table 1.5: Perturbation −ε = 0.05 corresponding to 10% of q̄

Payoffs gets between 0.8% to 20% higher since in this case we have less competition
between firms.

If we make smaller perturbations 1% we still get big differences between payoffs. As we
can see from the following 2 tables:
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N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.5022 0.5104 1.6008 0.868261 1.0134
7 0.4171 0.4159 0.2907 1.368339 1.1154
8 0.3793 0.3773 0.5149 3.464493 3.1372
9 0.3966 0.3977 0.2792 6.735987 6.3802
10 0.3925 0.3878 1.1970 12.727476 12.3696
11 0.4019 0.3912 2.6677 21.866019 22.0075
12 0.3988 0.3901 2.1847 38.157141 38.2518

Table 1.6: Perturbation +ε = 0.005 corresponding to 1% of q̄

N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.5022 0.4424 11.9097 0.868261 1.0686
7 0.4171 0.4615 9.6230 1.368339 1.4922
8 0.3793 0.4125 8.0413 3.464493 3.1396
9 0.3966 0.4216 5.9315 6.735987 6.2966
10 0.3925 0.4124 4.8258 12.727476 12.4007
11 0.4019 0.4106 2.1211 21.866019 22.0905
12 0.3988 0.4138 3.6275 38.157141 38.3744

Table 1.7: Perturbation −ε = 0.005 corresponding to 1% of q̄

Now with even smaller perturbations 0.1% we get the following results:

N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.5022 0.5025 0.0537 0.868261 0.9095
7 0.4171 0.4169 0.0458 1.368339 1.5043
8 0.3793 0.3808 0.3865 3.464493 3.1561
9 0.3966 0.3995 0.7262 6.735987 6.3002
10 0.3925 0.3918 0.1774 12.727476 12.4707
11 0.4019 0.4008 0.2651 21.866019 22.1682
12 0.3988 0.3976 0.2998 38.157141 38.5413

Table 1.8: Perturbation ε = 0.005 corresponding to 0.1% of q̄
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N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.5022 0.4429 11.8060 0.868261 1.0604
7 0.4171 0.4613 9.5820 1.368339 1.4799
8 0.3793 0.4007 5.3448 3.464493 3.1710
9 0.3966 0.4179 5.1080 6.735987 6.3378
10 0.3925 0.4064 3.4147 12.727476 12.4600
11 0.4019 0.4036 0.4189 21.866019 22.3011
12 0.3988 0.4079 2.2242 38.157141 38.6884

Table 1.9: Perturbation −ε = 0.005 corresponding to 0.1% of q̄

We can see that even for small values of ε making a small perturbation of −0.1% can
make a significant difference between payoffs for a small value in the discretization length.
While for perturbations of +1% or +0.1% the differences are small in all cases.

If we use a demand vector d = [0.05 0.1 0.15 0.2 0.25 0.75 0.8 0.85 0.9 0.95]
instead of a fixed demand, we get the following:

N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.3841 0.3837 0.0954 0.9048 0.9204
7 0.3808 0.3803 0.1305 1.3507 1.3769
8 0.3771 0.3767 0.1156 3.3409 3.3596
9 0.3762 0.3757 0.1310 6.7234 6.6437
10 0.3763 0.3759 0.1127 12.9409 12.9748
11 0.3773 0.3769 0.1076 23.0330 22.9176
12 0.3659 0.3654 0.1232 39.8119 39.8590

Table 1.10: Perturbation ε = 0.005 corresponding to 0.1% of q̄

N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.3841 0.3938 2.4516 0.9048 0.8018
7 0.3808 0.3904 2.4681 1.3507 1.6434
8 0.3771 0.3882 2.8607 3.3409 3.4097
9 0.3762 0.3816 1.4128 6.7234 6.6732
10 0.3763 0.3884 3.1261 12.9409 12.9237
11 0.3773 0.3811 0.9845 23.0330 22.9281
12 0.3659 0.3790 3.4574 39.8119 39.6501

Table 1.11: Perturbation −ε = 0.005 corresponding to 0.1% of q̄

Notice that computation time is just a little bit higher, since we need to compute the
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best ISO solution for all the demands, but thanks to the fast algorithm given in the previous
sections, this is done in less than 1 second.

The case when we increase the capacity value in ε we get a difference in payoffs similar to
the percentaje given by that increase. While in the case when we lower the capacity value,
we get difference in payoffs from 1% to 3.5% which is in any case better than for a fixed
demand value.

The same happens when we make a perturbation ±ε of 1% of the capacity value q̄

N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.3841 0.3808 0.8630 0.9048 0.8360
7 0.3808 0.3754 1.4287 1.3507 1.6527
8 0.3771 0.3725 1.2218 3.3409 3.3677
9 0.3762 0.3717 1.1948 6.7234 6.6583
10 0.3763 0.3719 1.1718 12.9409 13.0408
11 0.3773 0.3730 1.1390 23.0330 23.1689
12 0.3659 0.3608 1.3849 39.8119 39.6372

Table 1.12: Perturbation +ε = 0.05 corresponding to 1% of q̄

N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.3841 0.3982 3.5400 0.9048 0.7607
7 0.3808 0.3955 3.7085 1.3507 1.6209
8 0.3771 0.3926 3.9559 3.3409 3.3477
9 0.3762 0.3866 2.7022 6.7234 6.6580
10 0.3763 0.3928 4.1954 12.9409 13.1059
11 0.3773 0.3857 2.1706 23.0330 23.1303
12 0.3659 0.3847 4.8748 39.8119 39.9530

Table 1.13: Perturbation −ε = 0.05 corresponding to 1% of q̄

Having a demand vector, makes the problem less sensitive to perturbations on the capacity
values.

Now we’ll make perturbations to the bids.
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N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.3841 0.3852 0.2943 0.9065 0.8532
7 0.3808 0.3817 0.2366 1.3508 1.6187
8 0.3771 0.3783 0.3077 3.3534 3.3458
9 0.3762 0.3771 0.2405 6.7116 6.8102
10 0.3763 0.3772 0.2322 12.9257 13.0110
11 0.3773 0.3782 0.2364 22.8843 22.9885
12 0.3659 0.3667 0.2316 39.5118 39.7667

Table 1.14: Perturbation of +ε = 0.005 to all the slopes

N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.3841 0.3829 0.3841 0.9065 1.1405
7 0.3808 0.3799 0.3808 1.3508 1.6306
8 0.3771 0.3760 0.3771 3.3534 3.3692
9 0.3762 0.3753 0.3762 6.7116 6.7686
10 0.3763 0.3754 0.3763 12.9257 12.9667
11 0.3773 0.3764 0.3773 22.8843 23.1508
12 0.3659 0.3651 0.3659 39.5118 39.4117

Table 1.15: Perturbation of −ε = 0.005 to all the slopes

We can see that the problem is not that sensitive to small perturbations.

Let’s see what happens with a higher perturbation:

N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.3841 0.3953 2.8296 0.9065 0.8382
7 0.3808 0.3900 2.3481 1.3508 1.6199
8 0.3771 0.3867 2.4815 3.3534 3.3925
9 0.3762 0.3856 2.4368 6.7116 6.6566
10 0.3763 0.3856 2.4234 12.9257 12.9103
11 0.3773 0.3867 2.4220 22.8843 22.8978
12 0.3659 0.3757 2.5979 39.5118 39.4666

Table 1.16: Perturbation of +ε = 0.05 to all the slopes
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N Payoff without
perturbation

Payoff with
perturbation

Difference
%

Computation Time
without perturbation [s]

Computation
Time [s]

6 0.3841 0.3762 2.0654 0.9065 1.1364
7 0.3808 0.3712 2.5101 1.3508 1.3578
8 0.3771 0.3643 3.3826 3.3534 3.3866
9 0.3762 0.3665 2.5795 6.7116 6.6601
10 0.3763 0.3671 2.4500 12.9257 13.1507
11 0.3773 0.3680 2.4742 22.8843 22.7894
12 0.3659 0.3610 1.3472 39.5118 39.8509

Table 1.17: Perturbation of −ε = 0.05 to all the slopes

The difference is still small, a perturbation 10 times higher than before gives a difference
in % smaller than 10 times the previous difference of 0.3%.

Adding more players

We considerer a discretization of length N = 7.

Number of players Expected Payoffs
2 0.1733
3 0.0657
4 0.0173
5 0.0103

Table 1.18: Expected Payoffs vs Number of players in a symmetrical equilibrium

In all cases the expected payments are the same for all players It should be noted that
payments decline rapidly. Notice that since the function changes depending on

q̄

2
= 0.25 and

d < 1 = 2q̄ we have for N ≥ 4 that all players use only the first slope α and for N ≤ 3 only
for d ≥ 0.75 we have residual demand available, so the competition becomes stronger.

