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Summary

In fluorescence microscopy imaging, the segmentation of ad-
jacent cell membranes within cell aggregates, multicellular
samples, tissue, organs, or whole organisms remains a chal-
lenging task. The lipid bilayer is a very thin membrane when
compared to the wavelength of photons in the visual spec-
tra. Fluorescent molecules or proteins used for labelling mem-
branes provide a limited signal intensity, and light scattering
in combination with sample dynamics during in vivo imaging
lead to poor or ambivalent signal patterns that hinder pre-
cise localisation of the membrane sheets. In the proximity of
cells, membranes approach and distance each other. Here, the
presence of membrane protrusions such as blebs; filopodia and
lamellipodia; microvilli; or membrane vesicle trafficking, lead
to a plurality of signal patterns, and the accurate localisation
of two adjacent membranes becomes difficult.

Several computational methods for membrane segmentation
have been introduced. However, few of them specifically con-
sider the accurate detection of adjacent membranes. In this ar-
ticle we present ALPACA (ALgorithm for Piecewise Adjacent
Contour Adjustment), a novel method based on 2D piecewise
parametric active contours that allows: (i) a definition of prox-
imity for adjacent contours, (ii) a precise detection of adjacent,
nonadjacent, and overlapping contour sections, (iii) the def-
inition of a polyline for an optimised shared contour within
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adjacent sections and (iv) a solution for connecting adjacent
and nonadjacent sections under the constraint of preserving
the inherent cell morphology.

We show that ALPACA leads to a precise quantification of ad-
jacent and nonadjacent membrane zones in regular hexagons
and live image sequences of cells of the parapineal organ dur-
ing zebrafish embryo development. The algorithm detects and
corrects adjacent, nonadjacent, and overlapping contour sec-
tions within a selected adjacency distance d, calculates shared
contour sections for neighbouring cells with minimum al-
terations of the contour characteristics, and presents piece-
wise active contour solutions, preserving the contour shape
and the overall cell morphology. ALPACA quantifies adjacent
contours and can improve the meshing of 3D surfaces, the
determination of forces, or tracking of contours in combina-
tion with previously published algorithms. We discuss pitfalls,
strengths, and limits of our approach, and present a guideline
to take the best decision for varying experimental conditions
for in vivo microscopy.

Introduction

Perception and quantitative understanding of the form of liv-
ing cells and tissue contribute substantially to our knowledge
in biomedicine. Examples from studies related to morphogen-
esis, wound healing, or diseases are manifold and have mo-
tivated the development of image processing techniques and
software packages in 2D and 3D (Mosaliganti et al., 2012;
Brodland et al., 2014; Veldhuis et al., 201 7). The morphology
of single cells and their organisation with respect to adjacent
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cells are relevant for the mediation of cell-cell communication
through biochemical signals (proteins, lipids, ions or gases), or
mechanical stimuli through direct, physical contact (Veldhuis
etal., 2017). For the quantification of cell morphology and its
relation with the surrounding context (like other cells and/or
extracellular matrix), the cell contours have to be identified
and localised correctly.

Cells can exert or respond to forces, and physical contact
can stimulate or inhibit the formation of cell protrusions or
migration (Richardson et al., 2016; Reig et al., 2017). Phys-
ical contact between cell membranes has been quantified by
the adjacency of neighbouring membrane contours from im-
ages of different experimental conditions that often involve
time-lapse series. Despite recent advances (Mosaliganti et al.,
2012; Brodland et al., 2014; Stegmaier et al., 2016; Dufour
et al., 2017; Farrell et al., 2017; Veldhuis et al., 2017), the
segmentation of adjacent membranes in cell aggregates, mul-
ticellular samples, tissue, organs, or whole organisms from flu-
orescence microscopy images remains a challenging task. For
in vivo imaging of cells within whole organisms, the quantifi-
cation of adjacent and nonadjacent membrane sections under
the conservation of the morphology of individual cell contours
has not been solved satisfactorily so far.

Fast optical microscopy is the method of choice when it
comes to in vivo observation and quantification of cellular
dynamics, migration, tissue formation, or organisation of
whole organisms. The development of fast confocal mi-
croscopy techniques such as spinning disc or light sheet, in
combination with fluorescent markers that can be encoded
genetically, expressed in vivo and targeted to cell nuclei,
organelles, membranes, or further constituents, contribute to
increasing spatial-temporal resolutions and signal-noise ra-
tios. However, image quality is always a trade-off between the
experimental needs and factors such as quantum yield, stabil-
ity and specificity of the fluorescent markers, as well as optics,
illumination, filters and detectors. Together, they define the
signal quality and the size of the Point Spread Function (PSF)
that collects the photon response of a single fluorescent emitter
within the focal plane (Fink et al., 1998; Kubitscheck, 2017).

A typical diameter of a PSF for an in vivo confocal mi-
croscopy setting is ~0.25 um for the xy-plane, and ~0.8 um
for the z-axis (M1). This is about 50—-160 times the thickness
of a lipid bilayer of a eukaryotic cell membrane (~5 nm),
whose orientation with respect to the focal plane and the PSF
defines different acquisition scenarios. Fluorescence signals
are integrated within the convolution of the PSF with the
fluorescent intensity distribution, proportional to the density
of fluorophores attached to or embedded in the membrane. In
this regard, the effect of convolution for different orientations
of giant unilamellar vesicle membranes with respect to the PSF
has been discussed (Fidorra et al., 2009). However, cellular
membranes are more complex than model membranes: they
present deformations like blebs, microvilli or protrusions
which result in images with a plurality of signal patterns,

and the accurate detection of photon activity and membrane
morphology becomes difficult (Frangi et al., 1998; Mosaliganti
etal., 2012). The precise localisation of a membrane sheet, es-
pecially when adjacent to aneighbouring membrane, becomes
difficult, since blurry, missing or nonspecific membrane sig-
nals are present throughout the images (Fig. 1). It is frequent
in multicellular aggregates that membranes appear adjacent
along the z-axis, but clearly separated within the xy-plane due
to the PSF shape (Mosaliganti et al., 2012). In addition, for in
vivo imaging of multicellular samples, especially in developing
organisms, rapid events of cell reshaping and motion occur
constantly, and varying fluorescence levels are observed due
to different molecular expression timings (Pawley, 2006).

A first step towards resolving the localisation of membranes
from fluorescence microscopy images is deconvolution. De-
convolution algorithms restore images based on likelihood cri-
teria in order to correct for blurring (out-of-focus signals) and
random noise, and to optimise the signal-noise ratio (Sarder
& Nehorai, 2006). However, the deconvolved images are still
diffraction limited according to Abbe’s law: two membrane
sheets that are closer than the full width at half maximum
of the PSF cannot be resolved with conventional confocal mi-
croscopy. The observed phenomenon of varying intensity pro-
files due to the convolution of neighbouring membrane sheets
with different orientations with respect to the PSF must be
interpreted by a competent expert. However, deconvolution
considers a 3D PSF and complementary data improves the
likelihood estimation, and image quality in 2D can be en-
hanced significantly when intensity information above and
below the respective xy-plane is available.

