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Two-dimensional arrays of coupled waveguides or coupled microcavities allow to confine and manipulate light. Based
on a paradigmatic envelope equation, we show that these devices, subject to a coherent optical injection, support
coexistence between a coherent and incoherent emission. In this regime, we show that two-dimensional chimera state
can be generated. Depending on initial conditions, the system exhibits a family of two-dimensional chimera states and
interaction between them. We characterize these two-dimensional structures by computing their Lyapunov spectrum,
and Yorke-Kaplan dimension. Finally, we show that two-dimensional chimera states are of spatiotemporal chaotic
nature.

One-dimensional nonlinear coupled microcavities exhibit
a rich spatiotemporal dynamics. In particular, these cou-
pled microcavities have fully synchronized or incoherent
light emission of a spatiotemporal chaotic nature. Also,
depending on the initial conditions, these devices show co-
existence between desynchronized and synchronized do-
mains, often called optical chimera states. In this contri-
bution, we show evidence of optical chimeras in a two-
dimensional array of coupled waveguide resonators. Due
to the additional degrees of freedom, the smaller local-
ized solutions exhibit a chaotic spatiotemporal evolution—
which is not the case of the one-dimensional counterpart.
Lyapunov spectrum and Yorke-Kaplan dimensions are
calculated to characterize these intriguing localized states.

I. INTRODUCTION

A two-dimensional array of coupled waveguides or coupled
microcavities consists of nonlinear discrete structures1. This
configuration appears not only in photonics but also in a large
variety of systems such as biological systems2, condensed
matter physics3, and Bose-Einstein condensates4. Nonequi-
librium discrete systems are drawing considerable attention
both from fundamental as well as applied points of view. In
particular, spatial localization of light in discrete photonic lat-
tices has been reported5–7, including complex confinement of
light such as random-phase solitons8,9. In free propagation,
the spatial confinement is attributed to the balance between
the discrete diffraction and the nonlinearity. However, when
dealing with coupled microresonators, the dissipation of en-
ergy due to mirrors should be compensated by optical injec-
tion. This second balance renders discrete dissipative solitons
more robust10–12.

Generally speaking, when a system exhibits a simultane-
ous coexistence between coherence and incoherence behav-
ior in coupled oscillators, the resulting phenomenon is called

chimera states13. Initially, this phenomenon was reported
in the context of nonlocally coupled phase oscillators13,14,
and extended later on to locally coupling oscillators15,16.
In optical systems, experimental observations of chimera
states have been reported using an optoelectronic delayed
feedback setup17, laser diodes coupled to a nonlinear sat-
urable absorber18, and laser diodes subjected to a coherent
polarization19. Recently, one-dimensional optical chimera
states have been predicted in an array of coupled Kerr
resonators20. However, to the best of our knowledge
chimera states in two spatial dimensions have received lim-
ited attention21.

This paper aims to investigate the formation of two-
dimensional optical chimera states in an array of coupled
waveguide resonators. This phenomenon occurs in a regime
where a coupled waveguide resonators exhibit a coexistence
between a coherent and incoherent emission. These dis-
crete structures consist of a localized complex domain em-
bedded in a stable homogenous background. To account
for 2D optical chimera states, we use a discrete version of
the two-dimensional Lugiato-Lefever equation22. Based on
this model, we show that, depending on the initial condition;
this system can support a family of two-dimensional optical
chimera states. Lyapunov exponents and Yorke-Kaplan di-
mension allow characterizing these structures. Chimera states
correspond to localized spatiotemporal chaos. In the Lugiato-
Lefever equation, the optical chimera states are excluded. In-
deed, this dynamical behavior is a peculiarity of discrete sys-
tems.

II. ARRAY OF DRIVEN COUPLED WAVEGUIDE
RESONATORS: 2D DISCRETE LUGIATO-LEFEVER MODEL

Let us consider a two-dimensional square array of cou-
pled waveguide resonators subject to a coherent monochro-
matic beam. Figure 1 shows a schematic representation of
the driven square lattice. Each resonator is composed of a
waveguide filled by a Kerr media, with dielectric mirrors at
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FIG. 1. Optical chimera states in a two-dimensional array of coupled
microresonator. Parameters are E0 = 4.22, ∆ = −0.506, and κ =
1.876. (a) Schematic representation of a two-dimensional array of
coupled-waveguide resonators driven by an external electrical field
of intensity E0. (b) Spatiotemporal evolution of the maximum iso-
surface amplitude of each interacting cavity.(c) Bifurcation diagram
of model Eq. (1). The total intracavity amplitude |Ψ| as function of
the pump amplitude E0. The solid and dashed lines describe the total
intracavity intensity of homogeneous steady states. The blue cloud
of points shows the extreme values of the total intracavity intensity of
the spatiotemporal chaotic state. The colored region accounts for the
coexistence range (Ec = 6.68 < E < El− = 7.29). 2D optical chimera
states are observed inside this interval.

