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Abstract. We study how both the swampland distance conjecture and the Lyth bound affect
the parameter space of multi-field models of inflation. A generic feature of multi-field inflation
is that the geodesic distance [∆φ]G separating any two points laying along the inflationary
trajectory differs from the non-geodesic distance [∆φ]NG traversed by the inflaton between
those points. These distances must respect a relation of the form [∆φ]G = f ([∆φ]NG) ≤
[∆φ]NG, where f is a function determined by the specific multi-field model under scrutiny. We
show that this relation leads to important constraints on the parameter space characterizing
the multi-field dynamics. Indeed, the swampland distance conjecture implies an upper bound
on [∆φ]G set by the details of the ultraviolet completion of inflation, whereas the Lyth
bound implies a lower bound on [∆φ]NG determined by the value of the tensor-to-scalar
ratio. If future observations confirm the existence of primordial tensor perturbations, these
two bounds combined lead to tight constraints on the possible values of the entropy mass of
the isocurvature fields orthogonal to the inflationary trajectory and the rate of turn of the
inflationary trajectory in multi-field space. We analyze the emerging constraints in detail for
the particular case of two-field inflation in hyperbolic field spaces.
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1 Introduction

It is commonly stated that string theory is far from being fully understood yet still the most
promising, mathematically consistent, unified framework, which allows us to make sense of
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gravity in the quantum realm beyond the Planck scale.1 In the quest of trying to recover our
4-dimensional physical world, string theorists realized that the procedure of doing so was not
unique but actually quite degenerate. Roughly speaking, they have found that the number
of metastable vacua of string theory, the so-called landscape [3], is O

(
10500

)
[4, 5]. Such a

number, while huge, and maybe disappointing for those who expected a unique fundamental
prediction of how a consistent universe should look like, is still far smaller than the number of
seemingly consistent effective field theories (EFT) that, however, do not accept an ultraviolet
(UV) completion within quantum gravity. The latter are said to belong to the swampland,
a term originally coined by Vafa and collaborators in [6, 7]. Since the inception of this
seminal idea, different so-called swampland conjectures, such as the weak gravity conjecture2

(WGC) [8], have been devised in order to ascertain whether an EFT may or may not arise
as a low-energy approximation stemming from a fundamental quantum gravity theory like
string theory. For a recent review on the swampland see for instance [9].

In this work, we weigh the constraining power of the so-called swampland distance
conjecture (SDC) [7] taken together with the famous Lyth bound [10] on the dynamics of
cosmic inflation [11–16], the leading theory for the very early universe physics. As we shall
quickly review, a non-trivial consequence of the SDC is that the geodesic field excursion
∆φ of any scalar field φ weakly coupled with Einstein gravity, should always remain sub-
Planckian, ∆φ/MPl < O(1), in order to be consistent with quantum gravity. On the other
hand, the Lyth bound establishes that the observation of primordial tensor perturbations
sets a minimum amount of field excursion [∆φ]r which, in the case of canonical single-field
inflation, is given by

[∆φ]r
MPl

≡ ∆N

√
r

8
, (1.1)

where r is the tensor-to-scalar ratio (currently constrained as r < 0.07 [17]), and ∆N is
the number of e-folds elapsed from the time when the largest observable scales crossed the
horizon to the end of inflation. Given that ∆N ∼ 60, the observation of r within the range
accessible by current surveys (r ∼ 0.01-0.07),3 would imply that the inflaton field necessarily
had a super-Planckian field excursion ∆φ > [∆φ]r ∼ O(1)MPl. Considering that in a single-
field context [∆φ]r is geodesic by default, this last observation effectively leaves canonical
single-field inflation in the swampland of inconsistent EFT’s. However, when considering the
very well-motivated scenario of multi-field inflation, one needs to be more cautious, as there
is an emergent non-trivial geometrical structure in the field space spanned by the set of scalar
fields which may change quite drastically the conclusion that inflation, as a framework, is
doomed by the aforementioned considerations [19]. In particular, multi-field scenarios allow
for the possibility of non-geodesic field excursions, which are not directly subjected to satisfy
the distance conjecture [20].

1Hopefully the reader acknowledges the fact that “quantum mechanics and General Relativity are irrec-
oncilable theories associated with extremely different length scales” is not only an old-fashioned but actually
wrong statement. To illustrate, quantum gravity well below the Planck scale is a well-developed effective field
theory that leads to definite predictions such as quantum corrections to Newton’s gravitation law. See for
instance [1, 2].

2In short the WGC states that, in suitable units, any conceivable consistent universe has gravity as the
weakest gauge force.

3Let us just mention that r may have a significantly lesser value (r ∼ 0.003) in single-field models like
Starobinsky’s [13] and Higgs Inflation [18]. In this work, however, we focus in the scenario where the mea-
surement of r is just around the corner.
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Indeed, an important aspect of multi-field models of inflation, completely absent in
single-field scenarios, is the distinction between geodesic and non-geodesic trajectories. Non-
geodesic inflationary trajectories (in field space) are those for which the background solution
follows a path that locally bends at a non-vanishing rate. Crucially, at the perturbation
theory level, these bends generate non-trivial interactions between the primordial curvature
perturbations (that seeded the observed inhomogeneities of our universe) and isocurvature
fluctuations, defined as field fluctuations orthogonal to the inflationary trajectory. These
interactions have a series of important consequences for the statistics of primordial curva-
ture perturbations which, in addition to the tensor-to-scalar ratio, will be probed by future
cosmological surveys.

The claim of this paper, for the anxious reader, may be condensed as follows: the
very same mechanism that generates non-geodesic trajectories in multi-field space induces
an enhancement of the Lyth bound. In other words, non-geodesic trajectories come together
with two competing effects: (1) an attenuation of the SDC bound and (2) an amplification
of the Lyth bound. These two competing effects, combined together, imply novel bounds on
the parameter space of multi-field models. To anticipate how this happens, we should start
by noticing that the first effect (the attenuation of the SDC bound) is simply a consequence
of the fact that non-geodesic field excursions are always greater (or equal) than their geodesic
counterpart. This entails the existence of a concrete relation connecting the geodesic and
non-geodesic distances (denoted as [∆φ]G and [∆φ]NG, respectively) between any two points
laying over the inflationary trajectory. The relation takes the general form

[∆φ]G
Λg

= f

(
[∆φ]NG

Λg

)
, (1.2)

where Λg is a characteristic mass scale, and f is a function that satisfies f(x) ≤ x. As we
shall see with the help of concrete examples, this function is determined by the specific model
under study, and it parametrizes the extent to which [∆φ]G and [∆φ]NG differ as a result of
the bending inflationary trajectory. On the other hand, we will show that the second effect
(the amplification of the Lyth bound) comes down to the expression

[∆φ]NG =
[∆φ]r√

β
, (1.3)

where [∆φ]r is the same quantity defined in (1.1), and β (with 0 < β ≤ 1) is a function
of local properties of the trajectory (such as the bending rate and the mass of the field
fluctuations normal to the trajectory), which is implicitly defined through a modified version
of the well-known power spectrum of primordial curvature perturbations R

PR(k) =
H2

8π2M2
Pl ε β

, (1.4)

where H and ε ≡ − Ḣ
H2 are the usual Hubble scale and first slow-roll parameter of inflation,

respectively. As we shall see in more details, β = 1 is achieved only for geodesic trajectories,
so non-geodesic trajectories necessarily lead to an amplification of the Lyth bound, and one
may even attain situations where β � 1.4 As a consequence, putting together equations (1.2)

4The fact that for multi-field models of inflation β may be significantly smaller than unity was already
noted in [21] while considering the simple case of inflation driven by two scalar fields, and then emphasized
again in [22].
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and (1.3), and using the fact that the SDC bound acts on [∆φ]G, we arrive at an alternative
version of the bound of the form

Λg
MPl

f

(
[∆φ]r
Λg
√
β

)
< O(1). (1.5)

This relation combines information pertaining the background solution of the theory, and
quantities parametrizing the dynamics of fluctuations. Given that both f(x) < x and β < 1
are consequences of non-geodesic trajectories, equation (1.5) gives us a non-trivial restriction
on the local characteristics of the inflationary path in multi-field space. The bound of equa-
tion (1.5) can be satisfied in simple and well-motivated multi-field setups where the geometry
of the field space plays a decisive role. For instance, in two-field models with a hyperbolic field
space geometry5 (i.e. where the Ricci curvature is given by R = −2/R2

0, with R0 a constant
parameter with mass dimension 1), if the non-geodesic trajectory bends at a constant rate,
one finds that the function f and the scale Λg appearing in (1.2) are respectively given by

f(x) = arcsinh(x) and Λg = 2R0. (1.6)

This form of the function f turns eq. (1.5) into a constraint on the minimal amount of
bending rate necessary to satisfy the SDC, and on the possible values of masses for the
isocurvature fluctuations interacting with the inflaton. This simple example highlights the
constraining power of future observations at restricting the parameter space of stringy models
characterized by nontrivial geometries, resulting from compactifications.