Following image deconvolution, segmentation algorithms
separate images into Regions of Interest (ROIs) which define
cells and background. Over the years, different algorithms for
detection and segmentation of cellular membranes have been
introduced (Table 1), but the detection and appropriate han-
dling of cell contours for multiple cells in tissue and whole or-
ganisms have not been solved on a general level so far. Existing
algorithms can be separated into pixel based and contourbased
approaches. A representative of pixel based approaches is the
family of watershed algorithms (Beucher & Lantuéjoul, 1979;
Bertrand, 2005; Mashburn et al., 2012) where adjacency be-
tween ROIs in binary images can be defined and handled by
neighbourhood criteria or chain codes at pixel level. However,
amorphological characterisation of the ROIs that requires the
length or the curvature of border segments lacks precision due
to the discrete pixel representation. Some authors combine
watershed based approaches with fine meshing approaches
(Veldhuis et al., 2017) to improve the membrane localisation.
In addition, an adequate edge-enhancing filter to smooth and
connect membranes must be applied to the intensity image
prior to the watershed.

Contour based approaches like parametric active contours
(Kass et al., 1988) use image intensity gradient vector fields,
such as the Generalised Gradient Vector Flow field GGVF(I(x,
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Fig 1. Optimised membrane segmentation and definition of overlapping, adjacent, and nonadjacent contour sections of neighbouring cells of the PpO.
Spinning disc microscopy images of the PpO of a zebrafish transgenic flh::gap43-EGFP embryo were acquired at 38 hpf. Fluorescence intensities are
shown in inverted greyscale. (A) 2D image slice from a 3D stack of the pineal complex. The scheme at the bottom right corner depicts the zebrafish
embryo head with the pineal complex position and Left-Right (L|R) alignment within the central nervous system (black square). (B)—(D) Detail of the
PpO cell membranes from the dashed square in (A). (C) Manually Outlined Contours (MOC) and (D) optimised Parametric Active Contours (PAC), with
colour code for overlapping (red), adjacent (green) and nonadjacent (blue) contour sections, defined by an adjacency distance d = 83 nm. The insert in
(D) shows the shortest distance between segments from two cell contours from the dashed rectangle (M5.1). Scale bars: 10 pm.

Y)) (Xu & Prince, 1998a; Xu & Prince, 1998Db), to attract con-
tour vertices towards the membranes by balancing physical
contour properties like elasticity or rigidity. A series of con-
straints define an energy functional and a final relaxation state
of minimum energy that optimises the position of the final ROI
contour in balance with the gradient vector field. Paramet-
ric active contours are optimised independently for each ROI;
therefore, overlapping and adjacent contours need to be de-
tected and corrected for neighbouring objects (McInerney &
Terzopoulos, 1995; Namias et al., 2016).

Implicit active contours or ‘level sets’ (Osher & Paragios,
2003) are based on global optimisation models combined
with image intensities and/or intensity gradient terms into
the minimisation function to guide the contour evolution.

© 2020 The Authors
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The quality of the segmentation depends on the homogeneity
of the membrane signal and the boundary detector. In this
regard, methods for membrane signal enhancement have
been introduced and can be coupled to both implicit and
parametric approaches (Frangi et al., 1998; Mosaliganti et al.,
2012; Michelin et al., 2014). Regularisation terms can be
included in implicit models to control shapes and smoothness,
but overlapping or unwanted merging of ROI contours
can occur (Chan & Vese, 2001; Sarti et al., 2002). Radon
transform (Dzyubachyk et al., 2010) and regularisation
repulsion forces (Dufour et al., 2011; Dufour et al., 2017) can
correct overlapping contours, but the results are straight lines,
planes or nonadjacent ROIs that compromise cell morphology
(Table 1).
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Table 1. Handling of adjacent sections within different segmentation approaches.

Approach

Handling of adjacent sections

Watershed (Bertrand, 2005; Beucher & Lantuéjoul, 1979): Subdivides
an image into a number of ROIs, following topographic profile
transformations that generate digital elevation models on the basis of
the image intensity pattern. The result is separated ROIs at pixel level.

Automated cell morphology extractor, ACME (watershed based)
(Mosaliganti et al., 2012; Frangi et al., 1998): Principal directions of
intensity variations from the image enhance membrane detection in
zones with weak signal intensities of adjacent membranes. The
directions are used to locate the principal curvature of the membrane,
reconstructing interfaces between adjacent cells.

Real-time accurate cell-shape extractor, RACE (watershed based)
(Stegmaier et al., 2016; Vachier & Meyer, 2005): Cell shape
characterisation from membrane and nucleus segmentation similar
to ACME. It uses morphological watershed with flooding of a viscous
liquid. Works in in 2D/3D.

T-snakes (active contours) (McInerney & Terzopoulos, 1995):
Grid-based model for contour merging/splitting. Grid recognises
collision between snakes.

Active contours without edges (active contours) (Chan & Vese, 2001):
Curvature-driven contour evolution considering ROI interior
properties. ROI boundary completion does not require strong
intensity gradients.

Subjective surfaces (active contours) (Sarti et al., 2002): Boundary
completion with missing information. Contour perimeter
minimisation term allows for boundary completion in absence of
strong gradient. Requires initialisation from a point in the ROI
interior.

3-D active meshes (active contours) (Dufour et al., 2005; Dufour et al.,
2011): Discrete variational energy optimisation. Fast multiple
coupled active contours with and without edges. More
computationally costly than distance-based methods. Defines a
repulsion term but without measuring the outcome.

Advanced level-set-based cell tracking (active contour-based)
(Dzyubachyk et al., 2010): Radon transform with active meshes.
Separation planes are computed for touching ROIs with the Radon
transform.

Deformable model array (other) (Namias et al., 2016): Pipeline of
deformable and nondeformable models. Cooperative multiobject
2D/3D segmentation.

+: Adjacency between objects can be defined and handled easily at pixel
level.

—: ROIs are defined at pixel level, border pixels must be defined by a
neighbourhood criteria or chaincode algorithms. Limited
morphological characterisation.

+: Enhances weak membrane signals and applies morphological
watershed. Multiscale approach.

—: No direct characterisation of adjacent interface besides watershed
separation. Robust morphological separation not ensured.

+: Enhances the membrane signal and applies morphological viscous
watershed, therefore getting a smoother solution for low
resolution/information boundaries.

—: Same as ACME.

+: The grid either separates or fuses the contours in case of adjacency or
overlapping, automatically discarding adjacency conflicts.

—: No adjacency definition to resolve a shared section between touching
ROIs.

+: Few parameters.

—: No intrinsic handling of overlapping sections. No intrinsic adjacency
detection (reliant on the intensity gradient).

Same as Active contours without edges.

+: Repulsion forces are exerted over overlapping contour zones.
—: Adjacency separation not guaranteed.

+: Separates adjacent cells using planes/lines (3D/2D).
—: Lacks expressive separation to account for adjacent membrane
curvatures.

+: Ad hoc collision detection handling.
—: Not implemented. Algorithms for contour stop/rollback only.

The aforementioned methods produce satisfactory results
when ROIs present regular shapes (Baggett et al., 2005; Luck
etal., 2005; Stegmaier et al., 2005; Coelho et al., 2009; Drelie-
Gelasca et al., 2009; Mosaliganti et al., 2009), but fail for live
imaging of developing organisms with complex morphology
and acquisition conditions that do not permit to respect opti-
mal image sampling criteria. A particular example is the 3D
imaging of the Parapineal Organ (PpO) in developing zebrafish
embryos. The small brain nucleus is located in the dorsal dien-
cephalon, associated to the pineal complex. The PpO formation

occurs between 26 and 48 hours post-fertilisation (hpf). Cells
of the PpO re-arrange and form a rosette-like structure that
detaches from the pineal complex and moves to the left side of
the brain (Concha et al., 2003; Hartel et al., 2007; Regan et al.,
2009). During this process, cells change their shape and reor-
ganise with respect to their neighbours. A quantitative view
on cell morphology, membrane adjacency, reorganisation of
cell and tissue topology, and cell neighbours, is the basis to un-
derstand the underlying mechanisms of the PpO asymmetric
morphogenesis. This task depends on the additional challenge

© 2020 The Authors
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of segmenting PpO cell membranes of highly variable shapes
which are subject to rapid deformations and displacements
of the cell borders, clustered cells, intrinsic variations of the
transgenic fluorescent membrane signal, and variable image
background. The combination of these factors results in sub-
jective cell boundaries which depend on an expert criterion for
a satisfactory segmentation.

