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a b s t r a c t 

Out of equilibrium systems are characterized by exhibiting the coexistence of domains with complex spa- 

tiotemporal dynamics. Here, we investigate experimentally the noise-induced domain wall propagation on 

a one-dimensional shallow granular layer subjected to an air flow oscillating in time. We present results 

of the appearance of an effective drift as a function of the inclination of the experimental cell, which 

can be understood using a simple Langevin model to describe the dynamical evolution of these solutions 

via its pinning-depinning transition. The statistical characterization of displacements of the granular kink 

position is performed. The dynamics of the stochastic model shows a fairly good agreement with the 

experimental observations. 

© 2020 Published by Elsevier Ltd. 
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. Introduction 

A characteristic of out of equilibrium nonlinear systems is the

oexistence of different equilibria, i.e. multistability . Namely, de-

ending on initial conditions, different equilibria can be observed

1–4] . One of the simplest systems that shows coexistence of stable

tates is the bistable model [1–4] . To describe the spatial variations

f physical systems one can couple single units of the above model

lastically with their nearest neighbors and recover the dissipative
4 -model field equation [5] . The dissipative φ4 -model has been

uccesfully used to study magnetic textures, high energy and par-

icle physics, and optical systems to mention a few [5–7] . Consid-

ring different inhomogeneous initial conditions, the model above

xhibits the emergence of different domains separated by walls or

efects [6,7] . Each domain accounts for one of the original (homo-

eneous) equilibria that spans a portion of the extended system.

hat is, wall account for the spacial region that connects the differ-

nts equilibria, interface . The wall dynamics depicts the most favor-

ble state invading the least favorable one [8] . Generally, when one

hanges a control parameter, the relative stability of the equilibria

an also change. In this context, there is a unique value of the con-

rol parameters for which a flat wall remains motionless, called the

axwell point [9] . In two spatial dimensions, the wall or interface

onnecting two symmetrical states will also move as it tries to de-

rease its local curvature [10] . This phenomenon is well-known in

he literature as Gibbs-Thomson effect [10] . This scenario of wall

ynamics changes drastically in one spatial dimension, where the

nteraction between walls drives the domain dynamics [11] . Do-
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ain walls that connect symmetric states in one spatial dimension

re usually referred to as kinks. Their interaction decaying expo-

entially depends on the distance between domains. Due to the

ttractive interaction of nearby kinks, the dynamics of a kink gas

ends to homogenize the system. Displaying as its ultimate equilib-

ium a homogeneous state [11] . However, the previous evolution is

ifficult to observe experimentally and numerically since the walls

emain motionless as a result of experimental imperfections or in-

erent dicretization of numerical simulations. 

Another crucial ingredient in the dynamics of the domain

alls—due to the macroscopiv nature of experiments—are the in-

erent fluctuations of the physical systems under study, i.e. noise.

heoretically, the effects of noise are included by considering

tochastic terms in partial differential equations [12] . In the case of

 wall that connects two symmetric states in one-dimension, it is

xpected that as a result of the inherent fluctuations that the posi-

ion of the wall or defect will perform a random one-dimensional

otion [13] . 

In the case that the walls separate a homogeneous domain with

 spatial one (pattern), the interface dynamics changes radically as

he pattern breaks the spatial translation symmetry. As a conse-

uence of this change, the wall propagation exhibits spatially pe-

iodic leaps [8] . The wall or defect remains motionless in a range

f parameters close to the Maxwell point, pinning range , as a re-

ult of the translation breaking symmetry. That is, although one

tate is less stable than the other, the system remains motionless

nd no propagation of the most stable state over the other one

s observed. The origin of this phenomenology is because the pat-

ern induces a nucleation barrier over the dynamic of domain walls

14,15] . Experimentally this scenario has been verified in a liquid

rystal light valve with optical spatial modulation feedback [16] .

