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Abstract
We consider two optimization problems in planar graphs. In MaxiMuM Weight inde-
pendent Set of objectS we are given a graph G and a family D of objects, each 
being a connected subgraph of G with a prescribed weight, and the task is to find a 
maximum-weight subfamily of D consisting of pairwise disjoint objects. In Mini-
MuM Weight diStance Set cover we are given a graph G in which the edges might 
have different lengths, two sets D, C of vertices of G, where vertices of D have pre-
scribed weights, and a nonnegative radius r. The task is to find a minimum-weight 
subset of D such that every vertex of C is at distance at most r from some selected 
vertex. Via simple reductions, these two problems generalize a number of geometric 
optimization tasks, notably MaxiMuM Weight independent Set for polygons in the 
plane and Weighted geoMetric Set cover for unit disks and unit squares. We pre-
sent quasi-polynomial time approximation schemes (QPTASs) for both of the above 
problems in planar graphs: given an accuracy parameter 𝜖 > 0 we can compute a 
solution whose weight is within multiplicative factor of (1 + �) from the optimum 
in time 2poly(1∕�,log |D|)

⋅ n
O(1) , where n is the number of vertices of the input graph. 

We note that a QPTAS for MaxiMuM Weight independent Set of objectS would 
follow from existing work. However, our main contribution is to provide a unified 
framework that works for both problems in both a planar and geometric setting and 
to transfer the techniques used for recursive approximation schemes for geometric 
problems due to Adamaszek and Wiese (in Proceedings of the FOCS 2013, IEEE, 
2013; in Proceedings of the SODA 2014, SIAM, 2014) and Har-Peled and  Sariel 
(in Proceedings of the SOCG 2014, SIAM, 2014) to the setting of planar graphs. In 
particular, this yields a purely combinatorial viewpoint on these methods as a phe-
nomenon in planar graphs.
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1 Introduction

independent Set and doMinating Set are fundamental optimization problems on 
graphs. Given a graph G where each vertex v has a weight �(v) , in independent 
Set one seeks to find a vertex subset I ⊆ V(G) of maximum possible weight such 
that no two vertices in I are adjacent, whereas in doMinating Set one searches for 
a vertex subset D of minimum possible weight such that each vertex v ∈ V(G) is 
contained in D or adjacent to a vertex in D. Even in the unit-weight setting, both 
problems are notoriously hard to approximate and they are also �[1]-hard, i.e., we 
do not expect that they admit fixed-parameter tractable (fpt) algorithms running in 
time f (k) ⋅ nO(1) , where k is the expected solution size.

Therefore, special cases of the problems were investigated, for instance the case 
where the input graph is planar. On planar graphs, classic layering techniques can be 
applied to show that both problems admit EPTASs, i.e., (1 + �)-approximation algo-
rithms with a running time of f (1∕�)nO(1) for some function f, and fpt algorithms 
for the parameterization by the solution size, i.e., for a parameter k, algorithms run-
ning in time f (k)nO(1) that find a best solution among those of size at most k. Given 
these results, it is natural to consider generalizations of the above problems on pla-
nar graphs.

In this paper we study the diStance independent Set and the diStance doMinat-
ing Set problems. Given additionally a value r ∈ ℝ and lengths for the edges of G, 
in the diStance independent Set problem we require that any two selected vertices 
in I are at distance larger than r from each other, and in the diStance doMinating 
Set problem we require that each vertex v ∈ V(G) is at distance at most r from some 
vertex of D. Let us stress that we assume that r is part of the input and in particular 
not assumed to be a constant; in fact, for constant r and unit edge lengths, it is well-
known that the same layering techniques easily yield EPTASs and fpt algorithms 
on planar graphs. In the parameterized setting, both problems are �[1]-hard even 
for unit weights and unit edge-lengths; however, the trivial nO(k)-time algorithms 
can be improved to nO(

√
k)-time algorithms [5]. These parameterized algorithms 

extend a technique originally developed to design quasi-polynomial time approxi-
mation schemes (QPTASs) for independent Set and doMinating Set in the geo-
metric (Euclidean) setting [1, 2, 4]. The idea is to guess a sparse separator that has 
only small intersection with the optimal solution and that splits the problem into 
two roughly equal-sized subproblems, and then to solve the subproblems recur-
sively. The natural question arises whether one can transfer the insights obtained in 
the parameterized setting back to approximation algorithms, and obtain approxima-
tion schemes for diStance independent Set and diStance doMinating Set in planar 
graphs.

Our contribution. In this paper we show that this is indeed possible and we pre-
sent the first quasi-polynomial time approximation schemes for diStance independ-
ent Set and diStance doMinating Set on planar graphs when r is part of the input. 
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In fact, we give QPTASs for two even more general problems, which we name Max-
iMuM Weight independent Set of objectS (MWiSo) and MiniMuM Weight diStance 
Set cover (MWdSc). In MWiSo we are given a graph G and a family D of objects, 
each being a connected subgraph of G with a prescribed weight, and the goal is to 
find a maximum-weight subfamily of D consisting of pairwise disjoint objects. In 
MWdSc we are given an graph G and a length for each of its edges, subsets of 
vertices D and C where vertices of D are weighted, and radius r ∈ ℝ . The goal is to 
find a minimum-weight subset F ⊆ D that r-covers C in the sense that each vertex 
of C is at distance at most r from some vertex of F  . MWiSo generalizes diStance 
independent Set by taking D to be the family {{v ∶ dist(u, v) ≤ r∕2} ∶ u ∈ V(G)} 
of all balls of radius r  / 2 in the graph, after subdividing the edges appropriately1. 
MWdSc generalizes diStance doMinating Set by taking C = V(G) . The following 
statements summarize our results.

Theorem 1 The MaxiMuM Weight independent Set of objectS problem in planar 
graphs admits a QPTAS with running time 2poly(1∕�,logN) ⋅ nO(1) , where n is the vertex 
count of the input graph and N = |D| is the number of objects in the input.

Theorem 2 The MiniMuM Weight diStance Set cover problem in planar graphs 
admits a QPTAS with running time 2poly(1∕�,logN) ⋅ nO(1) , where n is the vertex count 
of the input graph and N = |D| is the number of vertices allowed to be selected to 
the solution.

We remark that it is possible to derive Theorem 1 via a reduction to the MaxiMuM 
Weight independent Set of polygonS problem (see below) and then applying the 
known QPTAS [4] for this problem. However, our main focus in this paper is to 
transfer the machinery developed in [1, 2, 4] for optimization problems in geometric 
settings to problems in planar graphs. The heart of our technical contribution is to 
show that for any instance of the above problems there is a set of candidate separa-
tors of polynomial size such that one of them splits the given problem in a balanced 
way and intersects only a tiny fraction of the given solution. The latter is important 
since the intersected objects will be lost (in the case of MWiSo) or might be paid 
twice (in the case of MWdSc) and hence we need to bound their total weight by 
�OPT . We state here an informal version of our separator lemma for the case of 
MWiSo.

Lemma 1 (Informal) In polynomial time we can compute a set � ⊆ 2D of separa-
tors such that for every solution F ⊆ D , say of weight W, there exists X ∈ � such 
that �(F ∩ X) ≤ �W and in the intersection graph of D − X  each connected compo-
nent C satisfies �(C ∩ F) ≤

9

10
W.

1 For every pair of vertices u
′, v′ with dist(u�, v�) ≤ r , if 

{v ∶ dist(u�, v) ≤ r∕2} ∩ {v ∶ dist(v�, v) ≤ r∕2} = � then we subdivide the middle edge of the shortest 
path between u′ and v′ such that the sets {v ∶ dist(u�, v) ≤ r∕2}, {v ∶ dist(v�, v) ≤ r∕2} intersect on the 
new vertex. This way we add at most O(n2) new vertices to the instance.
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Using Lemma  1 as abstraction for finding separators, we can apply the same 
recursive scheme as [1, 2, 4]: we guess the correct separator X ∈ � , construct a 
subproblem for each connected component of the intersection graph of D − X  , and 
recurse in each of them up to recursion depth O(log |D|) . Thus, the only part of the 
reasoning that uses planarity is Lemma 1.

The proof of Lemma  1 follows the reasoning of Har-Peled [4]. The idea is to 
prove the following auxiliary result: for the optimal solution F  (and in fact for any 
feasible solution) there exists a separator of length roughly s = O(

1

�
ln

1

�
) that cuts 

through at most an �-fraction of the weight of F  and splits the weight of F  in a bal-
anced way. Lemma 1 then follows by enumerating all candidates for such separators. 
In [4], the separator was simply a polygon with roughly s vertices. We lift this con-
cept to planar graphs using Voronoi separators as in the work of Marx and Pilipczuk 
[5]. Intuitively, a Voronoi separator of length r is an alternating cyclic sequence of r 
objects from D and r faces of the graph, connected by shortest paths in order to form 
a closed curve; this curve splits the instance into two subinstances. Thus, shortest 
paths in the graph are the analogues of segments in the plane.

The auxiliary result is proved in [4] by showing that if S is a sample of size 
roughly s2 from F  , where each object is sampled independently with probability 
proportional to its weight, then a balanced separator of length s in the Voronoi dia-
gram of S satisfies all the required properties with high probability. We follow the 
same reasoning; however, again we need to properly understand how geometric con-
cepts used in [4] — spokes and corridors — should be interpreted in planar graphs. 
Here, the technical toolbox for Voronoi diagrams and Voronoi separators developed 
in [5] becomes very useful. In particular, it turns out that a fine understanding of 
what faces are candidates for branching points of a Voronoi diagram, provided in 
[5], is essential to make the probabilistic argument work. Let us remark that we also 
somewhat simplify the original argument of Har-Peled by replacing the Exponential 
Decay Lemma with a direct probabilistic calculation.

To give the QPTAS for MWdSc we provide a variant of Lemma 1 suitable for 
this problem and then follow a similar recursive scheme as for Theorem 1. It is nice 
that we can reuse the above-mentioned auxiliary result introduced for Lemma 1 as a 
black-box, so the proof of the variant is relatively short. As in [7], the difference is 
that in the recursion instead of removing the guessed separator we preserve it in all 
the recursive subcalls, thus allowing double-buying objects from it.

Geometric problems. The above recursive machinery based on balanced separa-
tors was first introduced for obtaining a QPTAS for MaxiMuM Weight independent 
Set of rectangleS in the two-dimensional plane [1] and then extended for getting 
QPTASs for MaxiMuM Weight independent Set of polygonS [2, 4] and Weighted 
geoMetric Set cover (WgSr) for pseudo-disks [7]. We prove that Theorems  1 
and 2 generalize these results, with the exception that for WgSr we can treat only 
the cases of unit disks and axis-parallel unit squares, instead of general families of 
pseudo-disks. In “Appendix A” we explain how to derive the mentioned results from 
our theorems.

We would like to comment that it is possible to reduce MWiSo to MaxiMuM 
Weight independent Set of polygonS and obtain a QPTAS for MWiSo in this way: 
take the input graph and compute a straight line embedding for it. For each p ∈ D 
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compute a spanning tree Tp and define a polygon Pp that consists of the edges of Tp . 
Now two polygons Pp,Pp′ overlap if and only if their corresponding objects p, p′ 
overlap. Applying the QPTAS for MaxiMuM Weight independent Set of polygonS 
[4] to the resulting instance thus yields a QPTAS for MWiSo. However, we believe 
that our QPTAS for MWiSo is simpler in the sense that it works with the planar 
graph directly. Also note that such an approach does not work for MWdSc.

2  Proof of the Separator Lemma for MWISO

In this section we prove the Separator Lemma for MWiSo, which was infor-
mally stated as Lemma 1 and is formally stated below. For a family D of objects, 
IntGraph(D) denotes the intersection graph of D : graph with vertex set D where two 
objects are adjacent iff they intersect. The reader may think of F  being the optimal 
solution and of W being its weight.

Lemma 2 (Separator Lemma for MWiSo) Let G be an n-vertex planar graph and 
D be a weighted family of N objects in G. Let 0 < 𝜖 <

1

10
 and denote s = 103 ⋅

1

�
ln

1

�
 . 