the end-faces. Indeed, this system corresponds to a lattice of
waveguide microcavities. This device can be described by the
discrete Lugiato-Lefever model11,12. Note that this prototype
model of driven coupled oscillators has been more studied in
the one-dimensional configuration. Assuming that the cou-
pling between waveguide-resonators is small in comparison
with the cavity size, the intracavity field satisfies

∂T Ψn,m = E0− (1+ i∆)Ψn,m− i|Ψn,m|2Ψn,m

−iκ (Ψn+1,m +Ψn−1,m +Ψn,m+1 +Ψn,m−1) , (1)

where Ψn,m(T ) is a slowly varying envelope of the electric
field circulating in (n,m)-coupled resonators. Indices n (x-
axis) and m (y-axis) denote the transverse coordinates of the
cavities. The detuning parameter ∆ ≡ ω −ω0 is proportional
to the difference between the resonance frequency ω0 of the
cavity and the driving field frequency ω . κ characterizes the
coupling strength between the cavities. The time t = T τph is
measured in the photon lifetime unit τph. The driving field in-
tensity is denoted by E0. The continuous counterpart of model
Eq. (1) was used to describe Kerr optical frequency combs
(see the special issue23 and references therein).

In the continuous limit, for ∆ >
√

3 (∆ <
√

3), the trans-
mitted intensity as a function of the input intensity E2

0 is
bistable (monostable). The homogeneous steady state under-
goes a modulational instability at E2

0 = E2
0c ≡ 1 + (1− ∆)2

and |Ψc|2 = 1. At this bifurcation point, the critical wave-

length is Λ2
c = [2π|κ|/(2−∆)]1/2. It has been shown that, for

large injected intensity, the system exhibits a spatiotemporal
chaos24. These dynamic behaviors are persistent when one
considers the respective discrete system20. In this type of sys-
tems, the discreteness (Peierls-Nabarro potential) allows the
confinement of light. Hence, the prerequisite condition for
the formation of two-dimensional chimera states is the coex-
istence of a coherent (homogeneous state) and an incoherent
state (spatiotemporal chaos) in a discrete system. Figure 1b
displays a typical 2D chimera state in the bistability region,
Ec < E0 < El−. Chimera states are classified by the notation
n×m, which depicts the number of cavities that shows the
maximum amplitude. Numerical simulations are conducted
using a finite difference code with a 4th-order Runge-Kutta
scheme and Neumann boundary conditions. Contrary to the
continuous limit, the 2D chimera states neither grow in spite
of available free space in the transverse plane nor shrink in
spite of weak coupling between resonators. Figure 1c shows
the bifurcation diagram of model Eq. (1). We plot the max-
imum values of the normalized total intracavity amplitude
|Ψ| as a function the injected field amplitude E0. The nor-
malized total amplitude of the intracavity field is defined as,

|Ψ(t)|=
√

∑
N
i, j=1 |Ψi, j(t)|2/N2 with N2 is the total number of

coupled cavities in the lattice.

FIG. 2. Family of two-dimensional optical chimera states of model
Eq. (1) with the same parameters as (a) Spatiotemporal diagrams of
2×2, 5×5, and 8×8 optical chimera states. The product n×m ac-
counts for the number of cavities that shows the maximum amplitude.
(b) Lyapunov spectra of different 2D optical chimera states obtained
from Eq. (1). {λi} denotes the i-Lyapunov exponent, i = {1, · · · ,N},
and N accounts for the total number of cavities. Each curve corre-
sponds to the Lyapunov spectrum of the respective n×m chimera
states. (c) Yorke-Kaplan dimension of the spatiotemporal chaotic so-
lution as function of A parameter. This parameter accounts for the
average number of microcavities in the incoherence domain.
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For small E0, only a homogeneous steady state exists as
a stable solution. In this case, all cavities have the same in-
tracavity field amplitude. Increasing the input parameter up to
E0 > El−, the homogeneous steady state suffers a saddle-node
instability. The system develops the emergence of spatiotem-
poral chaos24. Further increasing E0, the complex dynamics
keeps up. When decreasing E0, the spatiotemporal complex
dynamics perseveres until E0 reaches Ec (see Fig. 1c). For
E0 < Ec, the homogeneous steady state is the only extended
stationary equilibrium. Indeed, the system presents a subcrit-
ical bifurcation at E0 = Ec. The coexistence is prerequisite for
the formation scenario of chimera states we have previously
proposed in 1D15.

