
Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Reliability data analysis of systems in the wear-out phase using a (corrected)
q-Exponential likelihood

Ana Cláudia Souza Vidal de Negreirosa,b, Isis Didier Linsa,b,⁎, Márcio José das Chagas Mouraa,b,
Enrique López Droguettc

a Department of Production Engineering, Universidade Federal de Pernambuco, Recife, Brazil
b Center for Risk Analysis and Environmental Modeling, Universidade Federal de Pernambuco, Recife, Brazil
c Department of Mechanical Engineering, Universidad de Chile, Santiago, Chile

A R T I C L E I N F O

Keywords:
q-Exponential distribution
Wear-out phase
Monotone likelihood
Firth's correction
Resample correction

A B S T R A C T

Maintenance-related decisions are often based on the expected number of interventions during a specified period
of time. The proper estimation of this quantity relies on the choice of the probabilistic model that best fits
reliability-related data. In this context, the q-Exponential probability distribution has emerged as a promising
alternative. It can model each of the three phases of the bathtub curve; however, for the wear-out phase, its
usage may become difficult due to the “monotone likelihood problem”. Two correction methods (Firth's and
resample-based) are considered and have their performances evaluated through numerical experiments. To aid
the reliability analyst in applying the q-Exponential model, we devise a methodology involving original and
corrected functions for point and interval estimates for the q-Exponential parameters and validation of the
estimated models using the expected number of failures via Monte Carlo simulation and the bootstrapped
Kolmogorov-Smirnov test. Two examples with failure data presenting increasing hazard rates are provided. The
performances of the estimated q-Exponential, Weibull, q-Weibull and modified extended Weibull (MEW) models
are compared. In both examples, the q-Exponential presented superior results, despite the increased flexibility of
the q-Weibull and MEW distributions in modeling non-monotone hazard rates (e.g., bathtub-shaped).

1. Introduction

Failure and maintenance data, when available, are often used in
reliability analyses. The proper adjustment of times between failures
(TBFs) to a given probability distribution is a crucial step to support
maintenance-related decisions. For instance, maintenance service con-
tracts, the purchase of maintenance materials, hiring of maintenance
personnel can be established based on the expected quantity of inter-
ventions within a specified period of time. If there is an overestimation
of this quantity, resources are unnecessarily allocated for maintenance
activities. Otherwise, an underestimated expected number of inter-
ventions possibly delays the system return to operation due the lack of
preparedness to handle more system stoppages than previously
awaited. Both situations result in increased costs. Thus, the choice of a
probabilistic model that best fits TBFs, among a number of options,
becomes imperative.

In this context, the q-Exponential probability distribution has
emerged as an alternative in the modeling of reliability data. It is based
on the non-extensive entropy [44,45], it has two parameters – q (shape)

and η (scale) – and it is able to represent each of the three phases of the
bathtub-shaped hazard rate function: improvement when 1 < q < 2,
useful life when q → 1 and wear-out when q < 1. Hence, as the
Weibull distribution, it generalizes the Exponential distribution and can
model data when the hazard rate is either monotonically decreasing or
monotonically increasing.

For example, Sales Filho et al. [41] used the q-Exponential to infer
about a useful performance metric in system reliability, the index

= <R P Y X( ), where Y is the stress, X is the strength and both are
supposed independent q-Exponential random variables with different
parameters. In the presented application examples involving stress and
strength experimental data, the q-Exponential provided better results
when compared to the Exponential and Weibull distributions. Zhang
et al. [50] proposed a q-Exponential-based model of competing risks
and accelerated life tests, which is applied to fit the lifetime of patients
whose death (i.e., failure) cause would be either prostatic cancer or
vascular disease. Lins et al. [26] developed a q-Exponential generalized
renewal process (GRP) and a q-Weibull-GRP. The authors applied both
models to fit failure data of complex systems and q-Exponential-GRP
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outperformed the Weibull-GRP approach. The q-Exponential distribu-
tion has also been successfully used in demography [29], physics
[5,30], pure statistics [35] and finance [28].

Part of the success of the q-Exponential model in describing some
complex systems is due to its ability in modeling the power law beha-
vior with a heavy-tailed probability density function (PDF). Thus, for a
given sample with values that have great order of magnitude, the q-
Exponential distribution is expected to provide a better fitting if com-
pared to Exponential and Weibull models [41]. The q-Exponential PDF
exhibits the power law behavior when 1 < q < 2. In this case, the
estimation of q and η via the maximum likelihood (ML) method pre-
sents no difficulties.

Nevertheless, it has been observed in Sales Filho [40] that, when
q < 1, which corresponds to the wear-out phase, the techniques used
to solve the ML problem may provide poor results, as they attain con-
vergence when the parameters’ estimates are very large in absolute
value. This is an indication of the presence of the so-called “monotone
likelihood” problem, which occurs when the log-likelihood obtain its
maximum for infinite parameter values [37]. This problem has been
related to other probability models: Cox proportional hazards regres-
sion model [7,19,27]; A

0g distribution for speckled data modeling from
synthetic aperture radar (SAR) images [37]; bimodal Birnbaum-Saun-
ders distribution to fit data from reliability tests to assess the bond
behavior of glass-fiber-reinforced plastic rebars to concrete [15];
modified extended Weibull (MEW) distribution [23], which is present
in a number of reliability studies as it is able to account for bathub-
shaped hazard rates [1,16,46].

In order to tackle the monotone likelihood problem, Firth's penali-
zation [14] and the resample method [8] can be applied. As argued in
Fonseca and Cribari-Neto [15], Firth's method is efficient and simple to
implement; it is also used in Lima and Cribari-Neto [23]. The resample
method, in turn, can also be efficient in the monotone likelihood con-
text, as presented in Pianto & Cribari-Neto [37].

In this work, the monotone likelihood problem associated to the q-
Exponential distribution is analytically detailed and, since not every
sample is related to a monotone likelihood, the probability of observing
such a problem for a given sample is evaluated with numerical ex-
periments involving different combinations of q, η and sample size (n).
In the presence of the monotone likelihood problem, Firth's and re-
sample methods will be adopted to penalize the q-Exponential log-
likelihood function to obtain appropriate estimates for q and η. The
performance of the original and corrected q-Exponential log-likelihood
functions are assessed by means of numerical simulations with various
q, η and n.

