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a b s t r a c t 

In this work we address the Precedence Constrained Production Scheduling Problem (PCPSP), the prob- 

lem of scheduling tasks in such a way that total profit is maximized, while satisfying conditions such 

as precedence constraints among tasks and side constraints. A motivation for addressing this problem 

comes from open-pit mining industry, where the PCPSP seeks to maximize the net present value of an 

ore deposit by selecting the blocks (tasks) to extract, their extraction periods and their processing options, 

while satisfying constraints as precedences among blocks, limited availability of operational resources and 

maximum and/or minimum allowable concentrations of ore-grade or pollutants. Since real-world mod- 

els have millions of blocks and constraints, the monolithic problem is computationally intractable. This 

article presents a hybrid heuristic algorithm that combines a rolling horizon decomposition with a block 

preselection procedure, allowing near-optimal solutions to be quickly determined. The proposed heuristic 

was tested on all the PCPSP instances of the MineLib library and has shown a significant improvement 

over the previous reported results. Moreover, a good feasible solution has been found for the instance 

W23 , for which no solution has been previously reported. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The Precedence Constrained Production Scheduling Problem

PCPSP) belongs to a special class of problems commonly found

n operations management and production planning, where tasks

ust be scheduled over a time horizon and assigned to a destina-

ion (i.e. a processing facility), satisfying production capacity con-

traints and precedence constraints, while maximizing profits. Sim-

lified versions of this problem only consider a single-period, i.e.,

hey do not take into account the temporal dimension [1–6] . In

ther versions of this problem the processing facility is preassigned

7–10] . Among all applications of this problem and its extensions,

he mine production planning seems to be the most challenging

ue to the huge size of instances [11] . In this article, we propose

pplying the PCPSP to open-pit mine production planning. 

In long-term open-pit mine production planning the goal is to

aximize the net present value of the extracted and processed

aterial. In such mines, the mineral is reached by digging material

rom the surface. Depending on its composition, its profitability,
� This manuscript was processed by Associate Editor Singh. 
∗ Corresponding author at: Advanced Mining Technology Center, Universidad de 
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nd the availability of the processing facilities, the extracted ma-

erial is either assigned to a processing facility, accumulated into

tockpiles for later processing, or put into waste dumps. To define

hat portions of the terrain must be mined at each time-period,

he terrain is modeled as a three-dimensional grid of blocks and

he planning horizon is discretized into periods. In this applica-

ion, tasks correspond to blocks and the objective is to find the

est strategy to extract and process the blocks. 

For each block, estimations on the ore content, tonnage, and

ther relevant attributes are constructed by using geostatistical

ethods (see [12] ) based on terrain samples. The location and at-

ributes of the blocks form the so-called block model . The contri-

ution of a block to the overall value mainly depends on its geo-

ogical attributes, its extraction period, and how it is processed, in

ddition to external variables such as commodity price and mining

osts. 

In mining context, the PCPSP is the problem of determining

hich blocks to extract at each period in the planning horizon,

nd of assigning each extracted block to a processing facility, while

aximizing the discounted profit satisfying technical and opera-

ional constraints. Examples of technical constraints are the slope

recedences, by which the extraction of a block is feasible when a

etermined set of blocks located above it has been extracted, re-

pecting maximum slope angles to ensure the stability of the pit

https://doi.org/10.1016/j.omega.2019.03.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/omega
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2019.03.004&domain=pdf
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walls. Operational constraints are inherent to the extraction pro-

cess: the amount of material to be transported and processed (op-

erational resources) at each period is generally subject to upper

and possibly lower limits. Processing material also implies satisfy-

ing blending constraints associated with its quality. Indeed, the ef-

ficiency of the processing, even its feasibility, depends on the com-

bination of blocks processed simultaneously at a facility. In particu-

lar, it may not be feasible to process alone a block with a high con-

tent of pollutants such as arsenic, even with a high ore-grade. In

such case, it could be possible to process it by mixing it with other

blocks (even low ore-grade ones) whenever the blending provides

an acceptable amount of pollutants. 

Most of the real instances of the PCPSP in the mining indus-

try are difficult to solve with block models containing millions

of blocks for a planning horizon as long as several decades. The

main contribution of this article is to propose a hybrid heuristic

based on a sliding time-window and a linear relaxation to pres-

elect a small subset of blocks to be scheduled within each time-

window. Contrary to other existing heuristics applied to the PCPSP,

the proposed algorithm is able to tackle problems with blending

constraints. 

The remainder of this article is organized as follows:

Section 2 provides a brief summary of the most relevant or best-

known approaches and results from the literature. Section 3 pro-

vides a mathematical model for the PCPSP. A description of the

proposed heuristic algorithm is given in Section 4 , followed by

computational results in Section 5 and conclusions in Section 6 . 

2. Related work 

Lerchs and Grossmann [1] presented an algorithm to solve the

Final Pit Problem , a simplified version of the PCPSP in which a sin-

gle value – positive or negative – is associated with each block

without consideration to its extraction period and its final destina-

tion: the temporal dimension is ignored. In this problem, the ob-

jective is to identify the set of blocks to be extracted to maximize

the total undiscounted profit while satisfying only slope prece-

dence constraints. In the same article, Lerchs and Grossmann de-

scribed how a sequence of nested pits can be generated with their

algorithm and used as a guide to schedule the extraction of blocks

over time (see Jélvez et al. [13] for a review). Commercial software,

such as Whittle from Geovia, are based on this algorithm. 

Closer to the problem under consideration in this article, the pi-

oneer work of Johnson [14] proposed for the first time a linear pro-

gramming formulation under slope precedence, capacity and spe-

cific blending constraints within a multi-destination setting, where

the optimization model determines the best process to apply to

each extracted block. Due to the nature of variables used in this

model, it may happen that a portion of a block is extracted while

all the overlying blocks have not been mined, making the solution

unfeasible in practice. 

Because of the difficulty to directly solve PCPSP instances of

practical sizes, many algorithms have been proposed to find good

feasible solutions of this problem and its variations. A well-studied

variation consists in setting the destination of each block a priori

(i.e., the destination of each block is not a decision variable) and ig-

noring blending requirements (see for example Ramazan [15] , Cul-

lenbine et al. [16] , Chicoisne et al. [17] , Jélvez et al. [18] and Sama-

vati et al. [19] ). 