It should be noted that the biggest problem in increasing the number of players is that
the matrices increase greatly in size so that they can not be solved for fine discretizations
due to RAM memory problems.
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1.8 Quadratic strategies

Quadratic strategies has been studied in papers such as [4] and [5]. Where they characterize
the set of Nash equilibria depending on different values of the demand and the best response
of a producer that is the optimal bid(s) maximizing his profit. However, there are some
fundamental differences between their model and the one considered here, in theirs de demand
is fixed (not stochastic) and known by the players and ISO and the price is the bid, not the
shadow price. These differences allow them to make a characterization of the set of best
responses, while in our model you cannot follow the same steps to generalize it.

Assume that the generators chooses two parameter parameters αn and βn which define a
quadratic function function cn(qn) = αnqn + βnq

2
n. The parameters (α, β) are considered in

[0, 1]2. Then for fixed d the dispatch problem is:

ISO(c, d) =



min
∑
n∈G

αnqn + βnq
2
n

s.t
∑
e∈Kn

re

2
f 2

e + dn ≤ qn +
∑
e∈Kn

fesgn(e, n), n ∈ G∑
e∈Kn

re

2
f 2

e + dn ≤
∑
e∈Kn

fesgn(e, n), n /∈ G

qn ∈ [0, q̄n]
f ∈ F

We will first consider the simplified case where there are not resistance losses and there
are only 2 players. Then the dispatch problem is as follows:

min{α1q1 + β1q
2
1 + α3q3 + β3q

2
3 : q1 + q3 ≥ d, qi ∈ [0, q̄]}

Figure 1.6: Feasible set for d = 0.99 and q̄ = 0.5, The x coordinate represents q1 and the y
coordinate q3
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Note first that f(q1, q3) = c1(q1) + c3(q3) = α1q1 + β1q
2
1 + α3q3 + β3q

2
3 is continuous and

Define the following functions:

g1(q1, q3) = d− q1 − q3

g2(q1, q3) = −q1

g3(q1, q3) = −q3

g4(q1, q3) = q1 − q̄

g5(q1, q3) = q3 − q̄

It is clear that every gi(q1, q3) i ∈ {1, ..., 5} is continuous and the constrains can be written
as g−1

i ((−∞, 0]) therefore F =
⋂

i∈{1,...,5}

g−1
i ((−∞, 0]) is a closed set in Rn. On the other hand

is clear that F is bounded, therefore F is compact in Rn.

Notice that we have a convex problem and
( q̄

2
,
q̄

2

)
is in the feasible set and gi

( q̄
2
,
q̄

2

)
< 0

for all i ∈ {1, ..., 5}. Then the Slater condition is fulfilled.

Therefore there exists a minimum in the feasible set. An analytical solution can be found
using KKT.[9]

min{α1q1 + β1q
2
1 + α3q3 + β3q

2
3, q1 + q3 ≥ d, qi ∈ [0, q̄]} (1.25)

L(q, µ) = α1q1+β1q
2
1 +α3q3+β3q

2
3 +µ1(d−q1−q3)−µ2q1−µ3q3−µ4(q̄−q1)−µ5(q̄−q3) (1.26)

∂L

∂q1

= α1 + 2q1β1 − µ1 − µ2 + µ4 = 0 (1.27)

∂L

∂q3

= α3 + 2q3β3 − µ1 − µ3 + µ5 = 0 (1.28)

µ1(d− q1 − q3) = 0 (1.29)

µ2q1 = 0 (1.30)

µ3q3 = 0 (1.31)

µ4(q1 − q̄) = 0 (1.32)

µ5(q3 − q̄) = 0 (1.33)

q1 + q3 ≥ d (1.34)

µi, qj, q̄ ≥ 0, i ∈ {1, ..., 5}, j ∈ {1, 2} (1.35)

1. If q1 + q3 6= d then µ1 = 0 and there is 2 cases:
1.1) If q1 = 0 then q3 > 0, so equation (1.31) implies that µ3 = 0 then equation (1.28)

implies µ5 = −α3− 2q3β3 < 0 which can’t happend. The case q3 = 0 is analogous.
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1.2) If q1 6= 0 then µ2 = 0. Replacing this value in the equation (1.27) leads to
µ4 = −(α1 +2q1β1) < 0 which can’t happend, and the same goes to the case when
3

2. If q1 + q3 = d.
2.1) If q1 < q̄ =⇒ µ4 = 0. We have 2 cases:

2.1.1) q3 < q̄, then µ5 = 0. Since q1 + q3 = d necessarily one is strictly greater
than 0, suppose q1 > 0 then µ2 = 0. Now if q3 = 0 we have directly
that q1 = d, if not q3 > 0 and µ3 = 0 so we get the system of equations:
α1 + 2q1β1 = α3 + 2q3β3 and q1 + q3 = d. Whose solution is: (q1, q3) =

(
α3 − α1 + 2dβ3

2(β3 + β1)
,
α1 − α3 + 2dβ1

2(β3 + β1)
) and whose multiplier value is µ1 = α1+21β1

.Now if q1 = 0 then q3 = d.
2.1.2) If q3 = q̄, then q1 = d− q̄.

2.2) If q1 = q̄, then µ2 = 0 , q3 = d− q̄ y µ1 = α1 + 21β1

In summary:

Generator 1’s amount Generator 2’s amount Multiplier
q̄ d− q̄ α3 + 2(d− q̄)β3

d− q̄ q̄ α1 + 2(d− q̄)β1

0 d α3 + 2dβ3

d 0 α1 + 2dβ1

α3 − α1 + 2dβ3

2(β3 + β1)

α1 − α3 + 2dβ1

2(β3 + β1)

α3β1 + α1β3 + 2dβ1β3

(β1 + β3)

Table 1.19: Local Minimum Points and Multiplier Value µ1

Where its calculation indicates for what cases it works, for example q1 can not be d if d
is greater than q̄.

Remarks:

• When α1 = α3 and β1 = β3 then
α3 − α1 + 2dβ3

2(β3 + β1)
=
α1 − α3 + 2dβ1

2(β3 + β1)
=

d

2
which is one

of the intuitive solutions to the problem.
• For the uniqueness of multiplier µ1 in the case in which any of the amounts is q̄ it is

required that 2q̄ > d, condition that was already part of the model. In the case that
any of the amounts is 0 it is required that q̄ 6= d, this condition was not part of the
model and in the simulations values of q̄ and d are used so that this is fulfilled.
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1.9 Numerical Results for Quadratic bids

Using a distribution of demands d = [0.05, 0.1, 0.15, 0.2, 0.25, 0.75, 0.8, 0.85, 0.9, 0.95] and
q̄ = 0.5 and. We obtain the following:
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Player 1 quadratic
Player 2 quadratic
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Figure 1.7: Quadratic and 2 pieces Linear comparison

When comparing both models with 2 players we noticed that the results are similar. The
difference is ≈ 0.03 which corresponds to an 8%

Let’s see what is happening for N = 6. In this case, for the linear problem in 2 pieces we
have the following:

α β weight
0.0500 0.9500 0.1982
0.0500 1.1000 0.1609
0.0500 1.2500 0.2840
0.0500 1.4000 0.3566

Table 1.20: Strategies with their respective probabilities in Equilibrium
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Recall that the vector of demands that we are using is

d = [0.05, 0.1, 0.15, 0.2, 0.25, 0.75, 0.8, 0.85, 0.9, 0.95]

And q′ = 0.25, then, when d ≤ 0.25 = q′ the firm with the lowest bid will be the dispatched
first, with what it makes sense that for α you choose the lowest value you can take. Now
for q′ + q̄ < d, both firms will dispatch using the second piece of their function regardless of
strategy, for q′ < d ≤ 2q′ both firms dispatch using the first piece and for q̄ = 2q′ < d ≤ q′+ q̄
a firm dispatches using the second piece, while the other uses the first, basically comparing
the values f1(d− q′) + f2(q′), f1(q′) + f2(d− q′), f1(q̄) + f2(d− q̄) y f1(d− q̄) + f2(q̄). So it
makes sense that for β you do not choose the lowest value you can take, because for the first
cases of demand, does not influence the β and for those who follow, d ≥ 0.75 always both
firms are dispatched using the second slope.

For each d ∈ D we have an amount Qd, so we define the average amount as Q̄ =
∑

d∈DQd.
Below we show the average quantities obtained for the i, j coordinates of strategies with
positive probability in the mixed equilibrium.