Arriving to (1.5) and analyzing its non-trivial consequences is the aim of the rest of
this manuscript. The plan of the paper is as follows: in section 2 we deepen within the
arguments already exposed in this introduction, giving precise statements of the SDC and the
Lyth bound, while acknowledging the expected power (and limitations) of multi-field EFT’s
when trying to address the tension of our plot. By the end of this section, we announce
the caveat that will enable us to relax such a tension. In section 3 we quickly review the
multi-field formalism, introducing the main equations that are relevant for our subsequent
calculations. Then in section 4 we consider the general case of two-field models of inflation
with constant turning rates, at both the background and perturbation levels. As an example,
a particular well-motivated model in which the geometry of the field space is hyperbolic is
further explored. In section 5 we will show that the new scale in the problem (the negative
curvature in field space) and the constant turning rate condition, allow us to find a non-trivial
relation between the geodesic distance [∆φ]G and the non-geodesic distance [∆φ]NG. Such a
relation is indeed the incarnation of the aforementioned non-geodesic motion caveat. Armed
with this relation and a couple of other well-defined phenomenological considerations, in
section 6 we derive what is probably the main result of this paper: the naive parameter space
and the geometrical scales of multi-field inflation models are highly constrained in order to be
swampland-safe. While current bounds on non-Gaussianities [35] are not useful to constrain
the aforesaid parameter space, in section 7 we briefly address how futuristic observations of
non-Gaussian signals may indeed drastically affect our findings. Finally, we give concluding
remarks in section 8, leaving the discussion of other coordinate systems for the hyperbolic
geometry, and of the other maximally symmetric 2d field space geometries (and why they
are not useful backgrounds for our purposes) for appendices A and B, respectively.

5There is an ongoing resurgence of interest on hyperbolic field geometry. Current work related to this
subject may be found in [23–34].
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2 SDC, multi-field theories, and the Lyth bound

We may naively worry that super-Planckian field displacements will lead to super-Planckian
energy densities and a correspondingly large gravitational backreaction.6 However, it so
happens that large field displacements along flat directions of the inflaton potential will
not induce large variations of the energy density ρ of the universe during inflation, and
ρ ∼ V � M4

Pl can be kept valid as long as the slow-roll parameters remain small. The
real issue is that gravity needs a UV-completion, and the couplings between the inflaton
and the new degrees of freedom of such a UV-completion are not necessarily constrained to
respect the symmetries that one may naively impose to render a flat inflaton potential. EFT
reasoning leads us to expect that when integrating out the heavy modes of the full theory
we are left with an effective action with a structure of the form [37]

Leff[φ] = L0[φ] +
∞∑
i=1

(
ci

Λ2i
φ4+2i +

di
Λ2i

(∂φ)2φ2i +
ei

Λ4i
(∂φ)2(i+1) + . . .

)
, (2.1)

where L0[φ] is the Lagrangian describing the light degrees of freedom, the ellipsis represents
higher-order (in derivatives) operators, {ci, di, ei, . . .} are dimensionless Wilson coefficients
which are expected to be O(1), and Λ is the mass of the heavy modes which is at least
Planckian. Unless one finely-tunes all the Wilson coefficients to be much smaller than 1,
dangerous corrections to the two-derivative kinetic term as well as to the potential are ex-
pected for super-Planckian displacements.7

2.1 The swampland distance conjecture

The swampland distance conjecture may be considered as a particular instance of the previous
statement regarding EFT’s, placed in the well defined context of string theory. In short, the
SDC states that traversing large field distances in EFT’s derived from string theory will
always imply the appearance of an infinite tower of light modes, which openly undermines
the initial effective description. More precisely, consider two points in field space p0 and p,
separated by a geodesic distance d(p0, p). Then, as we move from a valid EFT sitting at
point p0 towards point p, there should appear an infinite tower of states whose mass scale m
satisfies [38, 39]

m(p0)→ m(p) = m(p0) exp [−ν d(p0, p)] , (2.3)

for some positive constant ν, a fact that clearly invalidates any possible EFT description of
the physics. Moreover, there is a “refined” swampland distance conjecture (RSDC) [38] that
states that ν ∼ O(1) in (inverse) Planck units; this however, though motivated by several
examples in string theory, is a much more debatable topic of ongoing research. The SDC
gives rise to the so-called “first swampland criterion” which establishes that field distances
∆φ involved in phenomenologically successful EFT’s — consistent with quantum gravity —

6A nice discussion about super-Planckian field displacements occurring at sub-Planckian energies may be
found, for instance, in [36].

7The seminal idea of implementing a weakly broken shift symmetry

φ→ φ+ c, (2.2)

is super useful for building radiatively stable models of large-field inflation. However, whether this symmetry
is actually compatible with a UV-completion of gravity, like string theory, remains a question of debate [37].
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must be bounded from above [7], meaning

∆φ < ϑ ·MPl, (2.4)

where ϑ is an O(1) number that depends on the details of the UV-completion. The authors
of [40] have also proposed a second swampland criterion, which rules out the existence of
stable de Sitter vacua in consistent EFT’s, by establishing the inequality

|Vφ|
V
≥ ς

MPl
, (2.5)

where V is the scalar field potential, Vφ ≡ ∂φV , and ς is another O(1) number. Furthermore,
in [41] it has been argued that single-field slow-roll inflationary models may, in general, be
in conflict with these two bounds. Consequently, the authors of [42] have studied the real
impact of the swampland conjectures in light of data. Nevertheless, it is likely that the
second criteria, seemingly dubbed the “de Sitter conjecture”, will be abandoned as it does
not have strong theoretical support (see however [43–45] and references therein). Instead,
the first criteria is based in sound theoretical arguments such as the WGC [38], so it will not
so easily fade away.

2.2 Multi-scalar field theories

Given that the SDC is formulated in terms of geodesic distances, it is only logical to study
its effects for inflation within setups with many fields or, at least, two fields. In this work we
will consider effective field theories of the form

S =

∫
d4x
√
−g
{
M2

Pl

2
R− 1

2
gµνγab(φ)∂µφ

a∂νφ
b − V (φ)

}
+ ∆SΛ, (2.6)

where R is the Ricci scalar determined by the spacetime metric gµν , and φa, with a =
{1, . . . , N}, are scalar fields spanning a field space which is itself endowed with its own
sigma model metric γab(φ). On the other hand, V (φ) stands for the scalar potential of
the system. Because the naive action in equation (2.6) must be understood as an effective
description valid up to a given cut-off energy scale Λ, we have included a term ∆SΛ standing
for corrections that emerge from unknown physics which takes place at energies above Λ (e.g.
loop corrections, or the integration of degrees of freedom kinematically suppressed at energies
below Λ). Among these corrections, there will necessarily be an operator of the form

∆SΛ ⊃ −
1

4

∫
d4x
√
−g gµν

fabcd
Λ2

∆φc∆φd∂µφ
a∂νφ

b, (2.7)

where fabcd represents a collection of order one Wilson coefficients. In the previous expression
∆φa ≡ φa − φa?, where φa? denotes a given field value around which S is taken to be valid. It
should be clear that the presence of (2.7) sets a maximum field range centered at φa? beyond
which one needs to become skeptical about the first term in (2.6). Indeed, as soon as we
depart from φa? a field distance ∆φ ∼ Λ, we are forced to resume every operator (suppressed
by powers of Λ−2) comprising ∆SΛ. Actually, the presence of corrections like the one outlined
in (2.7) has some consequences on our attitude towards the field geometry parametrized by
γab . If we allow (2.7) back into the first term of (2.6), so as to track the small corrections
implied by Λ2 in our computations, we may define an effective metric given by

γΛ
ab(φ) ≡ γab(φ) +

1

2Λ2
fabcd∆φc∆φd + . . . , (2.8)

– 6 –
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where the ellipsis stands for higher order terms in the fields, suppressed by higher powers of
Λ−2. On the other hand, without loss of generality, we may always choose φa? = 0 and adopt
a field parametrization by which

γΛ
ab(φ) = δab −

1

3
RΛ
acbd (φ?)φ

cφd + . . . , (2.9)

where RΛ
acbd (φ?) is the Riemann tensor, constructed out of γΛ

ab in (2.8), and evaluated at
φa = φa? = 0.8 We then see that, in these coordinates, the presence of the 1

Λ2 fabcd operator
may be understood as a correction to the Riemann tensor. That is, the “true” Riemann
tensor of the EFT, at φa = 0, should be read as

RΛ
abcd = Rabcd +

1

Λ2
gabcd (f) + . . . , (2.10)

where (again) the ellipsis denotes terms suppressed by higher powers of Λ−2 and gabcd(f) is a
“Riemann-symmetrized”9 set of linear combinations among the Wilson coefficients introduced
in (2.7). Now, let us assume that the field space has a characteristic curvature determined
by a mass scale R0, meaning R ∼ R−2

0 . Then if R0 > Λ, we should consider, for all practical
purposes, the theory to be indistinguishable from a theory with a flat field geometry γab = δab ,
which is indeed attained as R0 → ∞. This is simply because the physical effects from such
geometries would be suppressed against corrections of order Λ−2, which are already assumed
to be sub-leading. Hence, if we are interested in studying genuine non-trivial effects from γab
due to the field space geometry, we are forced to consider geometries for which R0 < Λ.10

We may connect the present discussion with that of the previous section. For example,
the scale Λ appearing in (2.7) may be identified with the scale 1/ν of equation (2.3). That
is, the SDC may be taken as a specific realization within string theory, whereby the low-
energy EFT cannot be probed beyond a field range specified by the string compactifications
where it descents from. For the purposes of this work, we will take Λ = MPl, in line with
equation (2.4).