Then there exists a family � consisting of subsets of D with the following properties:

 (A1) |�| ≤ 63sN15s and � can be computed in time NO(s)
⋅ nO(1) ; and

 (A2) for every real W ≥ 0 and subfamily F ⊆ D of pairwise disjoint objects such 
that �(F) ≤ W  and �(p) ≤ s−2W  for each p ∈ F  , there exist X ∈ � such that 
�(F ∩ X) ≤ �W and for every connected component C of IntGraph(D) − X  we 
have �(C ∩ F) ≤

9

10
W .

The plan is as follows. We first recall the toolbox of Voronoi separators, intro-
duced by Marx and Pilipczuk [5]. This allows us to state a stronger lemma, phrased 
as the existence of a short Voronoi separator appropriately breaking F  . We then 
show how Lemma  2 follows from this stronger result and subsequently prove the 
stronger result.

Before we proceed, let us set up the notation and basic assumptions about the 
input. Let G be the input graph. We assume the edges of G are assigned positive 
lengths2 so that we have the shortest-path metric in G: dist(u, v) denotes the shortest 
length of a path connecting u and v in G. We may assume that G is given with an 
embedding in a sphere � and that it is triangulated; that is, every face of G is a trian-
gle. Indeed, adding edges of infinite length to triangulate the graph neither distorts 
the metric nor spoils the connectivity of the objects. Also, for every face f of G we 
fix any internal point c to be its center, and for each vertex u of f we fix some curve 

2 Obviously, edge lengths are immaterial for the MWiSo problem. However, it is convenient to think 
of G as a graph whose edges have lengths so that we can define Voronoi diagrams. Furthermore, many 
results of this section will be reused for the MWdSc problem, where edge lengths do play a role.
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within f with endpoints u and c to be the segment connecting u and c so that seg-
ments connecting vertices of f with c pairwise do not cross.

We assume that shortest paths are unique and the distances between pairs of ver-
tices are pairwise different: for every pair of vertices u, v there is a unique shortest 
path connecting u and v and for {u, v} ≠ {u�, v�} we have dist(u, v) ≠ dist(u�, v�) . This 
can be ensured by using lexicographic tie-breaking rules and it increases the running 
time only by polynomial factors.

We are given a family D of objects in G, where each object p ∈ D is a non-
empty, connected subgraph of G. For any vertex u of G and any object p ∈ D , let 
dist(u, p) be the length of the shortest path connecting u with any vertex of p. For 
each object p ∈ D , we fix any spanning tree T(p) of p. We also assume that the fam-
ily D is weighted: every object p ∈ D is assigned a nonnegative real weight �(p) . 
For F ⊆ D we denote �(F) =

∑
p∈F �(p).

2.1  Basic Toolbox

Voronoi partitions and diagrams. A subfamily F ⊆ D is independent if the objects in 
F  are pairwise vertex-disjoint. Such an independent subfamily F  induces the Voro-
noi partition �F  , which is a partition of the vertex set of G into |F| parts according 
to the closest object from F  . Precisely, for p ∈ F  , we say that a vertex u belongs 
to the Voronoi cell �F(p) if dist(u, p) < dist(u, p�) for any p� ∈ F  , p′ ≠ p . Observe 
that ties do not happen due to distinctness of distances in G. We note that Marx and 
Pilipczuk consider in [5] a more general notion of a normal subfamily, but we do not 
need this generality here.

Assuming |F| ≥ 4 , we define the Voronoi diagram induced by �F  as follows; see 
Fig. 1 for a visualization. First, observe that every Voronoi cell �F(p) , for p ∈ F  , 
induces a connected subgraph of G that contains p entirely (see Lemmas 4.1 and 
4.2 in [5]). Extend T(p) to a spanning tree T̂(p) of G[�F(p)] by adding, for each 

Fig. 1  Construction of the Voronoi diagram. The left panel depicts the Voronoi partition, branching 
points of the diagram are depicted as solid (primal) triangular faces, edges of the diagram are dashed. 
The right panel depicts the Voronoi diagram alone; note that it is a planar 3-regular multigraph. Branch-
ing points of types 1, 2, and 3 are depicted in yellow, blue, and red, respectively. The figures are taken 
from [5] with consent of the authors; the left one is slightly modified (Color figure online)



1709

1 3

Algorithmica (2020) 82:1703–1739 

vertex u of �F(p) that is not in p, the shortest path from u to p. Take the dual of G 
and remove all the edges dual to the edges of T̂(p) , for all p ∈ F  . Then exhaustively 
remove vertices of degree one, and finally replace each maximal path with internal 
vertices of degree 2 (so-called 2-path) by a single edge; the embedding of this edge 
is defined as the union of embeddings of edges of G comprising the original 2-path. 
Thus, we obtain a connected, 3-regular plane multigraph H, called the Voronoi dia-
gram of F  , whose faces bijectively correspond to the cells �F(p) for p ∈ F  . More 
precisely, every face of H is associated with a different object p ∈ F  so that all the 
vertices of �F(p) are contained in this face. The 3-regularity of H follows from the 
assumption that G is triangulated. From Euler’s formula it follows that if |F| = k , 
then H has k faces, 2k − 4 vertices, and 3k − 6 edges. See Lemmas 4.4 and 4.5 of 
[5] for a formal verification of these assertions, and Section 4.4 of [5] for a detailed 
description of the construction.

Branching points. If H is the Voronoi diagram of an independent subfamily 
F ⊆ D , then H is constructed from a subgraph of the dual of G by contracting 
maximal 2-paths. Hence, vertices of H correspond to faces of G. These primal 
faces, equivalently dual vertices, are called the branching points of the diagram 
H; intuitively, these are faces where the boundaries of Voronoi cells meet non-
trivially. A priori, every face of G could be a branching point of the Voronoi dia-
gram of some independent subfamily F ⊆ D . However, in [5] it is proved that the 
number of candidates for branching points can be bounded polynomially in |D|.

Theorem 3 (Theorem 4.7 of [5]) There exists a family I of faces of G with |I| ≤ |D|4 
such that the following holds: for every independent subfamily of objects F ⊆ D , all 
branching points of the Voronoi diagram of F  are contained in I. Moreover, I can be 
computed in time polynomial in |D| and n.

We fix the family I provided by Theorem 3 and call its members D-important 
faces of G.

Voronoi separators. We now recall the concept of Voronoi separators; see 
Fig. 4 for a visualization. A Voronoi separator is a sequence of the form

where pi are pairwise disjoint objects from D , fi are faces of G, and ui, vi are distinct 
vertices lying on the face fi . For each i ∈ {1,… , r} , define Pi to be the shortest path 
from ui to pi and Qi to be the shortest path from vi to pi+1 , where indices behave 
cyclically. For a Voronoi separator S as above, its length is r and its set of traversed 
objects is D(S) = {p1,… , pr}.

In the notation above, an object q ∈ D is banned by the separator S if either 
q intersects some object p ∈ D(S) , or there is a vertex w on some path Pi such 
that dist(w, q) < dist(w, pi) , or there is a vertex w on some path Qi such that 
dist(w, q) < dist(w, pi+1) . In particular, D(S) is banned by S. Let Ban(S) denote the 
set of objects in D banned by S. Intuitively, the banned objects are those that are 
intersected by the separator and are lost when we recurse (in MWISO) or that 

S = ⟨p1, u1, f1, v1, p2, u2, f2, v2,… , pr, ur, fr, vr⟩,
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might be selected and paid twice (in MWDSC). Therefore, we will later ensure 
that their total weight is small.

The following result is the aforementioned key step toward the proof of Lemma 2. 
It may be regarded as a lift of Theorem 4.22 from [5] or of Lemma 4.1 from [4] to 
our setting.

Lemma 3 Let W be a positive real, 0 < 𝜖 <
1

10
 , and s = 103 ⋅

1

�
ln

1

�
 . Suppose 

F ⊆ D is an independent subfamily of objects such that |F| ≥ 4 , �(F) ≤ W , and 
�(p) ≤ s−2W for all p ∈ F  . Then there exists a Voronoi separator S satisfying the 
following:

 (B1) D(S) ⊆ F  and all faces traversed by S are D-important;
 (B2) the length of S is at most 3s;
 (B3) the total weight of objects of F  banned by S is at most �W;
 (B4) for every connected component C of IntGraph(D) − Ban(S) , we have 

�(C ∩ F) ≤
9

10
W .

It is not hard to see that Lemma 2 follows from Lemma 3: we simply enumerate 
all candidates for a Voronoi separator S satisfying (B1) and (B2). A straightforward 
estimate using Theorem 3 shows that there are at most 63sN15s candidates, and for 
each candidate S we add Ban(S) to the constructed family �.

Proof (of Lemma 2 assuming Lemma 3) Let us inspect in how many ways a 
Voronoi separator S satisfying properties  (B1) and (B2) can be selected. Since S 
has length at most 3s, there are at most N3s ways to select the sequence of consecu-
tive objects visited by S. Since every face traversed by S is D-important and there 
are at most N4 D-important faces in total, there are at most N12s ways to select the 
sequence of consecutive faces visited by S. On each of these faces we need to pick a 
pair of different vertices as the entry and leaving point, giving 6 ways per faces, so 
at most 63s in total. Thus, the separator S may be selected in at most 63sN15s different 
ways. Furthermore, since the set of D-important faces can be computed in polyno-
mial time by Theorem 3, a family N  of at most 63sN15s Voronoi separators satisfy-
ing (B1) and (B2) can be enumerated in time NO(s)

⋅ nO(1).
Now define the output family � as follows:

Clearly, � satisfies property (A1), whereas that it also satisfies property (A2) follows 
directly from Lemma 3, properties (B3) and (B4).   ◻

Thus, we are left with proving Lemma 3. The idea, borrowed from Har-Peled 
[4], is that we construct a sufficiently large random sample from F  , where the 
probability of picking each object is proportional to its weight. Then we inspect 
the Voronoi diagram induced by the sample and we argue that with non-zero 
probability it has a short separator giving rise to the sought Voronoi separator S. 

� = {Ban(S) ∶ S ∈ N}.
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To implement this plan we need two ingredients: an appropriate lift of the sam-
pling idea from [4] and the analysis of how separators in the Voronoi diagram 
give rise to Voronoi separators in the graph, which is essentially taken from [5] 
with some technical details added. These two ingredients are explained in the 
next two subsections.

2.2  Sampling

Spokes and diamonds. We first adjust technical notions used by Har-Peled [4] in 
the geometric context to our setting; see Fig. 5 for their visualization. Suppose we 
have an independent family of objects F  and its Voronoi diagram H = HF  . Let f 
be any branching point of H and let u be any vertex of f. Let p ∈ F  be the object 
of F  such that u ∈ �F(p) . The spoke of u in H is the shortest path from u to p in 
G; note all the vertices of this shortest path belong to the cell �F(p).

Consider any subfamily S ⊆ F  and let HS be the Voronoi diagram induced by 
S ; in the following, we consider spokes in the diagram HS . For any spoke P in 
HS , say connecting a vertex u with the object p ∈ S satisfying u ∈ �S(p) , we 
say that P is in conflict with an object p� ∈ F  if there is a vertex v on P such that 
dist(v, p�) < dist(v, p) . Note that this implies p� ∉ S , because the spoke P has to be 
entirely contained in �S(p) . Define the weight of P with respect to F  as the total 
weight of objects from F  that are in conflict with P.

Further, suppose e is an edge of HS , with endpoints f1, f2 (not necessarily dif-
ferent). Let p1, p2 be the objects of S corresponding to the faces of HS incident 
to e (possibly p1 = p2 ). Let u1,1, u1,2 be the vertices of f1 such that u1,1 ∈ �S(p1) , 
u1,2 ∈ �S(p2) , and the edge u1,1u1,2 of G crosses the edge e of HS . Similarly pick 
vertices u2,1, u2,2 of f2 . The diamond induced by e is the closed curve �S(e) on � 
formed by the union of: the segments connecting the center of f1 with u1,1 and 
u1,2 , the unique path between u1,2 and u2,2 in T̂(p2) , the segments connecting the 
center of f2 with u2,2 and u2,1 , and the unique path between u2,1 and u1,1 in T̂(p1) . 
The interior of �S(e) is the unique region of �⧵�S(e) that contains e. The weight 
of �S(e) with respect to F  is the total weight of objects of F  that are entirely con-
tained in the interior of �S(e) ; note that these objects do not belong to S.

We remark that while spokes were used in [4] in the form roughly as above, 
diamonds correspond to the notion of a corridor from [4].

Sampling lemma: statement. We now state the crucial technical result: there 
is a bounded-size subfamily of the optimum solution that induces a Voronoi dia-
gram where every spoke and every diamond has small weight. We will prove it 
using a probabilistic sampling argument.