In this work, we address the issue of detecting nonadjacent,
adjacent, and overlapping contour sections for parametric cell
contours. We introduce a geometrically consistent solution for
a common shared contour of cell neighbours under the con-
straint of maintaining the overall contour morphologies. We
introduce the ALgorithm for Piecewise Adjacent Contour Ad-
justment (ALPACA) that detects and adjusts contour sections
within a defined adjacency distance d. ALPACA defines a poly-
line as an optimised shared contour section and solution for
connecting adjacent and nonadjacent sections, under the con-
straint of preserving the underlying cell morphology. We ap-
ply and evaluate a combination of Parametric Active Contours
(PAC) with ALPACA for the segmentation of PpO cell mem-
branes in zebrafish embryos, acquired by 3D live spinning-disc
microscopy. In order to assess the performance of ALPACA
and the interexpert variation of Manually Outlined Contours
(MOC) by independent experts, we present results from 51
cell borders during PpO formation, and a synthetic ground
truth scenario of 88 hexagonal cells with defined Adjacent
Edges (AE). We determine a series of indices for morphology
and similarity of objects to test if cell shape and adjacency are
preserved throughout the experiments.

Materials and methods

M1 Microscopy/image acquisition

Embryos were obtained by natural spawning from a flh:
gap43-EGFP transgenic zebrafish line (Concha et al., 2003).
The sample embryo was anesthetised (tricaine 0.003%,
Sigma) and mounted in 1% low melting point agarose (Win-
kler). The PpO morphogenesis was observed using a spinning
disc microscope (ZEISS; Jena, Ger./PerkinElmer; Waltham,
MA, USA) under controlled temperature conditions (28°C).
3D Image stacks (8-bit single channel intensity I € [0, 255]),
were captured with a 40x (NA 1.2) water-immersion objec-
tive, excitation/emission wavelength at 488/505-560 nm,
xyz stack of 768 x 768 x 69 voxels and 166 x 166 x 500
nm’ voxel size. Raw images were deconvolved using Huy-
gens Software (SVI, Hilversum, the Netherlands). Sampling
distances were calculated with Nyquist rate and PSF calcula-
tor (https://svi.nl/NyquistCalculator).

M2 Synthetic image with hexagons of defined membrane
adjacency
A 2D vector image for 88 hexagons was generated with Adobe

Tlustrator software (Adobe; San Jose, CA, USA), and rasterised
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to 768 x 768 pixels. Horizontal edges of the hexagons were
43 pixels long, diagonal edge length and pixel representation
varied slightly due to the rasterisation algorithm. The mem-
brane adjacency between hexagons was defined as follows: 11
hexagons with 6 Adjacent Edges (AE), 17 with 5 AE, 13 with 4
AE, 12 with 3 AE, 13 with 2 AE, 11 with 1 AEand 11 hexagons
without AE (O AE). The distances for hexagons with 0 AE to
the next hexagon varied from 3 to 12 pixels. Edge/background
intensity was set to 255/0 (8 bit). The image was convolved
with the theoretical PSF calculated with Huygens Software for
a pixel size identical to the xy microscope settings (166 x 166
nm?), and re-scaled to 8 bit (Fig. S2A).

M3 Segmentation of cells and synthetic hexagons by manually
outlined contours (MOC)

Membrane segmentation was performed for 17 cells of the PpO
(a total of 51 MOC in consecutive xy-planes along the z-axis)
and for 88 synthetic hexagons (M2), by three independent
experts with more than two years of training in in vivo mi-
croscopy and manual segmentation of diverse cell structures.
The contour of each object was outlined as a closed polygon
using a digital Pen CTE-440 tablet (Wacom; Saitama, Japan).
Binary ROIs were generated with a custom-made macro writ-
ten for the Image SXM software program (Barrett, 2015).

M4 Parametric active contours (PAC)

The parametric active contour or ‘snake’ model (Kass et al.,
1988) defines contours as time-dependent parametric curves.
Each ROI contour is defined by a curve C = C(s) parameterised
in space with s € [0;1]. Relative to the contour curve, two
internal and one external energy terms are weighted in the
energy functional E:

1 ac\> 32\’
E=E(C (s))=§[a<g> +'3<W> ds

+ KEext (C (S)) .

The internal energy terms mimic physical contour proper-
ties of elasticity/contractility (with weight coefficient o) and
rigidity (B8); the external energy («) is derived from the im-
age intensity gradient in order to drive the contour towards
observed ROI edges (in this case, the generalised gradient vec-
tor flow (Xu & Prince, 1998a; Xu & Prince, 1998b)). A force
balance equation to find the minima for the functional E is
defined by (i) the Euler-Lagrange differential equation system
(Kass et al., 1988; Aubert & Kornprobst, 2006) and (ii) time
dependency of the contour curve C = C(s,t) with t € [0; oo]:

2 4
p = et BT S (C ).

The force balance is reached when the sum of the terms at
both sides of the equation are equal to zero. The time derivative
at the left side is introduced to iteratively deform the contour
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from a given initial shape (automated or manual) towards a
final equilibrium shape, according to the dynamics defined by
the force terms. The coefficient values control the final equilib-
rium state of each contour. Additionally, the result depends on
the numerical, discrete implementation of the evolution equa-
tion. The most common implementation is made with finite
differences upon an ordered list of contour vertices V; (j = 1,2,

. n) that form a closed polygon or open polyline by making
C=C(s,t) = {Vj(x.y)} = {x(s,t),y;(s,t)}. Each consecutive pair
of vertices defines a segment that serves as the basis for ad-
jacency detection and contour adjustment of neighbouring
ROIs. A viscosity coefficient y is included in the equation to
control the evolution speed of the contour At. Convergence pa-
rameters serve as stopping criteria for iterative solvers: maxi-
mum iteration count, and/or contour displacement thresholds
based on a given norm. After each iteration, the contour curve
needs to be resampled to ensure a set of equidistant vertices for
homogeneous parameterisation and numerical stability (see
Fanani et al., 2010) for examples of varying force coefficients
on active contours for the segmentation of lipid monolayers).
We modified the iterative solving scheme for energy minimi-
sation of each contour in order to allow fixed contour vertices
from shared sections.