2.3 The Lyth bound

Lyth [10] found a long time ago that canonical single-field slow-roll inflation generically
predicts that the overall field displacement ∆φ experienced by the inflaton during the quasi-
de Sitter phase must satisfy a lower bound. To derive it, it is enough to plug the background
equation Ḣ = −φ̇2/2M2

Pl back into the defining relation of the first slow-roll parameter,
namely ε ≡ −Ḣ/H2. By doing so we get ε = φ̇2/2H2M2

Pl which, assuming a nearly constant
value of ε, allows us to write

∆φ

MPl
'
√

2 ε∆N, (2.11)

8These are nothing but the well-known “Riemann Normal Coordinates”. For details, see for instance
Matthias Blau’s very comprehensive lecture notes.

9Explicitly, gabcd(f) ≡ 1
2

(fadbc − fdbac − facbd + fcbad ). It is then easy to check, using the fact that
fabcd = f(ab)(cd) , that gabcd = −gbacd = −gabdc , gabcd = gcdab , and ga[bcd] = 0, where the brackets ( ) and
[ ] denote the symmetric and antisymmetric part of the indicated indices, respectively. It can be shown that
these last three identities gabcd satisfies form a complete list of symmetries of the curvature tensor.

10Note that we are not claiming that one cannot study the dynamics of theories with R0 > Λ; we are simply
emphasizing the fact that any conclusion from such a theory, where R0 plays an essential role, should not be
trusted from an EFT point of view.
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where ∆N is the effective number of e-folds during inflation. In canonical single-field slow-
roll inflation the amplitudes of the dimensionless power spectra of scalar and tensor modes
are respectively given by

PR(k) =
H2

8π2M2
Pl ε

and Ph(k) =
2H2

π2M2
Pl

, (2.12)

implying that the tensor-to-scalar ratio is uniquely determined by ε through r = 16 ε, which
immediately leads to the well-known relation

∆φ

MPl
= ∆N

√
r

8
. (2.13)

Given that the minimal amount of e-folds necessary to account for the CMB anisotropies is
about ∆N ∼ 60, one infers a lower bound on the field displacement given by

∆φ

MPl
& O(1)

√
r

0.01
. (2.14)

In words, (2.14) implies that if we ever measure primordial gravitational waves, meaning
that r happens to be around ∼ 0.01, then the field distance ∆φ traversed by the inflaton is
necessarily super-Planckian, in clear conflict with the bound in (2.4).

Now, in multi-field models of inflation, the background equations of motion determined
by an action of the form (2.6) leads to the same relation ε = φ̇2/2H2M2

Pl connecting ε with
the scalar field rapidity, though (importantly) φ̇2 ≡ γab φ̇

aφ̇b in this context. This leads to
the same relation (2.11), but this time with ∆φ given by

∆φ(t′) =

∫ t′

dt

√
γab φ̇

aφ̇b. (2.15)

This is the non-geodesic field distance traversed by the fields in multi-field space. A cru-
cial difference when contrasted with the single-field case is that, in the multi-field context,
the bends experienced by the non-geodesic inflationary trajectory will turn on interactions
between the curvature perturbation R and field fluctuations normal to the trajectory. As
a result, the power spectrum of scalar fluctuations will pick up a dependence on new back-
ground parameters in addition to ε. For instance, in the particular case of two-field models,
the power spectrum becomes

PR =
H2

8π2M2
Pl ε β

, (2.16)

where β = β (λ, µ̃) is a function of λ ≡ −2 Ω/H (where Ω is the local bending rate of the
trajectory), and µ̃ ≡ µ/H is, up to the normalization by H, the so-called entropy mass of
the fluctuation normal to the path [46]. Thus, the Lyth bound that will be relevant for us,
let us just announce it for the time being, is of the form

∆φ

MPl
= ∆N

√
r

8β
&
O(1)√
β

√
r

0.01
. (2.17)

Since β (λ, µ̃) is, as it turns out, less or equal to unity, this version of the Lyth bound for
multi-field models is more stringent than the original one.
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For completeness, let us mention that ref. [47] offers a “generalized Lyth bound” based
on the EFT of inflation [48], a framework that captures many classes of single-field models
of inflation. Denoting ∆ϕ “the physically relevant field range” they have found that

∆ϕ

MPl
= c−3/2

p ∆N

√
r

8
, (2.18)

where cp ≡ ω
k

∣∣
ω=H

is the phase velocity at horizon crossing.11 Equation (2.18) recovers the
usual slow-roll Lyth bound when cp = 1. On the other hand, if cp < 1, this generalized
bound is stronger than the original one. At this point, it is interesting to note that multi-
field models have a well known single-field limit where the non-vanishing bending rate Ω 6= 0
induces the appearance of a nontrivial speed of sound cs < 1 for the primordial curvature
perturbation [50, 51]. In that limit, which is only possible if the isocurvature mode is massive
enough, one ends up finding that β = cs. Given that the phase velocity at horizon crossing
coincides with cs in this limit, it might seem intriguing to find out that (2.18) and (2.17)
do not coincide by a factor of cp. However, as the authors of [47] point out, in the case of
effective field theories descending from multi-field models, there is more than one scale at
play, and the rule determining how to identify the field range in terms of EFT quantities gets
modified.12 Taking that into account, they find

∆ϕ

MPl
= c−1/2

p ∆N

√
r

8
, (2.19)

which indeed coincides with our version of the non-geodesic field range (2.17) in the appro-
priate limit.

2.4 The problem and the opportunity

If gravitational waves with a sizable r are detected in the near future, the Lyth bound (in
any of its forms) would imply super-Planckian displacements of the inflaton in field space,
in open tension with the swampland distance conjecture. However, both the Lyth bound
and the SDC refer to different classes of field distances. More to the point, the displacement
upon which the Lyth bound is operative is non-geodesic, whereas the SDC applies on field
distances measured with the help of geodesic paths. Thus, as long as the Lyth bounds apply
to non-geodesic inflationary trajectories of multi-field scenarios, and the swampland criterion
applies only to the geodesic trajectories, there is a chance that observable gravitational waves
may only rule out single-field inflation, while keeping multi-field inflation as a consistent low-
energy EFT. In fact, this opens a window of opportunity: non-geodesic trajectories turn
on non-trivial interactions between the curvature perturbation and fluctuations representing
fields orthogonal to the non-geodesic path. As a consequence, a measurement of tensor
modes should imply, within the context of string theory compactifications (or more generally,
quantum gravity consistent UV-completions), other observable effects related to bending
trajectories in multi-field models.

11For example, for P (X) theories cp = cs, where cs is the usual speed of sound [49].
12This, in turn, signals that a proper notion of field range within the EFT requires information from the

UV theory that it describes at low energies.
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3 Multi-field inflation

As previously discussed, EFT reasoning stemming from string theory compactifications can
easily justify a 4d theory defined by an action of the form

S =

∫
d4x
√
−g
{
M2

Pl

2
R− 1

2
gµνγab(φ)∂µφ

a∂νφ
b − V (φ)

}
. (3.1)

In a Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime, defined through the back-
ground metric ds2 = −dt2+a2(t)dx2, it is useful to write all the fields in the system (including
the metric), generically denoted by Ψ(x, t), as the sum of a background and perturbations
Ψ(x, t) = Ψ0(t) + δΨ(x, t). The equations of motion (EOM) for the background system
defined by (3.1) then read

3M2
PlH

2 =
1

2
φ̇2

0 + V, (3.2)

Dtφ̇
a
0 + 3Hφ̇a0 + V a = 0, (3.3)

where H ≡ ȧ/a is the Hubble expansion rate, φ̇2
0 ≡ γab φ̇

a
0φ̇

b
0, and V a ≡ γabVb ≡ γab∂bV . In

the previous expression Dt stands for a “time covariant derivative” defined to act on a given
field space vector Xa as DtX

a ≡ Ẋa + ΓabcX
bφ̇c0, where Γabc are the usual Christoffel symbols

compatible with the field space metric γab . Moreover, as usual, the EOM may be used to
derive a “conservation law” of the form

Ḣ = − φ̇2
0

2M2
Pl

. (3.4)

A given background solution φa0(t) defines a path in field space parametrized by time t.
Therefore, it is natural to define a unit-norm vector which is tangent to the inflationary
trajectory, namely [52]

T a ≡ φ̇a0
φ̇0

. (3.5)

A time covariant derivative of this tangent vector defines an orthonormal vector Na together
with an angular velocity Ω parametrizing the rate of bending of the trajectory through
the equation

DtT
a ≡ −ΩNa. (3.6)

By projecting (3.3) along the two directions T a and Na one obtains two equations:

φ̈0 + 3Hφ̇0 + Vφ = 0, (3.7)

Ω =
VN

φ̇0

, (3.8)

where Vφ ≡ T aVa and VN ≡ NaVa. The first one of these equations describes the displacement
of the field along the trajectory, whereas the second gives us back a relation tying Ω with the
slope of the potential VN away from the trajectory.
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In order to study the dynamics of the perturbations, it is convenient to write the metric
using the Arnowitt-Deser-Misner (ADM) formalism [53, 54] as

ds2 = −N2dt2 + a2(t) e2R(x,t)δij
(
dxi +N idt

) (
dxj +N jdt

)
, (3.9)

where N and N i are the lapse and the shift functions, respectively, and R (x, t) is the spatial
curvature perturbation. In the two-field case where φa =

