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a b s t r a c t

Similarity join is a key operation in metric databases. It retrieves all pairs of elements that are
similar. Solving such a problem usually requires comparing every pair of objects of the datasets,
even when indexing and ad hoc algorithms are used. We propose a simple and efficient algorithm
for the computation of the approximated k nearest neighbor self-similarity join. This algorithm
computes Θ(n3/2) distances and it is empirically shown that it reaches an empirical precision of
46% in real-world datasets. We provide a comparison to other common techniques such as Quickjoin
and Locality-Sensitive Hashing and argue that our proposal has a better execution time and average
precision.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The self-similarity join in metric spaces is a relevant operation
in many domains such as, multimedia retrieval [1,2], the creation
of similarity graphs [3,4], pattern recognition [5], and even others
outside the computer sciences such as protein similarity compu-
tation [6]. Given a set of objects D ⊆ U, the self-similarity join
D ▷◁s D is defined as the problem of finding all pairs (x, y) such
that x, y ∈ D, x ̸= y and x is similar to y using similarity criteria s.
A naïve implementation for solving this problem, called a nested-
loop, can be as costly as O(n2) similarity comparisons, where
|D| = n. Similarity is often measured with (metric) distance
functions. The pair of the universe of objects and a metric function
(U, δ) is called a metric space.

The notion of similarity is diverse and depends on the context
of the problem, the nature of the objects and the application to
develop. In this paper we focus on metric-based similarity, this is,
where dissimilarity is measured using metric distance functions
calculated among the objects. Similarity criteria can be range-
based or nearest neighbor-based. The first one retrieves all pair
of objects with a distance below a threshold. The second one,
retrieves a fixed number of objects that are the closest to every
object. We argue that for a user to define a distance threshold can
be odd, since it will greatly depend on the user’s knowledge of the
metric space and its the distance distribution. On the other hand,
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to set a number of similar objects can be more easily expressible
and does not require a deep understanding of the metric space.
For instance, retrieve all images that are at a distance lower than
three could be more abstract and less intuitive than retrieve the
three images most similar to this one.

The properties of the metric distances allow us to prune el-
ements from comparison when computing a self-similarity join.
The pruning can be achieved, for instance, by building indices
over the objects and discard complete regions of the space, thus
saving computation time. However, there are interesting scenar-
ios where building an index is impractical. For example, while
resolving similarity queries in image databases after applying a
semantic filter: here, the execution plan for such a query should
be to first retrieve all the images that satisfy the filter and then
compute the self-similarity join among such images. In this case,
building an index is pointless since it will not be used again unless
we are computing the exact same query, which is the case for
most queries of this kind.

A current algorithm for range-based self-similarity join that
has proven to be effective is Quickjoin [7]. This algorithm recur-
sively divides the space until the formed groups are small enough
to make a nested loop. It also keeps window partitions to check
if relevant pairs are sorted into different regions. The complexity
of Quickjoin depends on the fraction of elements that lie in these
window partitions. The bigger the fraction, the bigger the chance
the algorithm needs to compute a quadratic amount of distances.
As far as we know, it is not available a generalization of this
algorithm for kNN-based self-similarity joins. [8] proposes to run
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Quickjoin two times in order to find the k closest pairs of objects
in a set, which is not what is required for this problem.

In this paper we present a simple algorithm that computes
an approximation of the k nearest neighbor self-similarity join
problem in metric spaces. Our algorithm is a generalization of a
previous work that presented an heuristic for solving the 1NN
problem [9]. The algorithm presented here computes Θ(n3/2)
distances even in the worst case and gives an approximation with
up to 46% of precision for 1NN self-similarity queries and 39% for
16NN. We show how the algorithm performs with three differ-
ent real datasets: the English dictionary, very high-dimensional
deep-feature vectors, and a massive collection of classic visual
descriptors.

The rest of the paper is organized as follows: Section 2 for-
malizes the definitions and notions needed to follow the work.
Later, Section 3 reviews the related work on similarity joins.
Section 4 describes the proposed algorithm, along with its pa-
rameters, complexity and implementation. Section 5 shows an
experimental evaluation of the algorithm. Section 6 concludes the
paper with final remarks and discussion of future work.