The particular case of the PCPSP, which includes block desti-

nations, slope precedence, capacity and blending constraints, has

been previously studied. Bienstock and Zuckerberg [11] addressed

the linear relaxation of the PCPSP and proposed a method based

on a Lagrangian relaxation evidencing a substantial computation-

time improvement with regards to the standard linear program-

ming solvers. As such, this important method does not give any
easible solution, but rather gives an upper-bound on the objective

alue. 

Espinoza et al. [20] applied a heuristic based on a topological

orting to solve both, the PCPSP considered in this paper, where

he destination of a block is a decision variable, and the Con-

trained Pit Limit Problem (CPIT), a simplified version of the PCPSP

here block destinations are preassigned. They also proposed stan-

ardized testbed instances (MineLib library) for these problems. 

While some authors have proposed outperforming solutions for

he MineLib CPIT instances (see Lamghari et al. [21] , Liu and Kozan

22] , Jélvez et al. [18] and Samavati et al. [19,23] ), to the best

f our knowledge, only Kenny et al. [24] have reported improved

olutions for some MineLib PCPSP instances by using a Greedy

andomized Adaptive Search Procedure (GRASP). However, neither

ower limits on resources consumption nor general side constraints

s blending are considered in their model, which makes it impos-

ible to apply to some MineLib instances. 

This article tackles the PCPSP as introduced by Espinoza et al.

20] , proposes a hybrid heuristic algorithm and compares the re-

ults with those published in Espinoza et al. [20] and Kenny et al.

24] . 

. The Precedence Constrained Production Scheduling Problem 

Denote by B the set of blocks, by B b the subset of predeces-

ors of block b ∈ B, by D the set of destinations, and by R the set

f operational resources needed to extract and process the blocks.

 profit p bdt is obtained by extracting block b and processing it

t destination d at period t ∈ T = { 1 , . . . , T } , where T denotes the

lanning horizon, while an amount q bdr of operational resource r

s used to extract block b and process it at destination d ∈ D. R rt 

epresents the minimum use and R̄ rt the maximum availability of

esource r at period t . 

We define binary variables z bt equal to 1 if block b is extracted

y period t , and 0 otherwise; and continuous variables y bdt repre-

ent the portion of block b sent at destination d at period t . The

CPSP can be formulated as follows: 

(PCPSP) max 
∑ 

b∈B 

∑ 

d∈D 

∑ 

t∈T 
p bdt y bdt (1)

s.t. z b,t−1 ≤ z bt ∀ b ∈ B, t ∈ T (2)

z bt − z b,t−1 = 

∑ 

d∈D 
y bdt ∀ b ∈ B, t ∈ T (3)

z bt ≤ z b ′ t ∀ b ∈ B, b ′ ∈ B b , t ∈ T (4)

R rt ≤
∑ 

b∈B 

∑ 

d∈D 
q bdr y bdt ≤ R̄ rt ∀ r ∈ R , t ∈ T (5)

a ≤ Ay ≤ ā (6)

z bt ∈ { 0 , 1 } ∀ b ∈ B, t ∈ T (7)

z b0 = 0 ∀ b ∈ B (8)

y bdt ∈ [0 , 1] ∀ b ∈ B, d ∈ D, t ∈ T (9)

In this formulation, the objective function (1) maximizes the

iscounted total profit. Constraints (2) ensure that a block is sched-

led in one period at most. Constraints (3) require that if a

lock is extracted, it must be fully sent to one or more desti-

ations. Constraints (4) prevent the extraction of any block for

hich all the predecessors have not been previously extracted.

onstraints (5) state that the minimum R rt and maximum R̄ rt 

se of every operational resource r are satisfied for each period

 , and constraints (6) correspond to the general side constraints

ith lower and upper bounds a and ā , respectively. Finally, con-

traints (7) to (9) reflect the nature of the variables. 

General side constraints may represent blending requirements

o feed processing plants, but other examples are presented in Es-

inoza et al. [20] and could include: (i) a minimum number of
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locks that must be extracted on a given level; (ii) ore allowed

o be stockpiled; (iii) a variable production and/or processing rate,

.g., it is possible to purchase extraction equipment and/or increase

he capacity of the processing plant(s); (iv) a minimum number of

locks at the bottom of the pit; and (v) a limitation to the number

f areas that can be simultaneously mined due to geotechnics and

quipment availability. 

We use a by -formulation equivalent to the stronger formula-

ion proposed by Bienstock and Zuckerberg [11] and Espinoza et al.

20] where decision variables x bt take value 1 if block b is ex-

racted at period t . In the proposed formulation, we apply the vari-

ble substitution x bt = z bt − z b,t−1 with z b0 = 0 in order to obtain

 better representation of the precedence constraints making ex-

licit the underlying network structure, as reported in the litera-

ure (Caccetta and Hill [7] and Lambert et al. [25] ). In this repre-

entation, decision variables z bt take value 1 if block b is extracted

y period t . As a final comment, a full-binary formulation of the

CPSP can be found in Jélvez et al. [26] . 

. A hybrid heuristic based on rolling horizon and block 

reselection 

The PCPSP is a strongly NP-hard problem [20] and solving it to

ptimality with an optimization solver is intractable for real size

nstances involving a prohibitive number of blocks and periods.

e propose decomposing the monolithic problem into a series of

maller subproblems on a rolling horizon basis, preselecting a sub-

et of candidate blocks to consider in each subproblem. The sig-

ificantly reduced number of variables and constraints of the sub-

roblems generally allows building a feasible solution, if one exists.

.1. Rolling horizon 

Starting from the first period t = 1 of the planning horizon, this

ethod iteratively constructs a schedule for each period by solving

he PCPSP for a reduced time-window { t, . . . , min { t + w − 1 , T }} ,
here the maximum length of time-window w is an integer pa-

ameter to be determined. Each time the subproblem is solved, the

ariables z bt and y bdt are fixed for the first � periods of the incum-

ent time-window, where �≤ w is another parameter to be deter-

ined. The time-window is then moved forward by � periods, and

he new subproblem is solved for the respective new time-window.

he procedure stops when the last subproblem that includes the

eriod t = T has been solved and fixed. Note that when a solu-

ion is obtained for a subproblem, the procedure allows a partial

r complete fix of the time-window as part of the final feasible

olution. 