{
φ1, φ2

}
, it is possible to project

the perturbations δφa(x, t) along the tangent and normal vectors in such a way that

δφa (x, t) = T a(t) δφ‖ (x, t) +Na(t)σ (x, t) , (3.10)

where δφ‖(x, t) corresponds to the inflaton perturbation and σ(x, t) is the so-called isocurva-
ture perturbation [55]. Moreover, it is useful to adopt the co-moving gauge, defined through
δφ‖(x, t) = 0, so that the variable R(x, t) truly represents the adiabatic mode of perturba-
tions. After writing the action (3.1) in terms of (3.9) one may solve the constraint equations,13

which to linear order yield

N = 1 + Ṙ/H, (3.11)

Ni = ∂i

(
χ− R

H

)
, (3.12)

where χ is a function that satisfies a−2∇2χ = ε Ṙ +
√

2 εΩσ. Plugging these expressions
for N and Ni back into the action (3.1), it is possible to find a quadratic action for the
perturbations R and σ given by14

S(2) =

∫
d4x a3

{
ε

(
Ṙ − λ H√

2ε
σ

)2

− ε (∇R)2

a2
+

1

2

(
σ̇2 − (∇σ)2

a2

)
− 1

2
µ2σ2

}
, (3.13)

where we have defined

λ ≡ −2 Ω

H
, (3.14)

µ2 ≡ NaN b (Vab − ΓcabVc) + εH2R + 3 Ω2. (3.15)

Here µ is the entropy mass of σ, defined in terms of the projection of the second derivative
of the potential along the normal direction, the Ricci scalar R determined by the field space
metric γab , and the angular velocity Ω. In subsection 4.1 we will deal with a particular
realization of the previous action.

4 Two-field inflation with constant turning rates

In this section we study, in some detail, general two-field models characterized for having a
constant turning rate Ω during a long period of inflation. To start with, notice that in the
particular case of two-dimensional field spaces, given a metric γab , we may always express its
inverse as

γab =
1

γ

(
γ22 −γ12

−γ21 γ11

)
, (4.1)

13Recall that N and N i are, ultimately, Lagrange multipliers that enforce the diffeomorphism constraints
of gravity. See for instance [56].

14From here on we work in units where the reduced Planck mass is set to unity, MPl = 1, unless explicitly
written for convenience and clarity.
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where γ ≡ det γab . Then, given a tangent vector T a parametrizing an arbitrary trajectory,
the normal vector may be conveniently fixed as

Na ≡ −
√
γ εab T

b. (4.2)

Moreover, it is always possible to adapt the field coordinate system around a given inflationary
trajectory such that one of the field coordinates remains constant along it. That is, during
inflation, one of the fields evolves and the second field remains fixed to a nearly constant
value. Notice that in practice this strategy is commonly adopted by model builders, which
assign the role of the evolving “inflaton” to one of the fields of their systems. However, in
the present approach, this is just the consequence of adopting the field parametrization to a
trajectory characterized for having a constant turning rate Ω. For definiteness, let us consider
a system with two fields X and Y, in such a way that the inflationary trajectory keeps the
Y field nearly constant, i.e. Y = Y0. In this case Ẏ = 0, and one immediately obtains

T a =
1

√
γXX

(1, 0) , Ta =
1

√
γXX

(
γXX , γXY

)
(4.3)

Na =
1

√
γXX γ

(
−γXY , γXX

)
, Na =

√
γ

γXX
(0, 1) . (4.4)

These expressions may be used in eq. (3.6) to obtain a simple relation between Ω 6= 0 and
Ẋ , determining the first-order system

Ẋ = −
γXX√
γ

Ω

ΓYXX
while Ẏ = 0. (4.5)

On the other hand, given the assumed constancy of Y, one directly obtains a relation between
the rapidity of the field displacement along the non-geodesic motion [∆φ]NG and Ẋ , namely

[φ̇]NG =
√
γXX Ẋ . (4.6)

Then, since both [φ̇]NG and Ω must evolve slowly in order to keep the scale invariance of the
primordial spectra, we finally arrive at the simple condition

√
γ

γ
3/2
XX

ΓYXX

∣∣∣∣
Y=Y0

= − 1

ρNG
' constant, ρNG ≡

[φ̇]NG

Ω
, (4.7)

where we have introduced the radius of curvature ρNG of the bending trajectory. The previous
condition, which is independent of the potential responsible for the inflationary dynamics,
informs us that not any geometry will be able to accommodate a constant turning rate.
Indeed, at this stage it is quite fair to ask: why the field potential V and its derivative have
somehow “dissapeared”? In short, the reason behind this fact is that we are assuming that
the potential in (2.6) must be such that it ensures a trajectory with a nearly constant rate.
By now, there are several working examples in the literature of such potentials,15 which is
more than enough for our purposes. At any rate, it is immediately clear that a two-field
metric that is independent of X will allow for constant turns. Having this result in mind, in
section 5 we will consider models where the metric is independent of such a field.

15See for instance [50, 57–61].
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4.1 Perturbations

Let us now turn our attention to the dynamics of perturbations in a multi-field system with
a constant turning rate. The action of such a system is given by (3.13) with a constant
λ coupling. For the purposes of the present discussion, it is useful to consider a canonical
version of R given by

Rc ≡
√

2 εR. (4.8)

After this reparametrization, it is easy to obtain the following linear equations of motion:

(R̈c − λHσ̇) + 3H(Ṙc − λHσ) +
∇2

a2
Rc = 0, (4.9)

σ̈ + 3Hσ̇ +
∇2

a2
σ +H2µ̃2σ + λH(Ṙc − λHσ) = 0, (4.10)

where we have defined

µ̃ ≡ µ

H
. (4.11)

Notice that in order to derive these equations we have assumed that η = ε̇/Hε and ξ = η̇/Hη
remain suppressed for a sufficiently long time. To keep the scale invariance of the system, we
do not only require small η and ξ, but also that λ and µ remain almost constant. This means
that we must assume that |λ̇| � |Hλ| and |µ̇| � |Hµ|, so that λ and µ may be effectively
taken to be constants.

The main problem that we wish to tackle here is the computation of the power spectrum
PR(k) of R as affected by the isocurvature perturbation σ when the rate of turn remains
constant. This problem has been previously studied in different regimes of the parameter
space {λ, µ̃} in model dependent setups (see for instance [22, 55, 62–66]) and it was dealt
with in a model independent manner in [67]. From dimensional analysis, PR(k) is necessarily
proportional to the Hubble expansion rate (which sets the size of the horizon H−1 during
horizon crossing) squared, H2. In the absence of mixing betweenR and σ, that is to say when
λ = 0, we would obtain that the power spectrum of the canonical curvature perturbation
Rc is given by PRc = H2/4π2, from where it follows, by using (4.8), that PR = H2/8π2ε.
Therefore, given that the only parameters present in the equations of motion (4.9) and (4.10)
consist of λ and µ̃, it follows that for λ 6= 0 the power spectrum of Rc must be of the form
PRc = H2/4π2β(λ, µ̃), where β(λ, µ̃) is a dimensionless function of λ and µ̃. As a result we
conclude that the power spectrum for the curvature perturbation R is necessarily of the form

PR(k) =
H2

8π2 ε β (λ, µ̃)
. (4.12)

In order to determine the shape of β(λ, µ̃) we must solve the equations of motion (4.9)
and (4.10) for quantum fields Rc(x, t) and σ(x, t) satisfying standard commutation relations
with their respective canonical momenta. To proceed, it is useful to write the perturbations
in Fourier space

Rc(x, t) =

∫
d3k

(2π)3
R̂c(k, t)eik·x, σ(x, t) =

∫
d3k

(2π)3
σ̂(k, t)eik·x, (4.13)
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where R̂c(k, t) and σ̂(k, t) may be expressed in terms of two mode-functions uα(k, t) and
vα(k, t) (actually, “Mukhanov-Sasaki” variables) as

R̂c(k, t) =
1

a

2∑
α=1

[
âα(k)uα(k, t) + â†α(−k)u∗α(k, t)

]
, (4.14)

σ̂(k, t) =
1

a

2∑
α=1

[
âα(k)vα(k, t) + â†α(−k)v∗α(k, t)

]
, (4.15)

such that the annihilation and creation operators âα(k) and â†α(k) satisfy the usual commu-
tation relations, meaning the only non-trivial commutators read[

âα(k), â†β(k′)
]

= (2π)3δαβδ
(3)(k − k′), α = 1, 2. (4.16)

As usual, the vacuum state of the theory |0〉 is such that â1,2(k) |0〉 = 0. After plugging (4.13)
back into the equations of motion (4.9) and (4.10), one finds new equations of motion for
the mode functions uα(k, t) and vα(k, t). By using conformal time τ (introduced through the
relation dτ = dt/a), one ends up with

u′′α −
2

τ2
uα + k2 uα +

λ

τ
v′α −

2λ

τ2
vα = 0, (4.17)

v′′α −
2

τ2
vα + k2 vα +

µ̃

τ2
vα −

λ

τ

(
u′α +

1

τ
uα +

λ

τ
vα

)
= 0. (4.18)

In the previous expression, ( )′ ≡ d
dτ ( ) ≡ a d

dt ( ) denotes a derivative with respect to
conformal time. Imposing the Bunch-Davies initial conditions on subhorizon scales

u1 = 0, u2 =
1√
2k
e−ikτ , v1 =

1√
2k
e−ikτ , v2 = 0, (4.19)

the system of coupled differential equations (4.17) and (4.18) with initial conditions (4.19) is
suitable for numerical methods. This way, we may obtain the curvature perturbation power
spectrum (4.12) using the definition

PR(k) ≡ k3

2π2

(
|R1|2 + |R2|2

)
, (4.20)

so we can then isolate β (λ, µ̃) = H2

8π2 εPR(k)
, and plot it as a function of its arguments.