Lemma 4 (Sampling lemma) Suppose W is a positive real and F  is an independ-
ent, weighted family of objects in G such that |F| ≥ 4 and �(F) ≤ W . Let � ≥ 10 be 
an integer such that �(p) ≤ W

�

 for each p ∈ F  . Then there exists a subfamily S ⊆ F  
with 4 ≤ |S| ≤ 2� such that in the Voronoi diagram HS , the weight with respect to F  
of every spoke and of every diamond is at most 10 ln𝓁 ⋅

W

𝓁

.
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Later, we will use Lemma  4 with � = O((
1

�
ln

1

�
)2) . The reader may imagine 

that we then apply a balanced planar graph separator on the Voronoi diagram HS 
of size O(

√
�) along which we partition F  into two parts, yielding the Voronoi 

separator claimed by Lemma 3. Since the weight with respect to F  of every spoke 
and every diamond is at most 10 ln𝓁 ⋅

W

𝓁

 , the total weight of the objects of F  
banned by S will be bounded by �W .

Lemma 4 is a roughly an analogue of Lemma 3.3 from [4]. The main differ-
ence is that in the geometric setting, spokes and corridors have a simpler struc-
ture due to the fact that each branching point of the Voronoi diagram is defined by 
three objects from the solution — the three ones equidistant from it — so that the 
branching point is the meeting point of the three corresponding Voronoi regions. 
This is no longer the case in planar graphs, as observed in [5]. More precisely, out 
of the three regions around a branching point of the diagram, two or even three 
may be equal; this happens when there are bridges in the diagram, which is never 
the case in the geometric setting.

As part of their proof of Theorem  3, to understand these additional situa-
tions Marx and Pilipczuk define singular faces, which come in three types. The 
first one corresponds to “standard” branching points incident to three different 
regions, while the second and the third one correspond to branching points inci-
dent only to two, respectively one region.

Singular faces. For an independent triple of objects F0 = {p1, p2, p3} ⊆ D , a 
face f of G is called a singular face of type 1 for (p1, p2, p3) if in �F0

 , all the 
vertices of f belong to different cells (note that there are three cells in �F0

 ). 
For an independent triple of objects F0 = {p1, p2, p3} ⊆ D , a face f is called 
a singular face of type 2 for (p1, p2, p3) if in �F0

 , one vertex v1 of f belongs to 
�F0

(p1) , the other two vertices v2, v3 of f belong to �F0
(p2) , and the closed walk 

W obtained by taking the union of the unique path in T̂(p2) between v2 and v3 
and the edge v2v3 on the boundary of f divides the plane into two regions, one 
containing p1 and one containing p3 . Finally, for an independent quadruple of 
objects F0 = {p0, p1, p2, p3} ⊆ D , a face f is called a singular face of type 3 for 
(p0, p1, p2, p3) if in �F0

 all the vertices of f belong to �F0
(p0) , but the boundary 

of face f plus the minimal subtree of T̂(p0) spanning the vertices of f divides the 

p1

p2

p3

f p1

p2

p3

v3

v2

v1
f

P3

P1

P2

p1
p2

p0

p3

v3

v2

v1

f

P3
P1 P2

Fig. 2  Singular faces of types 1, 2, and 3, respectively. Shortest paths from the vertices of the face f to 
respective objects are depicted in gray. The figure is taken verbatim from [5], with the consent of the 
authors (Color figure online)



1713

1 3

Algorithmica (2020) 82:1703–1739 

plane into four regions: the face f itself, one region containing p1 , one region con-
taining p2 , and one region containing p3 . See Fig. 2 for a visualization.

It appears that for a fixed triple or quadruple of objects, there are only few sin-
gular faces.

Lemma 5 (Lemmas 4.8, 4.9, and 4.10 of [5]) For each independent triple of objects 
(p1, p2, p3) , there are at most 2 singular faces of type 1 for (p1, p2, p3) , and at most 
1 singular face of type 2 for (p1, p2, p3) . For each independent quadruple of objects 
(p0, p1, p2, p3) , there is at most 1 singular face of type 3 for (p0, p1, p2, p3).

The next statement explains the connection between branching points and sin-
gular faces.

Lemma 6 (Lemma 4.12 of [5]) Let F ⊆ D be an independent subfamily of objects, 
and let H be the Voronoi diagram of F  . Then every branching point of H is either 
a type-1 singular face for some triple of objects from F  , or a type-2 singular face 
for some triple of objects from F  , or a type-3 singular face for some quadruple of 
objects from F .

Actually, the two results above may be combined into a proof of Theorem 3. 
Lemma 6 shows that every branching point of the Voronoi diagram of an inde-
pendent subfamily of D is among type-1, type-2, and type-3 singular faces for 
triples or quadruples of objects in D , while using Lemma 5 we can bound their 
total number by |D|4.

Sampling lemma: proof We now have all the tools needed to prove Lemma 4. 
Contrary to Har-Peled [4] we do not use the Exponential Decay Lemma, but 
direct probability calculations; this makes the proof somewhat conceptually eas-
ier. The main complications are due to the need to handling different types of 
singular faces, instead of just one.

Proof (of Lemma 4) Denote � = 10 ln𝓁 ⋅

W

𝓁

 . First observe that if �(F) ≤ � , then 
setting S = F  satisfies all the required properties, since no spoke may have larger 
weight than the whole of F  . Therefore, from now on we assume that �(F) > 𝜂.

Construct S by including every object p ∈ F  independently with probability 
qp = �(p) ⋅

𝓁

W
 ; note that this value is at most 1 by the assumption of the lemma. Let 

X be the random variable equal to the cardinality of S ; then X =
∑

p∈F Xp , where Xp 
are indicator random variables, taking value 1 if p is included in F  and 0 otherwise. 
Note that �[Xp] = qp and �[X] =

∑
p∈F �[Xp] = 𝓁 ⋅

�(F)

W
≤ 𝓁 . Since X is a sum of 

independent indicator variables, standard concentration inequalities yield the fol-
lowing.   ◻

Claim 1 The probability that |S| > 2� or |S| ≤ 4 is at most 7
12

.
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Proof Since �[X] ≤ � , by Markov’s inequality we have that |S| > 2� happens with 
probability at most 1

2
 . Hence, it suffices to prove that the probability that |S| ≤ 4 is 

that most 1
12

.

As �(F) > 𝜂 = 10 ln𝓁 ⋅

W

𝓁

 , we have

Since X is a sum of independent {0, 1}-random variables with mean larger than 200, 
by Chernoff’s inequality we infer that

This concludes the proof of the claim.  □

Call a spoke in the Voronoi diagram HS heavy if its weight with respect to F  is 
more than � . We now estimate the probability that there is a heavy spoke in HS.

Claim 2 The probability that there is a heavy spoke in HS is at most 1
6
.

Proof Take any triple p1, p2, p3 of different objects from F  , and suppose f is a sin-
gular face of type 1 for (p1, p2, p3) . Suppose further that P is one of the spokes inci-
dent to f in the Voronoi diagram of {p1, p2, p3} ⊆ F  , and assume that P is heavy 
with respect to F  . Let us estimate the probability of the following event A: p1, p2, p3 
all belong to S and moreover P remains a spoke in the Voronoi diagram HS of S 
(then it is obviously a heavy spoke in HS as well). For A to happen, apart from the 
event that p1, p2, p3 ∈ S , we also need that the following event happens: for each 
p� ∈ F⧵{p1, p2, p3} that is in conflict with P, p′ is not included in S . Let Z ⊆ F  be 
the set of such objects p′ . Using the standard inequality 1 − x ≤ exp(−x) , we have

For a fixed triple p1, p2, p3 ∈ F  , face f that is singular of type 1 for (p1, p2, p3) , and 
spoke P incident to f, let us denote by A1

P,(p1,p2,p3)
 the event A considered above. Let 

�[X] = 𝓁 ⋅

�(F)

W
> 10 ln𝓁 > 20.

ℙ(X ≤ 4) ≤ exp

(

−
1

2

(
4

5

)2

⋅ 20

)

≤
1

12
.

(1)

ℙ(A) ≤qp1qp2qp3 ⋅
∏

p�∈Z

(1 − qp� ) ≤ qp1qp2qp3 ⋅ exp

(

−
∑

p�∈Z

qp�

)

≤
�(p1)�(p2)�(p3)

W3
⋅ 𝓁

3
⋅ exp

(

−
𝓁

W

∑

p�∈Z

�(p�)

)

≤
�(p1)�(p2)�(p3)

W3
⋅ 𝓁

3
⋅ exp

(

−
𝓁�

W

)

≤
�(p1)�(p2)�(p3)

W3
⋅ 𝓁

3
⋅ exp(−10 ln𝓁) =

�(p1)�(p2)�(p3)

W3
⋅ 𝓁

−7

≤ 10−7 ⋅
�(p1)�(p2)�(p3)

W3
.
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B1 denote the event that some event A1
P,(p1,p2,p3)

 happens, i.e., B1 is the union of all 
events A1

P,(p1,p2,p3)
 . By Lemma 5, for every triple p1, p2, p3 ∈ F  there are at most two 

faces f that are singular of type 1 for (p1, p2, p3) , and for each of them there are at 
most 3 spokes P to consider. Thus, by applying the union bound to (1) we infer that

Denote by B2 the following event: there exists distinct p1, p2, p3 ∈ F  , a singular face 
f of type 2 for (p1, p2, p3) such that (i) p1, p2, p3 ∈ S and (ii) at least one of the heavy 
(w.r.t. F  ) spokes incident to f in the Voronoi diagram of {p1, p2, p3} remains a spoke 
in S . Also, denote by B3 the following event: there exists distinct p0, p1, p2, p3 ∈ F  , 
a singular face f of type 3 for (p0, p1, p2, p3) such that (i) p0, p1, p2, p3 ∈ S and (ii) 
at least one of the heavy (w.r.t. F  ) spokes incident to f in the Voronoi diagram of 
{p0, p1, p2, p3} remains a spoke in S . Similar calculations as for B1 yield the following:

Here, when estimating ℙ(B3) we sum over quadruples of objects instead of triples. 
By Lemma 6, we conclude that the probability that any spoke in the diagram HS is 
heavy is at most 3 ⋅ 10−6 ≤ 1

6
 .  □

We are left with diamonds. Call a diamond �S(e) in HS heavy if its weight with 
respect to F  is larger than � . The next check follows by essentially the same estima-
tion as Claim 2.

Claim 3 The probability that there is a heavy diamond in HS is at most 1
6
.

Proof Suppose e is an edge of HS with endpoints f1, f2 , and let p1, p2 be the objects 
of S corresponding to faces of HS incident to e. By Lemma 6, each ft ( t ∈ {1, 2} ) 
is either a type-1 singular face for a triple of objects from S , or a type-2 singu-
lar face for a triple of objects from S , or a type-3 singular face for a quadruple of 
objects from S . Suppose for a moment that both f1 and f2 are type-1 singular faces 
for triples of objects from S ; then it is easy to see that f1 is a type-1 singular face for 
(p1, p2, q1) for some object q1 ∈ S , while f2 is a type-1 singular face for (p1, p2, q2) 
for some object q2 ∈ S . We will further assume that q1 ≠ q2 and discuss the other 
case, as well as the cases when f1 or f2 are not type-1 singular faces, at the end, as 
the reasoning for them is analogous.

All in all, we have a quadruple of pairwise different objects p1, p2, q1, q2 . For 
the diamond � = �S(e) to arise in HS , the following two events need to happen 
simultaneously:

• objects p1, p2, q1, q2 need to simultaneously be included in S ; and
• all objects entirely contained in the interior of � need to be not included in S.

These two events are independent. The probability of the first is

ℙ(B1) ≤ 6 ⋅ 10−7 ⋅
∑

p1∈F

∑

p2∈F

∑

p3∈F

�(p1)�(p2)�(p3)

W3
= 6 ⋅ 10−7 ⋅

�(F)3

W3
≤ 10−6.