GGVF(I(x,y)) = [u(x,y), v(x,y)] is a vector field, calculated
from the intensity gradients of an image I(x, y) (Xu & Prince,
1998a; Xu & Prince, 1998b; Hirtel et al., 2007; Fanani et al.,
2010). First, an intensity gradient vector field [I, I, ] is calcu-
lated from I(x, y). The edgemap image I, = |I,| + |I,| high-
lights strong intensity transitions and is used as the basis for the
computation of the GGVF field. The GGVF model implements
an advection/diffusion model that propagates strong gradient
vectors towards zones with low gradients. The algorithm for
computing the vector field optimises an integral functional
defined over the entire field, similar to the snake energy, by
iteratively solving an Euler-Lagrange PDE system. The imple-
mented GGVF algorithm permits control of how pronounced
the rise/decay of the field will be (regularisation coefficient ).
Within our work, we used the following weight coefficients:
elasticity @ = 0.0002, rigidity 8 = 0.003, GGVF image force
field « =0.0015. Contour parameters: viscosity y = 1.0, aver-
age segment length ASL = 1 pixel length (166 nm), maximum
deformation iterations = 1000, convergence threshold = 2E-
6 (average vertex displacement divided by contour perimeter).
GGVF parameters: regularisation u = 0.5, iterations = 100.

M5 Algorithm for piecewise adjacent contour adjustment
(ALPACA)

Input, output and intermediate steps of ALPACA are shown
as a flowchart in Figure 2. The input consists of: (i) a fluo-
rescence intensity Image I(x,y), (ii) the Generalised Gradient
Vector Flow field GGVF(I(x,y)) = [u(x,y), v(x,y)] (optional),
(iii) the adjacency distance threshold d set by an expert con-
sidering the spatial resolution limit of the specific microscope

settings and the image quality, and (iv) a set of parametric
contours Cj(x,y). These can be obtained from an active con-
tour approach (M4) optimised to represent the morphology of
a subjacent ROI according to a ground truth (if available) or a
reference segmentation by an expert, either from automatic or
manual segmentation procedures (Hértel et al., 2007; Fanani
et al., 2010) (Figs. 1C, D). In principle, the set of C;(x,y) can
also derive from alternative methods to active contours.

On the basis of the set of C;(x,y) and d, ALPACA calculates
the distance between neighbouring contour sections based on
the segment-segment distance, and classifies nonadjacent, ad-
jacent, and overlapping contour sections (M5.1, Figs. 1C, D).
If no adjacent or overlapping sections exist, the output C;(x,
y) is returned for further morpho-topological quantification.
If adjacent or overlapping sections do exist, a calculation of a
correspondence vertex mapping based on normalised segment
lengths is performed (M5.3) and Shared Contour Sections are
calculated by averaging the (x, y) positions of corresponding
vertices. Next, the algorithm checks if nonadjacent contours
exist (a ROI might consist of adjacent contours only). If not,
C/(x, y) is returned. If nonadjacent contours do exist, Piece-
wise Parametric Active Contours C;*(x, y) are calculated to
connect nonadjacent and shared sections. For the data pre-
sented in this article, vertices of the calculated shared sections
were fixed, and the nonadjacent sections re-adjusted under
the initial active contour constraints that respect morphologi-
cal features of the subjacent ROIs (M5.2, Figs. 3G, H). The use
of GGVF is optional, and was not applied in the final relax-
ation in our examples. Finally, C;**(x, y) is returned for further
analysis.

In summary, ALPACA returns one of three possible out-
puts: (i) parametric contours C;(x,y) with no adjacent sec-
tions, (ii) parametric contours C*(x,y) where all sections ful-
fil the adjacency criteria and (iii) piecewise parametric con-
tours C;*(x,y) with sections that fulfil the adjacency crite-
ria and sections that do not. The artefact of overlapping
sections was corrected in C;*(x, y) and C;*(x, y), and the
results fit the morphological constraints of the microscopic
sample.

M5.1 Classification of adjacent, overlapping and nonadjacent con-
tour sections within the adjacency distance d.

MS5.1.a Adjacent contour sections of neighbouring ROI con-
tours are sets of one or more consecutive segments (polylines)
which lie at a distance equal or lower than the Adjacency
Distance d. The minimum distance between each segment
of a first contour and all the segments of a second contour
is calculated by a segment-segment distance algorithm. The
shortest Euclidean distance is taken from each of the two
vertices of the first segment to the second segment and from
each of the two vertices of the second segment to the first
segment (de Berg et al., 2008, inset in Fig. 1D).

© 2020 The Authors
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Fig 2. Membrane segmentation pipeline. Flowchart indicating input, steps of the Algorithm for Piecewise Adjacent Contour Adjustment (ALPACA), and

the three possible outputs.

M5.1.b Overlapping contour sections of neighbouring ROIs
are sets of one or more consecutive segments which lie
within each other, independently of the Adjacency Distance
d. Overlapping is detected by the Boost implementation of the
Weiler—Atherton algorithm for polygon intersection (Weiler
& Atherton, 1977; Boost 2017). Contour segments that be-
long to the intersections are labelled as overlapping segments
and connected to overlapping sections.

M5.1.c Nonadjacent contour sections are contour sections
that are neither adjacent nor overlapping.

M35.2 Shared contour section

Shared contour sections are defined for adjacent and over-
lapping contour sections of two neighbouring ROIs. A Corre-
spondence Vertex Mapping (M5.3) is used to define a list of
vertex pairs with one vertex from each ROI, and to average
the position of each pair of vertices. The result is a common
shared contour section (Figs. 3F, H) which depends on the se-
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lected mapping approach, and substitutes the former adjacent
and overlapping contour sections of the corresponding ROI
contours.

MS5. 3 Correspondence vertex mapping

The Correspondence Vertex Mapping for two contour sections
returns as a list of paired vertices from each contour. We tested
two approaches:

M5.3.a Euclidean Distance Correspondence Vertex Mapping.

i. The contour section with the higher number of vertices
is selected as reference. If numbers are equal, the result is
independent of the selection.

ii. The first two vertices of the polylines are connected, be-
coming the first pair of the correspondence list. The result
isindependent of the selection of the first or the last vertex.

iii. For each following vertex of the reference polyline, the
closest vertex of the second polyline is detected. The paired
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Fig 3. Normalised length based correspondence vertex mapping in combination with piecewise active contours lead to shared contour sections for
morphology preserving cell contours. Scale bars in (A): 10 um, (B/D/F/H): 2 um, (C/E/G): 332 nm. Arrows in (D/F) mark the start vertices of each
section. (A) Two neighbouring PpO cells (red and green) from the 2D image slice of Figure 1. Detail of the adjacent contour section within the dashed
rectangle is shown in B-H. (B) Detail of adjacent (green), nonadjacent (blue), and overlapping (red) contour sections defined by d. (C)—(D) Shared contour
section (yellow) calculated with the Euclidean Distance for Correspondence Vertex Mapping of the contour sections. (C) Detail of adjacent, nonadjacent
and overlapping contour sections of the dashed rectangle in (B). The vertex mapping leads to undulating extremes in the shared section. (E)—(F) Shared
contour section (yellow) calculated with the Normalised Length for Correspondence Vertex Mapping of the ROI contour sections. (E) Detail of adjacent,
nonadjacent, and overlapping contour sections of the dashed rectangle in (B). The vertex mapping leads to smooth extremes in the shared section. (G)—(H)
Piecewise active contours (yellow triangles and blue squares and circles) guarantee smooth transitions between adjacent and nonadjacent contours, and
preserve the morphology of two neighbouring PpO cells. Angles of the triplet vertices at the contour junctions can be calculated by fitting straight lines
to a selected number of contour vertices next to the tip (see representative lines for 61,62, 63 and ¢1, 92, ¢3). (G) Detail of the result for piecewise active
contours from the dashed rectangle in (B).
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vertices are added to the correspondence list consecu-
tively.

iv. The last two vertices of the polylines are connected, be-
coming the last pair in the correspondence list.