2. Preliminaries

The concepts, definitions and principles regarding similarity
search and similarity join that are necessary to follow the work
are presented in this section.

We focus on similarity joins in metric spaces. A metric space is
a pair (U, δ), where U is the universe of objects, and δ : U×U→
R+0 is a metric distance function, i.e., is symmetric (δ(x, y) =
δ(y, x)∀x, y ∈ U), provides that two objects at distance 0 from
each other are identical (δ(x, y) = 0 ⇒ x = y), and holds the
triangle inequality (∀x, y, z ∈ U, δ(x, y) ≤ δ(x, z)+ δ(z, y)). Metric
distances are commonly used as similarity measures, where two
objects that have a low distance between them have a higher
similarity than those further apart.

There are mainly two types of similarity queries in metric
spaces (U, δ), given a query object q ∈ U and a database D ⊆ U.
Range queries aim to find all objects in the database that are at
distance at least ε from the query point:

Qε(D, q) = {r ∈ D, δ(r, q) ≤ ε}.

Nearest neighbor queries aim to find a subset of k objects that
have the lowest distance to q, i.e.

Qk(D, q) = X ⊆ D, |X | = k,∀r ∈ X, r ′ ∈ D− X : δ(r, q) ≤ δ(r ′, q).

Along the same lines, the database operation of similarity join
can be defined between two given databases S and T :

S ▷◁ T = {(s, t)|s ∈ S, t ∈ T , s ̸= t ∧ s is similar to t}.

Here, the predicate is similar to implies that there is a met-
ric distance involved and a required kind of similarity query,
whether range or nearest neighbor queries.

A special case of similarity join occurs when S = T and it is
called self-similarity join and the definition is the same than in a
regular similarity join.

The complexity of the algorithms that solve this join is usually
measured in terms of the number of distances that must be
computed. The brute-force algorithm that resolves a similarity
join is called Nested-Loop and computes the distances from all
the elements of T to all the elements of S, thus computing a total
of |T | · |S| distances. If the join is a self-similarity join, the fact
that metric distances are symmetric can be exploited to reuse
previously computed distances, in which case, the Nested-Loop
will compute

(
|T |
2

)
distances. Further pruning in the distance com-

putation can be made taking advantage of the triangle inequality:
if δ(x, y) and δ(y, z) are known, we can skip the computing of

δ(x, z) if δ(x, y) + δ(y, z) > r where r = ε in range queries, or is
the current maximum minimum distance found in kNN queries.

For the sake of computational speed, several approximated
techniques have been developed. We call the result of an ap-
proximated similarity query as Qa. From here on, we focus on
kNN queries, therefore Qa(D, k, q) is an approximation of Qk(D, q).
The correctness of such a technique can be measured in terms of
its precision, and the distance difference between the actual kth
nearest neighbors and the reported ones. Precision is defined as
the ratio of correctly found neighbors and the number of desired
neighbors:

prec(D, k, q) =
|Qk(D, q) ∩ Qa(D, k, q)|

k
.

Distance difference is measured with respect to the ith nearest
neighbor, for 1 ≤ i ≤ k. Usually the sum of all ratios is used:

diffi(D, q) =
δ(q,Qa(D, k, q)i)
δ(q,Qk(D, q)i)

.

3. Related work

During the past years, several algorithms, heuristics, and data
structures for solving the various types of similarity joins have
been proposed. In this section, we review the related literature.

Gionis et al. [10] proposed the Locality-Sensitive Hashing
(LSH). This method hashes all objects using functions that ensure
that objects that are closer in the metric space have a higher
collision probability than those further apart. A kNN query (x, k)
is processed by hashing x and retrieving the elements that collide
with it. For the purposes of LSH, Datar et al. [11] propose to
use random hash functions taken from a p-stable probability
distribution in order to mimic the behavior of an Lp distance.
LSH can be used to implement a kNN self-similarity by using all
objects in the dataset as query object for the kNN search.

Böhm and Krebs [12] identified the kNN join as an important
database primitive for implementing data mining methods. They
proposed an algorithm for computing the kNN join using the so-
called MuX index. Their algorithm and methods are focused on
solving the kNN join on vector spaces, aiming at minimizing CPU
and I/O costs.