ℙ(B2) ≤ 10−6 and ℙ(B3) ≤ 10−6.
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Let G be the family of objects entirely contained in the interior of � . By the assump-
tion that � is heavy, we have that 

∑
r∈G �(r) ≥ � . The probability that no object of G 

is included in S is upper bounded by

Therefore, the probability that � arises in HS is upper bounded by

Now for every quadruple (p1, p2, q1, q2) of objects from F  there are at most 4 dia-
monds induced by this quadruple as above, as there are at most 2 type-1 singular 
faces for (p1, p2, q1) , and likewise for (p1, p2, q2) . Therefore, the total probability that 
there exists a heavy diamond with both endpoints being singular faces of type-1 and 
q1 ≠ q2 is bounded by

where the last inequality follows from the assumption that � ≥ 10 . The reasoning 
for the case when q1 = q2 is analogous (we sum over triples instead of quadruples), 
and similarly for the cases when we are dealing with singular faces of type different 
than 1. The number of different cases one needs to consider is bounded by 100, so 
summing all the probabilities we conclude that the probability that there is a heavy 
diamond in HS is at most 1

6
 .  □

Concluding, the assertion 4 ≤ |S| ≤ 2� does not hold with probability at most 7
12

 , 
there is a heavy spoke in HS with probability at most 1

6
 , and there is a heavy diamond 

in HS with probability at most 1
6
 . Hence, with probability at least 1

12
 neither of the 

above holds, so there exists a subfamily S satisfying all the postulated conditions.  
 ◻

2.3  Balanced Nooses

We proceed with the proof of Lemma 3 by explaining the second ingredient: bal-
anced separators in Voronoi diagrams. In general, short embedding-respecting 
separators in the Voronoi diagram—so-called nooses—correspond to the Voronoi 
separators we are looking for. We start by defining nooses and showing how the 

𝓁

4
⋅

�(p1)�(p2)�(q1)�(q2)

W4
.

∏

r∈G

(1 − qr) ≤
∏

r∈G

exp(−qr) = exp

(

−
∑

r∈G

qr

)

= exp

(

−
𝓁

W
⋅

∑

r∈G

�(r)

)

≤ exp (−10 ln𝓁) = 𝓁

−10.

�(p1)�(p2)�(q1)�(q2)

W4
⋅ 𝓁

4
⋅ 𝓁

−10 =
�(p1)�(p2)�(q1)�(q2)

W4
⋅ 𝓁

−6.

4 ⋅ 𝓁−6
⋅

∑

(p1,p2,q1,q2)∈F
4

�(p1)�(p2)�(q1)�(q2)

W4
= 4 ⋅ 𝓁−6

⋅

�(F)4

W4
≤ 4 ⋅ 10−6,
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existence of a sphere-cut decomposition of small width—a hierarchical decom-
position of the diagram using nooses—implies the existence of a short noose that 
breaks the instance in a balanced way.

We remark that in [4], this part of the reasoning is essentially done by con-
sidering the radial graph of the Voronoi diagram and applying the weighted 
balanced separator theorem of Miller [6] to it. Such an approach would be also 
applicable in our case, but we find the approach via sphere-cut decompositions 
more explanatory regarding how separators in the (radial graph of the) diagram 
correspond to separators in the instance.

Sphere-cut decompositions. We now recall the framework of sphere-cut 
decompositions, which are embedding-respecting hierarchical decompositions of 
planar graphs.

A branch decomposition of a graph H is a pair (T , �) where T is a tree with 
all internal nodes having degree 3, and � is a bijection between the edge set of 
H and the leaf set of T (for clarity, we always use the term node for a vertex of a 
decomposition tree). Take any edge e of T and consider removing it from T; then 
T breaks into two subtrees, say T1, T2 . Let A1,A2 be the preimages of the leaf sets 
of T1, T2 under � , respectively; then (A1,A2) is a partition of the edge set of H. The 
width of the edge e is the number of vertices of H incident to both an edge of A1 
and to an edge of A2 , and the width of the branch decomposition (T , �) is the max-
imum among the widths of the edges of T. The branchwidth of H is the minimum 
possible width of a branch decomposition of H.

Let H be a connected plane graph embedded in a sphere � . A noose in H is a 
closed, directed curve � on � without self-crossings that meets H only at its verti-
ces and visits every face of H at most once. Note that removing � from the sphere 
� breaks it into two open disks: for one of them � is the clockwise traversal of 
the perimeter, and for the other it is the counter-clockwise traversal (fixing an 
orientation of � ). The first disk shall be called ���(�) while the second shall be 
called ���(�) (for enclosed and excluded). Treat a curve � on � as a continuous 
function � ∶ [0, 1] → � . Two curves � , � ′ on � are called homotopic on � if there 
is a continuous function h ∶ [0, 1] × [0, 1] → � such that h(0, y) = �(0) = �

�(0) 
for all y ∈ [0, 1] , h(1, y) = �(1) = �

�(1) for all y ∈ [0, 1] , and h(x, 0) = �(x) and 
h(x, 1) = �

�(x) for all x ∈ [0, 1] . Here h is the homotopy. Two nooses � , � ′ are 
equivalent if they are homotopic on � with a homotopy that fixes the embedding 
of H; in other words, � ′ can be obtained from � by continuous transformations 
within the faces of H.

A sphere-cut decomposition of H is a triple (T , �, �) where (T , �) is a branch 
decomposition of H and � maps ordered pairs of adjacent nodes of T to nooses on 
� (w.r.t. H) such that the following conditions are satisfied for each pair of adja-
cent nodes of T:

• �(x, y) is equal to �(y, x) reversed (in particular ���(�(x, y)) = ���(�(y, x)));
• ���(�(x, y)) contains all the edges of H mapped to the component of T − xy 

containing y, while ���(�(y, x)) contains all the edges of H mapped to the other 
component of T − xy.
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The following result follows from [3, 8] and was formulated in exactly this way 
in [5].

Theorem  4 Every n-vertex sphere-embedded multigraph that is connected and 
bridgeless has a sphere-cut decomposition of width at most 

√
4.5n.

We note that in Theorem 4, the assumption that the multigraph is bridgeless is 
necessary, as multigraphs with bridges do not have sphere-cut decompositions at 
all.

Suppose (T , �, �) is a sphere-cut decomposition of G. It is straightforward to 
see that we may adjust the nooses �(x, y) for x, y ranging over adjacent nodes of 
T so that the following condition is satisfied: if node x has neighbors y1, y2, y3 
in T, then ���(�(y1, x)) is the disjoint union of ���(�(x, y2)) , ���(�(x, y3)) , and 
(�(x, y2) ∩ �(x, y3))⧵�(y1, x) , see Fig. 3. Sphere-cut decompositions satisfying this 
condition will be called faithful. It is easy to see that any sphere-cut decomposi-
tion can be made faithful by changing each noose to an equivalent one.

Separator theorem for nooses. We now state a separator theorem for nooses 
drawn from a sphere-cut decomposition of a given sphere-embedded multigraph. 
The theorem is weighted with respect to a measure defined as follows. Suppose 
R is a finite family of pairwise disjoint objects on a sphere � , where each object 
p ∈ R is a nonempty arc-connected subset of � with associated nonnegative 
weight �(p) . For an open disk 𝛥 ⊆ 𝛴 , define its R-measure �R(�) as the total 
weight of objects from R that are entirely contained in �.

Lemma 7 Let H be a connected, bridgeless multigraph embedded on a sphere � . Let 
R be a weighted family of pairwise disjoint objects on � and let W = �(R) . Suppose 
further (T , �, �) is a faithful sphere-cut decomposition of H such that for every pair 
(x, y) of adjacent nodes in T such that x is a leaf, we have 𝜇R(���(𝛿(y, x))) <

9

20
W . 

Then there exists a noose � w.r.t H, which is one of the nooses in the sphere-cut 
decomposition (T , �, �) , such that the following hold:

x

y3

y2

y1

enc(δ(x, y2))

enc(δ(x, y3))

enc(δ(y1, x))δ(y1, x)

δ(x, y2)

δ(x, y3)

Fig. 3  The condition required from faithful sphere-cut decompositions
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The proof of Lemma 7 is standard: we find a balanced edge (x, y) in the decom-
position (T , �, �) and �(x, y) is the sought noose. The fact that nooses appearing in 
(T , �, �) may intersect objects from R requires some technical attention. We start 
by proving a general-use statement using which we can extract balanced separators 
from hierarchical decompositions, provided we want balancedness with respect to 
some measure �(⋅) that the decomposition roughly obeys.

Lemma 8 Let T be a tree with all internal nodes of degree 3 and let W be a positive 
real. Suppose that there is a function � which maps ordered pairs of adjacent nodes 
of T to nonnegative reals such that the following conditions are satisfied:

 (S1) For every pair x, y of adjacent nodes in T, we have

 (S2) If x is an internal node of T with neighbors y1, y2, y3 , then

 (S3) Whenever x, y are adjacent nodes in T and x is a leaf, we have 𝜇(y, x) < 9

20
W .

Then there exists an edge xy of T such that

Proof Orient the edges of T as follows: if x,  y are adjacent nodes, then ori-
ent xy toward x if 𝜇(x, y) > 𝜇(y, x) , toward y if 𝜇(x, y) < 𝜇(y, x) , and arbitrarily if 
�(x, y) = �(y, x) . Thus, T becomes an oriented tree with |V(T)| nodes and |V(T)| − 1 
edges, implying that there exists a node x of T that has outdegree 0.

We first check that x is not a leaf of T. Suppose otherwise and let y be the unique 
neighbor of x. By (S1) we have that �(y, x) + �(x, y) ≥

9

10
W . Since xy was oriented 

toward x, we infer that �(y, x) ≥ �(x, y) , implying �(y, x) ≥ 9

20
W . This is a contradic-

tion with (S3).
Therefore x is an internal node of T. Let y1, y2, y3 be the neighbors of x. With-

out loss of generality suppose �(x, y1) is the largest among �(x, y1),�(x, y2),�(x, y3) . 
Using (S1) and (S2) we infer that

which implies that 𝜇(x, y1) ≥
4

15
W >

1

4
W . As xy1 was oriented toward x, we also 

have �(x, y1) ≤
1

2
W . By (S1) we infer that

�R(���(�)) ≤
9

10
W and �R(���(�)) ≤

9

10
W.

9

10
W ≤ �(x, y) + �(y, x) ≤ W.

�(x, y2) + �(x, y3) ≤ �(y1, x) ≤ �(x, y2) + �(x, y3) +
1

10
W.

1

4
W < 𝜇(x, y) <

3

4
W and

1

4
W < 𝜇(y, x) <

3

4
W.

�(x, y1) + �(x, y2) + �(x, y3) ≥
9

10
W − �(y1, x) + �(x, y2) + �(x, y3) ≥

4

5
W,
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Thus, the edge xy1 satisfies the requirements from the statement.  ◻

With Lemma 8 in place, we now give the proof of Lemma 7.

Proof (of Lemma 7) We shall say that a closed non-self-crossing curve � on � is R
-light if the total weight of objects in R that intersect � is at most W

10
.

Suppose first that the sphere-cut decomposition (T , �, �) contains at least one 
noose � which is not R-light. Then the total weight of objects of R intersected by 
� is more than W

10
 , hence both �R(���(�)) ≤

9

10
W and �R(���(�)) ≤

9

10
W hold, and 

� satisfies the required properties. Hence, we may assume that all the nooses in 
(T , �, �) are R-light.

We now verify that for R-light curves as separators, the requirements of Lemma 8 
hold.   ◻

Claim 4 Suppose � is an R-light curve on � . Then

Proof The right inequality is obvious. For the left one, all objects in R that do not 
intersect � are entirely contained in either in ���(�) or in ���(�) , thus they contribute 
their weight to the sum �R(���(�)) + �R(���(�)) , while the total weight of objects 
intersecting � is at most W

10
 due to R-lightness of � .  □

Claim 5 Suppose � , �1, �2 are R-light curves such that ���(�) is equal to the disjoint 
union of ���(�1) , ���(�2) and (�1 ∩ �2)⧵� . Then

Proof The left inequality is obvious, because every subset from R entirely contained 
either in ���(�1) or in ���(�2) is also entirely contained in ���(�) , while ���(�1) and 
���(�2) are disjoint. For the right inequality, observe that every object from R that is 
entirely contained in ���(�) but not in ���(�1) or ���(�2) has to intersect (�1 ∩ �2)⧵� . 
Since �1 is R-light, the total weight of such objects is at most W

10
 .  □

We proceed with the proof of Lemma 7. For any ordered pair (x, y) of adja-
cent nodes in T, let �(x, y) = �R(���(�(x, y)) . Since all nooses in (T , �, �) are R
-light and (T , �, �) is faithful, Claims 4 and 5 verify that conditions (S1) and (S2) 
of Lemma 8 hold. Condition (S3), on the other hand, is satisfied by the assump-
tions of the lemma. Therefore, we may apply Lemma  8, yielding a pair (x,  y) 
such that �(x, y) satisfies the required assertions.   ◻

𝜇(y1, x) ≥
9

10
W − 𝜇(x, y1) ≥

4

10
W >

1

4
W and 𝜇(y1, x) ≤ W − 𝜇(x, y1) ≤

11

15
W <

3

4
W.

9

10
W ≤ �R(���(�)) + �R(���(�)) ≤ W.

�R(���(�1)) + �R(���(�2)) ≤ �R(���(�)) ≤ �R(���(�1)) + �R(���(�2)) +
W

10
.
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2.4  From Nooses to Separators: Proof of Lemma 3

For the proof of Lemma 3 we need to formalize the connection between nooses 
in the Voronoi diagram and Voronoi separators in the graph. This connection 
was largely explored in [5]. We now recall and adjust the basic observations; see 
Fig. 4 for a visualization.