MS5.3.b Normalised Length Correspondence Vertex Mapping.

i. The length of each contour section is calculated as the
sum of the length of its segments. The length of a segment
is the Euclidean Distance between its two vertices.

ii. Each segment is normalised by the total length of its sec-
tion, producing one-dimensional normalised vertex po-
sitions. The vertices of each section have a normalised
length in the range [0; 1], with vertices at length 0 and 1
as start and end, respectively.

iii. One of the sections is taken as reference list to start the
correspondence list. For sections with unequal numbers
of vertices, the polyline with more vertices is used. The
correspondence list is generated by advancing vertex by
vertex from the reference list, matching with the closest
vertex in the second list. The matching is made by com-
paring the normalised lengths of the vertices. The result is
independent of the starting vertex.

M 5.4 Piecewise parametric contours

As described before (M5) ALPACA returns one of three possi-
ble outputs: (i) parametric contours C;(x, y) without adjacent
sections, (ii) parametric contours C;(x, y) where all sections
fulfil the adjacency criteria and (iii) piecewise parametric con-
tours C;*(x, y) with sections that fulfil the adjacency criteria
and sections that do not. For outputs (i) and (ii), there is no
need for further adjustment of the ROI contours. For (iii), the
shared contour sections (M5.2) are connected to the nonadja-
cent contour sections and form a new ROI contour. In order to
produce smooth contours, we applied a piecewise active con-
tour algorithm that fixed the vertices of the shared contour
sections, but adjusted the nonadjacent contour sections un-
der the constraints of the active contour approach. The result
of the piecewise approach is shown in Figure 3(H).

MS5.5 Software implementation

ALPACA was implemented within SCTAN-Soft, a custom-built
software platform programmed in IDL 7.1.2 (ITT/Harris; Boul-
der, CO, USA). Polygon intersection and distance computation
algorithms (M4) were sourced from the C++ Boost library ver-
sion 1.71.0 (Boost 2017), encapsulated in custom functions,
and compiled as dynamic link libraries for IDL using Visual Stu-
dio 2010 version 10.0.40219 SP1Rel (Microsoft; Redmond,
WA, USA) in order to be integrated with SCIAN-Soft. Com-
puter: custom built, Intel Core i7 3930K CPU, 64GB RAM,
64-bit Windows 7 SP1 Operating System.
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M6 Indices for morphology and similarity

M6.1 Morphological indices

Seven indices were defined to quantify the difference of the
morphology of the ROIs before and after ALPACA, and
the characteristics of the shared contour sections: relative
area variation, relative perimeter variation, relative adjacent
length variation, relative nonadjacent length variation, sec-
tion distance, section curvature, section length and average
segment length. The indices were calculated using n;, as the
number of shared contour sections; n, as: (i) each pair of cells
adjacent in each shared contour section (n, = 2n;) for rela-
tive area & perimeter variation, (ii) each ROI of the slice (n; =
17) for relative adjacent and nonadjacent length variations,
and (iii) each shared contour section (1) for the rest. Two ad-
ditional indices, Normalised Area and Normalised Perimeter,
were defined for pairwise contour comparison between two
experts or between an expert and the ground truth.

M6.1.a Perimeter and Area.

The total perimeter of a contour C;(x, y) was determined by
the sum of the length of its segments. The Area of C;(x, y) was
calculated with the Shoelace Algorithm for polygons (Braden,
1986).

M6.1.b Relative and Normalised Perimeter and Area Varia-
tion.

Relative Perimeter and Area Variations were determined
on the basis of the original ROI contours C;(x, y), and
one of the possible three outputs of ALPACA, C i‘)“t(x, y) =
Ci(x, y), C/(x, y), or C;*(x, y) (M5, Fig. 2). Normalised Peri-
meter and Area Variations were determined on the basis of two
contours for pairwise comparison, C 1,2 ; (x, y), either between
experts or between an expert and the ground truth. Perimeter
and Area were calculated as described above (M6.1.a).

e Relative Perimeter Variation:

Perimeter (C?“t (x, y))
Relative Perimeter Variation =

Perimeter (C; (x, y))

® Relative Area Variation:
Area (C (x,
Relative Area Variation = M
Area (C; (x, y))

e Normalised Perimeter Difference:

Normalised Perimeter Difference

B |Perimeter (Cy.; (x, y)) — Perimeter (C2; (x, ))]
~ max {Perimeter (Cy; (x, y)) , Perimeter (C2; (x, y))}

® Normalised Area Difference:

Normalised Area Difference
|Area (Cy.; (x, y)) — Area (Cz,i (x, y))|
max { Area (C1; (x, y)), Area(Ca;(x,y))}
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M6.1.c Relative Adjacent and Nonadjacent Length Variation.

For each ROI contour, the relative length of the adjacent
and nonadjacent sections was calculated as the sum of their
segment lengths, and divided by the total contour perimeter.
The variation was then calculated as the ratio between the
relative lengths of the adjusted contours with respect to their
original lengths. In order to consider sections with only one
vertex, the half-length of extreme segments was also summed.
M6.1.d Section Distance.

The similarity indicator for section distance (Simp) was de-
fined by the area ratio between contour sections as:
|Areac (SC, AC1) — Areac (SC, AC;)|
Areac (SC, ACq) + Areac (SC, AC,)

SimD=1—

® The Contour Area (Areac) defined the area between the
Shared Contour (SC) section and the Adjacent Contour (AC)
sections from the first and second ROI contours (AC; and
AC)).

® The area between contour sections Areac(SC, AC1/,) was
calculated by the Shoelace Algorithm (M6.1.a).

Mb6.1.e Section Curvature.
The similarity indicator for section curvature (Simg) was
defined by the following steps:

® Tirst, correspondence lists vy = 0. .. N;_; between contour
sections were defined asin M5.3 to allow for vertex by vertex
comparisons.

® The Curvature (K) a of contour section was calculated for all
of its vertices vy = 0. .. N;_; using the differential curvature
approximation (Yates, 1974), considering for each vertex
vy its neighbours v, ; and v;_;. For the first vy and the last
vertex vyi_1 of a contour section, the curvature cannot be
determined due to missing neighbours.

® Simy was calculated as:

|3 AK;(SC, AC;) — 3, AK (SC, AC,)|
3 AK(SC, ACy) + Y, AK; (SC, AC,)

SimK =1-

e Thedifference of curvature (AK)) was calculated as the sum
of differences of curvature between the Shared Contour (SC)
section and the Adjacent Contour sections (ACy, AC;).

® The difference was summed over all the vertices to obtain
the value of Simg.

M6.1.f Section Length.
The similarity indicator for section length (Sim;,) was defined
as:

SimL =1
|Length (SC)/Length(AC;) — Length (SC)/Length(AC,)|

Length (SC)/Length(AC;) + Length (SC)/Length(AC,)

® The Length of contour sections SC, AC; and AC, were cal-
culated as the sum of the length of the contour segments
(M6.1.a).

M6.1.g Average Segment Length.
The similarity indicator for section average segment length
(Simagr) of a section was defined as:

min { ASL(A(,‘,)i;ASL(ACJ), ASL( SC)}

SimAgL =1- N N - N .
max [ AsL(Ac,)i;AsL(Acz) _ASL (SC)}

® ASL(Contour) was calculated by dividing the contour total
length by the number of its segments.

® ASL(AC;) and ASL(AC,) were averaged and compared to
ASL(SC).

MG6.2 Similarity indices

Several indices were calculated for the evaluation the variabil-
ity/similarity of the manual contours, the segmented ROIs, the
parametric contours, and ALPACA.