Due to the specificities of the q-Exponential distribution as it may be
associated with the monotone likelihood problem, we propose a
methodology to apply this probabilistic model to fit reliability-related
data sets involving either original or corrected versions of the corre-
sponding log-likelihood function and to validate the estimated models.
Point estimates and bootstrap percentile confidence intervals [10,12]

for the q-Exponential parameters are considered. The validation portion
of the methodology comprises the estimation of the cumulative ex-
pected number of failures up to the given real failure times via Monte
Carlo simulation (adapted from [26]) and a modified Kolmogorov-
Smirnov goodness-of-fit test based on bootstrap (K-S Boot – [43]). With
respect to the resolution of the ML problem involving the original and
the penalized q-Exponential log-likelihood functions, the Nelder-Mead
optimization method [34] is adopted, as it has provided good results in
maximizing log-likelihood functions of q-distributions [41,47,50].

The remainder of this paper unfolds as follows. Section 2 brings a
theoretical background of the q-Exponential distribution, the q-Ex-
ponential log-likelihood function and an investigation of the related
monotone likelihood problem. Section 3 provides the Firth's and re-
sample correction methods adapted to the q-Exponential log-likelihood
function. Section 4 describes the proposed methodology to apply the q-
Exponential distribution to fit reliability-related data and to validate
the estimated models. The numerical experiments to assess the per-
formances of the correction methods over the original log-likelihood
are given in Section 5. Section 6 provides two examples to illustrate the
application of the proposed methodology involving TBFs of a ma-
chining center and of a magnetic resonance imaging (MRI) scanner. The
Weibull, q-Weibull and MEW distributions are also considered in both
examples for comparison purposes. Finally, Section 7 summarizes the
main findings of the work and has some directions for future researches.

2. The q-Exponential distribution and the related maximum
likelihood problem

The q-Exponential function is defined as
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The q-Exponential distribution has the following PDF
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where q < 2 determines the PDF shape and is known as entropic index,
while η > 0 is the scale parameter. In the limit q → 1, Eq. (3) recovers
the Exponential distribution. When q < 1, Eq. (4) has a limited support
with an upper bound that depends on η and q, see the following
equation:
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Fig. 1. q-Exponential PDF a) for = −q 1.5 and some possible values of η; b) for =η 3 and some possible values of q.
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For the sake of illustration, Fig. 1(a) shows the behavior of the q-Ex-
ponential PDF for = −q 1.5, and three possible values of η, and Fig. 1(b)
presents the q-Exponential PDF for =η 3, and three possible values of q.
Note, in Fig. 1(b), that when =q 0.5 and =η 3 the support is limited by
6.

The q-Exponential has the following Cumulative Distribution
Function (CDF):
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By definition, the hazard rate is =h t f t R t( ) ( )/ ( ) [31], where R(t) is the
reliability function with = −R t F t( ) 1 ( ). Thus, it follows that:
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The q-Exponential hazard rate can be monotone increasing, monotone
decreasing or constant for q < 1, 1 < q < 2 and q → 1, respectively.
In fact, this is an important characteristic of the q-Exponential dis-
tribution, especially in the reliability context because it enables mod-
eling each of the three phases of the bathtub curve as Weibull model
does. Fig. 2 presents examples of increasing and decreasing hazard
rates.

In order to generate pseudorandom numbers that follow a q-
Exponential distribution, Eq. (5) can be used:
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where U denotes a uniform pseudorandom number. The formula in
Eq. (7) is obtained by means of the inverse transform method [39]. The
q-Exponential pseudorandom generator will be used in the numerical
experiments presented in Section 5.

In this paper, the ML method is adopted because of its properties
such as asymptotic unbiasedness, strong consistency and efficiency
[42]. For a given sample = … …t t t t( , , , )i n1 of TBFs, the q-Exponential
likelihood function is given by
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The corresponding log-likelihood function is
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To obtain the ML estimators for the parameters, the log-likelihood
function is maximized. This can be done by setting the first derivatives
of l w.r.t. each parameter to zero. The q-Exponential score equations are
the following:
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It can be noticed that Eqs. (10) and (11) do not have a closed-form
solution. Thus, nonlinear optimization methods can be used to obtain
the parameters’ estimates. However, when q < 1, these methods often
converge when the parameters’ estimates are very large, which is an
indication of the monotone likelihood problem [4,23,37].

To demonstrate that the q-Exponential log-likelihood function may
present a monotone behavior when q < 1, we must show that its limit
converges to a finite value as either → −∞q or η → ∞. Let tmax

o be the
largest observed value in the sample. It must be strictly lower than

= −t η q/(1 )max (see Eq. (4)), otherwise the argument of the logarithm
in the second part of Eq. (9) could be either 0 or negative.

Then, let δ be the difference between tmax and tmax
o . By means of

some algebraic manipulations, Eq. (9) is rewritten as a function of one
parameter (q or η) at a time, which enables the calculation of the limits
in Eqs. (12) and (13), which are the same and depend on n, tmax

o and δ.
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For a given sample, n and tmax
o are determined and δ is the only free

quantity in the quest for the optimal solution. Note that the limit is
maximum when δ → 0 (Eq. (14)), which means that, if the q-Ex-
ponential log-likelihood function is not maximized with reasonable
parameter estimates in terms of magnitude, it will be maximized when

= − →t η q t/(1 )max max
o . In the latter situation, the nonlinear optimiza-

tion algorithms tend to provide large absolute values for the para-
meters’ estimates such that − →η q t/(1 ) max

o as an attempt to reach the
theoretical maximum limit.
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Therefore, the q-Exponential log-likelihood function has a finite
value when → −∞q , η→∞ and − →η q t/(1 ) max

o . The theoretical limit
in Eq. (14) is an asymptote, which may not be attained with practical

Fig. 2. q-Exponential hazard rate a) for = −q 1.5 and =η 5; b) for =q 1.5 and =η 5.
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values for the parameter estimates. Then, in the cases where the
asymptote is the actual maximum value, the monotone behavior is
observed: by decreasing q, increasing η and preserving the relation

− >η q t/(1 ) max
o , the difference between the associated log-likelihood

value and the theoretical limit of Eq. (14) becomes smaller.
It is important to notice that not all samples originally drawn from a

q-Exponential distribution with q < 1 will necessarily present the
monotone likelihood problem. Even the limits of Eqs. (12) and (13)
being valid for all samples, for some of them, the log-likelihood may
attain its maximum – thus, a value greater than the limit presented in
Eq. (14) – at finite estimates for q and η and the nonlinear optimization
methods provide these finite estimates as optimal values.

In order to assess the probability that a sample originated from a q-
Exponential distribution with q < 1 presents the monotone likelihood
problem, we performed the following numerical experiment based on
Lima and Cribari-Neto [23]. We considered different q-Exponential
distributions ( =q −20, −2 and 0.5 with =η 5; =q −2 with =η 50, 500
and 1000) and sample sizes ( =n 20, 100, 500, 1000 and 5000); for each
combination of parameters and sample size, 1000 samples were gen-
erated and the corresponding parameters were obtained. If the estimate
for at least one of the parameters is greater, in magnitude, than twice
the respective true value, we considered that the monotone likelihood
problem is present. Thus, for a setting (q, η and n), the proportion of
samples for which these large parameters estimates are obtained is set
as the probability that a sample is related to the monotone likelihood
problem. The results of the experiment are in Table 1. The smaller the
sample size and the value of parameter q, the greater the probability of
observing the monotone likelihood problem. In the case of fixed q,
varying η does not significantly alter the probabilities and the pre-
viously commented pattern can be observed as n decreases.