Jacox and Samet [7] proposed the Quickjoin algorithm for
similarity joins. It divides the space in ball cuts using data points
as pivots. Given two pivots, it uses one as a center and the
distance between them to define a radius. Then, it splits the
data into the vectors inside and outside the ball, then proceeds
recursively until the groups are small enough to perform a nested
loop. It keeps window partitions in the frontier of the ball in case
there are pairs relevant for the result where each vector ends
in different partitions. Quickjoin is shown to have a complexity
of O(n(1 + w)⌈log n⌉), where w is the average of the fraction of
elements lying within the window partitions. Hence, it has a
quadratic worst case. Quickjoin was intended for range-based
similarity joins, however, Fredriksson and Braithwaite propose
several extensions to Quickjoin [8], including an algorithm for
kNN similarity join which runs Quickjoin two times over the
data and returns the correct results given a set of assumptions:
a correct parameter for the termination of the recursion, the
join being a self-join, and balanced partitioning. However, the
definition of kNN similarity join presented in [8] is in fact a k-
Distance join: it is intended to compute the k pairs of objects
in the entire dataset that are the closest in the defined space.
Instead, we propose that for each element of the dataset we find
its k nearest neighbors.

Yu et al. [13] propose a dynamic method so called kNNJoin+
for kNN similarity join. This method has the ability to deal with
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data updates, and it focuses mainly with high-dimensional data.
It also allows one computing reverse kNN queries.

Yao et al. [14] proposed kNN and kNN-join algorithms that
can be implemented using SQL primitives. Their algorithms do
not depend on the distance function defined by the user. This
allows them to take advantage of the query optimizer that can
produce an efficient query plan. Their proposal support exact and
approximate similarity searches and kNN-joins. Their work only
considers vector spaces with Lp norms.

Lu et al. [15] propose an algorithm for computing a kNN join
using MapReduce. It divides the objects into groups, choosing
the center from one dataset and use them to partition the other
dataset. The division into groups is done using a Voronoi partition.
At each partition, the algorithm keeps track of the closest objects
to the center of the partition and it stores the maximum and
minimum distance from the objects to their respective parti-
tion center. Each of these groups is processed by a reducer for
computing the kNN join. The algorithm may replicate objects in
several groups for obtaining the exact answer. Other methods
for computing similarity joins based on MapReduce have been
proposed by Silva and Reed [16], Wang et al. [17], Song et al. [18],
Rong et al. [19], Chen et al. [20], Cech et al. [21], and Moutafis
et al. [22].

Pearson and Silva [23] propose an algorithm based on similar-
ity searches for the case of similarity joins. The algorithm is an
extension of the eD-Index [24], and it supports a join operation
over two individually indexed datasets. The authors also proposes
how to fine tune the parameters of the eD-Index. The main idea
of the algorithm is to index each of the dataset independently
with a D-index. Both indexes share the same structure, use the
same number of levels, and the same pivots for each level. Then,
they use the similarity join algorithm proposed for the self-join
over the D-index. The original algorithm is modified so that each
pair given as part of the result contains an object from a different
dataset.

Chen et al. [25] propose index structures for range joins in un-
certain metric data. Given two sets U and V of uncertain objects,
a distance function d, a parameter r and a probability threshold
θ , a probabilistic range join returns all pairs of uncertain objects
(u, v) ∈ U × V such that Pr(d(u, v) ≤ r) ≥ θ . For computing
the probabilistic range joins, they define two index structures
for secondary memory, the so-called ‘‘uncertain pivot B+ -tree’’
(UPB-tree) and the ‘‘uncertain pivot B+ -forest’’ (UPBforest). Both
indexes are based on the B+ -tree.

Finally, in our previous work [9] we propose an heuristic for
computing approximated 1NN self-similarity join. The algorithm
consists in selecting

√
n centers, form

√
n groups of size O(

√
n),

and finally it performs a nested loop on each group separately.
The algorithm computes Θ(n3/2) distances and has an average
precision of 31%, where 80% of the answers lie within the actual
10NN.