M6.2.a Dice Coefficient and Jaccard Similarity Index.

The dice coefficient DC(C; ;, C5;) (Dice, 1945; Serensen,
1948; Coelho et al., 2009) and the Jaccard Similarity Index
JSI(C; 4, C5 1) (Coelho et al., 2009) for two contours Cy /> i(x, y),
were implemented on the basis of the area definition (M6.1.a)
and polygon intersection and union (M5.1.b):

2* Area (C]j N CZ,,‘)
Area (Cy) + Area (C2;)’

DC (C1,,Cay) =

Area (C1;N Caj)

JSI (C14,Ca) = m
For both indices, values range within [0; 1] (no over-
lap/perfect match).
M6.2.b Hausdorff Distance.
The Hausdorff Distance HD(C; ;, C> ;) (Atallah, 1983) for
two contours Cy /3 j(x, y) was calculated based on the Distance
D(k) between polygon segments (Baggett et al., 2005):

HD (Cl.i7 Cg,i) = max {D(k) : Cl,ik ;ﬁ C—;’qik} .

Alow HD value indicates a close distance between the com-
pared contours, with O as the minimum possible value for a
perfect match.

M6.2.c Normalised Sum of Distances.

The Normalised sum of distances NSD(C; ;, C,;) (Coelho
et al., 2009) accounts for the accumulated distances from
nonoverlapping pixels enclosed by contours C;; and C, ;.
Values range within [0;1] (perfect match/no overlap).
NSD(C; ;,C, ;) was calculated on the basis of the pixel rep-
resentation of each contour and interior area:

k C B ?é C2,i *D(k)
NSD (Cy.i, Ca) = 2 IZkD(k)] '
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Results and discussion

During cell migration and tissue organisation, the adjacency of
cells and the direct contact between cell membranes mediate
the type and strength of biochemical and mechanical inter-
actions. Examples of contact mediated inhibition during cell
locomotion are summarised in the recent review on the work
of Abercrombie by Roycroft & Mayor (2018). Cell—cell colli-
sion can stimulate the formation of protrusions and migration
in the opposite direction of the contact site. On the contrary,
it has been reported that loss of collisions between cancer and
healthy cells is associated with metastasis. The quantification
of adjacency is also important to understand tissue—tissue in-
teractions, for example, between the extra-embryonic epithe-
lial enveloping cell layer and the mesenchymal embryonic cell
layer during early development of annual killifish (Reig et al.,
2017). Here, the enveloping layer is used by the embryonic
cells as a substrate for migration, directing the spreading of
the embryonic tissue. Tissue—tissue interaction mediated by
cell adhesion and tension relies on the ability of embryonic
cells to couple motility to nonautonomous signals from the
expanding enveloping layer.

The detection and quantification of adjacent and nonadja-
cent cell membranes opens the possibility to obtain and study
a number of morphological aspects of cell-cell interaction, in-
cluding number and temporal organisation, membrane mor-
phology, angles formed at membrane junctions between two
or more cells and the number and morphology of cellular
protrusions. These morphological aspects are key information
that allows a better understanding of cell-cell communica-
tion and the coordination of cell collective phenomena dur-
ing morphogenesis, organogenesis, injury response or disease
progression/treatment (Friedl & Gilmour, 2009; Rerth, 2009;
Castaneda et al., 2014). The detection and quantification of
intercellular junctions is also relevant, since they provide in-
formation about the integrity to epithelia and other tissues,
and the mechanical machinery necessary to execute morpho-
genetic and homeostatic intercellular rearrangements to co-
ordinate tissue architecture with behaviour (Yap etal., 2018).

Figure 1 shows 2D data of a 3D time series acquired to
study the dynamics of the PpO morphogenesis. For the identi-
fication of cell membranes, spinning disc microscopy imaging
was performed with flh::gap4 3-EGFP transgenic fish embryos.
During PpO morphogenesis, 12—18 neuroepithelial adjacent
cells form a rosette-like structure that detach from the pineal
complex to form a small nucleus on the left side of the embry-
onic zebrafish brain (Concha et al., 2003; Hértel et al., 2007;
Reganetal., 2009).Imaging characteristics and quality shown
in Figure 1 represent typical scenarios for in vivo experiments
that focus on collective cell migration and tissue morphogen-
esis during embryonic development (Fig. 1A), combining the
use of fast microscopy and fluorescent membrane proteins to
outline the form of living cells and tissue (Lecaudey et al., 2008;
Richardson et al., 2016; Reig et al., 2017; Sanchez-Corrales
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etal., 2018). The selected pixel size (166 x 166 nm) is about 3
times the suggested Nyquist rate of 50 nm (see M1). However,
fast in vivo imaging is a trade-off between maximising resolu-
tion, field of view, fluorescence intensity, minimising photon
damage, bleaching, and signal-noise ratio. For the presented
experimental conditions, the Nyquist rate cannot be kept and
arate of 166 nm was selected.

Figure 1(B) shows membrane signals that vary in peak in-
tensity and the width of the Gaussian intensity profile in the
xy-plane. The variations can be explained by the different ori-
entations of the membrane sheets with respect to the PSF: (i)
membrane sheets oriented vertically with respect to the focal
xy-plane lead to relatively ‘thin’ membrane profiles with high
intensities, since fluorescence signals are integrated along the
membrane sheet, collinear to the elongated z-axis of the PSF;
(ii) membrane sheets oriented horizontally to the focal plane
lead to ‘thick’” membrane profiles with relatively low inten-
sities, since the intersection between the membrane sheet
and the PSF reaches a minimum and (iii) membrane sheets
oriented diagonally with respect to the xy plane of the PSF
lead to ‘intermediate’ membrane profiles and signal intensities
(Fidorra et al., 2009; Mosaliganti et al., 2012). In addition,
membrane undulations, protein expression timings, and the
dynamic organisation of protrusions add different intensity
patterns to the image, and the direct, automated segmenta-
tion of cell membranes within the described conditions has not
been fully solved so far (Mosaliganti et al., 2012; Stegmaier
etal.,, 2016; Dufour et al., 2017).

For image data shown in Figure 1, MOC are the only choice
to obtain a first, rough approximation of cells and membranes,
especially when the confluence and morphological complexity
of the cells prevents the success of automated segmentation
(Figs. 1A—C). Cell borders cannot be identified unequivocally in
all parts of the image. The formation of protrusions in different
directions, in addition to weak membrane signals, present a
scenario where only an experienced investigator can take deci-
sions to manually outline the best possible contours (M3). Nat-
urally, the human bias and errors are intrinsically included.
In scenarios with missing intensity information, MOC present
a possible approximation. In Figure S1, similarities and differ-
ences generated by three independent experts are shown for n
=17 cell contours, and quantified for n =51 PpO cell contours
(Table S1). Three experts identified an equal number of cells
with a very similar overall organisation and cell morphology.
The average difference for the cell area is below 10%, and
for the perimeter, below 8%, from the pairwise comparisons
performed with MOC, PAC and ALPACA. The Dice/Jaccard
and NSD similarity indices indicate an equivalent of similarity
above 90%, 80% and 90% respectively. A Hausdorff Distance
of ~7 pixels (1 wm) also supports a high similarity for MOC,
PAC and ALPACA.