Suppose G is an connected graph embedded in a sphere � , each of its edges 
has a given length, S ⊆ F  are independent families of objects in G with |S| ≥ 4 , 
and H = HS is the Voronoi diagram of S in G. Recall that H is a connected 3-reg-
ular multigraph embedded in � . Suppose � is a noose in H. Then � naturally 
induces a Voronoi separator S(�) defined as the sequence:

such that

• f1,… , fr are consecutive branching points of H visited by �;
• between fi−1 and fi , � travels through the face of H corresponding to the object 

pi;
• ui is the vertex of fi corresponding to the direction of � entering fi ; and
• vi is the vertex of fi corresponding to the direction of � leaving fi.

(2)⟨p1, u1, f1, v1, p2, u2, f2, v2,… , pr, ur, fr, vr⟩

p1

u4
v4

f4

u3v3

f3

u2

v2

f2

u1

v1

f1

p2p3

p4

Fig. 4  A Voronoi separator S of length 4 and its perimeter �(S) , depicted in blue. The Voronoi regions 
are depicted in light colors, objects in respective solid colors. As in Fig. 5, the perimeter �(S) may not 
cross some object p traversed by S. The figure is taken almost verbatim from [5], with slight modifica-
tions (Color figure online)
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Here, by correspondence between vertices of fi and directions entering/leaving fi we 
mean the following. Recall that fi is a triangular face of G and at the same time it is 
a degree-3 vertex of H. Edges incident to fi in H correspond in the dual to edges of 
fi in G, thus the vertices of fi may be naturally associated with the three incidences 
between fi and faces of H around it: the vertex of fi in G incident to edges e1, e2 of 
fi in G corresponds to the incidence with the face lying between the duals of e1, e2 
in H. A noose in H may enter/leave fi in three directions corresponding to these 
three incidences. Hence, we have a correspondence between the vertices of fi and 
the directions.

For a Voronoi separator S as in (2), define its perimeter �(S) to be the noose 
constructed by concatenating the following 2r curves in order, two for each 
i = 1, 2,… , r:

• the unique path in T̂(p) from vi−1 to ui , and
• a curve within fi from ui to vi , obtained by concatenating the segment from ui to 

the center of fi and the segment from the center of fi to vi.

Given a noose � with respect to H, the canonical version of � is the noose �(S(�)) . 
Note that � and its canonical version are equivalent as nooses with respect to H. 
A noose that is equal to its own canonical version shall be called canonical. It can 
be easily seen that if � is a canonical noose with respect to H, then ���(�) is the 

p

u

spo
ke

p1

p2

f1

f2

u2,1

u2,2

u1,1
u1,2

diamond

Fig. 5  Part of the Voronoi diagram with a spoke and a diamond highlighted. Depicted triangles are the 
branching points of the Voronoi diagram. Gray dashed curves are the edges of the Voronoi diagram. 
The spoke of u, which is the shortest path leading from u to the object p to whose region u belongs, is 
depicted in orange. The diamond induced by the edge f1f2 is depicted in black (its interior is grayed). 
Note that the diamond does not need to cross objects p1 and p2 . For instance, as in the figure, it may hap-
pen that the path within T̂(p2) connecting u2,1 and u2,2 does not intersect p2 (Color figure online)



1723

1 3

Algorithmica (2020) 82:1703–1739 

union of interiors of diamonds induced by edges of H enclosed by � ; symmetri-
cally for ���(�) . Then the following is immediate.

Lemma 9 Every sphere-cut decomposition of H for which all nooses are canonical 
is faithful.

We are ready to give a proof of Lemma 3.

Proof (of Lemma 3) Apply Lemma  4 to F  and 𝓁 = s2 = 106 ⋅
(

1

�
ln

1

�

)2

 . Note that 
thus � ≥ 10 , as required by Lemma 4. This yields a subfamily S ⊆ F  and the corre-
sponding Voronoi diagram H = HS satisfying the following properties:

 (N1) 4 ≤ |S| ≤ 2�;
 (N2) every spoke in H has weight with respect to F  upper bounded by 10 ln𝓁 ⋅

W

𝓁

 ; 
and

 (N3) every diamond in H has weight with respect to F  upper bounded by 10 ln𝓁 ⋅

W

𝓁

.

Recall that H is a 3-regular connected multigraph embedded in � . Let us con-
tinue the proof under the assumption that H is bridgeless. The general case when 
H may have bridges requires attention to a few more technical details but is con-
ceptually no different; we present it later.

Since H is bridgeless, by Theorem  4 we may find a sphere-cut decomposition 
(T , �, �) of H of width at most 

√
4.5�V(H)� ≤

√
18� ≤ 5

√
� . We may further 

assume that each noose used by (T , �, �) is canonical, hence (T , �, �) is faithful by 
Lemma 9. The following claims now follow easily from the properties of S provided 
by Lemma 4.   ◻

Claim 6 For every pair (x, y) of adjacent nodes of T, the total weight of objects of F  
banned by the Voronoi separator S(�(x, y)) is at most �W.

Proof Since the width of (T , �, �) is at most 5
√
� , the noose �(x, y) traverses at most 

5
√
� = 5s faces of H. Each traversal, say of the face corresponding to an object 

p ∈ S , is a path contained in the union of two spokes and possibly a path within 
p. Observe that the objects banned by S(�(x, y)) are exactly the objects that are in 
conflict with any of these at most 10

√
� spokes. By (N2), each of these spokes has 

weight with respect to F  upper bounded by 10 ln𝓁 ⋅

W

𝓁

 , which means that the total 
weight of objects banned by S(�(x, y)) is at most

where the last inequality holds due to ln s ≤ 5 ⋅ ln
1

�
 being satisfied for 𝜖 < 1

10
. □

10
√
𝓁 ⋅ 10 ln𝓁 ⋅

W

𝓁

= 100 ln𝓁 ⋅

W
√
𝓁

= 200 ln s ⋅
W

s
≤ �W,
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Claim 7 If (x, y) is a pair of adjacent nodes in T such that x is a leaf, then the total 
weight of objects of F  contained in ���(�(y, x)) is at most �W.

Proof Let e = �
−1(x) . Then �(y, x) is the diamond induced by e and ���(�(y, x)) is its 

interior. By (N3), every diamond in H has weight with respect to F  upper bounded 
by

Similarly as in Claim 6. The claim follows.  □

The next claim is the key insight from [5]: Voronoi separators induced by nooses 
in (T , �, �) break the intersection graph IntGraph(D) in the expected way.

Claim 8 Suppose (x,  y) is a pair of adjacent nodes of T and p, p� ∈ D are two 
objects not banned by S(�(x, y)) such that p and p′ are contained in different regions 
of � − �(x, y) . Then p and p′ are non-adjacent in IntGraph(D).

Proof Since p and p′ are contained in different regions of � − �(x, y) , they are in par-
ticular disjoint. Hence, they are non-adjacent in the intersection graph IntGraph(D) . 
 □

For an open disk � on � , define the measure �F(�) as before: �F(�) is the sum of 
weights of objects p ∈ F  that are entirely contained in � . Since � ≤ 9

20
 , Claim 7 ver-

ifies that the prerequisites of Lemma 7 are satisfied. Thus, we may apply Lemma 7 
to (T , �, �) , yielding a pair of adjacent nodes (x, y) of T such that within each of the 
disks ���(�(x, y)) and ���(�(y, x)) the total weight of objects from F  is at most 9

10
W.

We claim that the Voronoi separator S satisfies all the required conditions. For 
condition (B1), we have that D(S) ⊆ S ⊆ F  and all faces traversed by S are branch-
ing points of the Voronoi diagram of S ⊆ D ; hence, they are D-important. For 
condition (B2), the length of S(�(x, y)) is equal to the length of �(x, y) , which is at 
most 3s. Condition (B3) follows directly from Claim 6. Finally, for condition (B4), 
Claim 8 together with the construction of S imply that every connected component 
of IntGraph(D) − Ban(S) contains objects from F  of total weight at most 9

10
W . 

Hence, S has all the prescribed properties.
We are left with discussing the case when the Voronoi diagram H has bridges. 

Note that diamonds in H are well-defined also for bridges; hence, as in Claim  7, 
every diamond in H has weight at most 10 ln𝓁 ⋅

W

𝓁

≤ �W.
Consider any bridge b in H, say with endpoints f1 and f2 ; recall that these are 

branching points of H. For t = 1, 2 , let us construct the canonical noose (w.r.t. H) of 
length 1 traveling through ft and the unique face of H incident to the bridge b. Call 
this noose �(ft, b) and orient it so that ���(�(ft, b)) contains the bridge b; nooses con-
structed in this manner shall be called bridge nooses.

The same calculations as in Claim 6 show that for any bridge noose � , the total 
weight of objects of F  banned by the Voronoi separator S(�) is at most �W ; this is 

10 ln𝓁 ⋅

W

𝓁

≤ �W,



1725

1 3

Algorithmica (2020) 82:1703–1739 

because the length of a bridge noose is 1, which is never larger than 3s. This means 
that if for any bridge noose � we have that for both ���(�) and ���(�) , the total 
weight of objects from F  contained in each of these disks is at most 9

10
W , then S(�) 

satisfies all the required conditions. Hence, from now on we assume that for every 
bridge noose � , either �F(���(�)) or �F(���(�)) exceeds 9

10
W.

Let us inspect any bridge b in H, say with endpoints f1 and f2 . Denote 
�1 = �(f1, b) and �2 = �(f2, b) . As ���(�1) and ���(�2) are disjoint, it cannot hap-
pen that 𝜇F(���(𝛽1)) >

9

10
W and 𝜇F(���(𝛽2)) >

9

10
W . Also, if it happened that 

𝜇F(���(𝛽1)) >
9

10
W and 𝜇F(���(𝛽2)) >

9

10
W , then the objects from F  contained in 

the interior of the diamond induced by b in H (which is equal to ���(�1) ∩ ���(�2) ) 
would have weight more than 8

10
W , a contradiction with the fact that every dia-

mond in H has weight at most �W . Therefore, either 𝜇F(���(𝛽1)) >
9

10
W and 

𝜇F(���(𝛽2)) >
9

10
W , or 𝜇F(���(𝛽1)) >

9

10
W and 𝜇F(���(𝛽2)) >

9

10
W . Orient b 

toward f2 in the former case and toward f1 in the latter case.
Thus, every bridge of H becomes oriented. Since H has one fewer bridge than 

bridgeless components, there exists a bridgeless component B of H such that every 
bridge incident to B is oriented toward its endpoint residing in B.

We first resolve the corner case when B consists of one vertex, say u. Since H is 
3-regular, u has three different neighbors v1, v2, v3 such that uv1, uv2, uv3 are the three 
bridges incident to u. These bridges are oriented toward u, which means that each of 
the disks

contains objects from F  of total weight more than 9
10
W . However, each object from 

F  can be contained in at most 2 of these disks, and a simple counting argument 
yields a contradiction.

Hence, from now on suppose B is a bridgeless component of H consisting of 
more than one vertex. Since B is bridgeless and nontrivial and H is 3-regular, every 
vertex of u of B is incident to at most one bridge of H. Thus, it is easy to see that 
there is an injective mapping � from bridges incident to B to edges of B so that each 
bridge b shares an endpoint with �(b).

For a bridge b incident to B, let Hb be the component of H − b that is disjoint with 
B. Now, for every noose � with respect to B we may define a noose �̂� with respect to 
H so that � and �̂� are equivalent as nooses w.r.t. B, and for every bridge b incident to 
B, either all of Hb , b, and �(b) are contained in ���(�) , or all of them are contained 
in ���(�) . See Fig. 6 for an example. We may further require that �̂� is canonical (as a 
noose with respect to H).