Similar approaches have been explored by Cullenbine et al.

16] , and Lambert and Newman [27] for a simpler problem (see

ection 2 ), where the authors consider a sliding time-window, but

dditionally relax the integrality constraints on the variables cor-

esponding to the periods beyond the incumbent time-window.

herefore, the subproblems always have the same number of pe-

iods than the monolithic instance. The proposed heuristic ignores

hese periods to reduce the number of variables considered in

ach iteration. Indeed, preliminary experiments on several PCPSP

nstances show that the impact on the objective value when re-

axing the integrality constraints on the variables corresponding to

he subsequent periods does not justify the major increase of its

omputation-time. Appendix A shows that no feasible solution has

een found with this heuristic within 24 hours of computational

ime for 8 out of 10 MineLib instances. In these articles, capac-

ty constraints are also approached using a Lagrangian relaxation,

hile the proposed approach keeps them intact in the subprob-

ems formulation. 
.2. Block preselection 

Despite a significant reduction of the number of decision vari-

bles and constraints when the problem is decomposed into sim-

ler subproblems as described in Section 4.1 , the resulting sub-

roblems may still be difficult to solve. Indeed, the number of

locks in a mine can be considerable and easily exceeds hundreds

f thousands, or even millions of blocks. To overcome this diffi-

ulty, we propose a heuristic based on the expected extraction times

ntroduced by Chicoisne et al. [17] to preselect the subset of blocks

o be included in the model. 

Let ˜ z ∗
bt 

be the solution of the LP relaxation of the monolithic

CPSP instance. The expected extraction time of any block b is

iven by: 

T b = 

∑ 

t∈T 
t( ̃ z ∗bt − ˜ z ∗b,t−1 ) + (T + 1)(1 − ˜ z ∗bT ) . (10)

he idea is to interpret the fractional values ˜ z ∗
b· as the cumulative

istribution probability of the extraction time, therefore ˜ z ∗
bt 

− ˜ z ∗
b,t−1 

epresents the probability of extraction of block b at period t . We

ssume that any block b not extracted by time T is extracted at

ime T + 1 , and we set ET b = T + 1 . 

We define B as the set of blocks not yet extracted at pe-

iod t and for which the expected extraction time ET b is smaller

han min { t + w − 1 , T } + s, where s > 0 is a continuous parameter

o be determined that represents a tolerance for a block to be con-

idered in each subproblem. This tolerance parameter gives some

ontrol over the selected blocks, however in our proposal we take

dvantage of fast algorithms such as the Bienstock-Zuckerberg al-

orithm [11] to solve the LP relaxation of the PCPSP, and based

n expected extraction times, to choose a value of s to preselect

 reduced set of blocks to be considered in each subproblem on a

olling horizon. 

It is worth noting that in this procedure the expected times are

sed as a block preselection tool to reduce the size of the subprob-

ems: they are not used to generate a sequence of blocks as pro-

osed in the TopoSort heuristic developed by Chicoisne et al. [17] .

ote that the TopoSort approach may have a high risk for produc-

ng infeasible solutions when, for example, there are lower bounds

n resource constraints. Besides, by construction it cannot tackle

eneral side constraints such as blending. 

.3. Description of the hybrid heuristic algorithm 

The proposed hybrid heuristic combines a rolling horizon

ethod in order to reduce the number of periods in each subprob-

em ( Section 4.1 ) and a block preselection procedure based on ex-

ected extraction times in order to reduce the number of blocks

ithin each subproblem ( Section 4.2 ). Then a feasible solution is

onstructed iteratively. Note that the hybrid heuristic depends on

hree parameters: w (length of the sliding time-window), � (slid-

ng shift length) and s (tolerance to select blocks from expected

xtraction times). In particular, when w = � = T and s ≥ T + 1 this

euristic is equivalent to solving the monolithic version of the

CPSP, therefore, the algorithm is exact if the optimality gap is

et to zero in the Branch & Cut resolution. For other cases, only a

ub-optimal feasible solution would be obtained. It is important to

oint out that the nearsightedness of our heuristic does not guar-

ntee finding a feasible solution, if one exists, however, the param-

ters could be modified whenever a subproblem is infeasible in an

ttempt to recover feasibility. 

Basically, the algorithm has the following steps: 

1. Select a time-window, according to Section 4.1 . 

2. Select a sub-block model, in accordance with Section 4.2 . 

3. Construct a subproblem. 
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Fig. 1. A k -th iteration of the proposed algorithm. E k is the set of already extracted blocks and B k is the set of preselected blocks used for the auxiliary problem. Firstly (a) 

the set of blocks B k are computed according to expected extraction times and to the tolerance parameter s , then (b) a subset of B k is scheduled for extraction and processing, 

and finally (c) the scheduled blocks are updated. 

Fig. 2. Algorithm of the hybrid heuristic. 
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4. Solve the subproblem to select the blocks to be extracted and

processed. 

5. Stop if the termination condition (time limit or gap) is satisfied

or if no feasible solution can be identified, otherwise go to the

Step 1. 

Fig. 1 depicts a k -th iteration of the algorithm associated with

the time-window T k = { t 1 , . . . , t 2 } which goes from period t 1 = 1 +
(k − 1)� to period t 2 = min { 1 + (k − 1)� + w, T } : 
1. The algorithm keeps a set E k of extracted blocks and selects a

set B k = { b ∈ B − E k : ET b ≤ k · w + s } of block candidates to ex-

tract in the current time-window. 
2. The subproblem is solved over blocks B k and periods T k . The

subproblem’s solution is used to set the extraction period and

the destination of the scheduled blocks of B k for the first �

periods of T k . 
3. The set of scheduled blocks E k +1 is updated. 