In a different scenario, we tested the interexpert variation of
MOC and the deviation of expert drawings with PAC, and AL-
PACA within a synthetic, PSF-convolved ground truth image
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(M2, M3). Figure S2 shows 88 hexagons with well-defined
areas, edge length and Adjacent Edges (AE=0,1, ... 6); both,
MOC and ALPACA contours exhibit almost perfect alignment
with the subjacent hexagon borders for all experts (Figs. S2B,
C). Figure S2(D) shows a nearly perfect correlation of the AE
values calculated from ALPACA contours with the ground
truth AE values. Morphological and similarity indices shown
in Tables S2 and S3 indicate nearly perfect match with the
ground truth hexagons, and a very low interexpert variation
forMOC, PAC, and ALPACA. The mean differences for area and
perimeter are below or equal to 1% for pairwise comparison
of expert MOC with the ground truth data. For the interexpert
variation of MOC, the mean difference for the quantification of
cell area is below 1.5%, and for the perimeter, below 1%. After
ALPACA, the mean variations remain similar, but increased
standard deviation values are observed in the morphological
indices.

For all experts, MOC deviate from the predominantly
smooth, curved membrane pattern in different parts of the im-
age (Fig. 1C, Figs.S1A,D, G), and overlapping contours cannot
be avoided. PAC are a powerful tool for the correction of small
deviations from a membrane signal and pulse driven undula-
tions of MOC. Vector fields attract contour vertices according
to the intensity profile of the membranes, while the contour
smoothness and shape is balanced by physical properties like
elasticity or rigidity. PAC have shown excellent results for the
segmentation of contours in different experimental systems
and settings (de Tullio et al., 2007; Hértel et al., 2007; Fidorra
et al., 2009; Fanani et al., 2010; Chang et al., 2014; Bustos
et al., 2017). For PpO cells, Figure 1(D) and Figures S1(B),
(E), (H) show the results of PAC for optimised membrane seg-
mentation (M4) together with the detection of overlapping,
adjacent, and nonadjacent contours within the distance crite-
ria established by the selected adjacency distance d = 83 nm.
The Dice/Jaccard and NSD values between expert MOC are all
within the ~90% similarity range for the E1/E2 comparison;
82%, 81% and 92% for the E1/E3 comparison, and 89%, 81%
and 93% for the E2/E3 comparison. The measured distance
lies below 7 pixels (~1 um) for E1/E2, ~8 pixels (1.1 um) for
E1/E3 and ~6 pixels (0.9 um) for the E2/E3. The measured
morphological indices for PAC were above 80% for the three
comparisons. The similarity indices lie within 80% and 90%,
and the Hausdorff Distance is below 7 pixels (~1 um). The rest
of the measurements in Table S3 show that both PAC and AL-
PACA preserve this small variability between experts within
the same range.

The results of the ALPACA (M5, Fig. 2) are shown for two
neighbouring PpO cells in Figure 3. For adjacent (green), non-
adjacent (blue), and overlapping (red) membrane sections,
ALPACA calculates a solution for a common, shared contour
section on the basis of the Euclidean Distance Correspondence
Vertex Mapping (M5.3.a, Figs. 3C, D) and the Normalised
Length Vertex Mapping (M5.3.b, Figs. 3E, F). As Figures 3(E),
(F) show, only the Normalised Length Correspondence Vertex

Mapping leads to smooth shared contour sections for adjacent
and overlapping membrane sections, avoiding undulations
that can be observed at the tips of the sections in selected cases
(see representative example in Figs. 3C, D). Finally, ALPACA
connects the tips of the nonadjacent contour sections with the
common shared contour section, and applies piecewise para-
metric active contour relaxation exclusively to the nonadja-
cent contours in order to produce smooth transitions between
adjacent and nonadjacent contours (Figs. 3E, F). From the
new contour solution presented in Figures 3(G), (H), the sec-
tionlength of adjacent versus nonadjacent membrane sections
could be calculated together with morphological descriptors.
Angles of the triplet vertices and the corresponding cell con-
tours can be determined by standard fitting of straight lines or
circular arcs to a number of contour vertices in proximity to
tips (Fig. 3H). The improved cell-cell and cell-medium con-
tours can also improve the estimation of angles between adja-
cent cells in 2D and should provide a more solid basis for force
inference techniques that allow the estimation of tension maps
in 2D and 3D (Brodland et al., 2014; Veldhuis et al., 2017). The
Dice/Jaccard similarity indices and NSD values between expert
ALPACA arein the 80% and 90% similarity range for the three
comparisons The Hausdorff Distance remains below 7 pixels
(~1 pum), supporting the observation of a high similarity of
the ALPACA output, and a very similar variability between
experts.

The free parameters of the active contour model allow op-
timisation of the contours for a plurality of shapes such as cel-
lular membranes. Since we are not aware of a biologic sample
that could fulfil the criteria of an acceptable ground truth for in
vivomicroscopy and exactlocalisation of the membrane sheets,
it is not possible to define indicators such as the Hausdorff Dis-
tance or Dice Coefficient (Chang et al., 2014) for the adjusted
PpO cell contours. We propose a series of quality indicators
to characterise adjusted shared sections and ROI contours
(Figs. 4, 5). Figure 4 shows that distance (Fig. 4A) and curva-
ture (Fig. 4B) of a sample shared contour section are balanced
with respect to the adjacent and overlapping contour sections.
The differences of the distance indicators that compare the
shared contour section to each of the original ROI sections are
within the size of the symbols used in the plot except for the first
two vertex positions (compare Fig. 4A with Figs. 3E, F). The
curvature plot of the shared contour section calculated with
the Normalised Length Based Correspondence Vertex Map-
ping with respect to each of the original ROI contour sections
(Fig. 4B) shows that the curvature of the shared contour
section remains within the curvature values of the original
ROI contour sections. A bias towards either one of the
original contour section curvatures cannot be observed.
It is, however, impossible to provide a perfect match of
the shared contour section with respect to the distance
and the curvature, since position and curvature are not
independent parameters. However, the visual impression
of the position of the vertices (Figs. 3E-H) combined with
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Fig 4. Distance and curvature of shared contour section calculated by ALPACA are balanced with respect to the adjacent and overlapping contours.
Distance and curvature of the shared contour section and the adjacent contour sections are plotted as a function of the vertex index for the green and red
cell contours shown in Figure 3 (see also M6.1.d-e). The vertex index O is indicated by the arrows in Figure 3(F). (A) Distances between the shared and
the adjacent and overlapping contour sections of the red and green cells are plotted as red squares and green dots. A maximum difference of 485 nm was
detected for the first vertex (index 0). (B): Curvature plot of the shared contour section (yellow line) and the adjacent and overlapping contour sections of
the red and the green cell are plotted as red squares and green dots, respectively. Positive and negative curvature signs were assigned to counter clockwise

and clockwise section turns, respectively.

the subjective quality indicators for distance and curvature
(Fig. 4) satisfy our expectations for shared cell contours
in general.