he inclusion of inherent fluctuations causes the domain wall on

https://doi.org/10.1016/j.chaos.2020.109677
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Fig. 1. (Color online) Schematic diagram of the experimental setup. AC accounts for 

the air compressor, EV is the electromechanical valve, A-G stand for the amplifier 

and function generator, γ is the inclination angle of the Hele-Shaw cell (HS) mea- 

sured with MEMS accelerometer (Acc). Inset: Granular layer arrangement on top of 

the metallic mesh which serves a porous floor. Arrows depict flow direction. 
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average to advance towards a flank, so that the most stable state

is propagated onto the least stable. This phenomenon is known as

noise induces front propagation [14,15] . Namely, noise is the driv-

ing of domain wall propagation. This phenomenon can be under-

stood as a Brownian motor [17] , that is, considering a particle in

an unbounded asymmetric potential with periodic equilibria under

random fluctuations [14,15] . However, noise induces front propa-

gation has only been studied theoretically. A good candidate to ob-

serve such a phenomenon is a one-dimensional experimental setup

that exhibits parametric instability that give rise to domain walls

between standing waves with relevant inherent fluctuations is a

one-dimensional shallow granular layer subjected to an airflow os-

cillating in time [19,20] . 

The present work aims to investigate how noise induces

front propagation experimentally. Based on a fluidized quasi-one-

dimensional shallow granular bed, the dynamics of walls or de-

fects, called granular kinks, is characterized. The fluidization pro-

cess is driven by a time-periodic airflow, which corresponds to

a tapping-type forcing on the granular layer subjected to grav-

ity. These granular kinks connect two symmetrical states [19,20] ,

which display an underlying pattern depending on the experimen-

tal parameters of the system. By slightly tilting the cell, the rela-

tive stability between the granular domains can be controlled. As

a result of granular fluctuations and cell inclination, the granular

kink moves and its propagation speed exhibits different dynami-

cal behaviors. Two regimes are identified, one associated with pin-

ning and another with drifting. In the former, granular kinks ex-

hibit long-waited fluctuations and propagate slowly through spa-

tially periodic leaps. In the latter, granular kinks propagate quickly

with small fluctuations and a large drift. The statistical character-

ization of the displacement of the granular kink position is also

performed. Theoretically, an over-damped particle in a washboard

potential with additive noise [18] models the position of the gran-

ular kink. The dynamics of this Langevin equation shows a fairly

good agreement with the experimental observations. 

2. Experimental setup and measurement techniques 

The experimental setup is depicted in Fig. 1 . An aluminium

frame encases two large glass walls 250 mm wide, 320 mm tall
nd 35 mm in depth (Hele-Shaw cell), with an horizontally placed

orous steel mesh that serves as a porous floor where ap-

roximately 27,0 0 0 monodisperse bronze spheres (diameter d =
50 μm) are deposited, forming a shallow granular layer. The layer

s thus is approximately 400 d long, 10 d deep, and 5 d tall. The gran-

lar layer is subjected to a time-periodic driving (similar to the

nes described in [19–23] ), via an modulated air flow which is

enerated by an air compressor and regulated by an electrome-

hanical proportional valve. The valve opens and closes following

 variable voltage signal sent by a function generator through a

ower amplifier. A symmetrical sinusoidal signal with frequency

 o and a non-zero offset is used to generate the air flow. As in

revious studies [19–23] , a linear dependence is found between

he peak voltage delivered by the function generator and the peak

ressure fluctuations P o oscillating at f o . This experimental cell can

e inclined horizontally with an angle γ , measured by a MEMS

microelectromechanical systems) accelerometer glued to the cell.

ff-plane inclinations are forbidden as the cell is mounted on an

n-house aluminium bearing, ensuring only in-plane rotations of

he whole cell. Hence, in our experiments, the control parameters

re f o , P o , and γ . 