Q1 =

0.2500 0.2875 0.2875 0.2875

Q2 =

0.2500 0.2125 0.2125 0.2125
0.2125 0.2500 0.2875 0.2875 0.2875 0.2500 0.2125 0.2125
0.2125 0.2125 0.2500 0.2875 0.2875 0.2875 0.2500 0.2125
0.2125 0.2125 0.2125 0.2500 0.2875 0.2875 0.2875 0.2500

Table 1.21: Average amounts for non-zero weight strategies

U1 =

0.1929 0.3215 0.4190 0.5165

U2 =

0.1929 0.2300 0.2983 0.3665
0.2300 0.2757 0.4190 0.5165 0.3215 0.2757 0.2983 0.3665
0.2983 0.2983 0.3586 0.5165 0.4190 0.4190 0.3586 0.3665
0.3665 0.3665 0.3665 0.4415 0.5165 0.5165 0.5165 0.4415

Table 1.22: Expected Payoffs

On the diagonal when both have the same strategy the amounts are
d̄

2
what makes sense

and when j < i the average amount is the residual, because the other firm has a lower price.

Now when we use the uniform demand that was used in the previous simulations:
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Figure 1.8: Quadratic and 2 parts Linear comparison with uniform demand

The difference is ≈ 15%.

We can also consider α, β and γ ∈ [0, 2] and that the function changes the slope in the

points
q̄

3
and

2q̄

3
. So We can compare with a 3 pieces linear function.
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Figure 1.9: Expected Payoffs vs Discretization length N for different strategies

We noticed that the approximation using the 3 pieces linear function is better.
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1.9.1 Sensitivity Analysis

We will like to know what happends when the bids or the capacity vary in a quantity ε small.
We will consider the simplier case when there is only 2 firms and no resistance losses.

Suppose first that every bid changes in ε

Expected Value
N ε = +0.001 ε = −0.001 ε = 0.01 ε = −0.01 No variation
6 0.3543 0.3530 0.3571 0.3472 0.3537
7 0.3559 0.3543 0.3464 0.3546 0.3552
8 0.3584 0.3573 0.3627 0.3513 0.3580
9 0.3465 0.3490 0.3459 0.3432 0.3496
10 0.3468 0.3451 0.3414 0.3429 0.3460

Table 1.23: Expected payoffs by player 1 when varying the bids

We can see that when ε = 0.001 the changes are around 0.2%, while for a change ten
times larger, i.e, ε = 0.01 the changes are between 0.2% and 2%.

We can also note that there is a tendency to have a higher expected gain when all the bids
are larger, however, it is not always so. In the case in which the amount ε was subtracted
the expected values decreased in all cases.

Suposse the capacity q̄ changes in ε:

Expected Value
N ε = +0.001 ε = −0.001 ε = 0.01 ε = −0.01 No variation
6 0.3495 0.3523 0.3462 0.3682 0.3537
7 0.3556 0.3532 0.3338 0.3668 0.3552
8 0.3578 0.3567 0.3358 0.3586 0.3580
9 0.3578 0.3485 0.3368 0.3680 0.3496
10 0.3361 0.3444 0.3287 0.3662 0.3460

Table 1.24: Expected payoffs by player 1 when varying the capacity q̄
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1.10 Simulations with small resistances

We introduce a resistance r = 10−3 to the system so that the ISO problem is the general one:

ISO(c, d) =



min
∑
n∈G

αnqn + βnq
2
n

s.t
∑
e∈Kn

re

2
f 2

e + dn ≤ qn +
∑
e∈Kn

fesgn(e, n), n ∈ G∑
e∈Kn

re

2
f 2

e + dn ≤
∑
e∈Kn

fesgn(e, n), n /∈ G

qn ∈ [0, q̄n]
f ∈ F

We obtain the following results:
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(c) Difference between expected payoffs for play-
ers 1 and 2
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We see that the results are similar which makes sense since the resistance is small. Below
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are 2 graphs, the first one has the expected values (profit) of both players in the case without
resistance and in the case with small resistance, the second has the differences of these profit
for each player in both cases.
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(f) Difference between expected payoffs

It should be noted that by introducing the same resistance to both players we continue to
have symmetry which is reflected in the results.

In general, the number of pivots used by the Lemke Howson algorithm decreases when
considering the case with resistance. The following table shows the values.

Discretization Length 6 7 8 9 10
Number of Pivots

Without resistance 45 65 65 59 87
With resistance 41 64 65 60 86

Therefore we can compute the Nash equilibria a little bit faster, at the cost of solving
the ISO problem slower. Since we can solve the ISO problem really fast when there is no
resistance and the results are similar when the resistance is small, we focus on developing in
the first instance, algorithms and routines for the case in which the resistance is zero.
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Chapter 2

Scenarios Approach

The complexity of the optimal bidding problem is greatly compounded by the fact that the
calculation of the shadow price and the dispatched quantities, depends on the knowledge of
price vectors for all generators, as well as their generation capacity. However, this information
is not available to any single company at the time of its bid. Therefore, the bidding strategy
has to take intro account the uncertainty around these values.

One approach to model this simultaneous competition process is through a Nash equilib-
rium which is what was done in chapter 1. Another approach, which is done in this chapter,
is to define a set of scenarios for the remaining generators and maximize the expected profit
over all scenarios. This approach was presented by Baíllo et al. [8]. The idea is to assume
that, after the clearing of each market mechanism, information about the submitted aggre-
gate offer and demand curves is made publicly available and agents can then build scenarios
for its rivals bids.

Let the bids from generators j ∈ G \ {i} be represented by a set of scenarios indexed by s,
which occur with exogenous probabilities (ps)s∈S. Then the problem that generator i solves
is:

Bi(d, p) =

max
∑
s∈S

psλs(d)qi
s(d)

s.t (qi
s, λs) ∈ ISO(s, d) ∀s ∈ S

Where ISO(s, d) is the dispatch problem solved by the ISO when the demand value is d
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an the scenario s ∈ S is played.

ISO(s, d) =



min
∑
n∈G

cns (qns )

s.t
∑
e∈Kn

re

2
f 2

e + dn ≤ qns +
∑
e∈Kn

fesgn(e, n), n ∈ G∑
e∈Kn

re

2
f 2

e + dn ≤
∑
e∈Kn

fesgn(e, n), n /∈ G

qns ∈ [0, q̄n]
f ∈ F

Notation
G Set of Generators
d Total demand
S Set of possible scenarios
ps Probability of scenario s happening
pS Vector of probabilities (ps)s∈S
λs(d) Shadow price associated to scenario s and demand d
λS(d) Vector of shadow prices λs(d) s ∈ S
qi
s(d) Quantity that the ISO assigns to generator i in scenario s
qi
S(d) Vector of quantities qi

s for s ∈ S
qs Vector of quantities qn for n ∈ G in scenario s

We also considered λs ⊥

(∑
n∈G

qns ≥ d

)
, ∀s ∈ S which means that is the shadow price

associated to the nodal inequality as in chapter 1, and since the ISO problem does not
necessarily have a unique solution we added the equipartition property. This can be thought
of as if two or more generators have the same bids, they dispatch the same quantity. This
option is chosen instead of using the optimistic or pessimistic formulation of the problem
since its fair for every player.

In our simplified case, all generators have the same maximum capacity of production, the
demand is fixed and there are no energy losses. Therefore the simplified ISO problem is:

ISO(s, d) =


min

∑
n∈G

cns (qns )

s.t
∑
n∈G

qns ≥ d

qns ∈ [0, q̄]
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2.1 Linear Bids

Consider the case when we have linear bids, then the problem can be written as:

Bi(α, β, d, p)lin =

 max
αi,βi,qiS ,λS

∑
s∈S

psλs(α
i, α−i, βi, β−i, d)qi

s(α
i, α−i, βi, β−i, d) =

∑
s∈S

psλsq
i
s

s.t (qi
S, λS) ∈ ISO(αi, βi, d, p)

In order to gain some insight, suppose that α2 ≤ . . . ≤ α|G|. We are going to solve the
problem for generator 1 for this fixed scenario.

At the optimal solution of the lower level problem, for a given price bid α1, generators are
loaded by increasing price until demand is met.

Figure 2.1: Leader’s profit

Let k be the index that indicated the maximum number of generators that can be dis-
patched. Therefore k is the the minimum index such that q′ +

∑k
j=2 q

′ > d.

If α1 ≤ αk, generator 1 produces its maximum capacity at the optimal solution of the
follower problem and the leader’s objective is constant and equal to αkq′.

For αl < α1 ≤ αl+1, where l ∈ [k, |G| − 1], the production of company 1 at the optimal
solution of the follower problem is given by ql−k1 = max{0, d −

∑l
j=2 q

′} and the leader’s
objective is a linear function of α1 with slope ql−k1 . Clearly ql−k1 > ql+1−k

1 for every l. When
α1 exceeds a sufficiently large value, q1 = 0 at the optimal solution of the follower problem
and the leader’s profit is zero.

Therefore the leader’s objective function is neither continuous nor concave. it is a piecewise
linear function that presents local maxima at points where α1 assumes the value of the price
bid of another generator.
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It can be seen then that even in one of the simplest cases, the problem is not trivial at all
since algorithms can be stuck in stacionary points.