Proceeding so delivers figure 1 as an output.
The result shown in the figure agrees with that of ref. [67] and it is consistent with

previous analytical results found in the literature. For instance, it is well known that isocur-
vature fields with large entropy masses can be integrated out to yield a single-field effective
field theory for the curvature perturbation [50, 51, 60, 68–76]. In this effective theory, the
final form of the power spectrum will depend on whether the modes crossed the horizon while
their dispersion relation was linear (ω ∝ k) or quadratic (ω ∝ k2) [59, 72, 77]. If the mode
crossed the horizon in the linear regime (which happens as long as (1− c2

s)H < csM), then
the function β is well approximated by

β ' cs, (4.21)

– 14 –



J
C
A
P
0
2
(
2
0
2
0
)
0
0
4

Figure 1. Numerical solution for β (λ, µ̃).

where cs is the speed of sound of the curvature perturbation, given by the well known
result [51]

cs =

(
1 +

λ2H2

M2

)−1/2

, (4.22)

where M ≡ H
√
µ̃2 − λ2 (recalling that λ ≡ −2 Ω/H). On the other hand, if horizon crossing

takes place in the non-linear regime (which happens if (1 − c2
s)H > csM), then β is well

approximated by [72, 78]

β ' π

8 Γ2(5/4)

(
Hcs
M

)1/2

, (4.23)

where Γ(5/4) ' 0.91. Moreover, the result is also consistent with the so-called ultralight
limit, where µ̃2 = 0 and λ 6= 0, for which β has been computed perturbatively in the case
λ � 1 [79]. In this ultralight limit, the value of β becomes suppressed by the amount of e-
folds elapsed from the moment in which the mode crossed the horizon and the end of inflation
(similarly, in ref. [30] an analytical expression for the power spectrum was obtained for large
values of λ in which a superhorizon growth is reported, in agreement with a suppressed value
of β for large values of λ). The numerical result shown in figure 1 allows us to see how β
behaves for intermediate regimes that have not been solved analytically. For instance, one
can appreciate that the ultralight behavior (whereby β becomes suppressed by the number
of e-folds) extends to values of µ̃ and λ greater than one.

Notice that the modified power spectrum (4.12) gives rise to a modified tensor-to-scalar
ratio given by

r = 16 ε β (λ, µ̃) . (4.24)

As usual, using the Friedmann equation in its conservation law form, eq. (3.4), and the

definition of the first slow-roll parameter ε ≡ − Ḣ
H2 , along with ∆N ≡ H∆t, we may straight-

forwardly relate the field displacement with the tensor-to-scalar ratio, finding a Lyth bound
of the form

∆φ

MPl
= ∆N

√
r

8β (λ, µ̃)
&

O(1)√
β (λ, µ̃)

√
r

0.01
. (4.25)
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Equation (4.25) is the relevant Lyth bound we will consider when analyzing the viability of
our evading mechanism. Compared with the one pertaining the single-field scenario, besides

the fact that here ∆φ ≡
√
γab ∆φa∆φb, it is clear that the ratio ∆φ/MPl is rescaled by a

factor of [β (λ, µ̃)]−1/2. Unfortunately, it has not been possible to find an analytic (closed)
expression for β (λ, µ̃) in the general case (meaning for arbitrary values of λ and µ̃); this lies
beyond the scope of this article and remains to be a quite challenging open problem.

4.2 Example: inflation in hyperbolic spaces

Let us now review the previous results of this section by focusing our attention in the case of
inflationary models where the field geometry is hyperbolic. Consider a set of fields φ1

0 = X ,
φ2

0 = Y, and a field space metric given by

γab =

(
e2Y/R0 0

0 1

)
, (4.26)

where R0 is a constant of mass dimension 1. Given the non-vanishing Christoffel symbols

ΓXYX = ΓXXY = 1
R0

and ΓYXX = − e2Y/R0

R0
, it is straightforward to check that the field space

Ricci scalar R is then given by

R = − 2

R2
0

, (4.27)

so the model indeed represents a negative curvature field space.16 The equations of motion
as given by (3.2) and (3.3) read

3M2
PlH

2 − 1

2
e2Y/R0Ẋ 2 − 1

2
Ẏ2 − V = 0, (4.28)

Ẍ + 3HẊ +
2

R0
ẎẊ + e−2Y/R0VX = 0, (4.29)

Ÿ + 3HẎ − 1

R0
e2Y/R0Ẋ 2 + VY = 0. (4.30)

It is clear that Ẏ = 0 is allowed by the equations of motion as long as the potential is suitably
chosen. However, notice that our present approach does not care about the precise form of
the potential. Instead, we just need to make sure that the geometry allows for a trajectory
with a constant turning rate.

In the present case, we see that (4.7) takes the form

ρNG = R0, (4.31)

and so we conclude that trajectories with nearly constant rates are indeed possible.

Next, using the general first-order form of the EOM given in (4.5), we get that

Ẋ = R0 e
−Y/R0 Ω⇒ X (t) = R0 e

−Y/R0 Ω t+ C1, (4.32)

Ẏ = 0⇒ Y(t) = C2, (4.33)

16See appendix A for a discussion of other well-known coordinatizations of two-dimensional hyperbolic field
space.
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where the {Ci} are integration constants. Moreover, using (3.4), (4.32), and (4.33) we find,
for later use, that the first slow-roll parameter becomes

ε ≡ − Ḣ

H2
=

R2
0 Ω2

2M2
PlH

2
. (4.34)

Let us now calculate the non-geodesic field distance defined through

[∆φ]NG ≡
∫
C1

√
γab φ̇

a
0φ̇

b
0 dt, (4.35)

where C1 denotes the specific non-geodesic path characterized for the condition Y = Y0. The
integration constants C1 and C2 are easily solved by imposing the following initial (t = 0)
and final (t = T ) conditions

Y(0) = Y(T ) = Y0, X (0) = X0, and X (T ) = X0 + ∆X . (4.36)

One then finds that

C1 = X0, C2 = Y0, and Ω =
∆X
R0 T

eY0/R0 . (4.37)

Finally, using (4.6) we arrive at

[∆φ]NG = eY0/R0 |∆X| . (4.38)

Another useful expression for the above quantity is given by

[∆φ]NG = R0 ∆N
|Ω|
H
, (4.39)

where use has been made of (4.37), and the defining equation for e-folds dN ≡ Hdt, which
assuming Ḣ = 0, implies ∆N = H T upon integration. Last but not least, given that Ω
determines the λ coupling via (3.14), we may rewrite (4.39) as

[∆φ]NG =
1

2
R0 ∆N |λ| . (4.40)

We will come back to this result in section 6.

5 Geodesic distances in two-field models

We now move on to consider the computation of geodesic field distances in situations where
the inflationary trajectory is non-geodesic. We will keep the field coordinate system employed
in section 4, whereby one of the fields, say Y, is kept constant. To obtain the geodesic field
distance separating any two points in field space, we may adopt any parametrization of the
fields φa along the path. In particular, if we take time t as the parameter, the field distance
functional along a path C takes the form

∆φ ≡
∫
C

√
γab(φ)φ̇a0φ̇

b
0 dt, (5.1)
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which under extremization with respect to φa0 yields the geodesic equations

Dtφ̇
a
0 ≡ ∂tφ̇a0 + Γabc φ̇

b
0 φ̇

c
0 = 0. (5.2)

This is a coupled system of second order differential equations. Solving it, a task that may
be quite non-trivial, will yield solutions of the form X = X (t) and Y = Y(t), which depend
on four integration constants. Given that the non-geodesic motion is characterized for the
condition Y = Y0, then the geodesic path must be such that the initial and final values of Y
coincides with Y0. This is simply achieved by imposing the following initial (t = 0) and final
(t = T ) conditions

Y(0) = Y(T ) = Y0, X (0) = X0, and X (T ) = X0 + ∆X , (5.3)

for the geodesic path. These conditions will then allow us to find a non-trivial relation
between [∆φ]G and [∆φ]NG by using the crucial general result of equation (4.6). The general
form of this relation will necessarily be of the form

[∆φ]G
Λg

= f

(
[∆φ]NG

Λg

)
, (5.4)

where f is a function satisfying f(x) ≤ x and Λg is a mass scale determined by the specifics
of the system under consideration. The condition that f(x) ≤ x (or [∆φ]G ≤ [∆φ]NG) simply
reminds us that a geodesic, by definition, is the shortest path between any two points in a
given geometry. We now specialize to 2d hyperbolic geometry, simply because it is a minimal
setup which enjoys all the desirable features we are looking for. For completeness, the other
two maximally symmetric 2d spaces are discussed in appendix B.