In reliability analyses, data availability is often restricted to small
samples. Therefore, to turn the q-Exponential distribution into a viable
alternative for modeling data related to equipment in the wear-out
phase, a method to circumvent the estimation difficulty in the presence
of monotone likelihood should be at analyst's disposal.

3. Correction methods for the q-Exponential monotone log-
likelihood function

This section presents the Firth's penalization and resample methods
to be applied to the q-Exponential monotone likelihood problem.

3.1. Firth's penalization method

A method to penalize the log-likelihood function in order to reduce

the bias of the ML estimator was proposed by Firth [14]. The under-
lying idea of this method is that since the parameter estimate may not
exist, it is safer to modify the estimation equations for bias correction
prior to estimation.

Let U*(θ), in which θ represents the set of parameters, be the
modified score function. For the exponential family model, the r-th
component of the modified score equation is given by:

= +U θ U θ A θ* ( ) ( ) ( ),r r r (15)

where Ar(θ) is the r-th part of = − = ⋯A θ I θ B θ n r( ) ( ) ( )/ , 1, ,1 dim(θ).
I(θ) is the Fisher information and B1(θ) is the first order term in the bias
expansion on the ML estimator:

= + + ⋯B θ B θ n B θ n( ) ( )/ ( )/ .1 2 (16)

Eq. (16) refers to the asymptotic expansion of the bias

= −B θ E θ θ( ) ( ^) . (17)

The Fisher's information (observed) does not depend on data, and it
follows that
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The correction of the likelihood function is applied as following

=L θ t L θ t K* ( | ) ( | ) ,1/2 (19)

where K refers to the determinant of the Fisher information matrix, and
the penalization term |K|1/2 is the Jeffreys invariant prior [20]. Then,
by applying the logarithm in Eq. (19), parameter estimation can be
executed by maximizing

= +l θ t l θ t K* ( | ) ( | ) 1
2

ln . (20)

Even though Firth [14] applied the penalization method to probability
distributions of the exponential family, it can also be used for the
correction of other models [15,23].

In this work, the Firth's method penalizes the q-Exponential log-
likelihood function. Under regularity conditions and for large samples,
the estimator θ̂ approximately follows a Normal distribution with
parameters −θ I θ( , ( ) )1 , where I(θ) is Fisher's (expected) information
matrix:
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The score function of the q-Exponential log-likelihood is presented
in Eqs. (10) and (11). In general, =I θ E J θ( ) [ ( )] is easier to compute,
where = −∂ ∂ ∂J θ l θ θ θ( ) ( )/ T2 is the observed information and we also
can see it is the negative of the Hessian matrix. For the q-Exponential
model,
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Table 1
Probability of observing the monotone likelihood problem for a given sample;
1000 samples were drawn from different q-Exponential distributions when
q < 1.

=η 5 = −q 2
n q Probability η Probability

20 −20 0.826 50 0.777
−2 0.762 500 0.697
0.5 0.327 1000 0.766

100 −20 0.692 50 0.367
−2 0.426 500 0.314
0.5 0.003 1000 0.378

500 −20 0.556 50 0.040
−2 0.042 500 0.026
0.5 0.000 1000 0.000

1000 −20 0.408 50 0.000
−2 0.001 500 0.001
0.5 0.000 1000 0.002

5000 −20 0.079 50 0.000
−2 0.000 500 0.000
0.5 0.000 1000 0.000
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Thus, the original idea of this method involves the utilization of the
matrix of the expected or the observed information. However, in some
cases, the expected information is not easily obtained. Therefore, we
here used the matrix of the observed information as an approximation
for Fisher information. The penalized q-Exponential log-likelihood in
accordance with Firth's method is obtained by respectively replacing l
(θ|t) and ln |K| in Eq. (20) by Eq. (9) and by the determinant of the
corresponding Hessian matrix formed by Equations (22)-(24).

3.2. Resample method

The resample method is based on a change in the log-likelihood
function through non-parametric bootstrap. It is an adaptation, pro-
posed by Cribari-Neto et al. [8], of Efron's [13] “better” bias estimation.
Conversely to Efron's proposal, the resample method does not require
the quantity of interest to have closed form.

Let t be a random sample of size n from a q-Exponential distribution.
Each of the B bootstrap samples can be described by the weight that
each observation receives in the new empirical distribution function.
For the original sample, each observation receives weight 1/n [37].
This can be succinctly recorded in a vector = ⋯P n1/ (1, , 1)0 . For the
b-th bootstrap sample, this vector becomes:

= ⋯P
n

t t1 (#{ } , , #{ } ),b
b n b1 (25)

where t#{ }j b is the number of times that tj occurs in the b-th bootstrap
sample. This vector is called the resample vector. Efron's idea is based
on the possibility of writing the parameter estimate as a closed form
function of the data using P0. For instance, from the Efron's proposal the
estimate of the mean can be written as = =T T P P t¯ ( )0 0 .

In order to accelerate the convergence of the bias estimate such that
fewer bootstrap replications are required, Efron [13] suggests that,
when calculating the bias estimate, one subtracts the parameter esti-
mate resulted from

∑= … =
=

P
B

P P P
B

P* 1 ( , , , ) 1 .b

b

B
b1 2

1 (26)

If we write the estimate of interest, obtained from t, as T(P0), then
we obtain bootstrap estimates q η(^, ^)*b using the resample vectors

= …P b B* , 1, 2, ,b , as T(P*b). A bootstrap bias corrected estimate
(BBC), proposed by Efron [13], is formed by subtracting the estimated
bias (Eq. (17)), from the original estimate as follows

= −q η q η T P(^, ^) (^, ^) ( *),BBC (27)

where P* is presented in Eq. (26). Then, the new better bootstrap bias
correction (BBBC) estimate, presented by Cribari-Neto et al. [8], would
be

∑= − ⎡

⎣
⎢ − ⎤

⎦
⎥

=

q η q η
B

q η T P(^, ^) (^, ^) 1 (^ , ^ ) ( *) .BBBC
b

B

b b
1 (28)

The ML estimators for the q-Exponential model do not have a closed
form, as can be seen in Eqs. (10) and (11), which was also verified for
the α γ n( , , )A

0g distribution in Cribari-Neto et al. [8]. Thus, Eqs. (27) or
(28) cannot be directly used for bias reduction.