4. The time-window moves forward by � periods. 

A more detailed description of the hybrid heuristic algorithm

s presented in Fig. 2 . As inputs, the algorithm takes (i) a PCPSP

nstance, and (ii) the parameters w , � and s . The output of the al-

orithm is the production schedule, i.e., the set of extracted blocks,

heir extraction periods and their destinations. 
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6

At Step 1 the LP relaxation of the PCPSP model is solved with

he Bienstock-Zuckerberg algorithm [11] , and the optimum value

f the continuous decision variables ˜ z bt and ˜ y bdt are returned. For

ach block b ∈ B the expected extraction time is computed (Step

), and the period and the destination are initialized (Steps 3

nd 4). The first time-window is initialized so as to start at pe-

iod t 1 = 1 (Step 5). For any time-window starting at period t 1 ≤ T ,

he last period t 2 of the time-window and the set B of prese-

ected blocks are initialized (Steps 6 and 7), the incumbent PCPSP

ubproblem is solved, and the optimal value of the binary deci-

ion z bt and continuous decisions y bdt are returned (Step 8). In

tep 9, the algorithm stops with the unfeasibility status if no fea-

ible solution is found for the incumbent subproblem with the

urrent parameters �, w, s . Otherwise, the values of z ∗ and y ∗

re used to fix the period and the destination of all the blocks

cheduled in the first � periods of the incumbent time-window

Steps 10 and 11). Finally, a new time-window is initialized so

s to start � periods later if t 1 + � ≤ T , otherwise the algorithm

nds. Finally, it is worth noting that feasibility of the solutions

enerated by the heuristic depend on feasibility of the subprob-

ems. If for each time-window the algorithm finds a feasible so-

ution, then feasibility is guaranteed for the monolithic version of

he PCPSP. Otherwise, feasibility on a subproblem may be recov-

red by increasing either the parameter w and by restarting the

lgorithm from the beginning. Because of this, for the numeri-

al experiments, we embed the heuristic into a solving strategy

hat adapts the values of � and w to make sure it finds a solu-

ion. While such strategy may end up trying to solve the mono-

ithic version of the problem, in practice the results show that

ood feasible solutions are obtained with relatively small values

f w . 

.3.1. Parameters setting 

As the success of the proposed hybrid heuristic depends on the

hoice of parameters s, w and �, in this section we give a detailed

xplanation of these parameters and some guidelines for choosing

heir values. 

The procedure used to determine the value of the parameter

 is designed to ensure that all time-windows have a sufficient

umber of preselected blocks to allow a fully use of the maxi-

um capacity. This parameter is also used to limit the risk of in-

easibility of the subproblems in instances with minimum resource
Fig. 3. 2-D block model 

Fig. 4. Extraction periods with the p
onstraints or blending constraints. If s = 0 , a block is considered

n the subproblem whenever its expected extraction time is less

han or equal to the upper limit of the incumbent time-window.

ncreasing the parameter s allows the consideration of additional

locks with higher expected extraction time than the strict upper

imit of the incumbent time-window. Setting its value is a trade-off

etween feasibility and the number of decision variables. 

The length w of the sliding time-window has a great impact on

oth quality of solution (even feasibility) and computation time.

ncreasing w allows the algorithm to work in a wider search space

r a more diverse set of solutions at once, making it less likely to

et trapped in local optima and therefore produces higher qual-

ty solutions [24] . Unfortunately, it also implies an increased num-

er of variables in the subproblem as well as a larger computation

ime. As such, choosing a value for this parameter is a trade-off

etween quality of solution and computation time. 

The parameter � is the length of the sliding shift. It is also the

umber of periods of the incumbent time-window whose respec-

ive decision variables will be fixed. 

.3.2. Numerical example 

In this section a small numerical example of the PCPSP with

nly one destination is presented to compare the proposed heuris-

ic with a pure rolling horizon heuristic. Fig. 3 describes a small

-D block model with the value of each block. We assume a slope

ngle of 45 o , a tonnage of 1 for all blocks, an extraction capacity

f 4 blocks per period, and a 10% discount rate. 

The pure rolling horizon heuristic is used with parameters w =
 and � = 1 , then the generated solution starts with the small pit

n the left of the block model, then moves to the right (see Fig. 4 ).

he cumulative discounted objective values obtained for the three

eriods are 2.00, 3.36 and 6.25, respectively. 

The hybrid heuristic is applied on the same block model with

he parameters w = 1 , � = 1 and s = 0 . 5 . First, the linear relax-

tion is computed and a LP upper bound of 6.58 is obtained. Then

he expected extraction time values are computed as shown in

ig. 5 . In the first subproblem 6 blocks with expected extraction

imes lower than w + s = 1 . 5 are preselected. The resulting pro-

uction schedule is as shown in Fig. 6 . The cumulative discounted

bjective values obtained for the three periods are 1.50, 4.68 and

.33, respectively. 
with block values. 

ure rolling horizon heuristic. 
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Fig. 5. Expected extraction times. 

Fig. 6. Extraction periods with the proposed heuristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

MineLib PCPSP instances. 

Instance Name |B| #Precedence T |D| |R| 
Newman1 1060 3922 6 2 2 

Zuck small 9400 145,640 20 2 2 

KD 14,153 219,778 12 2 1 

Zuck medium 29,277 1,271,207 15 2 2 

Marvin 53,271 650,631 20 2 2 

W23 74,260 764,786 12 4 7 

Zuck large 96,821 1,053,105 30 2 2 

SM2 99,014 96,642 30 2 2 

McLaughlin limit 112,687 3,035,483 15 2 1 

McLaughlin 2,140,342 73,143,770 20 2 1 
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l  
A 3.79% gap solution is obtained with the proposed heuristic

compared with a 4.98% gap for the pure rolling horizon approach.

We observe in this example that the pure rolling horizon heuristic

tends to act in a more greedy fashion than the proposed heuristics

guided by the expected extraction times. 

It is worth noting that the proposed heuristic also tends to run

faster than the pure rolling horizon heuristic. Indeed, for each sub-

problem the proposed heuristic considers fewer blocks than the

pure rolling horizon heuristic. In the first subproblem of this exam-

ple, 14 blocks are considered in the pure rolling horizon heuristic

when only 6 blocks are considered in the proposed heuristic (see

Fig. 5 ). 

5. Computational results 

This section presents the details regarding the implementation

of the proposed heuristic and the results obtained on a set of in-

stances from the MineLib library [20] . 

5.1. Computational setting 

The proposed algorithm was coded in C++ with Gurobi 6.5.2

API and executed on a 64-bit Windows OS workstation with ten

2.6 GHz Intel Xeon E5 2660 v3 processors and 120 Gb RAM.

To solve the partitioning problem, we implemented the BZ algo-

rithm [11] for the integer relaxation with the default Gurobi pa-

rameters and our own implementation of the pseudo-flow algo-

rithm [6] to solve the sub-problems. The only Gurobi parameters

set differently from the defaults were TimeLimit = 20,000 and

MIPGap = 0.01 to solve each subproblem. 