Moreover different formulations give very different results,α1 = αk means α1 = α2 = . . . =
αk since we assume that α2 ≤ . . . ≤ α|G|. In the optimistic case for the leader the profit will

be α1q
′. In the pessimistic case the profit will be max{0, d −

k∑
j=2

q′}α1 < q′α1 and the fair

case, this is the one with the equipartition property will give a profit of
d

k
α1 < qα1 where the

inequality follows from q′ +
∑k

j=2 q
′ = kq′ > d =⇒ q′ >

d

k
. This is why the profit function

comes from below the point at the break points.

2.1.1 Convergence result for Linear Bids

Here we will follow Fampa’s Paper [14] together with the techniques shown in chapter 1. In
order to show the convergence of heuristics.

Since we consider d < Nq̄. The previous problem is equivalent to his (MPEC). Then we
have:

(MPEC)i(α−i, d, p) =



max
αi,qiS ,λS

∑
s∈S

psλsq
i
s

s.t
∑
n∈G

qns = d, s ∈ S

0 ≤ qns ≤ q̄, n ∈ G, s ∈ S
λs + πq

n

s − ans ≤ 0, n ∈ G, s ∈ S
πq

n

s ≤ 0, n ∈ G, s ∈ S∑
s∈S

(∑
n∈G

ans q
n
s − dλs −

∑
n∈G

q̄πq
n

s

)
= 0

Consider the following problem obtained when we penalize the non-linear complementarity
constraint:

(MPEC)i
pen(α−i, d, p) =



max
αi,βi,qiS ,λS

∑
s∈S

psλsq
i
s − µ(aiqi

s − q̄πq
i

s + dλs)

s.t
∑
n∈G

qns = d, s ∈ S

0 ≤ qns ≤ q̄, n ∈ G, s ∈ S
λs + πq

n

s − ans ≤ 0, n ∈ G, s ∈ S
πq

n

s ≤ 0, n ∈ G, s ∈ S

Where µ > 0 is the penalty parameter.
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We will verify that the penalty scheme considered is an exact penalty scheme, i.e, when the
penalty parameter is large enough the complementary constraints will be satisfied. This result
was proven by Anandalingam andWhite [3] for linear bilevel programs and by Labbé,Marcotte
and Savard [17] for the model of taxation which is a bilinear-bilinear bilevel problem. Here
the bidding problem is an extension of the taxation problem.

Theorem 2.1 There is a penalty parameter µ̄ > 0 such that problems Bi(α−i, d, p) and
(MPEC)i

pen are equivalent for every µ > µ̄

Proof. For simplicity we are going to use i = 1, i.e, solve for the first player.

Following the notation used in Labbé’s paper [17], we can write problem (MPEC)i(α−i, d, p)
as:



max
T,x,yµ

Tx

s.a Ax ≥ b
µA = c+ y
µ ≥ 0

µ(Ax− b) = 0

Where:

1. T is a row vector with values psλs , s ∈ S on the first |S| := m coordinates and 0 in
the following (|G| − 1)m coordinates.

2. x is a column vector with values (q1
s1
, q1
s2
, . . . , q1

sm , q
2
s1
, . . . , q

|G|
sm ).

3. c is a row vector with values 0 on the first m coordinates and equal to the bids αns ,
n ∈ G \ {1}. Notice that this bids are parameters of the problem.

4. y is a row vector with values α1
s , s ∈ S in the first m coordinates and 0 in the following

(|G| − 1)m coordinates.
5. Since x is the quantity vector qS, the matrix A is simply the one that has the inequalities
qns ∈ [0, q̄] for n ∈ G,s ∈ S plus the demand inequality

∑
n∈G q

n
s ≥ d for s ∈ S.

6. We define the matrix P such that µP = T , this follows from the fact that the proba-
bilities ps ,s ∈ S are parameters of the problem and the multipliers λs are part of the
multipliers from µ. Therefore P is a matrix with values ps,s ∈ S and 0.

This yields to the bilinear program:

(MPEC)i
pen(α−i, d, p) =


max
T,x,y,µ

Tx−Kµ(Ax− b)
s.a Ax ≥ b

µA = c+ y
µ ≥ 0

From here the proof is the almost the same as the paper [17], the main difference is that
we have a more explicit relation between T and µ, also our follower problem has the from
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(c+ y)x instead of (c+ T )x+ dy, but as we’ll see in the proof, the explicit relation between
T and µ helps us with the proof.

Since strong duality holds for the lower level problem, a dual optimal solution of the lower
level problem is achieved at an extreme point of the dual polyhedron Γ = {µ : µA = c+y, µ ≥
0}, otherwise the maximum will be 0 which is not optimal. Denote by {µi, i ∈ I} its extreme
points and by {(xj, yj), j ∈ J} the set of extreme points of the primal polyhedron Π. Since
this polyhedron is bounded by the hypothesis of the network, we may also assume, without
loss of generality, that Π = convj∈J{(xj, yj)}. The maximum of the disjoint bilinear program
must be achieved at an extreme point (xj, yj, µi) ∈ Π× Γ (see [25]). Let:

K ≥ K∗ = max
i∈I,j∈J

{
µiPxj

µi(Axj − b)
: µi(Axj − b) > 0

}

Thus a point (xj, yj, µi) qualifies for optimality if:

µi(Axj − b) = 0

Since from the choise of K, at any other extreme point, the leader’s objective is nega-
tive, and therefore non optimal. It follows that the term µ(Ax − b) constitutes an exact
penalty function for the mathematical program (MPEC)i

pen(α−i, d, p), thus Bi(α, β, d, p)lin
and (MPEC)i

pen(α−i, d, p) are equivalent, whenever K is larger than K∗
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2.2 Piecewise Linear case

As we saw in Chapter 1 the linear case is contained in the linear case by pieces. In this case
the problem can be written as:

Bi(α, β, d, p) =

 max
αi,βi,qiS ,λS

∑
s∈S

psλs(α
i, α−i, βi, β−i, d)qi

s(α
i, α−i, βi, β−i, d) =

∑
s∈S

psλs(q
′xi

2,s + q̄xi
3,s)

s.t (qi
S, λS) ∈ ISO(αi, βi, d, p)

ISO(αi, βi, d, p) =



min
qS

∑
s∈S

∑
n∈G

(
αns q

′xn2,s + [(q̄ − q′)βns + αns q
′]xn3,s

)
s.t

∑
n∈G

(
q′xn2,s + q̄xn3,s

)
≥ d, ∀s ∈ S

xn1,s + xn2,s + xn3,s = 1, ∀n ∈ G,∀s ∈ S
xn1,s ≤ yn1,s, ∀n ∈ G,∀s ∈ S
xn3,s ≤ yn2,s, ∀n ∈ G,∀s ∈ S

yn1,s + yn2,s = 1, ∀n ∈ G,∀s ∈ S
ynj,s ∈ {0, 1} for j = 1, 2. ∀n ∈ G,∀s ∈ S
xnj,s ≥ 0 for j = 1, 2, 3. ∀n ∈ G,∀s ∈ S

Notation
G Set of Generators

αi, βi Generator i slopes
α, β Vectors with the slopes of all Generators

α−i, β−i Vector with de slopes of all Generators but i
d Total demand
S Set of possible scenarios
ps Probability of scenario s happening
pS Vector of probabilities (ps)s∈S

λs(α, β, d) Shadow price associated to scenario s
λS(α, β, d) Vector of shadow prices λs(α, β, d) s ∈ S
qi
s(α, β, d) Quantity that the ISO assigns to generator i in scenario s
qi
S(α, β, d) Vector of quantities qi

s for s ∈ S
qs Vector of quantities qn for n ∈ G in scenario s

xn2,s, x
n
3,s

Continuous variables belonging to the interval [0,1]
which are part of the decomposition of qns

yn2,s, y
n
3,s Binary variables associated to xn2,s, and xn3,s resp.

Since the slopes α−i and β−i are considered in the scenario s, we will write λs(αi, βi, d)
instead of λs(αi, α−i, βi, β−i, d) and the same with qi

s.

Here we used the model from Chapter 1.

qns = q′xn2,s + q̄xn3,s ∀n ∈ G,∀s ∈ S
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qs Satisfies the equipartition property∀s ∈ S

λs ⊥

(∑
n∈G

qns ≥ d

)
, ∀s ∈ S

2.2.1 Convergence result for Piecewise Linear Bids

The problem written in the previous way presents the complication that it is not straight-
forward how to write it linearly so we can use or extend in a simple way the result of the
linear case. So that for this part, we propose to see the problem as follows (for simplicity we
assume the case in which the function has 2 parts with break point q′).