Images of the granular layer’s spatial dynamics are acquired us-

ng a CCD camera placed 10 cm away from the cell about 600 s

ime window in a 780 × 200 pixel interrogation window with a

8 pixel/cm sensitivity and later stored on a PC, to be digitally an-

lyzed using Matlab. The acquisition frequency was set at f o /2. The

ayer is illuminated from the back with white light through a dif-

using screen in order to enhance the contrast between the mo-

ion of the grains and their background. The surface fluctuations

f the granular layer are computed for every point x in space at

ach time step t using a front-tracking algorithm similar to the one

sed in [22] . A typical snapshot of the tracking scheme’s output is

hown in Fig. 1 (a). 

. Granular kinks dynamics 

Before initiating dynamical measurements, the acquired value

f γ is corroborated with a series of images of the experimental

ell acquired with a CCD camera without any driving. Then, for a

iven f o , we increase P o generating spontaneously small fluctua-

ions of the granular layer’s interface (of the order of d ). This mo-

ion increases with P o up to the point where the entire layer is

ifted by the drag force generated by the air flow which can over-

ome the layer’s weight. This motion is periodic and its period is

/ f o . The dynamics of the homogeneous layer changes qualitatively

t a critical value P o = P c o where the flat oscillating layer becomes

nstable through an effective supercritical parametric instability,

isplaying subharmonic oscillations at f o /2 [19,20] and, thus, the

ossibility of the spatial connection between two spatially homo-

eneous equilibria (one oscillating in-phase with the driving and

ne oscillating out-of-phase with the driving) which is called kink.

he granular kink, as a function of frequency f o and pressure P o ,

xhibits a parametric instability as the pressure increases or the

requency decreases [19] . Hence, inhomogeneities due to noisy ini-

ial conditions give rise to domain walls. Granular kinks are ro-

ust to changes in f o (which sets its oscillating frequency) and

P o = P c o − P o (which sets its amplitude). To characterize the dy-

amics of kink as a particle-type state, one can identify a peculiar

osition. We introduce the kink position x o ( t ) as the intermediate

oint that separates the two domains, which corresponds to the

osition with the most significant spatial variation of the kink pro-

le. Fig. 2 depicts the granular kink position in a given time and

he typical spatiotemporal evolution of the kink (see the video on

upplementary Material [24] ). Due to the discrete and finite nature

f the constituents of the granular medium, the profile of granu-

ar kink exhibits significant fluctuations. Likewise, one can identify



G. Jara-Schulz, M.A. Ferré and C. Falcón et al. / Chaos, Solitons and Fractals 134 (2020) 109677 3 

Fig. 2. (Color online) Granular kink. (a) Snapshot of a kink profile for P o = 7 kPa, 

f o = 14 Hz, and γ = 0.4 ◦ . The granular kink position x o is depicted by a circle 

( ◦) and λ accounts for the characteristic wavelength of the oscillatory domains. g 

stands for the gravity. White dashed line shows the kink profile. (b) Spatiotemporal 

diagram of the propagating kink for the same parameters as in (a). 
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hat domains are characterized by exhibiting a well-defined wave-

ength λ (cf. Fig. 2 ). For each period, we compute λ by taking the

nstantaneous fast Fourier transform of the dilated domain of the

ranular layer’s profile and averaging it over 60 0 0 iterations. Thus,

corresponds to the inverse of the wave number at which this av-

rage attains its maximum. This wavelength is responsible for the

ucleation barrier for main wall dynamics [14,15] . 

In the case of a horizontal cell γ = 0 , x o ( t ) has been shown to

ollow a hopping-type of motion, where the characteristic hopping

ength is determined by lambda [19,20] , much similar to the dy-

amics of a Brownian particle in a periodic potential [17,25] . In

he center left panel of Fig. 3 a spatiotemporal diagram of the kink

volutions is depicted showing a Brownian-type dynamics. The in-

rinsic fluctuations of the granular layer, averaged over the typical

ize of the kink, give rise to an effective noise term that drives

he Brownian-type evolution of x o ( t ), allowing the kink to move

ack and forth randomly around its initial position. When γ � = 0,

he dynamics of the granular kink position x o ( t ) depicted above

hanges qualitatively and quantitatively as the granular layer be-

omes inhomogeneous due to gravity (see Fig. 2 a). In what follows,

e focus on the dependence of the cell inclination γ on the kink

ynamics by studying the temporal evolution of the granular kink

osition x o ( t ). 