By Theorem 4, let (T , �, �) be a sphere-cut decomposition of B of width at most √
4.5�V(B)� ≤ 3

√
� . Replace each noose � appearing in (T , �, �) by �̂� ; it is easy to 

see that thus (T , �, �) is still a sphere-cut decomposition of B and becomes faithful. 
We would like now to apply the whole reasoning to (T , �, �) and B. Claim 6 works 
exactly as before, because the only condition we needed is an upper bound on the 
weights of spokes in H.

However, Claim 7 may fail, because disks of the form ���(�(y, x)) , where x is a 
leaf of T and y is the node of T adjacent to it, are no longer diamonds in H. More 

���(�(u, uv1)), ���(�(u, uv2)), ���(�(u, uv3))
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precisely, if e = �
−1(x) is the edge of H associated with x and �(e) is the interior of 

the diamond of H induced by it, then the following two cases may happen:

• if e is not in the image of � , then ���(�(y, x)) = �(e);
• if e = �(b) for some bridge b incident to B, say with u being the endpoint of b in 

B, then ���(�(y, x)) is the union of �(e) , the disk ���(�(u, b)) , and the intersection 
of their boundaries.

In the first case, we already know that 𝜇F(���(𝛿(y, x))) ≤ 𝜖W <
9

20
W . In the second 

case, observe that every object of F  contained in ���(�(y, x)) is either contained �(e) 
or is not contained in ���(�(u, b)) . The total weight of objects satisfying the first 
condition is at most �W , whereas the total weight of objects satisfying the second 
condition is less than W

10
 , because 𝜇F(���(𝛽(u, b))) >

9

10
W . Hence,

Summing up, in both cases we have verified that 𝜇F(���(𝛿(y, x))) <
9

20
W , so we may 

apply Lemma 7 and proceed as in the case without bridges.   ◻

3  A QPTAS for MaxIMuM WeIght Independent Set Of ObjectS

In this section we use Lemma 2 to design a QPTAS for MWiSo, that is, we prove 
Theorem 1. Recall that the setting is as follows. The input is (G,D) , where G is a 
graph embedded in a sphere � together with a family of objects D , each being a 
connected subgraph of G with a prescribed positive weight. Moreover, we are given 
an accuracy parameter 𝜖 > 0 and we may assume w.l.o.g. that 𝜖 < 1

10
 . The goal is to 

find an independent subfamily F ⊆ D with the largest possible weight; more pre-
cisely, the algorithm shall compute a solution of weight at least (1 − �) times the 
optimum. Let n = |V(G)| and N = |D| ; w.l.o.g. we assume N ≥ 2.

𝜇F(���(𝛿(y, x))) ≤ 𝜖W +
W

10
<

9

20
W.

b3

b1

B
Hb1

Hb3

b2
Hb2

γ

b3

b1

H

Hb1

Hb3

b2
Hb2

γ̂

φ

φ

φ

Fig. 6  Construction of �̂� (a noose w.r.t. H) out of � (a noose w.r.t B). The left panel depicts the bridgeless 
component B alone together with the noose � . The right panel depicts the whole graph H, with com-
ponents Hb1

,Hb2
,Hb3

 and bridges b1, b2, b3 reintroduced, and the adjusted noose  �̂� . The mapping � is 
depicted with gray, dashed arrows
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First, we assume that all objects in D have weights between 1 and M = 2�−1N . 
For the given instance (G,D) let us define

The following standard claim shows that we may assume that the span in the input 
instance is bounded polynomially in N and 1∕� ; more precisely, by M = 2�−1N.

Claim 9 Suppose there is a QPTAS as described in Theorem  1, but working on 
instances (G,D) that additionally satisfy span(D) < 2𝜖−1|D| . Then Theorem 1 holds.

Proof Let M = 2�−1|D| . For every object p ∈ D construct a subfamily Dp ⊆ D con-
sisting of all objects whose weight is not larger than �(p) but larger than �(p)∕M . 
Clearly, span(Dp) < M . We claim that there exists p ∈ D such that the optimum 
solution for (G,Dp) has weight at most (1 − �∕2) smaller than the optimum solution 
for (G,D) . If this is the case, then it suffices to run the assumed QPTAS on each 
of the instances (G,Dp) , for p ∈ D , using accuracy parameter �∕2 , and output the 
heaviest of the solutions found.

Let FOPT ⊆ D be the optimum solution for (G,D) . Let p be the heaviest object in 
FOPT . Consider F = {q ∈ FOPT ∶ �(q) > �(p)∕M} and observe that F ⊆ Dp , thus 
F  is a solution for (G,Dp) . On the other hand, we have

where the last inequality follows from p ∈ FOPT . Hence �(F) ≥ (1 − �∕2)�(FOPT) 
and we are done.  □

By Claim 9 in order to prove Theorem 1 it suffices to work under the assump-
tion that span(D) < M . Hence, by rescaling the weights we may assume that all 
the weights of objects in D are at least 1 and smaller than M.

Before we proceed to the algorithm, we fix the following parameters:

Parameter dmax is the maximum recursion depth of the algorithm; note that 
dmax = O(log(N∕�)) . Next, 𝜖 = O(𝜖∕ log(N)) is the refined accuracy parameter 
which will be used throughout the recursion instead of � . Similarly as in [1, 2, 4], 
intuitively we lose a factor of 1 − 𝜖 in each recursion level which yields an overall 
approximation ratio of (1 − 𝜖)dmax = (1 − 𝜖∕dmax)

dmax = 1 − O(𝜖) . Let us stress that 
although the algorithm uses recursion and the number of objects changes in subse-
quent recursive calls, the values of dmax, 𝜖, s are fixed as above and their definitions 
always refer to the initial number of objects.

We now explain the algorithm; it is also summarized using pseudocode as 
Algorithm 1. Let us fix an optimum solution FOPT and denote W = �(FOPT) . We 

span(D) =
maxp∈D �(p)

minp∈D �(p)
.

�(FOPT⧵F) ≤ �(p)∕M ⋅ |FOPT⧵F| ≤ �(p)∕M ⋅ |D| = �∕2 ⋅ �(p) ≤ �∕2 ⋅ �(FOPT),

(3)dmax = 10 ln(MN), 𝜖 =
𝜖

dmax

, s = 103 ⋅
1

𝜖

ln
1

𝜖

.
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shall analyze FOPT , which will lead to the formulation of the algorithm as a recur-
sive search for FOPT.

We would like to use Lemma 2 to guess a Voronoi separator that breaks FOPT in a 
balanced way. However, we first need make sure that every object in question consti-
tutes only a small fraction of W. This is done by a standard method of guessing exactly 
“heavy” objects in the solution, whose number is small, and proceeding only with the 
“light” ones.

More precisely, call an object p ∈ FOPT heavy if �(p) > s−2W . Observe that the 
number of heavy objects in FOPT is at most s2 , hence there are at most Ns2 possible ways 
to select those heavy objects from D . The algorithm branches into all possible such 
ways, in each branch fixing a different candidate for the set of heavy objects. Hence, by 
increasing the number of subproblems by a multiplicative factor Ns2 we may assume 
that the algorithm fixes the set Fhv consisting of all heavy objects in FOPT . Let D′ be 
obtained from D by removing Fhv and all objects intersecting any object from Fhv , and 
let F�

OPT
= FOPT − Fhv . Note that �(F�

OPT
) ≤ W and �(p) ≤ s−2W for all p ∈ F

�
OPT

.
We may now apply Lemma 2 to F′

OPT
⊆ D

′ with W being the upper bound on its 
weight. Thus, in time NO(s)

⋅ nO(1) we may compute a family � consisting of subsets 
of D′ with |�| ≤ 63sN15s and satisfying the following property: there exists X ∈ � 
such that �(F�

OPT
⧵X) ≤ �W and within each connected component of the graph 

IntGraph(D�) − X  the total weight of objects from F′
OPT

 does not exceed 9

10
W . By 

branching into all the members of � , via increasing the number of subproblems by 
a multiplicative factor |�| we may henceforth assume that the algorithm fixes X  with 
properties as above.

For a fixed choice of Fhv and X  as above, let us inspect the connected components 
of IntGraph(D�) − X  ; let their vertex sets be D1,… ,Dk . We apply the algorithm recur-
sively to the instances (G,Di) for i = 1,… , k , yielding independent families F1,… ,Fk 
with Fi ⊆ Di . We record the family F = Fhv ∪

⋃k

i=1
Fi as a candidate for the solution; 

it is straightforward to see from the construction that this family is independent. Finally, 
as the final solution we output the heaviest among the recorded candidates; that is, the 
heaviest solution found for all choices of Fhv and X  . We remark that if for some choice 
of Fhv it turned out that D� = � , i.e., every object intersects some objects from Fhv , 
then � contains only one choice of X  being ∅ , hence we include F = Fhv among the 
candidates without invoking any recursive calls.

The base case of the recursion is provided by trimming it at level dmax . More pre-
cisely, all subcalls at depth larger than dmax return empty solutions. This concludes 
the description of the algorithm; as mentioned, it is summarized using pseudocode as 
Algorithm 1. 
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Running time analysis. On a high level, the above algorithm runs in time 
2poly(1∕�,logN) ⋅ nO(1) because at each node of the recursion tree the algorithm uses 
polynomial time and calls itself on NO(s2) subinstances, where s = poly(1∕�, logN) . 
Together with the bound of dmax = O(log(N∕�)) on the recursion depth this yields 
the promised running time.

Formally, we argue as follows. Throughout this analysis N denotes the ini-
tial number of objects. It is straightforward to see that the computation at each 
recursive call, excluding time spent on executing the invoked subcalls, takes time 
NO(s)

⋅ nO(1) . Therefore, to bound the running time it suffices to bound the total 
number of nodes in the recursion tree. As the recursion is trimmed at depth dmax , 
its height is at most dmax . Further, in each call we investigate:

• at most Ns2 ways to select heavy objects Fhv from D;
• at most 63sN15s ways to select the family X  ; and
• at most N connected components of IntGraph(D�) − X .

This yields at most 63s ⋅ Ns2+18s+1 ≤ N2s2 instances on which a recursive subcall 
is invoked. This means that each node of the recursion tree has at most N2s2 chil-
dren, which together with the height of at most dmax = 10 ln(NM) yields an upper 
bound of N20s2 ln(NM) on the number of nodes in the recursion tree. Since the com-
putation at each node takes time NO(s)

⋅ nO(1) , we arrive at the total running time 
of

as promised.
Approximation factor analysis. As mentioned before, the claimed approxima-

tion ratio follows as intuitively in each of the dmax recursion levels we lose a fac-
tor of 1 − 𝜖 , accumulating to (1 − 𝜖)dmax = 1 −O(𝜖) overall. Formally, we argue as 
follows. It is clear that the family output by the algorithm is indeed independent. 

NO(s2 log(NM))
⋅ nO(1) = 2poly(1∕�,logN) ⋅ nO(1),
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In order to prove that its weight is at least (1 − �)W  , it suffices to show the follow-
ing claim and apply it for d = 0 ; i.e., for the initial instance (G,D) . Recall here 
that FOPT is a fixed optimum solution for the whole instance.

Claim 10 Let (G, D̃) be an instance on which the algorithm is called in the recur-
sion tree, say at depth d. Suppose further that �(FOPT ∩ D̃) ≤ (9∕10)d ⋅W . Then 
the call of the algorithm to (G, D̃) returns an independent subfamily �F ⊆ �D with 
�(�F) ≥ (1 − d�𝜖)�(FOPT ∩

�D) , where d� = dmax − d.

Proof Denote F̃OPT = FOPT ∩ D̃ . We prove the claim by induction on the depth d, 
starting with the case d ≥ dmax and then decreasing d. For the base of the induction, 
for d ≥ dmax we have

On the other hand, FOPT contains at most N objects of weight less than M each, 
hence W < MN . Combining these two observations we infer that (9∕10)d ⋅W < 1 . 
Since each object of D has weight at least 1, we conclude that F̃OPT = � , so the 
claim holds vacuously.

Suppose now that d < dmax . Let W̃ = �(F̃OPT) ; by assumption, W̃ ≤ (9∕10)d ⋅W . 
Call an object p ∈ F̃OPT heavy if �(p) ≥ s−2W̃ and let �Fhv ⊆

�FOPT be the family of 
heavy objects in F̃OPT . Observe that |F̃hv| ≤ s2 , so in the first loop of the algorithm 
there is an iteration in which we correctly fix the set F̃hv . We continue the reasoning 
under this assumption. As in the description, let D̃

′ be D̃ with all objects intersecting 
any object from F̃hv removed.