The instances come from the publicly available MineLib library

[20] . A complete list of the MineLib instances is presented in

Table 1 . For each instance, Table 1 gives the number |B| of blocks,

the number of precedences, the number T of periods, the number

|D| of destinations and the number |R| of operational resources. 

As mentioned before, the hybrid heuristic may fail to find a

feasible solution, and for this reason a solving strategy is used

as a subroutine. The solving strategy first sets the parameter s to

ensure that all time-windows have a sufficient number of prese-

lected blocks at each iteration. This parameter is set such as to

have the number of blocks | B k | considered in the subproblem k as

close as possible than w |B| /T to better distribute the considered
locks among the subproblems. The parameter s is initially set to

.5 and increased whenever the number of blocks | B k | is less than

 |B| /T while there are sufficiently blocks not yet scheduled (i.e.,

B − E k | ≥ w |B| /T ). The parameter s is set as following: 

The parameters w and � are initially set to w = � = 2 . They

re both increased by 2 whenever a gap greater than 1% is found

or the global problem, or the subroutine reports an infeasibility.

n such case, the solution process to generate a feasible solution is

estarted from the first time-window. 

.2. Results and discussion 

Table 2 shows the set of values for w , � and s at each iter-

tion, with a maximum computation time limit of 36,0 0 0 s for

he complete process. The algorithm returns the best feasible so-

ution found whenever the 1% gap criterion is satisfied or the time

imit is reached. For each of the MineLib instances we report: (i)
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Table 2 

Detailed results of the proposed heuristic with w = � and s for each iteration (values in bold correspond to best solutions found) 

Instance Results 

Name Parameters LP upper LP relaxation Heuristic Cumulative Objective GAP 

w = � s bound Time (s) Time (s) Time (s) value % 

Newman1 2 0.5 24,486,549 1 6 7 24,150,103 1.37 

4 0.5 10 17 24,175,453 1.27 

6 0.5 19 36 24,163,607 1.32 

Zuck small 2 2.5 905,878,194 85 190 275 833,155,317 8.03 

4 0.5 554 829 842,284,279 7.02 

6 0.5 5557 6,406 898,931,342 0.77 

KD 2 1.5 410,891,003 54 66 120 390,773,878 4.90 

4 0.5 765 885 383,404,031 6.69 

6 0.5 4335 5,240 409,319,677 0.38 

Zuck medium 2 1.5 750,519,188 251 25,755 26,006 713,051,791 4.99 

Marvin 2 2.5 911,704,801 92 133 225 830,130,522 8.95 

4 0.5 366 591 864,880,388 5.14 

6 0.5 2419 3,010 904,519,813 0.79 

W23 2 0.5 387,678,103 25,134 1458 26,592 380,861,353 1.76 

Zuck large 2 1.5 57,938,798 3771 25,739 29,510 56,426,079 2.61 

SM2 2 1.5 1,652,393,887 1679 25 1,704 1,650,878,860 0.09 

McLaughlin lim 2 0.5 1,324,829,834 1884 4179 6,063 1,321,480,663 0.25 

McLaughlin 2 0.5 1,512,971,541 6762 9354 16,116 1,511,899,590 0.07 

Table 3 

Comparison between the previously reported solutions and the solutions obtained with the proposed heuristic. 

Instance LP upper bound Best-known solution Proposed heuristic 

Source GAP (%) Objective value GAP (%) Time (s) 

Newman1 24,486,549 KLET17 1.58 24,175,453 1.27 17 

Zuck small 905,878,194 KLET17 1.64 898,931,342 0.77 6406 

KD 410,891,003 EGMN13 0.98 409,319,677 0.38 5240 

Zuck medium 750,519,188 KLET17 3.00 713,051,791 4.99 26,006 

Marvin 911,704,801 KLET17 1.61 904,519,813 0.79 3010 

W23 387,678,103 — 100.00 ∗380,861,353 ∗1.76 26,592 

Zuck large 57,938,798 EGMN13 1.04 56,426,079 2.61 29,510 

SM2 1,652,393,887 EGMN13 0.12 1,650,878,861 0.09 1704 

McLaughlin lim 1,324,829,834 EGMN13 0.24 1,321,480,663 0.25 6063 

McLaughlin 1,512,971,541 EGMN13 0.19 1,511,899,590 0.07 16,116 
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he name of the instance and the parameters ( w , �, s ); (ii) the LP

pper bound found with the BZ algorithm [11] and (iii) the times

o compute each step of the proposed heuristic (the computation

ime to solve the LP relaxation and the time to find a feasible so-

ution for the global problem) and the cumulative times from the

P relaxation, (iv) the objective values and (v) the optimality gaps

f the feasible solution found relative to LP upper bound. 

For example, for the instance Zuck small , 85 s are needed to

olve the LP relaxation with the BZ algorithm, then 190 s to gen-

rate a solution with a 8.03% gap with w = � = 2 , then 554 addi-

ional s to generate a solution with a 7.02% gap with w = � = 4 .

ecause neither the time limit was reached nor the 1% gap crite-

ion was satisfied, the parameters w and � were increased to 6,

or which the algorithm generated a 0.77% gap solution in 5557

dditional seconds before stopping, for a total of 6,406 s. 

Table 3 shows the main results for the PCPSP instances and a

omparison with the best-known results from literature. For each

ase we report: (i) the LP upper bound; (ii) the source of the cur-

ent best-known solution: EGMN13 corresponds to Espinoza et al.

20] and KLET17 to Kenny et al. [24] ; (iii) the best-known op-

imality gap; (iv) the objective value obtained with the proposed

euristic; (v) its optimality gap; and (vi) the total solution time

n seconds (wall-clock time including the preprocessing step that

olves the LP relaxation of the PCPSP and the heuristic’s iterations

p to find a feasible solution to the complete problem). 

It is noteworthy that no feasible solution has been previously

eported for the instance W23 . This instance is precisely the only

ineLib instance that considers general side constraints (blend-

ng requirements): it should be recalled that neither the TopoSort
euristic used in Espinoza et al. [20] nor the Greedy Random-

zed Adaptive Search Procedure (GRASP) proposed in Kenny et al.