4. The algorithm

The algorithm here presented is a generalization of our pre-
vious work [9], extending self-similarity joins from 1NN to kNN
and improving its performance. Given a dataset D, with |D| =
n, and a metric function δ, the algorithm selects

√
n objects as

centers, where each center defines a group. Then, the algorithm
distributes the remaining objects into the groups such that each
object is in the group with the closest center, with respect to
distance δ. Groups have a maximum size of c

√
n objects, where

c is a parameter. Given the size restriction, if the group where
an object should be sorted into is already full, then it is sorted
into the next closest group. The criteria for selecting the centers
and the algorithm to form the groups can be re-defined by the

Algorithm 1: Algorithm for approximated kNN
self-similarity join.

Data: Data, a set of objects; c an integer; k the number of
neighbors to find

Result: result , a set of pairs of objects
1 centers← select_centers(Data);
2 groups← partition(Data, centers, c);
3 result ← φ ;
4 for group ∈ groups do
5 for e ∈ group do
6 do
7 target ← group ∪ next_closest_group(e);
8 while |target|< k;
9 partial← get_kNN(k, e, target);

10 result ← result ∪ partial ;
11 end
12 end
13 return result

users. When grouping is finished, the algorithm searches for the
k nearest neighbors of each object from a fixed set of candidates:
the group of the current object and another group that is the
closest to the object.

Algorithm 1 presents the pseudo-code for the proposed al-
gorithm. Routines select_centers and partition choose the
√
n centers and assign the remaining objects into the groups re-

spectively. For each element in a group, the target set is formed to
contain the suitable kNN candidates. The next_closest_group
subroutine finds a group, different from the current one, that is
closest to the element e. This means, obtain the group G such
that δ(G.center, e) − G.radius is minimum. The get_kNN routine
computes the distance between an object e and all elements in
target , keeping the approximated k nearest neighbors of e.

For the purposes of this work, centers are chosen at random.
There are techniques for choosing evenly distributed objects in
metric spaces [26] that can be applied at this point; however,
the maximum distance of the metric space must be known be-
forehand, a parameter must be fine-tuned, and it is not provided
with a way to select the number of objects chosen, it relies in
the intrinsic dimensionality of the space. Yianilos, along with the
definition of the VP-trees, describes a way to choose elements as
far apart as possible considering the mean and standard deviation
of the distance distribution of a subset of the elements [27];
however it requires further parameters to select a subsample of
the objects to compute the mean of the distances among them
and maximizing the standard deviation.

We propose that the partition process, given a set of centers,
tries to assign each object into the group of the closest center
if it has space; if not, the object will be assigned to the second-
closest group, if it is also full the algorithm will attempt with the
next closest, and so on until the object is assigned. The maximum
size of the groups is c

√
n, where c ∈ O(1) is a parameter, usually

lower than 10. Fig. 1 shows a 2D example of how the partition of
the elements can change as the value of c increases: 5 thousand
randomly-generated points are distributed into 71 groups, shown
with different colors. Above each graph, the respective value of c
is presented. It can be seen that when c = 1 the groups do not
have clear boundaries separating each other, and as c increases to
2 and 3, the groups seem better-defined and well-separated from
the others. Using higher values of c do not show much change in
the partition results; however, in higher dimensions it can have
an impact. Other partition criteria can be used, as long as the
number of centers and maximum size of groups remain as O(

√
n).

We attempted to assign each object to the group that needed to
grow the least in order to include it; however we found that the
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Fig. 1. Example results of the group partition algorithm.

Algorithm 2: Proposed partition strategy
Data: data, the set of elements; centers, the list of centers; c the

constant for max size of groups
Result: groups, a list of sets that partition the data

1 groups[i] ← {centers[i], ∀i, 0 ≤ i < |centers|};
2 maxSize← c

√
|data|;

3 for obji ∈ data do
4 D← φ ;
5 for centerj ∈ centers do
6 D← D ∪ δ(obji, centerj);
7 end
8 sort(D[i]);
9 bestGroup← the group of the center in D[0];

10 repeat
11 if not isFull(bestGroup) then
12 bestGroup← bestGroup ∪ {obji};
13 else
14 bestGroup← the group of the center in next(D);
15 end
16 until obji is added to a group;
17 end

first group to accept an object is filled until its maximum capacity
before allowing other group to enlarge; therefore, it causes that
the groups become less compact, which is a consequence of the
curse of dimensionality (variance of the distances diminishes
with dimension increasing). Algorithm 2 presents the pseudo
code for the partition process that uses the first described criteria.
We improve the efficacy of the algorithm by computing exactly
the kNN of each center, since the distances from all objects to all
centers are known after this step.