We measured the variation of morphological indices for
the ROI contours and shared sections with dependence of the
Adjacency Distance d. Figure 5 and Table 2 present relative
variations of a total of seven morphological indices for the PpO
cells after the application of ALPACA with selected adjacency
distances (d= 83, 166 and 332 nm). The distances selected are
subject to the features of the cell contours before the adjacency
correction (M6.1.d-g). The relative area and perimeter vari-
ations start below 1, which is expected for ROIs with highly
overlapping contours (red contour sections in Fig. S1), and
tend to rise slightly with increasing d. This can be explained
by the adjacency condition established by ALPACA at the
interface of adjacent and nonadjacent contour sections. First,
the adjacency condition forces the shared contour to balance
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the positions of both adjacent contour sections (Figs. 3E—H).
This leads to shorter shared contour sections relative to both
adjacent contour sections (compare Figs. 3E-H to Fig. 4 and
Table 2). When d increases, the smoothness condition for the
nonadjacent contours at the tips of the shared sections starts to
add length to the contours. However, the increase is marginal
within the tested range for d with respect to the overall contour
morphology (Fig. 4, Table 2). Therelative increasein ROIs with
short nonadjacent sections is higher, up to ~20% (data not
shown). All further morphological indices for section distance
(Simp), section length (Simy,), average segment length (Simgr,)
and section curvature (Simg) show deviations from the mean
values below 10% with respect to the original contour sections
(Fig. 5). The indices increment with increasing d, which does
not surprise, since the adjacent contour sections enlarge with
d. A small number of outliers appear for the section curva-
ture index, for short contour sections of dissimilar shapes
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Fig 5. Morphological indices for increasing Adjacency Distance d = 83,
166, and 332 nm (A—C) of PpO cell contours after the application of
ALPACA. Three morphological indices (relative area, perimeter, and ad-
jacent length variation) quantify the deviation of the adjusted contours
relative to the initial ROI contours, and four similarity indices (Simp,
Simy,, Simg, Simagy,) compare shared sections with their respective ad-
jacent/overlapping sections (descriptions in M6.1.c—g). Indices were nor-
malised with respect to the initial ROI contours which are set to 1. Aligned
scatter plots (open circles, bars for mean values) contain data for each of
the 51 cells with respect to its corresponding neighbours (see M6.1 for
definition). Section similarity indices were computed from the detected
shared sections.

whose adjusted shared section is not always able to compen-
sate equally (not shown).

In addition to the parameters of the active contour approach
(M4), the adjacency distance d is the only free parameter
within ALPACA. Considering the varying conditions for in
vivo experiments with cells, tissue, or organisms, and the het-
erogeneous geometries of membrane sheets with respect to
the PSFs of different microscopic settings, d has to be adjusted
for an optimal overall solution. The selection of d depends on
the microscopic acquisition limits and the quality of the ini-
tial contours C;(x, y) that can be defined either automatically
or manually. Figure 6 shows adjacent and nonadjacent cell
membranes, and the solution calculated by ALPACA for d =
83 nm. This condition for d corresponds to ~ 1.7 times the rec-
ommended sampling distance for the image acquisition in the
xy-plane (d = 50 nm). Since mean variations of the morpho-
logical features of the cells in response to ALPACA are small
for d = 83, 166 or 332 nm, the experienced researcher has
to take a decision based on the visual perception of the re-
sulting adjacent and nonadjacent sections and the variation
of morphological features subject to each specific experimen-
tal question. The visual perception of the solution for the cell
contours in Figure 6 is convincing. In the absence of a ground
truth sample, different solutions for d close to the resolution
limit should be tested and analysed. Results can be reported
for a single d value, or a range of d values to evidence the ro-
bustness of the calculated data for adjacent and nonadjacent
sections.

In summary, we show that the presented algorithm de-
tects and corrects adjacent, nonadjacent, and overlapping
contours in 2D within a selected adjacency distance d. AL-
PACA calculates shared contour sections and replaces adja-
cent and overlapping sections of neighbouring cell contours
while minimising alterations of the original contour char-
acteristics. Furthermore, ALPACA presents piecewise active
contour solutions for pairs of cells that share one or more ad-
jacent sections. Adjacent and nonadjacent sections are con-
nected with curvature-preserving contours to maintain the
overall cell morphology. The corrected 2D contours can set
the basis to improve the representation of cells as 3D surfaces,
the estimation of forces from contour parameters, or improve
the tracking of contours in combination with previously pub-
lished approaches (Mosaliganti et al., 2009; Mashburn et al.,
2012;Mosaligantietal., 2012; Namias et al., 2016; Stegmaier
et al., 2016; Veldhuis et al., 2017). We are presently evalu-
ating the implementation of ALPACA for FIJI (https://fiji.sc)
or Icy (http://icy.bioimageanalysis.org), and prepare a ver-
sion for IPOL (www.ipol.im) to provide source code for al-
gorithm design within reproducible research. We currently
provide access to our Internet repository with IDL source-
code, together with the compiled libraries through GitHub
(https://github.com/scianlab/sciansoft).
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Table 2. Variation of morphological indices for increasing Adjacency Distance d.
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d=83nm
np =3 x 51 cells

ny = 294 shared sections

d=166nm
np =3 x 51 cells

ny = 265 shared sections

d=332nm
np =3 x 51 cells
ny = 281 shared sections

RAV(ny) 0.969 £+ 0.031/0.003
RPV(np) 0.924 4+ 0.028/0.002
RALV(ny) 0.882 4+ 0.058/0.005
RNALV(ny) 0.969 £+ 0.031/0.003
Simp(n2) 0.965 £+ 0.068/0.004
Simy,(nz) 0.993 4+ 0.024/0.001
Simg(ny) 0.944 £ 0.090/0.005
Simagr(n2) 0.997 +£0.019/0.001

0.978 £0.032/0.003
0.936 £ 0.028/0.002
0.941 £0.017/0.004
0.923 £0.143/0.012
0.962 £ 0.057/0.003
0.993 £ 0.031/0.002
0.944 £ 0.084/0.005
0.989 £0.017/0.001

0.996 £+ 0.010/0.001
1.005 £ 0.008/0.001
0.986 £+ 0.051/0.004
1.082+0.351/0.028
0.952 £+ 0.044/0.003
0.997 +0.016/0.001
0.914 £ 0.095/0.006
0.972 £+ 0.041/0.003

RAV, relative area variation; RPV, relative perimeter variation; RALV, relative adjacent length variation; RNALYV, relative nonadjacent length variation.
17 PpO cell membrane contours along three z-slices were measured from ALPACA, upon the MOC of three independent experts. The number of shared
sections (1) varies according to the value of d (M6). Mean + SD/SE values are shown.

(A) (B)

(©)

Fig 6. Optimised detection and separation of adjacent and nonadjacent cellular membranes with an adjacency distance d= 83 nm. (A) Manually Outlined
Contours (MOC) and (B) optimised Parametric Active Contours (PAC) with adjacent (green), nonadjacent (blue), and overlapping (red) contour sections
detected by ALPACA are plotted on top of the 2D image slice I(x, y) from Figure 1. (C) Final adjustment of nonadjacent (blue) and adjacent (yellow)
contour sections C;*(x, y) are plotted after application of ALPACA. Scale bar: 10 um.
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Fig.S1.Interexpert variations (Expert 1/2/3) of Manually Out-
lined Contours (MOCs, panels A/D/G), optimised Parametric
Active Contours (PACs, panels B/E/H), and ALPACA (panels
C/F/T) of 16 PpO cells from Fig. 1 .

Fig. S2. ALPACA correctly defines adjacent and nonadjacent
sections from manually outlined object contours.

Table S1. Morphological indices for cell area and perimeter
(A) and similarity indices (B) for three independent experts
(E1/E2/E3) for n = 51 PpO cells.

Table S2. Morphological indices for cell area and perimeter
(A) and similarity indices (B) for three independent experts
(E1/E2/E3) against Ground Truth (GT) for n = 88 synthetic
hexagonal cells.

Table S3. Morphological indices for cell area and perimeter
(A) and similarity indices (B) for three independent experts
(E1/E2/E3) for n = 88 synthetic hexagonal cells.