However, to use the BBBC, Cribari-Neto et al. [8] write the esti-
mators as a function of P0, and then use the estimate obtained by re-
placing P0 with P* to correct the bias. According to Cribari-Neto et al.
[8], this approach is expected to provide accurate point estimates.

For the q-Exponential distribution, we rewrite the log-likelihood in
Eq. (9) as a function of P0:

⎜ ⎟ ⎜ ⎟= ⎧
⎨⎩

⎛
⎝

− ⎞
⎠

+
−

⎡
⎣
⎢

⎛
⎝

−
− ⎞

⎠
⎤
⎦
⎥

⎫
⎬⎭

q η n
q

η q
P

q t
η

(^, ^) argmax ln
2 1

1
ln 1

(1 )
.

q η

i

( , )

0

(29)

Then, q η(^, ^) can be obtained by replacing P0 by P* in Eq. (29) using
the corresponding result in Eq. (27) to generate their BBBC estimates.

4. Methodology for the q-Exponential distribution adjustment to
reliability-related data and model validation

Given that the monotone likelihood problem may be present when
using the q-Exponential distribution to fit reliability-related data sets
associated to systems in the wear-out phase, a specific methodology is
devised to aid the reliability analyst in applying such probability model.
It involves not only parameter estimation via ML method and applica-
tion of a correction procedure when necessary, as described in the
previous sections, but also the estimation of confidence intervals for the
parameters, which is often required in reliability applications, and a
model validation phase. In this work, all point estimates are given by
the Nelder-Mead optimization method.

An overview of the proposed methodology is in Fig. 3. It starts with
a data set of TBFs that should be fit by means of the original q-Ex-
ponential log-likelihood function. Note that the answer “Yes” in the first
decision epoch indicates that the analyzed data are related to a system
with a decreasing hazard rate, which is not investigated in the present
work since in this case there is no monotone likelihood problem.
Nevertheless, the methodology depicted in Fig. 3 is general as it covers
all possible values for the parameter q. Thus, it considers data asso-
ciated to systems with decreasing or increasing hazard rate functions.

The answer “No” to the second decision epoch refers to the situation
in which, despite the increasing hazard rate, with the considered
sample of TBFs, the q-Exponential log-likelihood does not have a
monotone behavior. Otherwise, the answer “Yes” to the second decision
epoch in Fig. 3 indicates the presence of the monotone likelihood be-
havior. In this case, an additional evidence can be verified by com-
paring the obtained values for the original q-Exponential log-likelihood
function and the theoretical limit of Eq. (14). If the former is slightly
smaller than the latter, the monotone likelihood problem exists.

The percentile confidence intervals for q and η are obtained by
means of a non-parametric bootstrap method [10,12]. These types of
confidence intervals were used by Lins et al. [25] and in the context of
the q-Exponential distribution by Sales Filho et al. [41]. B bootstrap
samples (e.g., 1000) of the same size of the original data set are con-
structed based on sampling with replacement. For each of these boot-
strap samples, ML estimates are obtained for q and η. Then, for a given
confidence level γ, the quantiles γ/2 and − γ1 /2 of the B estimates for q
and η are set as the lower and upper bounds of the corresponding
confidence intervals. If the monotone likelihood problem is present,
then the corrected version of the q-Exponential log-likelihood is used in
the parameter estimation related to each of the B bootstrap samples.
Otherwise, the original q-Exponential log-likelihood function is con-
sidered.

The validation procedure (in light gray in Fig. 3) is based on the (i)
estimation of the cumulative expected number of failures up to the
given real failure times using Monte Carlo simulation (briefly described
in Section 4.1) and on the (ii) assessment of the goodness-of-fit of the
estimated q-Exponential probabilistic model by means of the KS-Boot
test (Stute et al. 2013), whose main steps are summarized in Fig. 4. This
test was also adopted by Sales Filho et al. [41] and Xu et al. [47] in the
context of q-distributions for reliability applications.

Approaches (i) and (ii) are independent forms of validation, there is
no precedence relation between them. Each of them is fed with the
parameter estimates obtained via either original or corrected q-
Exponential log-likelihood function. Moreover, the validation
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techniques are not specific for the q-Exponential model and can be
applied to other probability distributions (e.g., Weibull). The results
obtained from each of the estimated models can be compared to assess
which of the considered ones is deemed the best.

4.1. Cumulative expected number of failures via Monte Carlo simulation

A Monte Carlo algorithm can be used to compare simulated out-
comes of the estimated q-Exponential model with real failure data.
Based on the inverse transform of the q-Exponential distribution in
Eq. (7) with parameters q and η replaced by their respective estimates,
we can randomly generate failure times and count the number of si-
mulated failures that have occurred by =y t1 1, = +y t t2 1 2,

= + +y t t t3 1 2 3, …, = ∑ =y tn i
n

i1 , which are real failure times known. By
replicating this procedure (e.g. 10,000 times), a cumulative expected
number of failures can be associated to each of those instants and can
be compared to the corresponding real number of failures 1, 2, 3, …, n.
Such a comparison can be visually assessed by using a graph of the
expected and real number of failures vs. time and also using an error
metric such as the mean absolute error (MAE), which is computed as

∑=
−

=

MAE
E N y N y

n
[ ^ ( )] ( )

,
i

n
i i

1 (30)

where E N y[ ^ ( )]i is the expected number of failures up to yi, N(yi) is the
actual number of failures up to yi.

The Monte Carlo framework used in this work is a specific case of
the simulation algorithm presented in Lins et al. [26], devised for the
more general q-Weibull-GRP and q-Exponential-GRP models. Precisely,
considering the q-Exponential-GRP, the only required modification
therein is to set the GRP parameter as zero, given that in the present
work only perfect repairs are considered.

5. Numerical experiments

To evaluate the performance of the methods described in Section 4,
numerical experiments were performed using Monte Carlo simulations.
Eq. (7), presented in Section 2, was used to generate the pseudorandom
numbers that follow a q-Exponential distribution. These numerical ex-
periments were run with 10,000 replications, and with 60 sub-experi-
ments for each method of correction (Firth's and resample) for the q-

Fig. 3. Proposed methodology for the application of the q-Exponential distribution to fit reliability-related data sets. Decision epochs are in dark gray. Dashed lines
represent input or output data. DFR – decreasing failure rate; IFR – increasing failure rate.
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Exponential log-likelihood function and for the original function
(without any correction).

The simulations were initially executed with η constant ( =η 5), for
∈ − −q { 20, 2, 0.5} (Table 2). Then, q was remained constant ( = −q 2)

and η ∈ {50, 500, 1000} (Table 3). Moreover, five sample sizes were
tested: n ∈ {20, 100, 500, 1000, 5000}. All experiments were run by
using the Nelder-Mead [34] approach and the computational software
R (function optim) [38].