4.1. Complexity analysis

In this section, we discuss the complexity of the algorithm
in terms of the number of distances it computes. We propose
that given a reasonable constraint on the number k of nearest
neighbors, our algorithm computes Θ(n3/2) distances. We also
show that, unlike other algorithms [28], the constant factor of the
complexity does not depend exponentially on the dimension of
the space.

Theorem 4.1. The proposed algorithm for approximated kNN self-
similarity join computes Θ(n3/2) distances if k ≤ c

√
n, where c ∈

O(1).

Proof. The random selection of
√
n centers does not involve

distance computations. In the partition phase, we compute the
distance between all the centers and all the remaining objects,
being in total (n−

√
n) ·
√
n = n3/2

−n = Θ(n3/2) distances. In the
next phase we compute the distance between each object q and
all other objects in its own group and the next group closest to q
which are called the target set of q. The combination of those two
groups has size of at least c

√
n and at most 2c

√
n which are by

definition larger than k. A sequential scan is performed for each
object against its target set. Therefore, computing n sequential
scans requires at least n · c

√
n distances, and n · 2c

√
n distances

at most, which is Θ(n3/2) complexity, and proves the result. □

4.2. Implementation

The algorithm is implemented in Python and is publicly avail-
able.1 The module contains a main function called self_sim_
join that receives a matrix with the data, in the case of vector
objects, or a filename where to read in the case of strings. The
method also receives the parameters c and k. The function first
calls to a sub-routine for the random selection of the

√
n centers

which are then separated from the rest of the data. Later, the
groups are formed using the aforementioned criteria computing
the distances between the centers and all other objects. For
optimization and precision purposes, it stores relevant similarity
relations among the centers and the rest of the data. Nearest
neighbor candidates are stored in priority queues, one per each
object, so whenever a closer object is found it replaces the current
candidate at the furthest distance. In the final stage, for each
group and for each element in the group a sequential search is
performed: the element is compared against all others in its own
group and all elements in the one other group that is closer; in
the rare case that both groups combined do not have k objects,
further groups are added until there are at least k. As per before,
every time a better candidate for nearest neighbor is found in
the sequential scan the object is added to the queue, as the
further candidate is removed. Finally, the set of priority queues
is returned as the result of the join.

1 https://github.com/scferrada/self-sim-join.

https://github.com/scferrada/self-sim-join
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Table 1
Average precision of the algorithm for the different datasets, values of c and
values of k.
Dataset c k = 1 k = 4 k = 8 k = 16

DECAF

1 18.15% 17.22% 16.32% 15.48%
2 31.75% 30.26% 28.65% 27.25%
3 37.94% 35.69% 34.26% 32.38%
10 44.31% 41.41% 39.14% 38.19%
100 44.80% 41.93% 40.31% 37.79%
1000 45.16% 41.92% 41.21% 38.49%

HOG

1 20.18% 18.90% 18.06% 17.16%
2 36.80% 34.32% 32.80% 31.10%
3 42.18% 39.53% 37.89% 35.29%
10 45.77% 42.77% 41.29% 38.94%
100 45.74% 42.68% 40.97% 38.81%
1000 46.00% 42.84% 41.06% 39.03%

STRINGS

1 15.54% 15.86% 15.08% 13.24%
2 23.66% 24.55% 23.08% 20.11%
3 24.68% 26.29% 25.46% 22.56%
10 25.07% 25.87% 25.06% 22.92%
100 25.82% 26.71% 25.25% 22.45%
1000 24.64% 26.92% 24.05% 22.16%

5. Evaluation

In this section we describe the experimental design used to
test the algorithm. We present and discuss the results obtained.
We finish by comparing the algorithm to others.