Each generator n ∈ G is going to be considered as 2 generators one with bid αn and
capacity q′ an other with capacity q̄ − q′ and bid βn. As we saw in chapter 1, the dispatch
problem solved by the ISO is dispatching energy from the generator with the lowest bid
until demand is reached. So because of the structure of the problem, it is not necessary
to incorporate more restrictions. Therefore the piecewise linear problem can be seen as a
bilinear problem. So we can apply the previous penalty algorithm along with its convergence
result.

Bi(α, β, d, p) =

{
max

∑
s∈S psλsq̃

i

s.t (qi
S, λS) ∈ ISO(αi, βi, d, p)

Since we have a convex piecewise linear function, we can write it as a maximum of affine
functions.

ISO(αi, βi, d, p) =


min
qS

∑
s∈S

∑
n∈G

max{αns qns , βns qns + (αns − βns )q′}

s.a
∑
n∈G

qns ≥ d, ∀n ∈ G, s ∈ S

qns ∈ [0, q̄], ∀n ∈ G, s ∈ S

Which is equivalent to the lineal program:

ISO(αi, βi, d, p) =



min
qS

∑
s∈S

∑
n∈G

tns

s.a αns q
n
s ≤ tns , ∀n ∈ G, s ∈ S

βns q
n
s + (αns − βns )q′ ≤ tns , ∀n ∈ G, s ∈ S∑

n∈G

qns ≥ d, ∀n ∈ G, s ∈ S

qns ∈ [0, q̄], ∀n ∈ G, s ∈ S

Then the convergence results follows from Theorem 2.1.
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2.3 Numerical results

2.3.1 Procedure

Here we discuss the general procedures to compute generator’s i expected payoff and best
strategy. For simplicity we’ll considerer i = 1.

The following pseudocodes gives the idea of the algorithms that are programmed for the
different cases in type of strategies or number of players

Result: Expected Payoff and best strategy for generator 1
initialization;
Input: Number of players |G| , Maximum capacity value q̄k for each player k ∈ G and
probability vector pS of each scenario;
Step 1: For k ∈ {2, . . . , |G|}. Define the sets Ik := {j ∈ {1, . . . , |Sk|} : pk(j) > 0};
Step 2: Define a scenario as
s ∈ S = {(tj2 , . . . , tj|G| ∈ S2 × . . .× S|G| : j2 ∈ I2, . . . , j|G| ∈ I|G|};
for i ∈ |S1| do

1. Solve the ISO’s problem using our algorithm from chapter 1 ;
2. Compute the value psλ(ti, s)q

i
ti,s

, where s ∈ S
3. Save the value

∑
s∈S

psλ(ti, s)q
i
ti,s

as the new maximum if its greater than the

previous maximum
end
Step 3: Return Expected Payoff of generator 1 and best strategy.

Algorithm 2: Scenarios Approach Algorithm 1

And the penalization heuristic

Result: Expected Payoff and best strategy for generator 1
initialization;
Input: Number of players |G| , Maximum capacity value q̄k for each player k ∈ G, the
probability vector pS of each scenario and some initial point q̃sn, n ∈ G, s ∈ S;
while Complementary condition 6= 0 do

Solve penalized problem with qi
s = q̃i

s and obtain a solution α̃,λ̃s,πsqn n ∈ G, s ∈ S;
Solve the ISO problem for each scenario s ∈ S, considering α = α̃ and obtain a
solution q̃sn ,n ∈ G;
Increase µ

end
Return: Expected Payoff of generator 1 and best strategy.

Algorithm 3: Scenarios Approach Algorithm 2

As we saw, we can solve for piecewise linear functions using the linear case and the ISO
problem can be solved using our algorithm form chapter 1. The convergence of the sequence
produced by this procedure to the feasible set of the problem is guaranteed by theorem 1.
The idea of the heuristic is to start with the best solution for the leader problem and move
from this solution to the feasible set of the problem, where the complementary conditions of
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the follower problem are satisfied.

The heuristics consider the solution of each nonlinear penalized problem iteratively and
approximately, through the solution of linear programs, so the non-convex optimization prob-
lem is replaced by a sequence of linear programs, which tend to be easier and where the primal
variables qjs are separated from the dual variables and from the bids.

The sequence may not converge to an optimal solution of the bilevel program. Since
bilevel problems are non-convex, the heuristics may converge to a local optimal solution, as
illustrated by Figure 2.1. We notice that since the leader’s objective function is a discontin-
uous piecewise linear function of the bids, all stationary points are either locally minimal or
locally maximal. Because of the first step on the while, the solution obtained by the heuristic
is always a local maximum. In order to avoid local optimum, we can do clasic techniques like
in [14] that is making a diversification of the initial solution followed with a local search.

2.3.2 Numerical results for 2 Players

First we set the values q̄, q′ , d and N (the discretization length of the interval [0, λ̄]). Then
we need to define the space of strategies, since every player choose two slopes with α < β,
the total number of strategies for each player is N(N−1)

2
= m and we list these strategies in

the following way:

t1 = [α1, β2], t2 = [α1, β3], . . . tN−1 = [α1, βN ], tN = [α2, β3], . . . , tm = [αN−1, βN ]

Since we are going to solve for generator 1. We have to assign or give as input the
probability that the other generator choose a certain strategy. Therefore, if pk(i) is the
probability that generator k chooses the i strategy, the probability of generator 2 choosing
strategy i is p2(i)

Lets define the following set:

J := {j ∈ {1, . . . ,m} : p2(j) > 0}

Then we can define a scenario as s ∈ S = {tj ∈ S2 : j ∈ J}

Therefore for each strategy i = 1, . . . ,m for player 1, we solve the ISO’s problem using
our solution, and while we are solving it, we compute the value psλ(ti, s)q

i
ti,s

, where s ∈ S. So
for fixed i we compute the value

∑
s∈S

psλ(ti, s)q
i
ti,s

and save the strategy and value as the new

maximum only if its greater or equal to the previus maximum (the first maximun is i = 1 by
default).

We had results about the Nash equilibrium for 2 players, in particular, we have the mixed
nash equilibria probabilities for each player, so if we use that probabilities as the pk(j) we
obtain the following results for q̄ = 1 , q′ = 0.5 and d = 1.6:
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Figure 2.2: Player 1 Payoffs

N Mixed Nash Scenarios Approach
8 1.2756 1.2756
9 1.2667 1.2667
10 1.2601 1.2601
11 1.2545 1.2545
15 1.2454 1.2398

Table 2.1: Player 1 Payoffs

It can be seen that the payoffs are really similar. Naturally the payoffs under scenarios
approach is less or equal than the payoffs or the Mixed Nash equilibria, since it can be seen
as playing a pure strategy.

The advantage of this method is that we can solve the problem for large discretizations.

Let’s suppose player 2 plays every strategy with probability
1

N
.Then we get the following

payoffs for player 1:

N Mixed Nash Scenarios Approach Uniform Probability
8 1.2756 1.3000
9 1.2667 1.2889
10 1.2601 1.2800
11 1.2545 1.2727
15 1.2454 1.2533

Table 2.2: Player 1 Payoffs Uniform Probability for player 2
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Here the scenarios approach payoff is greater than the mixed nash, because player 2
is playing using uniform probability 1/N instead of the mixed nash equilibria probability.
Notice that for N = 100 we can’t solve the Nash equilibria approach, but we can solve the
Scenarios Approach and get a payoff of 1.2080 which is not that far of the previous results
for smaller values of N . We’ll see more about the different probabilities that can be used
when we don’t have mixed strategies in a section later on.

2.3.3 Sensitivity Analysis

First we will do a small perturbation ε on the capacity value q̄.

We get the following results for ε = 0.005:

N Payoff Scenarios P1
Without Perturbation

Payoff Scenarios P1
With Perturbation

Difference
%

8 1.2756 1.2653 0.8075
9 1.2667 1.2563 0.8210
10 1.2601 1.2498 0.8174
11 1.2545 1.2440 0.8370
15 1.2398 1.2295 0.8308

Table 2.3: q̄ + ε with ε = 0.005

N Payoff Scenarios P1
Without Perturbation

Payoff Scenarios P1
With Perturbation

Difference
%

8 1.2756 1.2859 0.8010
9 1.2667 1.2771 0.8143
10 1.2601 1.2704 0.8108
11 1.2545 1.2647 0.8065
15 1.2398 1.2500 0.8160

Table 2.4: q̄ − ε with ε = 0.005

A small perturbation of 1% the capacity value produces a change the expected payoff of
player 1 in 0.8%.