Tables 2 and 3 present the relative bias obtained using the original
q-Exponential log-likelihood, the q-Exponential log-likelihood pena-
lized by the Firth's method and by the resample method. The numerical
implementations of the Firth's method achieved good results for all
sample sizes. Indeed, the highest relative biases provided by this
method were 0.83 for parameter η with =n 20, =η 50 and = −q 2
(Table 3), and 1.24 for parameter q with =n 20, =η 5 and

= −q 2 (Table 2). Moreover, the Firth's method yielded a relative bias
of 0.00 for =q 0.5 with =n 5000 (Table 2), which demonstrates that the
relative bias goes to zero as n → ∞, considering the log-likelihood
function corrected by this method. Another result using the Firth's
method is that even for small samples ( =n 20), it had a satisfactory
performance, as it provided low relative biases for all cases analyzed.

The resample method in turn produced poor results for samples with
20 observations (Tables 2 and 3). As the sample size increases, the re-
sults get better, but, in general, the relative biases achieved by the
Firth's method are lower than that provided by the resample method.

In addition, the original q-Exponential function returned lower re-
lative biases only from samples with 500 realizations, with one ex-
ception: for =n 100 and =q 0.5 the relative bias was− 0.27, which may
have happened because of the moderate sample size combined with the
value of parameter q near the lower bound of the interval 1 < q < 2,
for which the monotone behavior is not present.

In general, the results obtained by the Firth's method were superior
(76,67% of the analyzed cases) when compared to the ones obtained by
the resample method and the original function. Moreover, Firth's pe-
nalization had the worst performance in none of the cases. On the other
hand, the original function was the best in 23.33% and the worst in
46.67% of the cases. The function corrected by the resample method
was the best in none of the situations and had the worst performance in
53.33% of the considered cases.

Given that the Firth's correction has provided the best results in
most of the experiments, an additional assessment was performed to
observe the impact of this method in the variability of the provided

Fig. 4. Framework of K-S Boot. The * is related to bootstrap operations and ≥D D#{ * }j 0 is the number of times that D*j = ⋯j N( 1, 2, , ) is bigger than D0. Then, the
null hypothesis will be rejected if > − +D D*N α0 ( (1 ) 1) for a significance level α.

Table 2
Relative bias of q̂ and η̂ and monotone behavior of the original q-Exponential log-likelihood for =η 5.

Relative bias of q̂ Relative bias of η̂ Monotone behavior of the q-Exponential log-likelihood

n q Original Firth Resample Original Firth Resample −η q^/(1 ^) (A) tmax
o (B) δ̂ (C = A-B) Limit Value (D) Obtained log-

likelihood (E)
D – E

20 −20 7,095,017 −0.58 202,927.1 31,963,831 −0.58 172,522.2 0.1880 0.1880 1.0050e-08 33.3580 33.3580 1.2350e-06
−2 49,025,880 1.24 1,733,321 146,483,739 0.64 955,474.3 1.5502 1.5412 0.0090 −8.6512 −8.6817 0.0305
0.5 −9,856,444 −0.22 −0.91 28,659,849 0.52 −0.86 7.8900 7.8860 0.0040 −41.3018 −41.3034 0.0015

100 −20 1,142,199 −0.55 −0.84 1,075,591 −0.53 −0.84 0.2369 0.2369 1.4420e-09 143.9830 143.9830 1.8070e-06
−2 800,476.8 1.13 −0.92 511,675.2 0.70 −0.90 1.5699 1.5699 7.1504e-08 −45.1012 −45.1012 4.5533e-06
0.5 −0.27 0.82 −0.83 0.16 −0.11 −0.90 7.8057 7.8057 3.0754e-06 −205.4863 −205.4863 3.9365e-05

500 −20 110,654 −0.50 −0.97 105,104 −0.48 −0.97 0.2374 0.2373 0.0001 719.0754 718.9641 0.1113
−2 0.41 0.80 −0.97 0.27 0.52 −0.93 1.6436 1.6436 4.8847e-07 −248.4681 −248.4683 0.0002
0.5 −0.06 0.25 −0.80 0.03 −0.01 −0.93 9.0312 9.0310 0.0002 −1100.334 −1100.348 0.0133

1000 −20 19,791.20 0.07 −0.98 18,823.35 0.06 −0.98 0.2378 0.2378 1.5700e-09 1436.0180 1436.0180 1.8780e-05
−2 0.09 0.79 −0.98 0.06 0.52 −0.96 1.6626 1.6617 0.0008 −507.8739 −508.3999 0.5260
0.5 −0.06 −0.01 −0.90 0.04 0.00 −0.96 8.5931 8.5928 0.0003 −2150.928 −2150.963 0.0353

5000 −20 27.17 0.08 −0.95 25.86 0.08 −0.95 0.2379 0.2379 4.0068e-09 7179.516 7179.516 8.3921e-05
−2 0.03 0.90 −0.98 0.01 0.59 −0.96 1.6667 1.6663 0.0003 −2553.196 −2554.165 0.9693
0.5 −0.22 0.00 −0.91 0.19 0.00 −0.96 9.7706 9.7705 0.0001 −11,396.86 −11,396.93 0.0699
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parameters’ estimates. We took the setting =n 20, = −q 2 and =η 5
of the experiment described in Section 3 and used both original and
Firth's corrected log-likelihood functions to estimate the parameters. A
small n was selected to represent a rather common sample size in re-
liability data analyses. The original log-likelihood function provided
7.6460e+14 and 1.6832e+15 as variances for q and η estimates, re-
spectively, whereas Firth's correction counterparts were 0.1397 and
0.1621. Also, in contrast to the probability 0.762 reported in Table 1,
for the q-Exponential log-likelihood with Firth's correction, Nelder-
Mead optimization method provided estimates lower, in magnitude,
than twice the true parameters’ values for each of the 1000 samples,
i.e., the correction was indeed able to circumvent the monotone like-
lihood problem.

The last six columns of Table 2 (resp. Table 3) are related to the
monotone behavior of the original q-Exponential log-likelihood func-
tion. Their values were computed with a single sample randomly gen-
erated using the corresponding row setting: q (resp. η), sample size and

=η 5 (resp. = −q 2). The operation A refers to the upper limit of the
support computed with the parameter estimates, B is the greatest
sample value and has to be always lower than A; this condition is sa-
tisfied for all the examples in Tables 2 and 3.