Now let F̃
�

OPT
= F̃OPT⧵F̃hv . Since �(p) < s−2 �W for all p ∈ F̃

�

OPT
 , we may apply 

Lemma 2 to F̃
′

OPT
 and W̃ as the upper bound on its weight, and conclude that the enumer-

ated family � contains at least one member X satisfying the properties as in the descrip-
tion of the algorithm. In particular, in one iteration of the second loop the algorithm cor-
rectly fixes such X and proceeds with it. From now on we continue under this assumption.

Having fixed F̃hv and X  , the algorithm investigates the connected components 
D̃1,… , D̃k of IntGraph(D̃

�
) − X  and applies itself recursively to each instance (G, D̃i) , 

for i = 1,… , k , yielding families �Fi ⊆
�Di . By the properties of X  , we have that

for each i ∈ {1,… , k} . Since recursive subcalls to instances (G, D̃i) are at level d + 1 
in the recursion tree, by the induction assumption we infer that

for each i ∈ {1,… , k} . Since the total weight of objects of F̃OPT ∩ X  is at most 𝜖 �W , 
we have that

(9∕10)d ≤ (1 − 1∕10)10 ln(MN)
< e− ln(MN) =

1

MN
.

�(FOPT ∩ D̃i) ≤ (9∕10) ⋅ �(FOPT ∩ D̃) ≤ (9∕10)d+1 ⋅W,

(4)�(Fi) ≥ (1 − (d� − 1)𝜖) ⋅ �(FOPT ∩
�Di)
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Recall that the algorithm returns a family of weight not smaller than the weight of 
F̃ = F̃hv ∪

⋃k

i=1
F̃i . By combining (4) with (5) we have

This concludes the proof of Theorem 1.  □

4  A QPTAS for MInIMuM WeIght dIStance Set cOver

In this section we prove Theorem 2. We first state and prove a suitable variant of 
Lemma 2; its proof will follow from Lemma 3 in a similar way.

Lemma 10 (Separator Lemma for MWdSc) Let G be an n-vertex planar graph, D 
be a weighted set of vertices of G with |D| = N , C be a set of vertices of G, and r be 
a nonnegative real. Let 0 < 𝜖 <

1

20
 and denote s = 103 ⋅

1

�
ln

1

�
 . Then there is a family 

� consisting of quadruples of the form (D1,D2, C1, C2) such that:

 (D1) For each (D1,D2, C1, C2) ∈ � , we have that D1,D2 ⊆ D , C1, C2 ⊆ C , and 
C1 ∪ C2 = C;

 (D2) |�| ≤ 63sN15s and � can be computed in time NO(s)
⋅ nO(1) ; and

 (D3) For every real W ≥ 0 and subset F ⊆ D such that F  r-covers C , �(F) ≤ W  , 
and �(p) ≤ s−2W for each p ∈ F  , there exists a quadruple (D1,D2, C1, C2) ∈ � 
such that:

• �(F ∩D1 ∩D2) ≤ �W;
• �(F ∩D1) ≤

19

20
W and �(F ∩D2) ≤

19

20
W ; and

• F ∩D1 r-covers C1 and F ∩D2 r-covers C2.

Proof As before, we may assume we are given an embedding of G in a sphere � , G 
is triangulated using edges of infinite lengths, and distances in G are unique.

Consider applying Lemma  3 to D (where we interpret vertices in D as single-
vertex objects) and a subset F ⊆ D as in (D3). This yields a Voronoi separator S of 

(5)�(�Fhv) +

k∑

i=1

�(�FOPT ∩
�Di) ≥ (1 − 𝜖) �W.

�(�F) = �(�Fhv) +

k∑

i=1

�(�Fi)

≥�(�Fhv) + (1 − (d� − 1)𝜖) ⋅

k∑

i=1

�(�FOPT ∩
�Di)

≥(1 − (d� − 1)𝜖) ⋅

(

�(�Fhv) +

k∑

i=1

�(�FOPT ∩
�Di)

)

≥(1 − (d� − 1)𝜖)(1 − 𝜖) �W ≥ (1 − d�𝜖) �W.
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length at most 3s such that all faces traversed by S are D-important and S breaks F  
in a balanced way as described in Lemma 3. As explained in the proof of Lemma 2, 
given only D there are at most 63sN15s ways to choose such a Voronoi separator S 
and in time NO(s)

⋅ nO(1) we can enumerate a family N  of at most 63sN15s candidates 
for S.

Now, construct � by including the following quadruple (D1,D2, C1, C2) for each 
S ∈ N  . Let � = �(S) be the perimeter of S (recall that the perimeter of S is the noose 
“following” S; we defined it in Sect. 2.4). Then define (D1,D2, C1, C2) as follows:

• D1 is the union of Ban(S) and all vertices of D contained in ���(�);
• D2 is the union of Ban(S) and all vertices of D contained in ���(�);
• C1 comprises all vertices of C contained in ���(�) ∪ � ; and
• C2 comprises all vertices of C contained in ���(�) ∪ �.

This concludes the construction of � ; we are left with verifying its properties. Con-
ditions (D1) and (D2) are clear from the construction, so we are left with condition 
(D3). Suppose W and F  are as in the statement of condition (D3).

For the first assertion, observe that D1 ∩D2 = Ban(S) and by Lemma 3, condition 
(B3), we have that �(F ∩ Ban(S)) ≤ �W . The claim follows.

For the second assertion, observe that F ∩D1 comprises the vertices of F  con-
tained in ���(�) and the vertices of F  banned by S. By Lemma 3, conditions (B3) 
and (B4), the weights of these sets of vertices are at most 9

10
W and at most �W ≤

W

20
 , 

respectively. It follows that �(F ∩D1) ≤
19

20
W ; a symmetric reasoning shows that 

�(F ∩D2) ≤
19

20
W as well.

We are left with the third assertion. Take any vertex c ∈ C1 . Let p be the ver-
tex from F  that is closest to c and let P be the shortest path connecting c with p. 
Since F  r-covers C , we have that length(P) = dist(p, c) ≤ r . If p ∈ F ∩D1 then we 
are done, hence assume that p ∈ F⧵D1 . In particular, p is contained in ���(�) and p 
is not banned by S. Since c ∈ C1 , c is contained in ���(�) ∪ � , so P has to cross � at 
some vertex, say w. Let q ∈ D(S) be the vertex on the Voronoi separator S that is the 
closest to w; recall that D(S) ⊆ F  , hence q ∈ F  . Since p is not banned by S, we have 
that dist(w, p) > dist(w, q) . As P is the shortest path connecting c and p, we infer that

This means that c is r-covered by q. But q is banned by S due to q ∈ D(S) ⊆ Ban(S) , 
which implies that c is r-covered by F1 . Since c was chosen arbitrarily, we infer that 
C1 is r-covered by F ∩D1 , and a symmetric reasoning shows that C2 is r-covered by 
F ∩D2 .   ◻

Reduction of the weight span. Similarly as in Sect. 3, we first bound the weight 
span of the input instance, defined as

by a polynomial of |D| and 1∕�.

r ≥ dist(c, p) = dist(c,w) + dist(w, p) > dist(c,w) + dist(w, q) ≥ dist(c, q).

span(D) =
maxp∈D �(p)

minp∈D �(p)
.
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Claim 11 Suppose there is a QPTAS as described in Theorem  2, but working on 
instances (G,D, C, r) that additionally satisfy span(D) ≤ 2�−1|D| . Then Theorem  2 
holds.

Proof Let M = 2�−1|D| . For every vertex p ∈ D construct a weighted set of vertices 
Dp by modifying D as follows: remove all vertices of weight larger than �(p) and 
for every vertex of weight smaller than �(p)∕M , increase its weight to �(p)∕M . For 
clarity, the weight function in Dp will be denoted by �p(⋅) . That is, for each q ∈ D 
we have:

• if �(p) < �(q) , then q ∉ Dp;
• if �(p)∕M < �(q) ≤ �(p) , then q ∈ Dp and �p(q) = �(q) ; and
• if �(q) ≤ �(p)∕M , then q ∈ Dp and �p(q) = �(p)∕M.

Clearly span(Dp) ≤ M . We claim that there exists p ∈ D such that the optimum 
solution for (G,Dp, C, r) has weight at most (1 + �∕2) larger than the optimum solu-
tion for (G,D, C, r) . If this is the case, then it suffices to run the assumed QPTAS on 
each of the instances (G,Dp, C, r) , for p ∈ D , using accuracy parameter �∕2 , and 
output the lightest of the solutions found. Indeed, instances (G,Dp, C, r) are derived 
from (G,D, C, r) only by dropping some vertices and increasing the weights of 
some others, so every solution for (G,Dp, C, r) naturally projects to a solution for 
(G,D, C, r) of not larger weight.

Let FOPT ⊆ D be the optimum solution for (G,D, C, r) . Let p be the heaviest ver-
tex in FOPT . Observe that FOPT is still a solution in (G,Dp, C, r) , yet its weight with 
respect to �p(⋅) may be larger than with respect to �(⋅) . However, for each vertex 
q ∈ FOPT we have

Thus,

where the last inequality follows from p ∈ FOPT .  □

Denoting M = 2�−1N = 2�−1|D| , by Claim 11 in order to prove Theorem 2 it suf-
fices to work under the assumption that span(D) < M . By rescaling the weights from 
now on we assume that all the weights of vertices in D are at least 1 and smaller 
than M.

Parameters. Similarly as in Sect. 3, we set parameters as follows:

�p(q) ≤ �(q) + �(p)∕M.

�p(FOPT) ≤�(FOPT) + |FOPT| ⋅ �(p)∕M

= �(FOPT) + �∕2 ⋅ �(p) ⋅
|FOPT|

|D|
≤ (1 + �∕2) ⋅ �(FOPT),

(6)dmax = 20 ln(MN), 𝜖 =
𝜖

2dmax

, s = 103 ⋅
1

𝜖

ln
1

𝜖

.
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Note that compared to the proof of Theorem  1, the recursion depth dmax is twice 
larger and the rescaled accuracy parameter 𝜖 is four times smaller. This is for techni-
cal reasons.

Description of the algorithm. We perform a similar recursive scheme as in Sect. 3, 
but using Lemma 10 instead of Lemma 2. The algorithm is summarized using pseu-
docode as Algorithm 2. We now explain it viewing it as a recursive search for the opti-
mum solution.

Recall that we are given an instance (G,D, C, r) and an accuracy parameter � , and 
we have fixed parameters dmax, 𝜖, s as in (6). Fix an optimum solution FOPT and denote 
W = �(FOPT).

We first guess heavy vertices in the solution as in the proof of Theorem 1. Call a 
vertex p ∈ FOPT heavy if �(p) > s−2W . Observe that FOPT contains at most s2 heavy 
vertices; denote them by Fhv . The algorithm iterates through all subsets of D of size at 
most s2 , in each case fixing the considered subset as Fhv . In one of the cases Fhv will be 
fixed correctly, hence we may proceed with the assumption that the algorithm knows 
Fhv.

Let F�
OPT

= FOPT⧵Fhv and D� = D⧵Fhv . Further, let C′ be constructed from C by 
removing all vertices that are r-covered by Fhv . Note that C′ is r-covered by F′

OPT
 . 

Moreover, observe that �(p) ≤ s−2W for each p ∈ F
�
OPT

 , hence we may apply 
Lemma 10 to D′ and C′ . Thus, in time NO(s)

⋅ nO(1) we construct a family � consisting 
of at most 63sN15s quadruples with the following guarantee: there exists a quadruple 
(D1,D2, C1, C2) ∈ � such that

• D1,D2 ⊆ D
′ , C1, C2 ⊆ C

′ , and C1 ∪ C2 = C
�;

• �(F�
OPT

∩D1 ∩D2) ≤ 𝜖W;
• �(F�

OPT
∩D1) ≤

19

20
W and �(F�

OPT
∩D2) ≤

19

20
W ; and

• F
�
OPT

∩D1 r-covers C1 and F�
OPT

∩D2 r-covers C2.

By iterating through all members of � , we may henceforth assume that the algorithm 
has fixed a quadruple (D1,D2, C1, C2) with the properties as above.