It is also interesting to see how much it changes with respect to the Nash equilibrium
perturbated problem and also see the difference in payoff with respect to player 2.
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N Payoff Nash
P1

Payoff Scenarios
P1

Difference
%

Payoff Nash
P2

Payoff Scenarios
P2

Difference
%

8 1.2653 1.2653 0.0012 1.2653 1.9347 34.5976
9 1.2563 1.2563 0.0016 1.2563 1.9437 35.3645
10 1.2499 1.2498 0.0079 1.2499 1.9502 35.9113
11 1.2440 1.2440 0.0005 1.2440 1.9560 36.3997
15 1.2353 1.2295 0.4701 1.2353 1.9705 37.3086

Table 2.5: q̄ + ε with ε = 0.005

N Payoff Nash
P1

Payoff Scenarios
P1

Difference
%

Payoff Nash
P2

Payoff Scenarios
P2

Difference
%

8 1.2860 1.2859 0.0011 1.2860 1.9141 32.8150
9 1.2772 1.2771 0.0073 1.2772 1.9229 33.5830
10 1.2704 1.2704 0.0004 1.2704 1.9296 34.1622
11 1.2647 1.2647 0.0023 1.2647 1.9353 34.6511
15 1.2555 1.2500 0.4346 1.2555 1.9500 35.6162

Table 2.6: q̄ − ε with ε = 0.005

We can see that even when the Scenarios Approach expected payoff for player 1 is really
close to the one from the mixed Nash equilibria, the expected payoff for player 2 increases in
≈ 35%.

If we make a perturbation ε = 0.005 on the bids we get the following tables:

N Payoff Scenarios P1
Without Perturbation

Payoff Scenarios P1
With Perturbation

Difference
%

Nash Payoff P1
With Perturbation

Difference
Nash and Scenarios

%
8 1.2756 1.2787 0.2397 1.2787 0.0058
9 1.2667 1.2697 0.2357 1.2697 0.0015
10 1.2601 1.2631 0.2385 1.2631 0.0004
11 1.2545 1.2574 0.2270 1.2574 0.0005
15 1.2398 1.2428 0.2392 1.2484 0.4521

Table 2.7: bids +ε = 0.005
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N Payoff Scenarios P1
Without Perturbation

Payoff Scenarios P1
With Perturbation

Difference
%

Nash Payoff P1
With Perturbation

Difference
Nash and Scenarios

%
8 1.2756 1.2726 0.2349 1.2726 0.0012
9 1.2667 1.2637 0.2382 1.2637 0.0015
10 1.2601 1.2571 0.2401 1.2571 0.0004
11 1.2545 1.2514 0.2507 1.2515 0.0094
15 1.2398 1.2368 0.2449 1.2424 0.4521

Table 2.8: bids −ε = 0.005

Both approachs give us less expected payoff when we make a −0.005 perturbation to the
bids than when we make a +0.005 perturbation. Also we can see that the problem is not
that sensitive to bids changes.

2.3.4 Numerical results for 3 Players

Here we list the strategies the same way as for 2 players. The probability of generator 2
choosing strategy i and generator 3 choosing strategy j is p2(i)p3(j) = pi,j

Lets define the following sets:

J := {j ∈ {1, . . . ,m} : p2(j) > 0}

K := {k ∈ {1, . . . ,m} : p3(k) > 0}

Then we can define a scenario as s ∈ S = {(tj, tk) ∈ S2 × S3 : j ∈ J, k ∈ K}

Therefore for each strategy i = 1, . . . ,m for player 1, we solve the ISO’s problem using
our solution, and while we are solving it, we compute the value psλ(ti, s)q

i
ti,s

, where s ∈ S. So
for fixed i we compute the value

∑
s∈S

psλ(ti, s)q
i
ti,s

and save the strategy and value as the new

maximum only if its greater or equal to the previus maximum (the first maximun is i = 1 by
default).

We had results about the Nash equilibrium for 3 players, in particular, we have the mixed
nash equilibria probabilities for each player, so if we use that probabilities as the pk(j) we
obtain the following results for q̄ = 1 , q′ = 0.5 and d = 2:
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N Nash Equilibria Payoff Scenarios Approach Payoff Difference in [%]
11 0.4281 0.4272 0.2102 %
10 0.5095 0.5043 1.02 %
9 0.4557 0.4526 0.6803%
8 0.3737 0.3716 0.5619 %
7 0.3250 0.3247 0.0923 %
6 0.3188 0.3176 0.3774 %
5 0.4608 0.4608 0 %

For N = 10 we have 45 strategies for each player, so at most 91125 combinations. The
total running time is 2.882s while the Nash equilibria approach takes around 1 hour. For
N = 7 we have 21 strategies for each player, so at most 9261 combinations. The total running
time is 0.449s, while the Nash equilibria approach takes 3844.525s , so is ≈ 7700 times faster.
For N = 5 we have 10 strategies for each player, so at most 1000 combinations. The total
running time is 0.140s, while the Nash equilibria approach takes 159.786s , so is ≈ 1141
times faster.

So even though we are finding a pure strategy for player 1, the Payoff is close to the mixed
strategies one.

Using our ISO solution is at least 1000 times faster than using a generic algorithm to solve
it. However, the computation time of a Nash equilibrium is only reduced by 5%. This is
why we’ll like to see how the payoff changes if one considers probabilities close or far from to
those of the nash equilibrium in mixed strategies for the different scenarios
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2.3.5 Experimenting with different probabilities

Let’s see what happend when we use different probabilities for each scenario. We’ll try with
uniform , geometric , exponential and with the mixed Nash equilibrium probabilities.

d = 2.9
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(a) Generator 1 Payoff, case N = 10 and d = 2.9
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(b) Generator 1 Best strategy index
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(c) Generator 1 Payoff, case N = 7 and d = 2.9
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(d) Generator 1 Best strategy index

d = 2
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(e) Generator 1 Payoff, case N = 10 and d = 2
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(f) Generator 1 Best strategy index
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(g) Generator 1 Payoff, case N = 7 and d = 2
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(h) Generator 1 Best strategy index
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(i) Generator 1 Payoff, case N = 5 and d = 2
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(j) Generator 1 Best strategy index

When d = 1
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(k) Generator 1 Payoff, case N = 10 and d = 1
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(l) Generator 1 Best strategy index
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(m) Generator 1 Payoff, case N = 7 and d = 1
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(n) Generator 1 Best strategy index

d = 0.5
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(o) Generator 1 Payoff, case N = 10 and d = 0.5
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(p) Generator 1 Best strategy index

We noticed that in general is better to play strategies with small α and β values. This
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makes sense since doing it ensures that the generator will be dispatched and since we are
considering the shadow price, the payoff will be at least αq1q≤q′ + βq1q>q′ ≥ αq. Also
in most cases there exists an interval of parameters p such that the Scenarios Approach
expected payoff is close to the Nash equilibrium one, this plus the sensitivity analysis of the
probabilities give us the idea of using this approach with real data in the future, since we
can estimate the probabilities and have similar results to the Nash equilibrium one.

2.3.6 Using different slopes

Now every generator can choose slopes in [0, 2], just as before, but they are not equispaced as
before, in fact we will use random slopes uniformly distributed in [0, 2] for every generator.

The first colum is player 1 payoff when we compute a Nash equilibrium in mixed strategies,
the second colum is when we use the probabilities from the Nash equilibrium for players 2
and 3 as the scenarios probabilities, the third column is when we use a perturbation to those
probabilities, in this case we use ε = 10−4 and we add that quantity to every probability an
then we normalize it, finally the last column is when we subtract ε = 10−4 to every positive
probability and then normalize it.

N Mixed Nash
Equilibrium

Mixed Nash
Scenarios

Mixed Nash Perturbation
+ Scenarios

Mixed Nash Perturbation
- Scenarios

8 0.5272 0.5266 0.5263 0.5263
9 0.3328 0.3263 0.3263 0.3260
10 0.2438 0.2234 0.2233 0.2236
11 0.5588 0.5590 0.5595 0.5585

We can see that there is not much difference when we use perturbations.

N Mixed Nash
Scenarios

Mixed Nash Perturbation
+ Scenarios

Mixed Nash Perturbation
- Scenarios

α1 β1 α1 β1 α1 β1

8 0.2772 0.5022 0.2772 0.5022 0.2772 0.5022
9 0.3048 0.5197 0.3048 0.5197 0.3048 0.5197
10 0.3048 0.5197 0.3048 0.5197 0.3048 0.5197
11 0.5570 0.8435 0.5570 0.8435 0.2540 0.2838

In terms of the best strategy, we can see that it changes in only one case.