5.1 Example: inflation in hyperbolic spaces

Let us again consider the example of inflation taking place in a field space with a hyperbolic
geometry. The geodesic motion is determined by the equations (5.2), which in this case read

Ẍ +
2

R0
Ẋ Ẏ = 0, (5.5)

Ÿ − 1

R0
e2Y/R0Ẋ 2 = 0. (5.6)

The solutions to the set of differential equations (5.5) and (5.6) are given by

X (t) = c1 + c2 tanh (c3 (t+ c4)) , (5.7)

Y(t) = R0 ln

(
R0

c2
cosh (c3 (t+ c4))

)
, (5.8)

where the {ci} are integration constants. We may now calculate the geodesic distance

[∆φ]G ≡
∫
C2

√
γab(φ)φ̇a0φ̇

b
0 dt, (5.9)

where C2 is the specific geodesic path depicted in figure 2 and the φ̇a0’s are derived using (5.7)
and (5.8). It is then straightforward to show that under these circumstances

[∆φ]G = c3R0T, (5.10)

– 18 –



J
C
A
P
0
2
(
2
0
2
0
)
0
0
4

Figure 2. Sketch of the trajectories in hyperbolic field space. The curve C1 corresponds to a non-
geodesic path (satisfying the EOM), while the curve C2 corresponds to a geodesic path. The boundary
conditions were chosen in such a way that these trajectories share their initial (P0) and final (P1)
points in field space.

where T ≡
∫
C2 dt. Imposing the boundary conditions (5.3), one finds

c1 = X0 +
∆X

2
, c2 =

1

2

√
(∆X )2 + 4R2

0 e
−2Y0/R0 , (5.11)

c3 =
2

T
arcsinh

(
eY0/R0

∆X
2R0

)
, c4 = −T

2
.

This finally leads, using (5.10), to the following geodesic field distance

[∆φ]G = 2R0 arcsinh

(
eY0/R0

∆X
2R0

)
. (5.12)

5.2 Mixing geodesic and non-geodesic field distances

We are now in a position to find a non-trivial relation between [∆φ]G and [∆φ]NG. Us-
ing (5.12) and (4.38), we finally find that

[∆φ]G = 2R0 arcsinh

(
[∆φ]NG

2R0

)
= 2

√
2

|R|
arcsinh

(
1

2

√
|R|
2

[∆φ]NG

)
, (5.13)

where use has been made of (4.27) in order to get the very suggestive second equality.
Equation (5.13) is exactly the map between the geodesic and non-geodesic field distances

we were looking for; it is 1-to-1 and only depends on the geometrical invariant of the field
space. Indeed, this relation may allow us to simultaneously satisfy both the swampland
criterion for [∆φ]G and the Lyth bound for [∆φ]NG. To achieve this, it is crucial that the
argument in the inverse hyperbolic function is bigger than 1; otherwise [∆φ]G ≈ [∆φ]NG.
Happily, this is exactly what occurs. Recalling the EFT arguments exposed in section 2.2,
we will demand the sub-Planckian condition on the field geometry

R0 < MPl. (5.14)

Moreover, it is a numerical (and theoretically appealing) result that a “subluminality”
condition

β (λ, µ̃) ≤ 1 holds ∀ {λ, µ̃} . (5.15)

Then using the Lyth bound in (4.25) we find that

[∆φ]NG

2R0
=
MPl ∆N

2R0

√
r

8β (λ, µ̃)
. (5.16)
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It is easy to check that the above ratio is generically bigger than 1, so that it is indeed
possible via (5.13), to achieve the hierarchy17

[∆φ]G < MPl < [∆φ]NG, (5.17)

which, as previously argued, is necessary in order to produce measurable primordial gravi-
tational waves without the need for a geodesic super-Planckian field displacement. It is now
important to understand what are the non-trivial consequences on the naive EFT we started
with when all moving parts conspire to reach (5.17). This is what we do in the next section.

6 SDC, the Lyth bound, and non-geodesic motion

Equation (5.13) neatly shows how geodesic and non-geodesic field distances relate in two-field
inflation with constant turns within a hyperbolic field space. In this section we will study
some of the consequences emerging from having such a relation. To start with, let us consider
the result of imposing the SDC, given by eq. (2.4), over [∆φ]G in the left-hand side of (5.13),
while the right-hand side is written in terms of the Lyth bound, eq. (4.25). Doing so leads
to the following inequality

1

2R0

∆N√
β (λ, µ̃)

√
r

8
< sinh

(
ϑ

2R0

)
. (6.1)

A more enlightening expression may be reached by replacing the EFT parameter R0 by

R0 =
1

λ

√
r

2β
, (6.2)

where use has been made of (4.34), (3.14), and (4.24). Writing (6.1) in terms of (6.2) we get

|λ| < 4

∆N
sinh

(
ϑ

4

√
8β (λ, µ̃)

r
|λ|

)
. (6.3)

The above inequality may be inverted to get a theoretical bound of the form

r <
ϑ2λ2

2
arcsinh−2

(
∆N |λ|

4

)
β (λ, µ̃) . (6.4)

This bound implies a non-trivial constraint on the parameter space {λ, µ̃}; in short, for a
given value of r only certain values of such parameters are allowed in order to simultaneously
satisfy both the SDC and the Lyth Bound at the same time. We plot this in figure 3, where
we see how the “allowed” parameter space regions, for fixed values of {ϑ,∆N} and different
values of r, are constrained by this requirement. As expected, larger values of r imply more
restrictions for the possible combinations of λ and µ̃. In particular, we see that a value of
r = 0.01 implies a lower bound on µ̃ of about ∼ 1.3. This result is particularly interesting
for the case of multi-field models within the framework of the Hamilton-Jacobi formalism (of
which holographic inflation is an example). It has been recently shown that two-field models
of inflation satisfying Hamilton-Jacobi equations must satisfy µ̃ ≤ 1.5 [83]. Thus, a future
measurement of r together with the swampland distance conjecture would severely constrain
models based on the Hamilton-Jacobi formalism.

17Multi-field models enjoying this feature do exist in the literature. See for instance [80–82].
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Figure 3. Leftover parameter space {λ, µ̃} when constrained by (6.4), for different values of r, while
fixing ϑ = 1 and ∆N = 60. Here we can appreciate, in different shades of orange, the portions of
parameter space that are still compatible, under these conditions, with the demands of the SDC and
the Lyth bound.

This, however, is not the end of the story. Besides applying the constraint (6.4) on
the “naive” β (λ, µ̃) function, there are some other considerations to be taken into account.
Using (6.2) and the sub-Planckian condition (5.14), we may express β as

β (λ, µ̃) =
r

2λ2R2
0

� r

2λ2
, (6.5)

where the strong inequality follows from the fact that R0 < 1. With this at hand, the
subluminality condition in (5.15) translates into a lower bound on R0,

R0 ≥
1

λ

√
r

2
, (6.6)

while the SDC bound (6.4) translates into an upper one,

R0 <
ϑ

2 arcsinh
(

∆N |λ|
4

) . (6.7)

Finally, it is crucial that our solution actually inflates. Using ε � 1 we find a further
constraint on β and R0, namely{

ε =
r

16β (λ, µ̃)
=
λ2R2

0

8

}
� 1 ⇐⇒

{
β (λ, µ̃)� r

16
, R0 <

2
√

2

λ

}
. (6.8)

To sum up, we actually have to consider not one but three bounds over the naive function
β (λ, µ̃); in addition to the swampland condition in (6.4), we have to impose both the sub-
Planckian condition in (6.5) and the inflating-solution condition in (6.8). In figure 4 we plot
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Figure 4. Green: slow-roll bound r � 16β(λ, µ̃), Blue: sub-Planckian bound r � 2λ2β(λ, µ̃),

and Orange: swampland bound r < ϑ2λ2

2

[
arcsinh

(
∆N |λ|

4

)]−2

β (λ, µ̃), when using the benchmark

point in (6.9). For this particular benchmark point, we observe that the swampland bound is more
confining than the sub-Planckian bound. One can check that for ϑ ≈ 2, the sub-Planckian bound
starts to compete with the swampland bound. When ϑ > 3 the swampland bound becomes sub-
dominant with respect to the sub-Planckian bound. On the other hand, the constraining power of
the slow-roll bound also depends on how small ε is taken to be; for a standard value ε = 10−2 it is
almost fully compatible with the swampland bound, while decreasing its value towards ε = 10−3 does
invalidate non-neglilible portions of the otherwise swampland-safe parameter space.

the portions of parameter space which are still allowed when considering all such bounds,
while taking the benchmark point18

∆N = 60, ϑ = 1, and r = 0.01, (6.9)

in order to assess which is the most constraining one. For this particular benchmark point we
observe that the sub-Planckian bound (in blue) is subdominant with respect to the swamp-
land bound (in orange), though increasing the O(1) constant ϑ eventually inverts this hierar-
chy, as suggested by the dashed orange line labeled by ϑ = 2. Moreover, we appreciate that
demanding inflationary solutions does enforce further restrictions on the allowed parameter
space, depending on how small we expect the slow-roll parameter ε to be, as illustrated by
the green lines labeled by ε =

{
10−2, 4× 10−3, 10−3

}
,19 respectively.

