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Abstract Dealing with imbalanced datasets is a recurrent

issue in health-care data processing. Most literature deals

with small academic datasets, so that results often do not

extrapolate to the large real-life datasets, or have little real-

life validity. When minority class sample generation by

interpolation is meaningless, the recourse to undersampling

the majority class is mandatory in order to reach some

acceptable results. Ensembles of classifiers provide the

advantage of the diversity of their members, which may

allow adaptation to the imbalanced distribution. In this

paper, we present a pipeline method combining random

undersampling with bootstrap aggregation (bagging) for a

hybrid ensemble of extreme learning machines and deci-

sion trees, whose diversity improves adaptation to the

imbalanced class dataset. The approach is demonstrated on

a realistic greatly imbalanced dataset of emergency

department patients from a Chilean hospital targeted to

predict patient readmission. Computational experiments

show that our approach outperforms other well-known

classification algorithms.

Keywords Class imbalance � Hospital readmission �
Ensemble learning � Extreme learning machine

1 Introduction

In supervised classification, we say that a dataset is

imbalanced when the a priori probabilities of the classes

are significantly different, i.e., there exists a minority

(positive) class that is underrepresented in the dataset in

contrast to the majority (negative) class [8, 23, 27]. The

minority class can have the meaning of a rare event, such

as an alert condition, an intrusion in a security system, or a

disease in a population. Such situations appear in health

care as well as in many other fields, e.g., fraud detection,

cybersecurity, communications, fault diagnosis. Often the

minority class is the target class to be predicted because it

is related to the highest cost/reward events [15]. Most

classification algorithms assume equal a priori probability

for all the classes, or equivalently equal cost to errors in

classification, so that when this premise is violated, we find

that the resulting classifier is biased toward the majority

class. It has a higher predictive accuracy over the majority

class, but poorer predictive accuracy over the minority

class. A measure of class imbalance is given by the

imbalance ratio (IR), defined as the ratio of the number of

instances in the majority class and the number of those in

the minority class. Some studies have shown that conven-

tional classifier performance deteriorates even with mod-

erate imbalance ratios [17].

Readmissions to a hospital service are recurrent

admissions of a patient with in between times are smaller

than a set threshold. For instance, 30 days have been set as

the standard threshold for readmission in the USA. Read-

missions are becoming a strong concern of hospitals as a

measure of the quality of given care [25], springing new

interventions and measures, such as networking social care

and health institutions, and developing predictive tools

allowing to preventive measures [2]. Despite the number of

& Manuel Graña

manuel.grana@ehu.es

Arkaitz Artetxe

aartetxe@vicomtech.org

1 Vicomtech-IK4 Research Centre, Mikeletegi Pasealekua 57,

20009 San Sebastián, Spain

2 Computation Intelligence Group, Basque University (UPV/

EHU), P. Manuel Lardizabal 1, 20018 San Sebastián, Spain

3 CEINE, Universidad de Chile, Av. República 701, Santiago,

Región Metropolitana, Chile

123

Neural Comput & Applic (2020) 32:5735–5744

DOI 10.1007/s00521-017-3242-y

http://orcid.org/0000-0001-7373-4097
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3242-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3242-y&amp;domain=pdf


studies carried out on readmission prediction, some authors

claim that most of the current predictive models based on

administrative and clinical data discriminate poorly on

readmissions [12, 19], may be due to fact that the data are

poorly discriminant by itself.

The current approach to readmission risk prediction is to

build specific one-class or two-class classifiers from

available data. However, readmission events are rare

events; therefore, the training has to deal with a class-

imbalanced dataset [4]. Unfortunately, still most of the

literature on readmission prediction does not take into

account this fact.

In this paper, to mitigate the effect of imbalanced data

we employ an ensemble method that embeds a resampling

strategy (random undersampling) within each of the boot-

strapped replica of the original dataset. Then, each

resampled dataset is used to train an ensemble classifier

couple composed of a decision tree and a extreme learning

machine. Extreme learning machines (ELM) [11] have a

great appeal, despite their lack of stability, because of their

very quick learning. In addition, decision trees, which have

proven to perform well in a wide range of domain, produce

human-interpretable models, which is a desirable charac-

teristic in a clinical domain. The final classifier is an

ensemble of these coupled classifiers. The effect is that we

train the individual classifiers of the ensemble using almost

balanced datasets, achieving competitive results on the

imbalanced test dataset. Testing this approach on a highly

imbalanced clinical dataset, we achieve competitive results

in a experimental comparative study.

The paper is organized as follows. Section 2 presents

some relevant work on the issue of readmission risk pre-

diction. In Sect. 3 we present our dataset. Next, we briefly

describe the evaluation metrics and classifiers that we have

used to build our models. In Sect. 5 experimental results

are presented. Finally, in Sect. 6 we discuss the conclu-

sions and future work.

2 Related work

There are two basic approaches to deal with imbalanced

data [8]. One is to manipulate the data, either by under-

sampling the majority class or by oversampling (e.g.,

SMOTE [7]) the minority class, achieving a balanced

training dataset. Both approaches have been tried in the

literature with some variations. For instance, clustering the

data prior to train conventional classifiers allows to effi-

ciently reduce the data of the majority class without

damaging the statistical distribution [28]. On the other

hand, performing a Voronoi tessellation of the input space

[29] allows to identify the regions where the generation of

new samples by random resampling provides consistent

data generalization. In any case, the trained classifiers must

be validated against independent data sample following the

same distribution (i.e., imbalance ratio) as the original

dataset. The other approach is to tailor the classifier

architecture to cope with the imbalance data. For instance,

the approach proposed in [30] carries out the adaptation of

support vector machine (SVM) the kernel by conformal

transformations guided by the chi square test. Many

approaches rely on ensemble classifiers, such as the Ada-

boost and its combinations/variations [26]. Ensembles have

been used to improve the predictive power of binary

classifiers in the decomposition of multiple class-imbal-

anced problem into one-to-one decision problems [31].