5.1. Experimental settings

We tested our algorithm on three real-world datasets:

• STRINGS: 46,801 words from the English dictionary, using
edit distance, and considering only words with 4 or more
letters.
• HOG: 928,276 visual feature vectors of 72 dimensions, taken

from the IMGpedia dataset [4]. We use Manhattan distance
to compare.
• DECAF: 39,327 deep-visual features DeCAF7 [29] of 4092

dimensions compared with Manhattan distance.

We run the algorithm 100 times on each dataset, computing
1, 2, 8 and 16 nearest neighbors self-similarity join. We use six
values of c: 1, 2, 3, 10, 100 and 1000. All experiments were
executed on a machine with Debian 4.1.1, a 2.2 GHz 24-core
Intel R⃝ Xeon R⃝ processor, and 120 GB of RAM.

5.2. Average precision

Table 1 shows the average precision of the algorithm for each
dataset and value of k and c . The average precision of the algo-
rithm increases as the value of c increases. The biggest increment
occurs between c = 1 and c = 2 where the precision increases
about 14% in the vector spaces and about 8% in strings. When c =
3 the average precision increases only around a 5.5% versus c = 2
in the vector spaces, and only 1% in strings. For higher values of
c , average precision also increases but variance increases as well.
This increase in variance explains why in some cases the average
precision using c = 100 or 1000 is not much better than with
c = 10. Thus, we propose that an optimal value for c is between
2 and 10.

The average precision also decreases as the number of re-
quested nearest neighbors increases. This is because having more
elements to find increases the chances for the algorithm of find-
ing wrong ones. For c = 3 we report a difference of almost 7% of
precision in the HOG dataset between finding 1NN and 16NN; this
difference is of 5.5% in the DECAF dataset, and 2% in the STRINGS

dataset. For higher values of c this trend is also present with the
precision dropping between 1 and 2 percent when k increases
from 8 to 16.

The difference between the precision of the algorithm in the
vector spaces can be explained by the dimensionality of the data.
As HOG is a 72-dimensional space and DECAF a 4098-dimensional
space, the distribution of distances is greatly different between
both datasets, presenting a low mean and high variance the for-
mer and a high mean and a low variance the latter. That behavior
is known as the curse of dimensionality. As the dimension grows
the quality of the results might become less satisfactory. The issue
of the quality of a kNN query result in very high-dimensional
spaces is discussed by Hinneburg et al. [30] where they define a
quality metric and compare different metric distances, concluding
that Manhattan distance usually retrieves better quality results
than other Lp distances.

The average precision of the algorithm using the STRINGS
dataset, with edit distance is worst than when using the other
two datasets. This is mostly because when employing discrete
distances it becomes odd to talk about nearest neighbors since
more than k elements can be at an exact given distance d. In
such a case, which elements should be retrieved? Are those
elements chosen by the brute-force algorithm aligned with those
chosen for our algorithm? The answers to these questions depend
on assumptions that must be made beforehand, redefining the
nearest neighbor search. Hence, the results over the vector spaces
with continuous distances are better than in string spaces with
discrete distances. This kind of behavior also explains that in the
STRINGS dataset the precision increases from k = 1 to k = 4.

5.3. Precision distribution

We present the distribution of the number of correctly found
nearest neighbors per object. To obtain this, we used 100 runs
of the algorithm using DECAF dataset and compute the number
of correct matches per object in the search for the 16 nearest
neighbors. Fig. 2 shows histograms that display the percentage
of elements that have i correctly found neighbors, being i a bin
of the histogram. A histogram of the ground truth would show
a single bar on the sixteenth bin with length 1. We see that
the distributions are single-peaked and skewed right. The figure
also presents an outlier peak in the last bin (the elements for
which the algorithm finds all correct 16NN). When c = 1 the
results tend to be poor, being most of the elements matched with
none of its actual 16 nearest neighbors. When c increases, the
results improve remarkably: the elements with 0 matches de-
crease considerably and the distribution becomes more uniform.
With higher values of c we see further improvement, however the
marginal increase in precision is not substantial when increasing
the group size given that the distributions for c = 10,100 and
1000 are similar. In general, around a 7% of the objects are always
matched with none of their actual 16NN.