The first finding is that the family of chimera states gener-
ated in the transverse section of the intracavity field is much
more diverse than one-dimensional case, thanks to the large
variety of 2D geometrical plots. However, for the sake of
simplicity, we limit our analysis to chimera states with in-
coherent domains forming a square as depicted in Figure 2a.
These chimera states are characterized by spatial confinement
of large temporal fluctuations (see video in supplement).

III. CHARACTERIZATION OF 2D OPTICAL CHIMERA
STATES

In dynamical systems theory, Lyapunov exponents consti-
tute the most adequate tool to characterize the nature of com-
plex spatiotemporal dynamics described above. These expo-
nents provide information about sensitivity to the initial con-
ditions, fluctuations, and complexity of solutions25. Low di-
mensional and spatiotemporal chaos are characterized by pos-
itive Lyapunov exponents. These exponents can be computed
from the method proposed by Skokos26. The set of Lya-
punov exponents constitutes the Lyapunov spectrum {λi}with
i = {1,2, · · · ,N2}, λi 6 λ j, and i 6 j. Low-dimensional chaos
possesses a discrete Lyapunov spectrum, while spatiotempo-
ral chaos has a continuous one. Figure 2b shows Lyapunov
spectra of different optical chimera states. From this plots,we
see that positive Lyapunov exponents increase with the size
of chimera states. Hence, the complexity of these localized
solutions increase with chimera states size.

In addition, from Lyapunov spectrum we can com-
pute the Yorke-Kaplan dimension defined by DY K = p +
∑

p
i=1 λi/|λp+1|, where p is the largest integer for which λ1 +
· · ·+ λp > 0. Figure 2c shows the Yorke-Kaplan dimension
of different chimera solutions. From small values of A, the
Yorke-Kaplan dimension remains constant, where A denotes
the average number of microcavities in the incoherence do-
mains. As A is increased the Yorke-Kaplan dimension grows.
This feature is the manifestation of extensive property of this
dynamical dimension25, indicating that 2D optical chimera
states belong to the class of spatiotemporal chaos.

Fourier analysis is used to further characterize the under-
lying dynamics of chimera states. To perform this analysis,
we have the spectral density of the signal recorded at the lo-
cation of one of the largest local maxima in the incoherent
domain. Figure 4 shows the resulting power spectrum for

FIG. 3. 2D chimera states exist together. Spatiotemporal diagram
of 2D chimera states in an array of coupled waveguide-resonators
cavities. The color bar stands for the intracavity intensity field. Insets
(a), (b), and (c) account for the cross section at different time.

FIG. 4. Power spectrum F [|Ψ|] of a single waveguide-resonator cav-
ity as function of the frequency f and the detuning parameter ∆.
At high frequencies, the power spectrum shows a power law f−2.9

which is a signature of turbulence-like dynamics.

different chimera states. The shape of the power spectrum
is not affected by the size of the incoherence domain. The
power spectrum has a dominant peak at the value of the de-
tuning parameter. For high frequencies, the power spectrum
presents a power f n where n = −2.932, which is a signature
of turbulence-like behavior27.

Finally, numerical simulations of model Eq. (1) shows ev-
idence of the coexistence between dissimilar chimera states
simultaneously in different spatial locations in the transverse
plane. An example of such a behavior is shown in Fig. 3,
where 2× 2 and 3× 3 optical chimera states exist together.
Insets account for the cross section at different times. The 2D
spatiotemporal diagram suggest that the chimera states inter-
act weakly.

IV. CONCLUSION

We have shown evidence of two-dimensional optical
chimera states in a driven array of locally-coupled passive
Kerr optical resonators. Adequate initial conditions have been
used to generate a family of these solutions. The main char-
acteristic of these solutions is spatial confinement of light in
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the transverse plane involving complex multi-peaks dynam-
ics. Besides, we have shown that these solutions can coex-
ist together. The 2D chimera states are inherent to the dis-
crete nature of the system. Indeed, in the continuous limit,
these states are unstable. We have characterized these solu-
tions by computing Lyapunov spectra, York-Kaplan dimen-
sions, and power spectrum. We have showed that the 2D opti-
cal chimera states belong to the class of spatiotemporal chaos
and turbulence like behaviors. The prerequisite condition for
their formation requires a bistable behavior between homoge-
neous background and spatiotemporal chaos. This condition
is rather general, and therefore, this prediction is important
for the identification and understanding of the various com-
plex spatiotemporal behaviors observed in practical systems.

SUPPLEMENTARY MATERIAL

See supplement for supporting contents
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