On the other hand, we have found that R0 is bounded so that it is effectively allowed
to lie only in the range

1

λ

√
r

2
≤ R0 < min

1,
2
√

2

λ
,

ϑ

2 arcsinh
(

∆N |λ|
4

)
 . (6.10)

18The value r = 0.01 is not a fanciful one, but actually the smallest value of r which will be experimentally
accessible for next generation CMB surveys [84–87]. Nevertheless, values of order r ∼ O

(
10−4

)
may be

achieved by futuristic observations [88].
19Here we consider ε values which are compatible with the latest Planck Collaboration release [89].
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Figure 5. The different bounds for R0 are plotted as a function of λ. The shaded region corresponds
to the allowed values of R0, when taking the benchmark point (6.9) and ε = 4 × 10−3. The area of
the stripe depends on the choice of the parameters, see text for further details.

This is, to our eyes, a very interesting result. Indeed, we see that by imposing very sensible
conditions, one can heavily constrain the field geometry parameter R0 of the naive two-field
EFT. In figure 5, we plot the allowed values of R0, compatible with the bounds in (6.10), for
the benchmark point in (6.9). We observe a non-trivial stripe bounded from below by the
subluminality condition (5.15), and bounded from above by the swampland bound (6.7) or
the slow-roll bound (6.8), whichever gives the lesser value. As bigger values of ϑ and ε and
smaller of ∆N and r, are considered, the area of the stripe increases allowing more values
of R0. Incidentally, for “perturbative” (< 1) values of λ, the relevant bound, in order to
get consistent inflation, is the one stemming from the swampland criterion, while for non-
perturbative (& 2) values of λ, satisfying the swampland bound is not enough to ensure a
successful inflationary period. Moreover, the only possible way to obtain allowed values of
R0 in the perturbative regime, is decreasing the value of r.

7 Non-Gaussianity

Non-geodesic trajectories in multi-field spaces also induce the transfer of non-Gaussianity
from the isocurvature field to the curvature perturbation, at a rate that depends on the
values of µ̃ and λ [58, 61, 90–92]. This means that non-Gaussianity observations would allow
us to place additional constraints on the parameter space studied in the previous section. For
instance, it is well understood that a non-unit speed of sound generated by a non-vanishing
turning rate (recall eq. (4.22)) will generate a non-negligible amount of equilateral and folded
non-Gaussianity [50, 51], which future surveys will be able to constrain.

To get an idea about how future observations may contribute to further constrain the
parameter space {λ, µ̃}, let us consider the regime in which the isocurvature field can be
integrated out [50, 51]. Necessarily, there will exist a region within the parameter space for
which the two-field system is accurately described by a single-field EFT with a sound speed
cs given by (4.22). This region is characterized by β ' cs. Figure 6 gives an account of this
region by plotting the difference |β − cs|.

The dashed lines show different fixed values of the sound speed, whereas the solid blue
line shows the boundary beyond which |β − cs|/β becomes larger than 0.1. In other words,
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Figure 6. The color scale indicates the different values of |β − cs|. The white area corresponds
to imaginary values of cs. The dashed lines denote different values of the sound speed. The value
cs = 0.021 corresponds to the current lower bound coming from non-Gaussianity constraints [35]. The
solid blue line denotes points where |β − cs|/β = 0.1.

points to the right-hand side of the solid blue line correspond to values of µ̃ and λ for which
the power spectrum of the EFT is at least 10% off from the full two-field prediction. The
line cs = 0 and points to its left correspond to cases in which the EFT miserably fails.

Now, in order to constrain the parameter space {λ, µ̃} we can only trust bounds on cs
as long as they affect the region to the right of the solid blue line (assuming that we want
an accuracy of 10%). For instance, current constraints on primordial non-Gaussianity imply
cs ≥ 0.021 (95%CL) [35], but this is outside the region of validity of the EFT, and so we
cannot use such a bound to infer constraints on both µ̃ and λ. However, the plot shows how
future observations may contribute to constrain µ̃ and λ, and only very restrictive bounds
on cs could restrict the parameter space using the EFT. Comparing figure 6 with the plots of
the previous region, we see that a detection of primordial non-Gaussianity compatible with
a single-field EFT would indeed dramatically restrict the parameter space in addition to the
bounds required by the distance conjecture.

8 Conclusions

It has been recently claimed [41] that the inflationary paradigm, at least in its single-field
incarnation, is doomed as a consistent EFT when considering “UV-lessons” stemming from
quantum gravity in light of eventual measurable primordial tensor perturbations. Refer-
ence [41] takes into account a couple of swampland conjectures to draw its conclusions. In
this paper we have only considered the one that, to our eyes, has much stronger theoretical
support; the swampland distance conjecture. It is important to emphasize though, that the
SDC still puts significant pressure on models of inflation once we also take into account the
far-reaching observation made by Lyth [10] more than twenty years ago.
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As already emphasized elsewhere [19, 20, 93], the conclusions on inflation derived from
the SDC change dramatically if one considers multi-field inflation instead of single-field in-
flation. As we have shown, the SDC implies strong constraints on parameters related to the
dynamics of perturbations. To understand how this happens, we have contemplated with
some attention the particular case of multi-field inflation in a hyperbolic field space, which
is a well-motivated background model that allows for simple analytical expressions. In par-
ticular, we found that for inflationary trajectories with constant turning rates in hyperbolic
field spaces, the geodesic and non-geodesic distances [∆φ]G and [∆φ]NG are related through

[∆φ]G = 2R0 arcsinh

(
[∆φ]NG

2R0

)
, (8.1)

where R0 is the radius of curvature of the field space geometry. We found that this relation,
together with the SDC and the Lyth bound, leads to powerful constraints on the entropy
mass µ and turning rate λ parameters characterizing the dynamics of perturbations. Our
main results are summarized in figure 3, where we have plotted the allowed contour regions
on the {λ, µ̃} space for different values of the tensor-to-scalar ratio. Our work provides an
example where UV-physics constrains the possible values of the naively free parameters of
the EFT describing the low-energy theory.

Clearly, the results of this work can be extended to any desired multi-field model. Multi-
field models of inflation will necessarily lead to relations analogous to (8.1) tying together
[∆φ]G and [∆φ]NG. Then, by means of the SDC and the Lyth bound, it will always be
possible to derive a bound on quantities parametrizing the dynamics of perturbations. Our
results show, once more, the importance of the tensor-to-scalar ratio to characterize the early
universe. An observation of the tensor-to-scalar ratio within the range targeted by future
observatories (r ∼ 0.01) will severely restrict the building of inflationary models. To say the
least, as long as the SDC is taken seriously, it would provide a strong argument in favour of
multi-field models of inflation.

Last but not least, non-geodesic trajectories in multi-field spaces also induce the trans-
fer of non-Gaussianity from the isocurvature field to the curvature perturbation, at a rate
that depends on the values of µ̃ and λ [58, 61, 90–92]. This means that non-Gaussianity
observations would allow us to place additional constraints on the parameter space studied
in this work. For instance, it is well understood that a non-unit speed of sound generated
by a non-vanishing turning rate (recall eq. (4.22)) will generate a non-negligible amount of
equilateral and folded non-Gaussianity [50, 51], which future surveys will be able to constrain.
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A Other coordinate systems

A.1 Upper half-plane

We start considering the line element associated with the metric (4.26), that is to say

ds2 = e2Y/R0dX 2 + dY2. (A.1)

Subsequently, we perform the change of coordinates defined by dY = a (Y ) dY , which upon
integration when using a (Y) = eY/R0 , implies that a (Y ) = − 1

R0 Y , so the line element
becomes

ds2 = R2
0

dX 2 + dY 2

Y 2
. (A.2)

Equation (A.2) defines the so-called “upper half-plane” coordinate system for the hyperbolic
geometry. It is straightforward to find that ΓXY X = − 1

Y , ΓY
XX = 1

Y , and ΓY
Y Y = − 1

Y , and to
check that the Ricci scalar is (still) given by R = − 2

R2
0
.

A.1.1 Geodesic motion

The geodesic equations read

Ẍ − 2Ẋ Ẏ

Y
= 0, (A.3)

Ÿ +
Ẋ 2 − Ẏ 2

Y
= 0, (A.4)

whose solutions can be found to be

Y (t) =

√
C

`
sech

(√
C (t−D)

)
, (A.5)

X (t) =

√
C

`
tanh

(√
C (t−D)

)
+ E, (A.6)

where {C, `,D,E} are integration constants. The geodesic field distance is given by

[∆φ]G =

∫ √
γab φ̇

a
0φ̇

b
0 dt =

√
CR0 T, (A.7)

where T ≡
∫
dt. Imposing the boundary conditions

Y (0) = Y (T ) = Y0, X (0) = X0, and X (T ) = X0 + ∆X , (A.8)

one finds that

D =
T

2
, E = X0 +

∆X
2
, C =

4

T 2

(
arcsinh

(
∆X
2Y0

))2

, and ` =
4 arcsinh

(
∆X
2Y0

)
T
√

4Y 2
0 + (∆X )2

. (A.9)
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Moreover,

∆X =
2
√
C

`
tanh

(√
CT

2

)
= 2 Y0 sinh

(√
CT

2

)
. (A.10)

A.1.2 Non-geodesic motion

The non-geodesic motion we care about is determined by the first-order system defined by
equation (4.5), which in this case becomes

Ẋ = −Y Ω, Ẏ = 0 ⇒ Y (t) = Y, X (t) = −YΩ t+ X, (A.11)

with {Y,X} integration constants. Using the same boundary conditions as in the geodesic
case, equations (A.8), we find that

Ω = − ∆X
Y0 T

. (A.12)

Moreover, applying (4.6) the non-geodesic field distance is found to be given by

[∆φ]NG =
R0 ∆X

Y0
. (A.13)

Finally, using (A.7), (A.10), and (A.13), it is easy to show that

[∆φ]G = 2R0 arcsinh

(
1

2R0
[∆φ]NG

)
= 2

√
2

|R|
arcsinh

(
1

2

√
|R|
2

[∆φ]NG

)
, (A.14)

where we have used R0 =
√

2
|R| in the second equality. This expression of course coincides

with (5.13), as the half-plane is just another coordinatization of the hyperbolic geometry
discussed in this paper.