5.4. Execution time and distance calculations

Fig. 3 presents the execution time for the algorithm in the
different experimental settings. Times are provided as an aver-
age and a variance, since multiple runs of the experiments are
considered. It can be seen that the variance of the execution time
increases greatly with c due to the potential formation of a few
massive groups and many small groups, where the search in big
groups dominates the time. Since computing distances is more
expensive as the dimension of the space increases, DECAF average
times are higher than HOG times for higher values of c . When
considering low values of c time depends mostly on the size of
the dataset and the dimensionality of the objects; however, as
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Fig. 2. Distribution of the number of correctly found 16-NN using DECAF dataset.

Fig. 3. Execution time for each dataset, c and k.

c increases the dependency of execution time on the number
of objects becomes less clear. The number of required nearest
neighbors does not seem to correlate with the final execution
time when k is much lesser than

√
n.

As per the number of computed distances, Fig. 4 shows the
values in logarithmic scale for each dataset and value of c. In
all datasets, the average number of distances increases with c ,
as well as the variance. The last bars of the graph present the
distances computed by a brute force approach. In DECAF dataset,
the increase is more remarkable due to the high dimension of
the space. Average number of distances in DECAF space is even
greater than the one of STRINGS, despite of being a smaller set.

When comparing the number of computed distances with the
execution time, we can conclude that distance computations are
more time consuming when the dimension of the space gets
higher, thus dimension has a greater impact on computation time

even than the size of the dataset: the algorithms takes much more
time in DECAF than in HOG, when DECAF is much smaller than
HOG. Finally, when comparing with a brute force approach we
can see that our algorithm takes up to 3 less orders of magnitude.

5.5. Center selection strategies

Results in previous sections consider a random selection of
centers. Here we present results using a more sophisticated tech-
nique. In Section 4 two approaches where discussed: the auto-
matic pivot selection of Brisaboa et al. [26] and the sampling
technique of Yianilos [27]. The former technique cannot be ap-
plied to this algorithm since it does not contemplate a way to
define the number of pivots to be returned. The latter approach
requires to set a sample size, among the objects of the sample it
selects those that have the greatest spread w.r.t. all other objects.
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Fig. 4. Computed distances per c value and per dataset.

Algorithm 3 presents the pseudo-code of the strategy. It gets
c
√
n random objects to be candidate centers (original work pro-

poses constant size samples). Each of the candidates is compared
with another random sample of the same size as previous sample,
the median and standard deviation of the distances is computed.
Using a max-heap, we keep the objects that have the maximum
standard deviation and return them as centers. Fig. 5 presents
how 5 thousand random points distribute into 71 groups with
this strategy for the different values of c , it can be seen that well-
formed groups appear with c = 10 and are mostly unchanged
with higher values.

Algorithm 3: Center Selection Strategy based on Yiani-
los [27]

Data: data, the set of elements; c the constant for max size of
groups

Result: centers, a list of the objects chosen as centers
1 centers← φ;
2 candidates← Heap({(⊥, 0) ∀i ≤ c

√
|data|});

3 N ← c
√
|data|;

4 sample← choose_random_noreplace(data,N);
5 for obji ∈ sample do
6 D← choose_random_noreplace(data,N);
7 dist ← distance(obji,D);
8 µ← median(dist);
9 σ ← stdv(dist − µ);

10 if σ > candidates.peek1 then
11 candidates.pop− push((obji, σ ));
12 end
13 end
14 centers← candidates;
15 return centers;

We tested our algorithm selecting
√
n objects with Yianilos

technique. We run the algorithm several times using the HOG
dataset, k = 4 and c = 1, 2, 3, 10, 100, 1000. Results can be
found in Table 2, where it can be seen that the achieved average
precision of the algorithm is consistently worst using vp-tree-like
center selection than with a random selection, even with high
values of c where, as it can be seen in Fig. 5, groups are well-
delimited the precision drops to ∼12%. Further experimentation
can be done: using increasingly larger samples of the data could
yield better results. Nonetheless, we explain the poor perfor-
mance of Yianilos technique by the reasoning that is given in their
work: vantage points are meant to be close to the corner of the
space so those points are more useful to divide the space evenly,
which is a different task than to group objects closer together.