Sensitivity with respect to the probabilities used is one of the most important aspects since
in practice they are acquired as a result of the clearing of each market mechanism, information
about the submitted aggregate offer and demand curves is made publicly available and agents
can then build scenarios for its rivals bids. In doing this generator i will not necessarily
have the exact probabilities of each scenario. So having little sensitivity to change in these
probabilities is a good thing.
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2.3.7 Non linearities

Here we can see that even in the simplier case the problem we cannot eliminate nonlinearities
without exponentially increasing the number of variables. We can write generator i problem
as:

Bi(α, β, d, p) =

 max
αi,βi,qiS ,λS

∑
s∈S

psλs(α
i, α−i, βi, β−i, d)qi

s(α
i, α−i, βi, β−i, d) =

∑
s∈S

psλs(q
′xi

2,s + q̄xi
3,s)

s.t (qi
S, λS) ∈ ISO(αi, βi, d, p)

Where ISO(αi, βi, d, p) is the dispatch program solved by the ISO when

ISO(αi, βi, d, p) =



min
qS

∑
s∈S

∑
n∈G

(
αns q

′xn2,s + [(q̄ − q′)βns + αns q
′]xn3,s

)
s.t

∑
n∈G

(
q′xn2,s + q̄xn3,s

)
≥ d, ∀s ∈ S

xn1,s + xn2,s + xn3,s = 1, ∀n ∈ G,∀s ∈ S
xn1,s ≤ yn1,s, ∀n ∈ G,∀s ∈ S
xn3,s ≤ yn2,s, ∀n ∈ G,∀s ∈ S

yn1,s + yn2,s = 1, ∀n ∈ G,∀s ∈ S
ynj,s ∈ {0, 1} for j = 1, 2. ∀n ∈ G,∀s ∈ S
xnj,s ≥ 0 for j = 1, 2, 3. ∀n ∈ G,∀s ∈ S
qns = q′xn2,s + q̄xn3,s ∀n ∈ G,∀s ∈ S

qs Satisfies the equipartition property ∀s ∈ S

λs ⊥

(∑
n∈G

qns ≥ d

)
, ∀s ∈ S

We can define the variables ws = λsx
i
2,s and zs = λsx

i
3,s and add the following restrictions

0 ≤ ws ≤ xi
2,sλ̄ , 0 ≤ zs ≤ xi

3,2λ̄. Then the problem can be written as:

Bi(α, β, d, p) =



max
αi,βi,wS ,zS ,
xi1,S ,x

i
2,S ,x

i
3,S

∑
s∈S

ps(q
′ws + q̄zs)

s.t 0 ≤ ws ≤ xi
2,sλ̄, ∀s ∈ S

0 ≤ zs ≤ xi
3,sλ̄, ∀s ∈ S

(qi
S, λS) ∈ ISO(αi, βi, d, p)

Then we can recover λS by computing
ws
xi

2,s

or
zs
xi

3,s

for each s ∈ S. We have a problem

since we have to ensure that in the optimum we can’t have xi
2,s = xi

3,s = 0, otherwise we can
not determine the value of λs for that scenario.

The other way is to introduce the variables

z1,s =
1

2
(λs + q′xi

2,s), z2,s =
1

2
(λs − q′xi

2,s)
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z3,s =
1

2
(λs + q̄xi

3,s), z4,s =
1

2
(λs − q̄xi

3,s)

with the restrictions:

0 ≤ z1,s ≤
1

2
(λ̄+ q′),−1

2
q′ ≤ z2,s ≤

1

2
λ̄

0 ≤ z3,s ≤
1

2
(λ̄+ q̄),−1

2
q̄ ≤ z4,s ≤

1

2
λ̄

Notice the following:

z2
1,s − z2

2,s = λsq
′x2,s

z1,s − z2,s = q′x2,s

z2
3,s − z2

4,s = λsq̄x3,s

z3,s − z4,s = q̄x3,s

Then we can write the problem as:

Bi(α, β, d, p) =



max
αi,βi,z1,S

z2,S ,z3,S ,z4,S

∑
s∈S

ps(z
2
1,s − z2

2,s + z2
3,s − z2

4,s)

s.t 0 ≤ z1,s ≤
1

2
(λ̄+ q′), ∀s ∈ S

−1

2
q′ ≤ z2,s ≤

1

2
λ̄, ∀s ∈ S

0 ≤ z3,s ≤
1

2
(λ̄+ q̄), ∀s ∈ S

−1

2
q̄ ≤ z4,s ≤

1

2
λ̄, ∀s ∈ S

(qi
S, λS) ∈ ISO(αi, βi, d, p)

Which is quadratic and can be approximated by piecewise linear functions. Then after
applying a binary descomposition scheme we get a MILP that can provide an optimal so-
lutiuon to the strategic bidding problem, but it presents the drawback to deal with a large
number of integer variables as the number of generators increase. This has motivated the
development of alternatives solution approaches, such as the ones presented in this chapter,
which can algo be used to generate bounds to be used in a branch-and-bound scheme.

As we can see from Fampa’s paper [14] even in the linear bids case the MILP formulation
can’t be solved for 5 companies and 10 scenarios. Therefore it’s not worth it trying in the
piecewise linear case, since with our algorithms we can solve that problem and biggers ones
in seconds.
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2.4 Quadratic Bids

We considerer quadratic bids as in chapter 1. Therefore for 2 player we can use the analytic
solution and we can see if the expected values are similar to those we got in chapter 1.

In fact, we get the following table for small values of N and using the same parameters
than in chapter 1, i.e , q̄ = 0.5 and d = [0.05; 0.1; 0.15; 0.2; 0.25; 0.75; 0.8; 0.85; 0.9; 0.95].

N Mixed Nash Scenarios Approach
6 0.3537 0.3537
7 0.3552 0.3552
8 0.3580 0.3580
9 0.3496 0.3496
10 0.3460 0.3460
11 0.3471 0.3471
12 0.3448 0.3443
13 0.3452 0.3452
14 0.3468 0.3468
15 0.3436 0.3436

Table 2.9: q̄ = 0.5

Here we solved the scenarios problem for each d and then took the average. We noticed
that the results are equal at least until the fifth power for almost all N .

N Mixed Nash Scenarios Approach
6 0.3530 0.3530
7 0.3540 0.3540
8 0.3574 0.3574
9 0.3492 0.3492
10 0.3452 0.3452
11 0.3505 0.3505
12 0.3452 0.3448
13 0.3464 0.3464
14 0.3496 0.3496
15 0.3471 0.3471

Table 2.10: q̄ = 0.5− 0.001
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N Mixed Nash Scenarios Approach
6 0.3501 0.3501
7 0.3562 0.3562
8 0.3520 0.3520
9 0.3465 0.3465
10 0.3367 0.3367
11 0.3454 0.3454
12 0.3442 0.3436
13 0.3470 0.3470
14 0.3471 0.3471
15 0.3447 0.3447

Table 2.11: q̄ = 0.5 + 0.001

Tables (2.10) and (2.11) are when we do a small perturbation ±0.2% of de q̄ value. We
can see that the payoffs changes between 0.1% to 1%.

Now we use q̄ = 0.5 fixed, and do a small perturbation on the bids and probabilities.

N Mixed Nash Scenarios Approach
6 0.3530 0.3530
7 0.3543 0.3543
8 0.3573 0.3573
9 0.3490 0.3490
10 0.3451 0.3451
11 0.3485 0.3485
12 0.3443 0.3438
13 0.3448 0.3448
14 0.3460 0.3460
15 0.3462 0.3459

Table 2.12: q̄ = 0.5 bids −ε = 0.001

N Mixed Nash Scenarios Approach
6 0.3543 0.3543
7 0.3560 0.3560
8 0.3586 0.3586
9 0.3503 0.3503
10 0.3469 0.3469
11 0.3477 0.3477
12 0.3453 0.3447
13 0.3415 0.3415
14 0.3477 0.3477
15 0.3468 0.3468

Table 2.13: q̄ = 0.5 bids +ε = 0.001
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N Mixed Nash Scenarios Approach
6 0.3537 0.3523
7 0.3552 0.3546
8 0.3580 0.3574
9 0.3496 0.3492
10 0.3460 0.3447
11 0.3471 0.3468
12 0.3448 0.3432
13 0.3452 0.3445
14 0.3468 0.3455
15 0.3436 0.3419

Table 2.14: q̄ = 0.5 and probability perturbation ε = 0.01

We can see from table (2.12) and (2.13) that the payoffs changes in no more than 0.5%,
when we do small perturbation on the bids.

On the other hand, doing a perturbation of 0.01 to all non zero probabilities changes the
payoffs in no more than 0.5%.

Thefore the problem is stable under small perturbations.

2.4.1 Simulations with small resistances

Now we considered the ISO problem with resistance.

Just like in Chapter 1, we considered a small resistance r = 10−3 and we obtain the
following results:

N Mixed Nash Scenarios Approach
6 0.3516 0.3516
7 0.3501 0.3501
8 0.3596 0.3596
9 0.3486 0.3486
10 0.3585 0.3580

Table 2.15: r = 10−3

We can see that even with small resistance the payoffs given by the scenarios approach
is really similar to the Nash equilibrium aproach, when the probabilities used for the other
player are similar to their mixed Nash equilibrium ones.