Varying the cell inclination γ between [ −1 , 1] ◦, with an an-

le step �γ = 0 . 2 ◦ as we fix the forcing frequency f o = 14 Hz and

ressure �P o = 100 Pa with P o = 70 kPa. As the cell is not horizon-

al | γ | > 0, the granular kink position x o ( t ) displays also a fluctu-

ting dynamics, but with a well defined mean propagation veloc-

ty 〈 v 〉 = 〈 ̇ x o (t) 〉 � = 0 and thus the granular kink moves towards the

eft ( γ > 0) or the right ( γ < 0) deterministically . Random fluctua-

ions are also present as they arise from intrinsic granular fluctua-

ions. This means that the typical trajectory of x o ( t ) is highly fluc-

uating with a non-zero mean drift, depending solely on γ . This is

hown in Fig. 3 (Left), where typical spatiotemporal diagrams of the

ink dynamics are depicted for negative, zero, and positive values

f γ . 〈 v 〉 is experimentally found by averaging over several trajec-

ories for fixed f and �P o at a given γ . A non-zero 〈 v 〉 is found

or all γ � = 0, where error bars stand for standard deviations. The

entral panel in Fig. 3 summarizes the average speed of granu-

ar kink as a function of the cell inclination. From this chart we

nfer that 〈 v 〉 exhibits different dynamical behaviors. Two regime

re identified, one characterized by granular kinks displaying large

patial fluctuations propagating slowly (region valid for small an-

les, | γ | < 0.25 ◦). In the other regime, the granular kinks propagate
uickly with small fluctuations. In this last regime, the speed in-

reases linearly with the cell inclination. Then, we have term this

ehavior as drifting. 

. Theoretical model for the granular kink position 

Despite having a detailed description of the granular micro-

copic dynamics, to date, there is no established hydrodynamic-

ype macroscopic model to account for the driven granular phe-

omena [26–28] . That is, we do not have a continuous model from

hich we can infer the existence of a parametric instability that

enerates domain walls between standing waves. Based on the

oldstone mode theory and solubility conditions [10] , one expects

hat from a continuous model an equation for the granular kink

osition can be derived [14,15,29] . Because the domain wall con-

ects steady wave patterns, one expects that the kink position sat-

sfies an equation of an overdamped particle in a washboard po-

ential with additive noise. 

For simplicity, let us consider the following Langevin equation

or granular kink position 

˙ 
 o = � + A cos 

(
π

2 λ
x o 

)
+ 

√ 

ηζ (t) , (1)

here � accounts for cell inclination, A stands for the threshold

nduced by the periodic potential, η is the intensity level of noise,

nd ζ ( t ) is a Gaussian δ−correlated white noise with zero mean

alue. The dynamics of the front between homogeneous and pe-

iodic solutions in the context of pattern formation the Lagevin

q. (1) has been rigorously derived [14,15] . In the context of liquid

rystals lifht valve with modulated optical feedback, Eq. (1) was

erived without noise to describe the front dynamics [16] . In ad-

ition, similar model was also derived in wall domains between

tanding waves [29] and front between uniform and pattern state

nder deterministic fluctuations [32] . The model Eq. (1) has been

undamental to understand the pinning-deppining transition [33] . 