Table 2
Average precision of the algorithm using vp-tree-like center selection.
Dataset k c = 1 c = 2 c = 3 c = 10 c = 100 c = 1000

HOG 4 18.98% 31.29% 31.25% 11.94% 12.04% 12.08%

5.6. Comparison with other similarity join algorithms

We found that, for range-based similarity joins, Quickjoin
is widely used [31,32]. Quickjoin was extended to support k-
distance joins [8], i.e., to obtain the kminimum distances between
the elements of a dataset. We propose another extension that
builds upon the k-distance join and computes a kNN join. As it is
defined in [8], we run Quickjoin twice. The first time, we perform
a range-based similarity join with ε = 0 where we collect the
k nearest neighbors found in that setting, which is an approxi-
mation of the real answer. The second run uses the maximum
distance found for a candidate nearest neighbor as the value for
ε, the value can be decreased over time, whenever the maximum
candidate distance decreases. Using such an algorithm carries
two problems regarding efficiency and efficacy. The first run of
Quickjoin does not necessarily computes at least k distances per
element, which can affect the precision by not getting a more
fit boundary. Since the maximum distance found in the first run
is usually near the average distance of the space (especially in
very high-dimensional spaces due to the curse of dimensionality),
the window partitions of Quickjoin contain a high fraction of the
objects, which implies that the time it would take will be closer
to quadratic.

We use this extension to Quickjoin to compute kNN self-
similarity joins. Quickjoin requires a parameter c that represents
the minimum number of objects in a partition so it can be pro-
cessed with a nested loop. We run the algorithm 100 times using
the DECAF dataset, k = 4 and c as 0.1% of the data. We use only
this scenario due to time and memory constraints: The execution
of this scenario takes 7 days using multiple threads, and with
higher values of k the algorithm finishes for lack of memory (this
happens mostly because of the window partitions replicating
the data). This modified version of Quickjoin reaches a 29.49%
average precision, compared with 35.69% of our algorithm in the
same scenario. Our algorithm is also faster, it takes 47.5 min in
average to complete one run over the DECAF dataset, whereas
modified Quickjoin takes around 19 h (again, this is due the size
of the window partitions, which increases greatly the number of
required recursions).

LSH requires several parameters: The number of hashtables
to be used, the number of hash functions of each table, and the
parameters for the hash functions. We followed the suggestion of
Datar et al. [11], and use 30 tables with 10 hash functions, and for
each function we draw a standard Cauchy distribution parameter
and a uniformly distributed parameter. Using this setting with the
DECAF dataset gives a poor performance of the algorithm in terms
of average precision, reaching only a 8.15% for k = 1 and 5.62%
for k = 16. We argue that this poor precision has to do with
the parameter selection, which requires to be fine-tuned, but it is
mostly due to the high dimension of the space, which implies that
the locality is not well captured by the proposed hash functions.

6. Conclusions

We presented an heuristic to solve the approximated kNN self-
similarity join in metric spaces. We proved it requires Θ(n3/2)
distance computations. We provided an open implementation
and tested it using three real world datasets, where we found
it can reach up to 46% precision. We present performance met-
rics, namely the execution time and the number of computed
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Fig. 5. Partition of random 2D points using center selection of Yianilos [27].

distances, and we discuss how the size and dimension of the
datasets affects the performance of the algorithm. We discuss
how the algorithm can be compared to a modified version of
Quickjoin, that supports kNN self-similarity joins, and to LSH and
we provide scenarios where our algorithm outperforms them in
terms of execution time and average precision. The algorithm is
also tested using a different center selection technique, which
was found to worsen its efficacy.

The algorithm here described can prove useful for cases where
building and storing an index is purposeless and/or there are time
restrictions to get a fast answer. An example of such a case is
multimedia similarity search on the Web, where queries tend to
be unique.

This work can be further improved by using a center selection
algorithm that allows the formation of less overlapping groups. It
can also be included a multiple association of objects to groups,
allowing objects to belong to more than one group under a set
of conditions that respect the complexity of the algorithm. The
definition of a better kNN self-similarity join Quickjoin-based
algorithm can be helpful to have a more fair comparison to our
algorithm or even to further improve the state-of-the-art in terms
of precision and execution time.
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