Since in reality resistances are small we can make an approximation of that problem by
solving the one with resistance equal to zero just like in chapter 1.
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Conclusion

The study of energy markets is complex. The same problem can be seen from different
points of view. One of the main ones is from the point of view of game theory, where the
goal is to find Nash equilibria [13] between the firms. The problem with this approach is
that although it allows us from the theoretical point of view, to proof the existence of such
equilibria, and therefore, existence of the optima of the bilevel problem, in practice it is
difficult and expensive to find them. These difficulties come mainly from the growth in the
number of possible combinations of strategies by discretizing more finely or by adding more
players which translates into solving the lower level problem for all new combinations and
saving the payoff matrices (which for more than two players are tensors), so even leaving
aside the computation time of all combinations, which can be very high, a large amount of
RAM is required to solve medium-sized problems. We managed to find routines to solve the
problem of the lower level quickly and efficiently for the quadratic and piecewise linear case,
therefore the only limitation to solve for medium problems was the amount of ram memory
required. Algorithms to solve nash equilibria take exponential time in the worst case. In
practice, the Lemke - Howson algorithm and its variants find equilibrium in polynomial time
so in general it was not a problem for a 2 player game. When adding more players, it was
necessary to use another algorithm, in the literature there are not many algorithms that solve
Nash equilibria for more than 2 players. The majority is based on formulating the problem
as a fixed point. The most significant difference between these is that there are a couple of
more recent algorithms that are written in order to facilitate parallelism and thus increase
speed, maintaining the basis of solving the fixed point problem.

On chapter 2, we studied the problem from the Bilevel point of view. The main difference
of this procedure with respect to the calculation of Nash equilibria given the payoff matrices,
is that the problem is solved as a whole and not in two successive stages. This allows us
to solve them faster and consume less memory. Classical techniques were used to transform
the bilevel problem to a single level one in the case of piecewise linear and quadratic bids,
which can be applied because the hypotheses of the model assured us the uniqueness of the
solution of the problem of the lower level and equivalence between the bilevel problem and its
single level formulation. For this formulation different possible procedures were presented and
those considered the best were performed. For small problems, it could be solved efficiently
by seeing all the combinations thanks to the algorithms and solutions implemented for the
follower problem in the piecewise linear and quadratic case. For medium-sized problems,
it was also possible to solve them using the previous way, however, a penalty method was
presented to find the solution in the piecewise linear case, this allowed us to divide the
problem into smaller problems, which, as stated above, are quick to solve, progress was made
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in proving the convergence of this method, extending the result of the linear case presented
in [14]. For the quadratic case the analytical solution of the problem with out resistance
is used and the problem is solved as a single level. In all cases, the implemented methods
deliver solutions in less than a minute, while using general standard methods, they even took
hours in delivering the same solution.

It was seen that the first approach is better from the theoretical point of view, but from the
numerical point of view, it is much more expensive, so that if you can obtain reliable estimates
of the strategies of the other players, using an approach such as the one from Chapter 2, allows
to solve the problem in instances that we could not under the first approach and obtain an
expected payoff very close to the optimal problem using mixed strategies

It was seen that doing a perturbation on the capacities by 0.2% caused changes in the
expected payments between 0.1% and 1%. Perturbing the bids by 0.1% changed the ex-
pected payoffs between 0.1% and 0.5% as well as when the probability for each scenario was
perturbed. Thefore the problem is quite stable under perturbations in both piecewise linear
and quadratic case.

In the next work, we want to apply these ideas to a more general version of the problem,
where there are renewable energies, this means that a risk term must be added and that the
capacities associated with such generators are not fixed. One way to do it is by considering
as a scenario not only the bid but the capacity. We would also like to apply the scenario
approach using real data.

77



Bibliography

[1] Foundations of Bilevel Programming. Kluwer Academic Publishers, 2002.

[2] Ravindra K. Ahuja and James B. Orlin. Inverse optimization. Operations Research,
49(5):771–783, 2001.

[3] G. Anandalingam and D. J. White. A solution method for the linear static stack-
elberg problem using penalty functions. IEEE Transactions on Automatic Control,
35(10):1170–1173, Oct 1990.

[4] D. Aussel, P. Bendotti, and M. Pištěk. Nash equilibrium in a pay-as-bid electricity
market: Part 1 – existence and characterization. Optimization, 66(6):1013–1025, 2017.

[5] D. Aussel, P. Bendotti, and M. Pištěk. Nash equilibrium in a pay-as-bid electricity
market part 2 - best response of a producer. Optimization, 66(6):1027–1053, 2017.

[6] David Avis, Gabriel D. Rosenberg, Rahul Savani, and Bernhard von Stengel. Enumera-
tion of nash equilibria for two-player games. Economic Theory, 42(1):9–37, Jan 2010.

[7] J. F. Bard. Some properties of the bilevel programming problem. Journal of Optimization
Theory and Applications, 68(2):371–378, Feb 1991.

[8] Ventosa M. Rivier M.-Ramos A. Baíllo, A. Optimal offering strategies for generation
companies operating in electricity spot markets. 2004.

[9] Stephen Boyd. Convex Optimization. Cambridge University Press New York, NY, USA,
2004.

[10] B. Chatterjee. An optimization formulation to compute nash equilibrium in finite games.
2009.

[11] S. Dempe. Bilevel optimization: theory, algorithms and applications. (2018).

[12] D.Fudenberg and J.Tirole. Game Theory. MIT Press, 1991.

[13] Juan Escobar and Alejandro Jofré. Equilibrium analysis of electricity auctions. 2008.

[14] Barroso L. A. Candal-D. Simonetti L. Fampa, M. Bilevel optimization applied to
strategic pricing in competitive electricity markets. 2007.

78



[15] Springer-Verlag H.v. Stackelberg, Marktform und Gleichgewicht. The theory of the
market economy. 1952.

[16] Garud Iyengar and Wanmo Kang. Inverse conic programming with applications. Oper-
ations Research Letters, 33(3):319 – 330, 2005.

[17] Martine Labbé, Patrice Marcotte, and Gilles Savard. A bilevel model of taxation and its
application to optimal highway pricing. Management Science, 44(12-part-1):1608–1622,
1998.

[18] C. Lemke and J. Howson, Jr. Equilibrium points of bimatrix games. Journal of the
Society for Industrial and Applied Mathematics, 12(2):413–423, 1964.

[19] J. A. Mirrlees. The theory of moral hazard and unobservable behaviour: Part i. The
Review of Economic Studies, 66(1):3–21, 1999.

[20] J. V. Outrata. On the numerical solution of a class of stackelberg problems. ZOR
Zeitschrift Operations Research Methods and Models of Operations Research, 34(4):255–
277, July 1990.

[21] Jiří V. Outrata. A note on the usage of nondifferentiable exact penalties in some special
optimization problems. Kybernetika, 24(4):251–258, 1988.

[22] M. Pilecka. Combined reformulation of bilevel programming problems. 2011.

[23] Amin Saberi and Yu Wu. Lemke-Howson Algorithm, Lecture 4. MSE 334 Computation
of Equilibria, Stanford, 2009.

[24] Bernhard Von Stengel. Chapter 45 computing equilibria for two-person games. volume 3
of Handbook of Game Theory with Economic Applications, pages 1723 – 1759. Elsevier,
2002.

[25] Harish Vaish and C. M. Shetty. The bilinear programming problem. Naval Research
Logistics Quarterly, 23(2):303–309, 1976.

[26] Robert Wilson. Architecture of power markets. Econometrica, 70(4):1299–1340, 2002.

[27] J. J. Ye and D. L. Zhu. Optimality conditions for bilevel programming problems. Opti-
mization, 33(1):9–27, January 1995.

[28] Jianzhong Zhang and Chengxian Xu. Inverse optimization for linearly constrained
convex separable programming problems. European Journal of Operational Research,
200(3):671 – 679, 2010.

79


	Introduction
	Nash Equilibrium Approach
	The Model
	The Dispatch Program
	The Bidders

	Existence of Noncooperative Equilibrium
	Example were no pure strategy Nash equilibrium exists

	Bilevel Optimization
	Algorithms for Nash Equilibrium
	Lemke Howson Algorithm
	Example
	Vertex Enumeration
	Tableau
	 N-Players Algorithm

	Piecewise linear strategies
	Modeling Piecewise linear functions
	ISO solution for 2 pieces linear bid

	Procedure
	Numerical Results For Piecewise Linear bids
	2 pieces Linear function
	Changing discretization length
	Changing The PriceCap
	Changing 
	Sensitivity Analisys

	Quadratic strategies
	Numerical Results for Quadratic bids
	Sensitivity Analysis

	Simulations with small resistances

	Scenarios Approach
	 Linear Bids
	Convergence result for Linear Bids

	Piecewise Linear case
	Convergence result for Piecewise Linear Bids

	Numerical results
	Procedure
	Numerical results for 2 Players
	Sensitivity Analysis
	Numerical results for 3 Players
	Experimenting with different probabilities
	Using different slopes
	Non linearities

	Quadratic Bids
	Simulations with small resistances


	Conclusion
	Bibliography