24] consider this kind of constraints. 

While running the proposed heuristic, a feasible solution with

.76% optimality gap has been found for the instance W23 . An im-

rovement is also observed for 6 of the 9 other instances (in bold

ithout asterisk in Table 3 ), with a 45.5% gap reduction on average

mong these 6 instances, the gap reduction being computed as: 

GAP Best-known solution (%) − GAP Proposed heuristic (%) 

GAP Best-known solution (%) 
. 

Among all instances we observe a 14.98% gap reduction on av-

rage when the instance W23 is included, and a 5.72% gap reduc-

ion on average when it is excluded. 

Regarding the parameters setting, the tolerance parameter s

as been increased for the instances Zuck small , KD , Zuck
edium , Marvin , Zuck large and SM2 to obtain a sufficient

uantity of blocks in the first iteration ( w = � = 2 ). To satisfy

he gap criterion described in Section 5.1 , it was necessary to in-

rease the length w of the sliding time-window for the instances

ewman1 , Zuck small , KD and Marvin (see Table 2 ). 

The more time-consuming instances are Zuck medium , W23
nd Zuck large . For these instances, the gap criterion was not

atisfied when using the default values of the parameters w and

within the time limit set at 36,0 0 0 s (see Appendix B ). These

arameters had to be increased applying the rules proposed in

ection 4.3.1 . For the instances Zuck medium and Zuck large ,
ost of the CPU time is used to find a feasible solution while, for
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Table 4 

Comparison of a pure rolling horizon approach with a rolling horizon heuristic including the block preselection procedure 

(i.e. hybrid heuristic) (values in bold correspond to better solutions). 

Instance LP upper bound Pure rolling horizon Proposed heuristic 

Objective GAP Time Objective GAP Time 

value (%) (s) value (%) (s) 

Newman1 24,486,549 24,131,200 1.45 26 24,175,453 1.27 17 

Zuck small 905,878,194 854,062,473 5.72 11,155 898,931,342 0.77 6406 

KD 410,891,003 382,066,711 7.02 3741 409,319,677 0.38 5240 

Zuck medium 750,519,188 — 100.00 — 713,051,791 4.99 26,006 

Marvin 911,704,801 857,780,482 5.91 4110 904,519,813 0.79 3010 

W23 387,678,103 338,226,394 12.76 13,203 380,861,353 1.76 26,592 

Zuck large 57,938,798 — 100.00 — 56,426,079 2.61 29,510 

SM2 1,652,393,887 1,621,601,503 1.86 107 1,650,878,861 0.09 1704 

McLaughlin lim 1,324,829,834 1,210,454,961 8.63 14,553 1,321,480,663 0.25 6063 

McLaughlin 1,512,971,541 — 100.00 — 1,511,899,590 0.07 16,116 
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the instance W23 , most time is used to solve the LP relaxation (see

Table 2 for more details). 

As a final comment, the reported results were found by follow-

ing the procedure according to Section 4.3.1 , obtaining better re-

sults for 7 out of 10 PCPSP instances from MineLib. 

In Appendix C , additional results with � = 1 and various values

of the parameter w are presented. 

5.2.1. Added value from the block preselection procedure 

In Section 4.3.2 a numerical example has been proposed to

compare the pure rolling horizon heuristic with the proposed

heuristic. In this section we propose the same comparison with all

the instances of the MineLib library. 

Table 4 shows the results obtained with both approaches while

using the parameters w and � stated in Table 2 . For each, we

present the objective value (in dollars), the relative gap (as per-

centage) and the computation time (in seconds). 

With a computing time limit set to 36,0 0 0 s, the pure rolling

horizon approach is able to provide feasible solutions for 7 out

of 10 MineLib instances, and the heuristic runs out of time for

3 remaining instances. Comparing the results of the pure rolling

horizon approach with the best known solutions, better results are

obtained while applying the pure rolling horizon approach to in-

stances Newman1 and W23 . The pure rolling horizon approach is

able to find a 12.76% gap solution to instance W23 , for which no so-

lutions have been previously reported to date. However, no feasible

solutions are found for instances Zuck medium , Zuck large
and McLaughlin . 

Compared with the pure rolling horizon heuristic, the proposed

hybrid heuristic finds better results for all instances, with an aver-

age of 79.8% gap reduction for the instances for which a feasible

solution is found with the pure rolling horizon heuristic. 

6. Conclusions 

We introduce a hybrid heuristic algorithm using a block prese-

lection procedure based on expected extraction times to solve the

PCPSP. The problem is decomposed into smaller and easier sub-

problems on a rolling horizon basis, where a reduced set of blocks

is preselected according to the LP relaxation solution of the com-

plete problem. When applied to the all PCPSP instances of the

MineLib library without blending constraints, the results obtained

by the proposed heuristic show a significant improvement for 6

out of 9 pre-existing results reported by Espinoza et al. [20] and

Kenny et al. [24] . This heuristic is also able to handle blending

constraints, a special kind of general side constraints of the PCPSP,

which is not the case of both TopoSort heuristic [20] nor GRASP

algorithm [24] . The proposed hybrid heuristic was able to generate
he first feasible solution to date for the only instance with blend-

ng constraints, i.e. W23 , with a 1.76% optimality gap. 

As a future direction of research it would be interesting to im-

rove the expected extraction times by strengthening the formu-

ation for the initial integer relaxation and the subproblems, for

xample by adding clique cuts as suggested by [9] and [23] . 
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ppendix A. An extended approach for pure rolling horizon 

An extension of the pure rolling horizon approach is presented

y [16] , where the complete problem is solved by using (i) fixed

ariables in early time periods, (ii) an exact submodel defined over

 window of middle time periods, and (iii) a relaxed submodel in

ater time periods, where a Lagrangian relaxation is used for the

apacity constraints. Table 5 shows the results on the MineLib in-

tances when this heuristic is applied. For 8 out of 10 PCPSP in-

tances the algorithm is unable to generate a feasible solution, ei-

her because they exceeded the limit of one-day computation time

7 instances) or because the maximum available memory was in-

ufficient ( McLaughlin ). Only 2 out of 10 instances were solved:

ewman for which a lower gap is obtained, and SM2 for which the

btained solution improves the current best-known solution. 

ppendix B. Detailed results of the proposed heuristic with 

 = �

Table 6 shows the detailed results for each of the MineLib in-

tances with w = �. For each case we report: (i) the name of the

nstance and the parameters w , � and s ; (ii) the relative gaps

compared to the LP relaxation objective value given by the BZ

lgorithm) and the cumulative times (in seconds) which include

he computation time for the LP relaxation of the complete prob-

em, the computation time of the expected extraction times, and

he computation time to solve the subproblems within a total time

imit of 36,0 0 0 s. We also provide the number of blocks, the num-

er of precedence constraints, the number of variables and the

otal number of constraints for the smallest, the average and the

argest subproblems. With w = �, the extraction times obtained

or the preselected blocks of each subproblem are part of the fi-

al global solution. 