Moreover, for almost all the cases (Tables 2 and 3) A and B are very
close, which means that the optimization method attempts to get the
ratio in (A) as closest as possible to the greatest value of each sample by
means of the parameters’ estimates. C is the difference A – B and is an
estimate of δ. The values D are computed using Eq. (14), which con-
siders the limit when δ → 0. E is the value of the original log-likelihood
function obtained with the parameters’ estimates q̂ and η̂ .

Note that, as shown in Eqs. (12) and (13), when δ → 0, the limits
reach the maximum value. In this way, the optimization method pro-
vides the ratio in A closer to tmax

o , satisfying the support's function at the
same time even with large parameter estimates (monotone behavior).
In other words, A is always strictly greater than tmax

o , but with para-
meters’ estimates far from the true parameters’ values, as can be seen by
the relative bias in Tables 2 and 3 specially for small sample sizes. The
last column brings the difference D – E, which is always positive be-
cause of the reasons previously presented.

Additionally, note the boldfaced values in Tables 2 and 3 are the
best in their row for each parameter and the underlined ones are the
worst in their row for each parameter. The six last columns present,
respectively, the relation −η q^/(1 ^) obtained with the parameter esti-
mates given by the optimization of the original log-likelihood, tmax

o of
the corresponding sample, the estimated difference δ, the theoretical
maximum limit (Eq. (14)) computed with n and tmax

o related to each
sample, the original q-Exponential log-likelihood value computed with
the obtained parameter estimates and the observed difference between

the theoretical limit and the obtained log-likelihood value.

6. Application examples

In order to illustrate the methodology presented in Section 4, two
application examples are considered involving failure data related to
the third phase of the bathtub curve (i.e., increasing hazard rate). Thus,
in both cases, the parameter q of the q-Exponential distribution is less
than one.

In the first example, the associated q-Exponential log-likelihood
function presents the monotone likelihood problem and a correction
method should be used to turn the q-Exponential model into a viable
candidate distribution. For the second example, despite the increasing
hazard rate, the monotone likelihood problem is not present. Therefore,
a correction method is not necessary and only the original q-
Exponential log-likelihood function is used in parameter estimation.

For comparison purposes, the Weibull, q-Weibull and MEW dis-
tributions were considered. The three models presented inferior per-
formance in both application examples when compared to the q-
Exponential. We highlight that the q-Weibull and MEW models have
three parameters each and are able to account for bathtub-shaped ha-
zard rates. The q-Weibull can also accommodate unimodal hazard rates.
Despite the increased flexibility of these Weibull-based models, the q-
Exponential distribution presented the best results. These facts evidence
the suitability of the q-Exponential in fitting reliability-related data sets
and indicates that it is an alternative to be considered in reliability data
analyses.

6.1. Example 1: TBFs of a machining center

The first application example is taken from Dai et al. [9]; it is related
to the TBFs of a machining center. They are presented, in hours, in
Table 4.

Table 5 presents the obtained parameter estimates by the original q-
Exponential log-likelihood function and by the functions penalized by
the Firth's and resample methods. The Nelder-Mead optimization
method was used, and the initial parameters were set to =q 1.2 and

=η 500 for original and corrected functions. The initial values of the

Table 3
Relative bias of η̂ and q̂ and monotone behavior of the original q-Exponential log-likelihood for = −q 2.

Relative bias of q̂ Relative bias of η̂ Monotone behavior of the q-Exponential log-likelihood

n η Original Firth Resample Original Firth Resample −η q^/(1 ^) (A) tmax
o (B) δ̂ (C = A-B) Limit Value (D) Obtained log-likelihood

(E)
D – E

20 50 5,913,085 0.83 412,424.7 9,885,217 0.40 227,344.4 15.9614 15.9614 1.34748e-07 −55.4035 −55.4035 1.5430e-06
500 3,080,172 0.81 241,109.6 5,147,048 0.39 132,908.7 162.8168 162.8168 6.33753e-06 −101.8525 −101.8525 2.3405e-06
1000 2,686,289 0.82 154,987.9 4,485,449 0.39 85,435.02 265.8934 265.8933 0.0001 −111.6619 −111.6619 1.0435e-05

100 50 99,019.33 0.66 −0.93 154,844 0.40 −0.90 15.9722 15.9719 0.0002 −277.0832 −277.0849 0.0017
500 51,054.6 0.66 −0.95 79,865.48 0.39 −0.92 166.0675 166.065 0.0025 −511.2379 −511.2394 0.0015
1000 43,026.61 0.65 −0.95 67,355.71 0.39 −0.91 313.3251 313.3250 0.0001 −574.7241 −574.7241 2.7755e-05

500 50 0.15 0.59 −0.97 0.24 0.38 −0.93 16.3936 16.3936 1.54317e-05 −1398.4470 −1398.4474 0.0004
500 0.16 0.61 −0.97 0.25 0.40 −0.93 165.7122 165.7119 0.0002 −2555.1250 −2555.1260 0.0010
1000 0.16 0.61 −0.97 0.25 0.39 −0.93 324.1337 324.1333 0.0004 −2890.5770 −2890.5780 0.0010

1000 50 0.09 0.00 −0.98 0.06 0.00 −0.96 16.4461 16.4461 2.05811e-05 −2800.0890 −2800.0900 0.0010
500 0.09 0.08 −0.98 0.09 0.04 −0.96 166.2581 165.9489 0.3092 −5111.6800 −5930.4550 818.7750
1000 0.15 0.09 −0.77 0.09 0.05 −0.78 332.2789 331.4393 0.8396 −5803.445 −7097.4250 1293.9800

5000 50 −0.29 0.00 −0.98 −0.19 0.00 −0.96 16.6867 16.6600 0.0267 −14,065.0600 −16,964.8000 2899.7400
500 0.13 0.05 −0.99 0.08 0.03 −0.96 166.2546 166.1816 0.0730 −25,565.4100 −25,567.6000 2.1900
1000 0.14 0.06 −0.77 0.09 0.04 −0.78 333.5014 332.2237 1.2777 −29,029.04 −31,564.3700 2535.3300

Table 4
TBFs of the machining center (in hours) – Example 1.

1 176.00 5 45.00 9 510.00 13 32.00 17 478.00
2 248.00 6 39.00 10 120.00 14 50.00 18 353.00
3 10.50 7 209.33 11 224.00 15 138.50 19 348.00
4 472.00 8 261.25 12 267.50 16 398.00 20 137.06
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parameters have to result in valid arguments to the ln ( · ) functions of
the q-Exponential log-likelihood; otherwise, the Nelder-Mead method
would fail in the beginning of the iterative process.

The large parameter estimates related to the original approach in-
dicates the presence of the monotone behavior of the log-likelihood
function. This is corroborated by the log-likelihood value near to the
theoretical limit in Eq. (14) for this specific data set, which is
− 124.6882.