The algorithm now recurses on instances (G,D1, C1, r) and (G,D2, C2, r) , thus com-
puting two solutions F1 ⊆ D1 and F2 ⊆ D2 such that C1 is r-covered by F1 and C2 is 
r-covered by F2 . Since C1 ∪ C2 = C

� and all members of C⧵C′ are r-covered by Fhv , 
the set F = Fhv ∪ F1 ∪ F2 r-covers C . The algorithm outputs the lightest of the sets F  
computed as above for all choices of Fhv and (D1,D2, C1, C2) ∈ �.

The base case of the recursion is given by trimming it at depth dmax . More precisely, 
all recursive calls at depth larger than dmax return F = � in the case when C is empty 
(then it is an optimal solution), or a special marker ⊥ in the case when C is not empty. 
The marker ⊥ should be interpreted as “error”, that is, it marks that a recursive call has 
failed to find a solution, and it propagates in the recursion using the following conven-
tion: �(⊥) = +∞ and the union of ⊥ with any other set is equal to ⊥ . 
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Algorithm 2: Algorithm AlgMWDSC

Input: An instance (G,D, C, r), recursion depth d
Output: A subset F ⊆ D that r-covers C

if C = ∅ then
return ∅

if d > dmax then
return ⊥

F ← ⊥
forall Fhv: subset of D with |Fhv| ≤ s2 do

D′ ← D \ Fhv
C′ ← C \ (vertices of C that are r-covered by Fhv)
X ← family computed for D′ and C′ using Lemma 10
forall (D1,D2, C1, C2) ∈ X do

F1 ← AlgMWDSC(G,D1, C1, r, d+ 1)
F2 ← AlgMWDSC(G,D2, C2, r, d+ 1)
Fcand ← Fhv ∪ F1 ∪ F2
if w(Fcand) < w(F) then

F ← Fcand

return F

Again, we need to argue that the running time of the algorithm is as promised 
and that the output solution has weight at most (1 + �)W  . The running time analy-
sis is exactly the same as in the proof of Theorem 1, so we skip it and proceed 
directly to arguing the approximation factor.

Approximation factor analysis. Similarly as in the case of Theorem 1, the fact 
that the algorithm outputs a solution of weight at most (1 + �)W  follows directly 
from the following claim by applying it to the original instance (G,D, C, r) and 
d = 0 . Recall here that FOPT is a fixed optimum solution to the original instance 
and its weight is W.

Claim 12 Let (G, D̃, C̃, r) be an instance on which the algorithm is called in the 
recursion tree, say at depth d. Suppose further that �(FOPT ∩ D̃) ≤ (19∕20)d ⋅W 
and that FOPT ∩ D̃ r-covers C̃ . Then the call of the algorithm to (G, D̃, C̃, r) returns 
a subset �F ⊆ �D that r-covers C̃ and satisfies �(�F) ≤ (1 + 2d�𝜖)�(FOPT ∩

�D) , where 
d� = dmax − d.

Proof We prove the claim by induction on d, starting with the case d ≥ dmax and 
then proceeding with decreasing d. When d ≥ dmax , we have

Since FOPT consists of at most N vertices of weight less than M each, we have 
W < MN . Therefore

(19∕20)d ≤ (1 − 1∕20)20 ln(MN)
< e− ln(MN) =

1

MN
.

�(FOPT ∩
�D) ≤ (19∕20)d ⋅W <

1

MN
⋅MN = 1.
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As each vertex of D has weight at least 1, we infer that FOPT ∩ D̃ = � . This means 
that C̃ is empty as well and the algorithm correctly outputs ∅ as a solution.

Suppose now that d < dmax . Denote F̃OPT = FOPT ∩ D̃ and let W̃ = �(F̃OPT) ; by 
assumption, W̃ ≤ (19∕20)d ⋅W . Call a vertex p ∈ F̃OPT heavy if �(p) ≥ s−2W̃ and 
let �Fhv ⊆

�FOPT be the set of heavy vertices in F̃OPT . Observe that |F̃hv| ≤ s2 , so in 
the first loop of the algorithm there is an iteration in which we correctly fix the set 
F̃hv . We continue the reasoning under this assumption. As in the description, let D̃

′ 
be D̃ with all vertices from F̃hv removed, and let C̃

′
 be C̃ with all vertices r-covered 

by F̃hv removed.
Now let F̃

�

OPT
= F̃OPT⧵F̃hv and observe that F̃

′

OPT
 r-covers C′ . Since �(p) < s−2 �W 

for all p ∈ F̃
�

OPT
 , we may apply Lemma 10 to F̃

′

OPT
 , C′ , and W̃ as the upper bound on 

the weight of F̃
′

OPT
 . Thus we conclude that the enumerated family � contains at least 

one quadruple (D̃1, D̃2, C̃1, C̃2) satisfying the following:

 (i) �(�FOPT ∩
�D1 ∩

�D2) ≤ 𝜖 �W;
 (ii) �(F̃OPT ∩ D̃1) ≤

19

20
W̃  and �(F̃OPT ∩ D̃2) ≤

19

20
W̃  ; and

 (iii) F̃OPT ∩ D̃1 r-covers C1 and F̃OPT ∩ D̃2 r-covers C2.

In particular, in one iteration of the second loop the algorithm correctly fixes such a 
quadruple and proceeds with it. From now on we continue under this assumption.

Having fixed F̃hv and (D̃1, D̃2, C̃1, C̃2) , the algorithm recursively calls itself on 
instances (G, D̃1, C̃1, r) and (G, D̃2, C̃2, r) , yielding families �F1 ⊆

�D1 and �F2 ⊆
�D2 . 

By property (ii), we have that

for i ∈ {1, 2} . As the recursive subcalls to instances (G, D̃i, C̃i, r) are at level d + 1 
in the recursion tree, and due to property (iii), by the induction assumption we infer 
that �Fi ≠ ⊥ and

for i ∈ {1, 2} . By property (i), we have that

Recall that the algorithm returns a solution of weight not larger than the weight of 
F̃ = F̃hv ∪ F̃1 ∪ F̃2 . By combining (7) with (8) we have

�(FOPT ∩ D̃i) ≤ (19∕20) ⋅ �(FOPT ∩ D̃) ≤ (19∕20)d+1 ⋅W,

(7)�(�Fi) ≤ (1 + 2(d� − 1)𝜖) ⋅ �(FOPT ∩
�Di),

(8)

�(�Fhv) + �(�FOPT ∩
�D1) + �(�FOPT ∩

�D2)

= �(�Fhv) + �(�FOPT ∩
�D
�
) + �(�FOPT ∩

�D1 ∩
�D2)

= �(�FOPT) + �(�FOPT ∩
�D1 ∩

�D2)

≤ �W + 𝜖 �W = (1 + 𝜖) �W.
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where the last inequality follows from 2(d� − 1)𝜖2 ≤ 𝜖 , which is true for 
d′ ≤ dmax ≤

1

40𝜖
 . This concludes the proof.  □

This finishes the proof of Theorem 2.

Acknowledgements We thank Dániel Marx for insightful discussions on the approach to optimization 
problems in geometric and planar settings via Voronoi diagrams.

Appendix: Geometric Problems

In the MaxiMuM Weight independent Set of polygonS (MWiSp) problems we 
are given a family P of polygons in the plane, each with a prescribed weight, and 
the task is to find a maximum-weight subset of pairwise disjoint polygons. In the 
Weighted geoMetric Set cover problem we are given a family P of subsets of the 
plane, each with a prescribed weight, and a set U of points in the plane. The goal 
is to find a minimum-weight subfamily of P whose union covers U . A QPTAS for 
MWiSp with running time 2poly(1∕�,logN) ⋅ nO(1) , where N = |P| and n is the total 
number of vertices of the input polygons, was given by Har-Peled [4]. A QPTAS 
for WgSr under the assumption that P is a family of pseudo-disks (i.e. compact, 
simply connected subsets of the plane such that the boundaries of each two meet in 
at most two points) with running time 2poly(1∕�,n+N) , where n = |U| and N = |P| , was 
given by Mustafa et al. [7].

We now prove that the abovementioned results follow from Theorems 1 and 2 
via simple reductions from the geometric to the planar setting; the exception is 
that for WgSr we can tackle only unit disks and unit squares instead of general 
pseudo-disks. These reductions were already observed by Marx and Pilipczuk in [5], 
who used them for the parameterized variants of the problems. We give them for 
completeness.

Corollary 1 The MaxiMuM Weight independent Set of polygonS problem admits a 
QPTAS with running time 2poly(1∕�,logN) ⋅ nO(1) , where N is the number of polygons 
and n is the total number of vertices of those polygons.

Corollary 2 The Weighted geoMetric Set cover problems for unit disks and axis-
parallel unit squares admits a QPTAS with running time 2poly(1∕�,logN) ⋅ nO(1) , where 
N is the number of disks/squares on input and n is the number of points to be 
covered.

�(�F) ≤�(�Fhv) + �(�F1) + �(�F2)

≤�(�Fhv) + (1 + 2(d� − 1)𝜖) ⋅
(

�(FOPT ∩
�D1) + �(FOPT ∩

�D2)
)

≤(1 + 2(d� − 1)𝜖) ⋅
(

�(�Fhv) + �(�FOPT ∩
�D1) + �(�FOPT ∩

�D2)
)

≤(1 + 2(d� − 1)𝜖)(1 + 𝜖) �W ≤ (1 + 2d�𝜖) �W,
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Before we proceed to proving the statements above, let us first give a general-use 
definition of the crossing graph of a point set in the plane; see Fig. 7. Consider a 
finite set of points X in the plane and a metric d(⋅, ⋅) on the plane induced by some 
norm (i.e. d(x, y) = ‖x − y‖ for some norm ‖ ⋅ ‖ ). By G⟨X, d⟩ we denote a graph 
defined as follows. For every pair of distinct points a, b ∈ X , draw the segment with 
endpoints a and b in the plane. Let Y ⊇ X be the set consisting of X and all intersec-
tions of all the segments drawn; then set Y to be the vertex set of G⟨X, d⟩ . Two points 
x, y ∈ Y  are connected by an edge in G⟨X, d⟩ if they are two consecutive points from 
Y on any of the drawn segments; that is, the segment connecting x and y is contained 
in one of the segments connecting pairs of vertices from X, and there is no other 
point from Y inside this segment. The length of this edge is set to d(x, y). Note that 
G⟨X, d⟩ has at most |X|4 vertices, is planar with a straight-line embedding described 
above, and for every two vertices a, b ∈ X we have distG⟨X,d⟩(a, b) = d(a, b).

For further reference, let d2(⋅, ⋅) and d∞(⋅, ⋅) denote the metrics on the plane 
induced by the �2 - and �∞-norm, respectively. We now prove Corollaries 1 and 2.

Proof (of Corollary 1) Let P be the given weighted set of polygons and let X be the 
set of all their vertices; then |X| = n . Consider the graph G = G⟨X, d∞⟩ ; note that G 
has at most n4 vertices. For every polygon P ∈ P construct a corresponding object 
p in G defined as follows: p is the subgraph of G induced by all the vertices of G 
whose embeddings are contained in P. It is easy to see that p defined in this manner 
is connected. The weight of p is equal to the weight of P. Let D be the family com-
prising all the constructed objects. It readily follows that sets of pairwise disjoint 
polygons from P are in one-to-one correspondence with independent subfamilies of 
D , hence it suffices to apply the algorithm of Theorem 1 to the instance (G,D) .   ◻

Proof (of Corollary 2) Let us first concentrate on the case of unit disks. Let the input 
be (P,U) , where P is a weighted set of unit disks and U is a set of points to be cov-
ered. Let X be the set consisting of all the centers of disks from P and all the points 
from U ; then |X| ≤ N + n . Consider the graph G = G⟨X, d2⟩ ; note that G has at most 

X G X, d

Fig. 7  A point set X and the corresponding crossing graph G⟨X, d⟩ , for an unspecified metric d. Note that 
two triples of points in X are collinear



1739

1 3

Algorithmica (2020) 82:1703–1739 

(N + n)4 vertices. Construct a weighted set of points D as follows: for every disk 
P ∈ P , add the center of P to D and assign it weight equal to the weight of P. It can 
be easily seen that a subset of disks Q ⊆ P covers all the points from U if and only 
if the centers of disks from Q cover U in G, where we consider domination radius 
1

2
 . Hence it suffices to apply the algorithm of Theorem 2 to the instance (G,D,U,

1

2
).

For the case of unit squares we may follow the same reasoning except we use 
metric d∞(⋅, ⋅) instead of d2(⋅, ⋅) .   ◻
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