In general, there is a significant variability in both size and

olving-time among the subproblems, specially between the first

nd the last subproblem as the last ones contains few blocks. For

https://doi.org/10.13039/501100002848
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Table 5 

Comparison of the previously reported solutions with the solutions of the extended approach for the pure 

rolling horizon proposed by [16] considering a sliding-time window with w = 2 (values in bold correspond 

to new best-known solutions). 

Instance LP upper bound Best-known solution [16] 

Source GAP (%) Objective value GAP (%) Time (s) 

Newman1 24,486,549 KLET17 1.27 24,149,615 1.38 49 

Zuck small 905,878,194 KLET17 1.64 — 100.00 > 1 day 

KD 410,891,003 EGMN13 0.98 — 100.00 > 1 day 

Zuck medium 750,519,188 KLET17 3.00 — 100.00 > 1 day 

Marvin 911,704,801 KLET17 1.61 — 100.00 > 1 day 

W23 387,678,103 — 100.00 — 100.00 > 1 day 

Zuck large 57,938,798 EGMN13 1.04 — 100.00 > 1 day 

SM2 1,652,393,887 EGMN13 0.12 1,650,662,943 0.10 22,261 

McLaughlin lim 1,324,829,834 EGMN13 0.24 — 100.00 > 1 day 

McLaughlin 1,512,971,541 EGMN13 0.19 — 100.00 OOM 

Table 6 

Detailed results of the proposed heuristic with w = � (values in bold correspond to new best-known solutions). 

Instance Results Subproblems 

Name w = � s Gap (%) 

Cumulative 

Time (s) smallest average largest 

#blocks #precs #vars #constrs #blocks #precs #vars #constrs #blocks #precs #vars #constrs 

Newman1 2 0.5 1.37 7 296 903 1776 3294 643 2333 3855 7886 989 3762 5934 12,477 

4 0.5 1.27 17 1059 3922 12,708 27,353 1059 3922 12,708 27,353 1059 3922 12,708 27,353 

6 0.5 1.32 31 1059 3922 19,062 41,559 1059 3922 19,062 41,559 1059 3922 19,062 41,559 

Zuck small 2 2.5 8.03 275 1270 6950 7620 20,388 1738 12,534 10,428 33,766 3047 35,070 18,282 85,383 

4 0.5 7.02 829 1541 9166 18,492 54,307 2351 19,395 28,209 103,454 3047 35,070 36,564 173,813 

6 0.5 0.77 6406 1807 9166 32,526 85,739 3134 30,382 56,418 235,600 4304 42,955 77,472 330,922 

KD 2 1.5 4.90 120 658 2028 3948 7350 2500 25,697 14,999 63,898 3675 49,332 22,050 117,043 

4 0.5 6.69 885 2173 13,148 26,076 76,503 4065 47,914 48,780 236,380 6398 90,644 76,776 432,962 

6 0.5 0.38 5240 3830 29,394 68,940 241,486 6077 75,723 109,386 557,659 8324 122,052 149,832 873,832 

Zuck medium 2 1.5 4.99 36,000 1913 10,255 11,478 30,083 5425 123,076 32,549 273,284 13,586 468,845 81,516 1,005,628 

Marvin 2 2.5 8.95 225 1151 3613 6906 13,454 1543 7927 9258 23,577 2723 22,126 16,338 57,875 

4 0.5 5.14 591 1244 3613 14,928 28,152 2129 12,581 25,548 73,759 2914 22,126 34,968 118,473 

6 0.5 0.79 3010 1244 3613 22,392 42,850 2839 19,300 51,096 164,079 4065 27,426 73,170 233,685 

W23 2 0.5 1.76 36,000 14 4 140 92 7808 61,489 78,083 162,036 17,591 149,678 175,910 382,389 

Zuck large 2 1.5 2.61 36,000 4583 13,401 27,498 49,725 9460 65,324 56,758 177,953 14,517 134,761 87,102 342,115 

SM2 2 1.5 0.09 1704 1188 1107 7128 8162 1770 1607 10,623 12,074 2560 2224 15,360 17,256 

McLaughlin lim 2 0.5 0.25 6063 846 2980 5076 10,194 15,824 266,664 94,945 612,453 28,880 681,500 173,280 1,507,404 

McLaughlin 2 0.5 0.07 16,116 13,952 114,911 83,712 305,916 22,594 365,484 135,562 843,939 35,115 828,562 210,690 1,832,703 
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xample, the instance Zuck large presents the most significant

olving-time variability: in this instance a subproblem reached the

0,0 0 0 s time limit and the subproblem in the last time window

as solved in 1 second, with an average time per subproblem of

139 s. On the other side, some instances present smaller variabil-

ty, such as SM2 , where all subproblems need a short solving-time,

ith a minimum of 0.2 s, a maximum of 6.5 s and an average of

.4 s, or the instance W23 , with a minimum time for solving a sub-

roblem of 1 s, other with a maximum of 623 s and an average of

91 s. 

The most important results from Table 6 are summarized in

able 3 . An improvement is observed in 7 out of 10 cases when

omparing to the best-known results from literature, including an

nstance for which the first feasible solution has been reported

 W23 with a gap of 1.76%). 