We note that Firth's method produced well behaved estimates, al-
though it provided the worst log-likelihood value. This result is rather
expected, given that the correction methods penalize the original log-
likelihood function, i.e., they worsen the performance in terms of the
objective function value. On the other hand, the original function and
the function corrected by the resample method obtained large estimates
in absolute value and their corresponding log-likelihood values present
a slight difference.

Indeed, the large estimates provided by the resample method along
with the slight superior log-likelihood approximate to the theoretical
limit − 124.6882 suggest it fails to tackle such a problem for this ex-
ample, which involves a small sample ( =n 20) that is rather common
in reliability data analyses. These results are in accordance with the
findings of the performed Monte Carlo simulations in Section 6 for both
original and resample methods and for small sample sizes. In addition
to the point estimates provided by each approach, we have computed
the associated 95% percentile confidence interval for q and η by means
of a non-parametric bootstrap with 1000 replications. They are pre-
sented in Table 6. We observe that the interval estimates related to the
original log-likelihood function and the function corrected by the re-
sample method are rather noninformative, given their large widths and
extremely large bounds. On the other hand, the log-likelihood function
penalized by Firth's method produced well-behaved interval estimates
with reasonable widths, lower and upper bounds.

For performance comparison, parameter estimates were obtained
for the Weibull ( =β̂ 1.34, =η̂ 244.65), q-Weibull ( =q̂ 0.74, =β̂ 0.04,

=η̂ 122.90) and MEW ( =β̂ 0.16, =λ̂ 0.55, =η̂ 11.88) models. The
Weibull distribution indicates an increasing hazard rate function and
the other two distributions point a bathtub-shaped hazard rate. The
following initial estimates for the Nelder-Mead optimization method
were used: Weibull ( =β̂ 1.50, =η̂ 150), q-Weibull ( =q̂ 1.20, =β̂ 50.00,

=η̂ 100.00) and MEW ( =β̂ 1.00, =λ̂ 0.50, =η̂ 10.00).
Fig. 5 shows the curves of the expected number of failures vs. time

obtained with the estimates of the original and corrected q-Exponential
functions, the Weibull, the q-Weibull and MEW models. To generate
these curves, we performed a Monte Carlo simulation with 10,000

replications. By visual analysis, the curve that is the closest to empirical
data (the real number of failures vs. time) is associated with Firth's
penalization.

The expected curves provided by the original and resample-based
approaches are almost coincident and are both bellow the expected
curve related to Firth's penalization. The Weibull, q-Weibull and MEW
models produced the worst results, i.e. the expected number of failures
were far from real data. These three distributions overestimate the real
number of failures, which may result in unnecessary allocation of re-
sources for maintenance activities if their expected number of failures
were used as guidelines. In this way, the corrected q-Exponential model
is a more reliable approach in this case, as it enables a more accurate
preparedness (e.g., spare parts and maintenance crew availability) to
handle or avoid failure occurrences. These results are confirmed by the
MAE of each curve of the expected number of failures; they are reported
in Table 7.

Indeed, we note the q-Exponential penalized by Firth's method
presented the lowest error and, consequently, the better performance.
Instead, the Weibull function had the worst result with the highest
error. In addition, the original and corrected (resample method) q-
Exponential had very similar MAEs, as expected by visual inspection of
Fig. 5.

In order to check the adjustment ability of the referred models – q-
Exponential with Firth's correction, Weibull, q-Weibull and MEW –, the
K-S Boot was used. The computed p-values were, respectively, 0.4775,
0.4395, 0.0080 and 0.0009. The small p-values provided by the q-
Weibull and MEW distributions are evidences that they are not appro-
priate to adjust the considered TBFs. On the other hand, despite the null

Table 5
Parameter estimates obtained by the Nelder-Mead optimization method for q
and η and log-likelihood values – Example 1.

Method q̂ η̂ Log-likelihood value

Original −16,702,228.00 8,518,137,513.00 −124.69
Firth 0.19 505.28 −129.33
Resample −7,850,909.00 4,003,964,375.00 −124.68

Table 6
95% percentile confidence intervals based on non-parametric bootstrap –
Example 1.

Method Parameter Lower bound Upper bound Interval width

Original q −20,123,821 −16,703,917 3419,904
η 8454,229,751 8543,845,429 89,615,678

Firth q −3.89 0.98 2.91
η 212.39 1388.88 1176.48

Resample q −8850,709.00 −5850,706 3000,003
η 4677,485,429 5009,764,375 332,278,946

Fig. 5. Expected number of failures of original and corrected q-Exponential
models, Weibull, q-Weibull and MEW distributions compared to real data –
Example 1.

Table 7
MAE for the q-Exponential, Weibull, q-Weibull and MEW expected
number of failures compared to real data – Example 1.

Distribution MAE

Original q-Exponential 5.24
q-Exponential (Firth's method) 1.93
q-Exponential (Resample method) 5.26
Weibull 6.06
q-Weibull 22.40
MEW 821.23
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hypothesis could not be rejected for the q-Exponential corrected by
Firth's method and Weibull cases, the greater p-value provided by the
former indicates that it provides a better fit. Finally, Dai et al. [9] claim
the TBFs in Table 4 follow the Weibull distribution. However, given the
results of this section, the q-Exponential model with Firth's correction
outperformed the Weibull-based models and places itself as a valid al-
ternative for data modeling of the considered system, which is in the
wear-out phase of its life cycle.

6.2. Example 2: TBFs of an MRI scanner

The second application example involves the TBFs of an MRI
scanner [36], which are shown in Table 8.

From the Nelder-Mead optimization method using =q 1.2 and
=η 500 days as initial values for the original log-likelihood function,
=q̂ 0.71 and =η̂ 60.48 days were provided as point estimates with

− 296.06 as log-likelihood. As q̂ and η̂ are not large, this is an indication
that the monotone likelihood problem is not present. Additionally, the
theoretical limit in Eq. (14) for the q-Exponential log-likelihood, for this
sample, is − 321.21, which is less than the obtained − 296.06. Therefore,
a correction method is not required for the adjustment of the q-Ex-
ponential distribution to these TBFs.

As commented in Section 2, as the sample size and q increase, the
probability of observing a monotone likelihood decreases. In this ap-
plication example, =n 65 (greater than =n 20 of Example 1 in
Section 6.1) and =q̂ 0.71 may have led to the absence of the monotone
likelihood problem.

The 95% percentile bootstrap confidence intervals for q and η are
shown in Table 9. As in Example 1, they were obtained using a non-
parametric bootstrap method with 1000 replications. The point esti-
mates of each of the bootstrap samples were provided by the Nelder-
Mead optimization method using the original q-Exponential log-like-
lihood as objective function with the same initial points above-men-
tioned. The plausible bounds and widths of the confidence intervals is
an additional evidence that the monotone behavior is not present.