A.2 Poincaré disk

Consider the hyperbolic metric as written in the half-plane coordinate system

ds2 = R2
0

du2 + dv2

v2
. (A.15)

Let us now perform a Möbius transformation defined through

z =
i− w
i+ w

, where w ≡ u + iv. (A.16)

It is easy to check that dz
dw = − 2 i

(w+i)2
and 1−|z|2 = 4 v

|w+i|2 , which allows us to rewrite (A.15) as

ds2 = 4R2
0

∣∣∣∣ 2

(w + i)2

∣∣∣∣2 |dw|2( |w + i|2

4 v

)2

= 4R2
0

∣∣∣∣ dzdw
∣∣∣∣2 |dw|2 1(

1− |z|2
)2 = 4R2

0

|dz|2(
1− |z|2

)2 .

(A.17)
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Equation (A.17) is known as the Poincaré Disk line element. Introducing polar coordinates

z = 1√
3α
reiθ where α ≡ R2

0
3 , leads to

ds2 = 4
dr2 + r2dθ2(

1− r2

3α

)2 . (A.18)

The metric in (A.18) reduces to that of the so-called α-attractor models of inflation [94],
whose characteristic kinetic term is of the form

L ⊃ −1

2

(∂φ)2(
1− φ2

6α

)2 , (A.19)

which is achieved by taking into account a suitable normalization factor, defining r ≡ 1√
2
φ,

and fixing θ = constant. The Ricci curvature scalar stemming from (A.18) is (again) given by

R = − 2

R2
0

= − 2

3α
, (A.20)

since (again) this is just another coordinatization of the hyperbolic geometry. Moreover,
applying identical reasoning as in sections 5.1 and A.1, it is possible to show that the relation
for the geodesic and non-geodesic trajectories is given by

[∆φ]G = 2

√
2

|R|
arcsinh

(
1

2

√
|R|
2

[∆φ]NG

)
, (A.21)

where care must be taken when comparing “angular” vs. “radial” motion, because θ is not
canonically normalized, as can be seen from the form of the metric in (A.18).

B Other maximally symmetric geometries

B.1 Planar geometry

B.1.1 Geodesic motion

Consider the system defined by taking φ1 = r and φ2 = θ, and the planar field metric

γab =

(
1 0
0 r2

)
, (B.1)

with corresponding non-trivial Christoffel symbols Γrθθ = −r and Γθθr = 1
r , and a trivial field

space Riemann tensor Rabcd = 0. The geodesic equations for this geometry are then

r̈ − r2θ̇2 = 0, (B.2)

θ̈ +
2 ṙ θ̇

r
= 0. (B.3)

Moreover, (B.3) may be casted as

r2θ̇ = L, (B.4)
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where L is an integration constant, a.k.a. nothing but good old angular momentum. The
solutions to the system determined by (B.2) and (B.3) are given by

r(t) =

√
c1 (t+ c2)2 +

L2

c1
, (B.5)

θ(t) = tan−1

(
c1

L
(t+ c2)

)
+ c3, (B.6)

where the {ci} are integration constants. The geodesic field distance is then given by

[∆φ]G =

∫ √
γab φ̇

a
0φ̇

b
0 dt =

√
c1 T, (B.7)

where T ≡
∫
dt. Imposing the boundary conditions

r(0) = r(T ) = r0, θ(0) = θ0, and θ(T ) = θ0 + ∆θ, (B.8)

one finds that

c2 = −T
2
, c3 = θ0 +

∆θ

2
, c1 =

2 r2
0

T 2
(1− cos ∆θ) , L =

r2
0 sin ∆θ

T
, (B.9)

so that

[∆φ]G = 2 r0 sin

(
∆θ

2

)
. (B.10)

B.1.2 Non-geodesic motion

Using the first-order system of equations (4.5), we get

θ̇ = Ω⇒ θ(t) = Ω t+ θc, and ṙ = 0⇒ r = rc, (B.11)

with {θc, rc} integration constants. Using the same boundary conditions as in the geodesic
case given in (B.8), one finds that

rc = r0, θc = θ0, and Ω =
∆θ

T
. (B.12)

Moreover, the non-geodesic field distance is then given by

[∆φ]NG = r0 |Ω|T = r0 ∆θ. (B.13)

Using (B.10) and (B.13) we finally find that

[∆φ]G = 2 r0 sin

(
1

2 r0
[∆φ]NG

)
, (B.14)

which may be casted as

[∆φ]G
Λg

= F
(

[∆φ]NG

Λg

)
, where F(x) = sinx and Λg = 2 r0. (B.15)

The previous relation depends explicitly on the initial condition r0, which being dimension-
ful, is enforced to play the role of the scale Λg in this curvatureless space. Moreover, the
periodicity of the sine function is clearly not useful for our purposes. That should suffice the
discussion of the planar geometry.
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B.2 Spherical geometry

B.2.1 Geodesic motion

One could try to do better than in the planar geometry case, and consider the system φ1 = θ
and φ2 = ϕ with a spherical field space metric given by

γab = R2

(
1 0
0 sin2 θ

)
, (B.16)

with corresponding non-trivial Christoffel symbols given by Γθϕϕ = − cos θ sin θ and Γϕϕθ =

cot θ. In this case, the Ricci scalar is given by R = + 2
R2 . The geodesic equations for this

system then read

θ̈ − cos θ sin θ ϕ̇2 = 0, (B.17)

ϕ̈+ 2 cot θ θ̇ ϕ̇ = 0. (B.18)

The general solutions to the system determined by (B.17) and (B.18) are found to be

θ(t) = cos−1

√c2 − c2
1

c2
cos (
√
c2 (t+ c3))

 , (B.19)

ϕ(t) = tan−1

(√
c2

c1
tan (
√
c2 (t+ c3))

)
+ c4, (B.20)

where the {ci} are integration constants. The geodesic field distance is then given by

[∆φ]G =

∫ √
γab φ̇

a
0φ̇

b
0 dt =

√
c2RT, (B.21)

where T ≡
∫
dt. We now impose the following boundary conditions

θ(0) = θ(T ) = θ0, ϕ(0) = ϕ0, ϕ(T ) = ϕ0 + ∆ϕ. (B.22)

It can be shown that this picking implies

c3 = −T
2
, c4 = ϕ0 +

∆ϕ

2
,

c2 =
4

T 2

(
sin−1

(
sin

(
∆ϕ

2

)
sin θ0

))2

, c1 =
√
c2

tan
(√

c2 T
2

)
tan

(
∆ϕ
2

) .

Moreover, under these circumstances, the following somewhat non-trivial relation holds

sin

(√
c2 T

2

)
= sin

(
∆ϕ

2

)
sin θ0. (B.23)

B.2.2 Non-geodesic motion

For the non-geodesic case we use the general result of (4.5) to get that

ϕ̇ = sec θΩ⇒ ϕ (t) = sec θΩ t+ ϕ∗ and θ̇ = 0⇒ θ (t) = θ∗ (B.24)
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where {ϕ∗, θ∗} are integration constants. We now impose the following boundary conditions

θ(0) = θ(T ) = θ0, ϕ(0) = ϕ0, ϕ(T ) = ϕ0 + ∆ϕ, (B.25)

which are the same as in the geodesic case. This picking then yields

θ∗ = θ0, ϕ∗ = ϕ0, and Ω =
cos θ0 ∆ϕ

T
. (B.26)

Furthermore, using (4.6) the non-geodesic field distance becomes

[∆φ]NG = R sin θ0 ∆ϕ. (B.27)

Finally, using (B.21), (B.27), and the relation (B.23) we may finally state that

[∆φ]G = 2

√
2

|R|
sin−1

[
sin

(
1

2 sin θ0

√
|R|
2

[∆φ]NG

)
sin θ0

]
, (B.28)

where we have used that R =
√

2
|R| . Equation (B.28) may be casted as

[∆φ]G
Λg

= z
(

[∆φ]NG

Λg
, θ0

)
where z (x, θ0) ≡ sin−1

[
sin

(
x

sin θ0

)
sin θ0

]
and Λg = 2R.

(B.29)

We observe, for example, that when θ0 = π
2 ,

[∆φ]NG = [∆φ]G + 2 nπΛg where n ∈ N0, (B.30)

which indeed makes sense, since when confined to the Equator the two distances necessar-
ily coincide, up to “windings”, which in the context of inflation, are unphysical.20 Again,
though we have found a relation between the geodesic and non-geodesic trajectories, it is not
monotonically growing, 1-to-1, and independent of initial conditions, features only enjoyed
by the hyperbolic geometry.
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