In the instances Zuck medium , W23 and Zuck large the to-

al time spent to find the feasible solution for w = 2 , � = 2 was

6,006, 26,592 and 29,510 s, respectively. The remaining time to

omplete 36,0 0 0 s time limit was trying to find a feasible solution

or the parameters w = 4 , � = 4 . 

ppendix C. Detailed results of the proposed heuristic with 

 ≥ 1 and � = 1 

Similarly to Appendix B, Table 7 shows the detailed results for

ach of the MineLib instances with w ≥ 1 and � = 1 . 
When comparing with the performance obtained from the pro-

osed heuristic with w = �, the results show a significant im-

rovement on the instance W23 for w = 2 , � = 1 and s = 0 . 5 ,

ith a gap of 0.74% (i.e. a 58% gap reduction). Other instances as

ewman1 , Marvin , SM2 and McLaughlin lim present similar

aps, but a poorer performance is obtained for instances Zuck
mall , KD and McLaughlin (respectively 30%, 79% and 243%

igher gap). 

Similar to the case with parameters w = �, there is a signifi-

ant variability in both size and solving-time among the subprob-

ems. Since in this case more iterations have to be performed, for

hose instances where the gaps are similar ( Newman1 , Marvin ,
M2 and McLaughlin lim ) the total time is longer. 

For the instances Zuck medium and Zuck large a first in-

ent was done with parameters w = 1 , � = 1 . As the time spent

as below the time limit and the optimality gap was greater than

%, a new intent has been done with w = 2 , � = 1 . As the time

imit of 36,0 0 0 s was reached the gap being still greater than 1%,

he result of the previous intent (i.e., with parameters w = 1 , � =
 ) has been retained. 

As an attempt to find better solutions given the time available,

n the instances SM2 , McLaughlin lim and McLaughlin a new

teration was performed trying to improve the available gap, which

as already less than 1%. The results are shown in Table 7 . For SM2
he solution found for w = 3 , � = 1 results in a higher gap (0.21%).

n the case of McLaughlin lim the solution found is the same
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Table 7 

Detailed results of the proposed heuristic with w ≥ 1 and � = 1 (values in bold correspond to new best-known solutions). 

Instance Results Subproblems 

Name w s Gap (%) Cumulative Time (s) smallest average largest 

#blocks #precs #vars #constrs #blocks #precs #vars #constrs #blocks #precs #vars #constrs 

Newman1 1 1.5 1.27 6 287 986 861 1564 643 2345 1929 3635 989 3762 2967 5744 

2 0.5 1.56 19 288 1015 1728 3478 643 2354 3860 7933 989 3762 5934 12,477 

3 0.5 1.47 46 287 979 2583 5245 665 2423 5985 12,600 1059 3922 9531 20,250 

4 0.5 1.27 68 286 985 3432 7102 666 2397 7992 16,930 1059 3922 12,708 27,353 

6 0.5 1.32 92 1059 3922 19,062 41,559 1059 3922 19,062 41,559 1059 3922 19,062 41,559 

Zuck small 1 3.5 12.18 140 689 2044 2067 3426 1197 7850 3592 10,249 3047 35,070 9141 41,168 

2 2.5 7.23 414 771 2449 4626 8761 1617 10,721 9700 29,532 3047 35,070 18,282 85,383 

3 1.5 4.85 871 780 2439 7020 13,569 2004 14,423 18,037 59,314 3047 35,070 27,423 129,598 

4 0.5 2.55 2194 631 1639 7572 13,513 2341 18,382 28,095 99,298 3319 35,070 39,828 173,813 

6 0.5 1.00 17,078 537 1383 9666 17,451 3342 31,970 60,162 248,666 4770 47,196 85,860 364,290 

KD 1 2.5 8.24 113 943 3789 2829 5677 2387 24,501 7160 29,276 3980 56,709 11,940 64,671 

2 1.5 4.58 291 612 1907 3672 6878 2598 26,044 15,591 65,084 4265 60,102 25,590 141,533 

3 0.5 0.68 2419 573 1825 5157 10,065 3248 35,632 29,228 132,883 4883 70,325 43,947 250,045 

Zuck medium 1 2.5 9.23 36,000 993 7819 2979 9809 4407 95,142 13,222 103,961 13,586 468,845 40,758 496,021 
∗Marvin 1 3.5 11.75 137 277 441 831 999 1099 5198 3298 7400 2723 22,126 8169 27,576 

2 2.5 7.94 375 273 431 1638 2235 1421 6754 8525 20,621 2723 22,126 16,338 57,875 

3 1.5 3.75 739 277 441 2493 3551 1839 9655 16,551 43,690 2723 22,126 24,507 88,174 

4 0.5 2.24 1330 276 439 3312 4808 2149 12,033 25,784 71,784 3217 22,126 38,604 118,473 

6 0.5 0.77 9652 277 441 4986 7379 3066 20,168 55,189 173,157 4541 31,194 81,738 264,385 

W23 1 1.5 11.00 28,133 295 453 1475 1063 4290 30,002 21,452 38,597 16,601 149,678 83,005 182,894 

2 0.5 0.74 33,001 95 128 950 745 6934 52,676 69,336 140,045 22,281 199,195 222,810 509,823 

Zuck large 1 2.5 2.67 36,000 2809 11,929 8427 17,551 7694 51,749 23,083 67,141 14,484 134,604 43,452 163,576 

SM2 1 2.5 4.09 1848 384 363 1152 1135 2133 1992 6400 6263 2756 2573 8268 8026 

2 1.5 0.09 1876 1188 1107 7128 8162 1770 1607 10,623 12,074 2560 2224 15,360 17,256 

3 0.5 0.21 1977 1441 1353 17,292 21,279 3129 2874 37,548 45,930 4222 3815 50,664 61,718 

McLaughlin lim 1 0.5 0.87 2536 846 2980 2538 4674 8521 124,831 25,562 141,875 15,861 371,169 47,583 402,893 

2 0.5 0.25 10,999 560 2029 3360 6862 15,460 242,441 92,760 562,185 28,880 681,500 173,280 1,507,404 

McLaughlin 1 0.5 0.85 8374 3139 10,806 9417 17,086 11,297 156,372 33,891 178,968 19,047 378,204 57,141 416,300 

2 0.5 0.24 24,948 12,958 114,385 77,748 304,584 22,600 356,467 135,597 825,935 37,699 851,514 226,194 1,891,527 
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s the solution with parameters w = 2 , � = 2 (0.25%), but taking

wice as long. Finally, for the instance McLaughlin the solution

gap 0.24%) is worse than the one obtained with parameters w = 2 ,

= 2 (gap 0.07%) and takes almost twice as long. 
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