Parameter estimates were also obtained for the Weibull ( =β̂ 1.20,
=η̂ 40.91), q-Weibull ( =q̂ 1.99, =β̂ 397.60, =η̂ 24.16) and MEW

( =β̂ 0.87, =λ̂ 0.01, =η̂ 70.36) distributions. The Weibull, q-Weibull
and MEW models indicate, respectively, hazard rates with increasing,
unimodal and bathtub-shaped behaviors. The following initial estimates
for the Nelder-Mead optimization method were used: Weibull
( =β̂ 1.50, =η̂ 100), q-Weibull ( =q̂ 1.20, =β̂ 500.00, =η̂ 50.00) and

MEW ( =β̂ 1.00, =λ̂ 0.70, =η̂ 65.00).
To validate each of the estimated models, we performed a Monte

Carlo simulation with 10,000 replications to obtain the expected
number of failures up to each real failure time. These values were used
to plot the curves in Fig. 6 and to calculate the MAE values in Table 10.
The KS-boot goodness-of-fit test provided 0.5034, 0.0412, 0.0500 and
0.0009 as p-values for the q-Exponential, Weibull, q-Weibull and MEW
models, respectively. As indicated by the corresponding p-value, the q-
Exponential distribution is suitable to model the probabilistic behavior
of the TBFs in Table 8. On the other hand, the small p-values related to
the Weibull-based distributions lead to the rejection of the null hy-
pothesis, which means that they are not adequate to be used as prob-
abilistic model of the MRI scanner TBFs.

7. Conclusion

To enable the use of the q-Exponential distribution in the context of
reliability data modeling related to systems in the wear-out phase, we
have: (i) identified and analyzed the q-Exponential monotone like-
lihood problem; (ii) adapted Firth's and resample correction methods to
the q-Exponential case; (iii) devised a methodology to support the re-
liability analyst in the application of this distribution and also in the
validation of the resulting models.

The performed numerical experiments showed that the estimates
provided by the original q-Exponential log-likelihood when q < 1 are
very poor for small and medium-sized samples, which are rather
common in reliability data analysis. In addition, the simulations also
showed that the function penalized by the Firth's method provided good
parameter estimates even for small samples. This method was also su-
perior when compared to the resample method.

The original and corrected functions were also applied to an

Table 8
TBFs of the MRI scanner (in days) – Example 2.

1 99 11 12 21 8 31 19 41 19 51 18 61 47
2 38 12 13 22 26 32 47 42 10 52 3 62 26
3 109 13 40 23 98 33 14 43 17 53 46 63 87
4 10 14 6 24 11 34 53 44 4 54 17 64 6
5 35 15 78 25 87 35 14 45 54 55 7 65 13
6 42 16 77 26 11 36 35 46 26 56 75
7 31 17 24 27 54 37 73 47 135 57 58
8 18 18 66 28 22 38 18 48 44 58 102
9 53 19 25 29 13 39 38 49 59 59 6
10 3 20 4 30 54 40 140 50 11 60 53

Table 9
95% percentile confidence intervals based on non-parametric bootstrap an on
the original q-Exponential log-likelihood function – Example 2.

Parameter Lower bound Upper bound Interval Width

q −0.29 0.93 1.22
η 39.44 159.53 120.09

Fig. 6. Expected number of failures of original and corrected q-Exponential
models, Weibull, q-Weibull and MEW distributions compared to real data –
Example 2.

Table 10
MAE for the q-Exponential, Weibull, q-Weibull and
MEW expected number of failures compared to real
data – Example 2.

Distribution MAE

Original q-Exponential 3.47
Weibull 21.85
q-Weibull 5.54
MEW 28.12
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example involving 20 TBFs of a machining center. As in the numerical
experiments, the q-Exponential model using Firth's penalization pro-
vided the best results. They can be visually verified by the curves of
expected number of failures vs. time when compared to empirical
failure times and by the smallest MAE value. The corresponding in-
terval estimates for q and η presented the highest precision, as they had
the smallest widths defined by reasonable lower and upper bounds in
terms of magnitude. Additionally, the Weibull, q-Weibull and MEW
distributions were considered to model the TBFs and again the q-
Exponential with Firth's correction presented superior performance:
lower MAE for expected vs. empirical number of failures and higher p-
value for the K-S Boot test.

Moreover, the original q-Exponential approach was applied to a
second example related to the 65 TBFs of an MRI scanner, given that in
this case the monotone likelihood problem had not been observed.
Again, the Weibull q-Weibull and MEW models presented inferior
performance. Actually, these three distributions were rejected as sui-
table to model the stochastic behavior of the MRI scanner TBFs. Thus,
these two application examples evidence that, in some cases, the q-
Exponential probability model may be an alternative to the Weibull-
based distributions.

Finally, we expect that the methodology here proposed, involving
the correction by Firth's method when the monotone likelihood pro-
blem is identified or the original approach otherwise, the interval es-
timates for the parameters and the validation of estimated models based
on the cumulative expected number of failures and K-S Boot test, will
make the use of the q-Exponential distribution more viable in reliability
data analyses of systems that are in the wear-out phase. Thus, besides
Weibull and others, there will be an additional valid alternative to
model data sets in this situation.

In the future, we plan to explore other alternatives to solve the
monotone likelihood problem of the q-Exponential model, apply the
penalized q-Exponential log-likelihood by the Firth's method in other
type of data such as censored data in the wear-out phase and we intend
to consider other states of a system after the repair besides the “as good
as new” state. The proposed methodology could be part of compre-
hensive reliability frameworks such as competing risks [32,50], optimal
system design [24], accelerated life tests [17]. Also, Bayesian ap-
proaches for the estimation of the q-Exponential parameters are worth
of investigation to account for extremely limited data [11,48].

In this research, we have focused on systems in the wear-out phase
that present monotone increasing hazard rates, but lifetime distribu-
tions involving three or more parameters that are able to model
bathtub-shaped hazard rates are also extensively studied and applied in
reliability engineering [3], for example: exponentiated Weibull [33],
MEW [23,46], generalized modified Weibull [6], exponentiated Na-
darajah-Haghighi [22], q-Weibull [2,26,47], finite support model [21],
4-parameter Perks’ [49], additive modified Weibull [18]. Specifically,
the q-Weibull distribution has three parameters (η, β and q) and it is a
generalization of the q-Exponential model (for =β 1, the q-Weibull
becomes the q-Exponential distribution). In this sense, natural exten-
sions of the present work would be: (i) the investigation of the q-Wei-
bull likelihood function to verify whether the monotone likelihood
problem is present and, if identified, (ii) the adaptation of the metho-
dology here proposed.
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