Analytical solutions of Eq. (1) when A � = 0 are unknown. Thus,

e have considered numerical simulations as a strategy of study

his stochastic model. Fig. 3 summarizes the results found for the

verage speed 〈 ̇ x o 〉 = 〈 v 〉 , which shows a good agreement with the

xperimental observations. To understand this behavior, one can

rst track the dynamics of the deterministic system, i.e. for η = 0 .

or | �/ A | ≤ 1, the model Eq. (1) exhibits periodic equilibria of the

orm x ∗o = arccos (�/A ) . Hence, in this range of parameters of the

ell inclination the granular kink without fluctuations is motion-

ess. Thus, the granular kink is in the pinning range. In the central

anel of Fig. 3 , the horizontal solid segment accounts for the pin-

ing region. For | �/ A | > 1, the system does not have equilibria and

hen the position of the granular kink propagates with a well de-

ned mean speed, oscillating in time. Analytically, one can deter-

ine the expression for the average speed, which reads [31] 

 ̇

 x o 〉 = 

{√ 

�2 − A 

2 , | �/A | > 1 

0 , | �/A | < 1 

(2) 

Then, close to and far from the end of the pinning region,

he average speed grows with the square root of �/ A and lin-

arly with �/ A , respectively, due to the saddle-node bifurcation.

he solid curve of Fig. 3 depicts the expression (2) . The inclu-

ion of noise causes the deformation of this curve as now there

s only one point where the average speed is zero, the Maxwell

oint [9] . Fig. 1 shows the average speed obtained from Eq. (1) by

djusting the intensity of noise level and � parameter and com-

ares it to the experimentally found curve. Note that we find that

= γ − γo (where γo = 0 . 2 ); therefore, the Maxwell point does

ot correspond to the horizontal cell inclination. This is due to the

act that experimental setup has a small angular ofset stemming

rom the slight inclination of the steel mesh used to support the
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Fig. 3. (Color online) Noise-induced kink propagation in shallow granular layers. Left: Experimental spatiotemporal diagram of the propagating kink for P o = 7 kPa, f o = 14 Hz 

and γ = −1 . 0 ◦ (top), 0.2 ◦ (center), and 1.0 ◦ (bottom). Center: Average kink speed 〈 v 〉 vs the cell inclination γ . Experimental ( ◦) data is compared with numerics ( � ) from 

Eq. (1) . The continuous line is the average speed obtaining from the deterministic model Eq. (3) by � = γ − γ0 , γo = 0 . 2 , λ = 0 . 24 , A = 0 . 7 , and η = 10 . Error bars stand for 

the standard deviation of the granular kink speed. Inset accounts for a magnification of the pinning region. Right: Numerical spatiotemporal diagram of the propagating kink 

for Eq. (1) and γ = −1 . 0 (top), γ = 0 . 0 (center) and γ = 1 . 0 (bottom). 
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granular layer with respect to the aluminium frame. Likewise, we

note that the speed of granular kink is not symmetric with respect

to the inclination of the cell. Note that the noise level is large. 

From the above plot, we conclude that for small cell inclina-

tions ( γ ≤ 1 ◦) the granular kink propagates due to the fluctuations

in a noisy pinning region. That is, the granular kink presents large

fluctuations and propagate slowly. For greater cell inclination, the

mechanism of propagation of the granular kink is due to the drift

generated by gravity, i.e. the drifting regime, where the granular

kink propagates quickly with small fluctuations. In addition, the

average speed of granular kink grows roughly linearly with the in-

clination of the cell. 

5. Statistical characterization of granular kink dynamics 

In Ref. [30] , a detailed analytical study of the conditional and

stationary probability is presented for the Brownian motion in a

washboard potential of Eq. (1) assuming a constant flow of proba-

bility. However, under the conditions of our experiment, the math-

ematical assumptions are not fulfilled and then this type of analy-

sis does not suit our experimental configuration. 

The statistical characterization of the displacement of the gran-

ular kink position �x (t) = x o (t + �t) − x o (t) is performed. Here

�t is the temporal interval between measurements ( �t = 0 . 1 in

numerics and �t = 2 / f o in experiments). Unlike the position of

the granular kink (which does not have a stationary distribution)

the displacement of granular kink does have a stationary distribu-

tion [30] . Fig. 4 (a) show the numerically (left) and experimentally

(right) computed temporal evolution of granular kink displacement

at given cell inclination γ = −1 . 0 ◦. As a result of the inclination,

the kink displays more displacements towards the right flank than

towards the left one. The panels in Fig. 4 (b) show the respective

probability distributions functions (PDFs) of the granular kink dis-

placements. For small cell inclination, we observe a stationary dis-

tribution which is well described by a Gaussian. As the cell inclina-

tion increases, the probability distribution is deformed asymmetri-

cally, so that the maximum moves in opposition to the direction
f the inclination. Fig. 4 (d) summarize the evolution of a probabil-

ty density distribution as a function of the cell inclination. Note

hat the probability of displacement distribution in the pinning re-

ion is a slightly deformed Gaussian with a small width, but in the

rifting region, the probability density distribution width is much

arger. This is a consequence of the fact that in the drifting region

he granular kink performs large displacements. 

To figure out the complexity of the dynamics exhibited by the

emporal evolution of granular kink displacement we have calcu-

ated the power spectral density (PSD) of �x ( t ). Panels of Fig. 4 (c)

llustrate the respective power spectrum density. These spectra are

haracterized by being approximatively flat in a wide frequency

ange, which manifests the random dynamics of the displacements.

umerically, the spectra show a peak for low frequencies related to

he typical drifting frequency 〈 v 〉 /λ when the kink is in the drifting

egime. For larger frequencies the spectra are flat. Experimentally,

 similar trend is observed. The only differences are that the width

f the peak is much larger than in the case of the numerical simu-

ations and that the flat frequency level of the PSD depends on the

nclination, which shows a certain anisotropy of the local fluctua-

ions of the granular layer. 

. Conclusions and remarks 

Brownian motors are relevant machines at nanometric scales,

here the conversion of random movement into mechanical work

n living systems. Here we have reported that a quasi-one-

imensional domain wall out of equilibrium can propagate in a

iven direction as a result of the inherent fluctuations. Indeed, a

rerequisite for observing this type of phenomenon is that: i) one

f the domains displays a characteristic length scale and ii) the

omains are not symmetrical. Based on a one-dimensional shal-

ow granular layer subjected to an temporally oscillating airflow,

ranular kinks are observed as a result of parametric instability.

ranular walls separate two symmetric standing waves subjected

o sharp fluctuations. The dynamics of the domain wall is charac-

erized by exhibiting a random hopping walk. By tilting the exper-
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Fig. 4. (Color online) Statistical characterization of granular kink dynamics. Left column for numerical simulations and right column for experimental data. (a) Displacement 

for propagating kink for P o = 7 kPa, f o = 14 Hz and γ = −1 . 0 ◦ . (b) Displacement histograms for different angles. (c) Displacement PDF for all angles from −1 . 0 ◦ until 1.0 ◦

with an angle step �γ = 0 . 2 ◦ . The red asterisk points out the maximum value for the each PDF. (d) Displacement PSD for the same angles in (b). 
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mental setup, the symmetry of the domains can be broken, which

nduces a ratchet potential for the domain wall. Indeed, one do-

ain is energetically more favorable than the other. Therefore for

mall angles of cell inclination, noise induces the propagation of

he granular kink. When the angle of the cell inclination is large

nough, the domain walls drift in the direction that minimizes

nergy. Fluctuations can induce a new wall domain, which again

ropagates (cf. left bottom panel of Fig. 3 ). The possibility of ma-

ipulating the cell inclination allows us to control the propagation

f kink (both direction and magnitude). The effect of the larger

on-linearities on kink propagation as the amplitude of the granu-

ar pattern increases is still not well understood, and further work

n that direction is needed. 
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