Most studies about fundamental research on imbalanced

datasets have been carried out over small academic data-

sets; there are few studies involving as large as the one

considered here [8].

Readmission risk modeling has both economic and

health-care impacts. Identifying patients with higher risk of

returning after discharge before a critical time span, allows to

apply preventive interventions such as phone calls, home

visits or online monitoring. Most studies consider 30 days as

the threshold to qualify an admission as a readmission,

because of political criteria. Logistic regression is a standard

tool used for readmission prediction [1]. A systematic review

of risk prediction models for hospital readmission [12],

found that most studies are focused in specific conditions or

diseases, such as acute myocardial infarction (AMI) or heart

failure (HF) [1], concluding that readmission risk prediction

remains poorly understood and has achieved limited success.

A comparison of traditional statistical techniques and

machine learning methods to predict 30- and 180-day read-

missions (all-cause and HF-caused) [19] concludes that ML

methods can improve both discrimination and range of pre-

diction over traditional statistical techniques. The study

identifies the existence of class imbalance problems, dis-

cussing different techniques, namely random oversampling,

random undersampling and weight variation. The final

approach they took was varying the weight of the minority

class, i.e., readmit cases. Similarly, an ensemble composed

of a boosted tree and a SVM classifier was applied to predict

all-cause readmission of congestive heart failure patients

[24], employing a boosting algorithm as a way to reduce the

misclassification errors for imbalance datasets. Other

authors [32] use random oversampling to improve the per-

formance of several data mining approaches (neural net-

work, random forest and SVM) to predict hospital

readmissions, while others [21] apply undersampling and

bagging to create the training data. Some works [3, 18, 32]

apply simple data preprocessing approaches such as over-

sampling and undersampling. Finally, some works [13, 16]

combine boosting with data resampling, such as the boosting

and random undersampling (RUSBoost).
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3 Dataset description

The readmission dataset that we will treat in this paper was

collected at the EHR of the Hospital José Joaquı́n Aguirre

of the Universidad de Chile between 2013 and 2016. The

attributes recorded in the dataset are divided into three

main groups: (1) sociodemographic and administrative

data, (2) health status and (3) reasons for consultation or

diagnoses made at admission. After removing inconsistent

and missing samples, the dataset was composed of 99,858

instances. Missing values were imputed using the arith-

metic mean for continuous variables and the mode for

categorical variables. Table 1 shows the characteristics of

the dataset and the distribution of 72-h readmissions among

different variables.

For each admission of a patient to the ED, we cal-

culated the number of days elapsed since his last visit. In

order to build our model following a binary classification

approach, the target variable was set to readmission/not

readmission. Those patients returning to the ED within

72 h after being discharged were considered as a read-

mission; otherwise, they were considered as a normal

admission.

Figure 1 shows the distribution of readmission class

among some attributes of our dataset. Readmissions

(shown as green columns) are much less frequent than

normal admissions. Class distribution shown in Table 3

indicates a imbalance ratio (IR) of approximately 28,

which is a strong case of class-imbalanced data.

4 Methods

In this section, we present the classification algorithms that

we have used as well as the evaluation metrics employed

for measuring the performance of our models.

4.1 Classifiers

Decision trees (DT) and random forests (RF) [6, 20] are

built by recursive partitioning of the data space using some

quantitative criterion (e.g., mutual information, gain-ratio,

gini index). Tree leaves correspond to the probabilistic

assignment of data samples to classes. Often, a pruning

process is applied in order to reduce both tree complexity

and training data over-fitting. Ensembles of DT classifiers

were among the first been proposed, i.e., bagging [5] and

random forests [6]. Random forests are ensembles of DT,

where each individual DT is built on a bootstrapped

training data subset over a random subset of the input

variables. The majority voting rule applied to the ensemble

of outputs decides the input data class assignment.

Extreme learning machines (ELM) [10, 11] were pro-

posed as a very fast training algorithm for single-layer

feedforward neural networks (SLFN). The ELM avoid

gradient descent of the hidden layer weights by performing

a random sampling, equivalent to a random subspace

projection. The training problem reduces to the estimation

of the output weights by linear least squares resolution of

the network response minimizing the classification error,

often solved by the Moore–Penrose generalized pseudo-

inverse. Randomization of hidden layer weights introduce

training instability which has been tackled in many ways.

Naive Bayes methods are based on the naive assumption

that the components of the pattern vectors are statistically

independent, so that the posterior probability of the class

can be approximated by a product decomposition of the

likelihood of individual features. The Gaussian naive

Bayes (which we use in our experiments) assumes that the

likelihood follows a Gaussian distribution, where the mean

and standard deviation of each feature are estimated from

the sample.

4.2 Bagging ensemble method

As shown in Table 1, our dataset is highly imbalanced (IR

of 28.16); thus, we need to overcome the bias toward the

majority class. Since our dataset has more than 96,000

negative samples, undersampling the majority class may

achieve good results, while the risk of discarding crucial

information during undersampling is low. We have found

that oversampling methods, as SMOTE [7] or ADASYN

[9], perform better in low imbalance ratios. Moreover, we

experimentally found that the random generation of sam-

ples involving the qualitative variable that specifies the

case of the admission gives very bad results. We think that

oversampling qualitative or categorical variables is an open

issue.

Our method combines a class balancing preprocessing

technique (random undersampling) with bootstrap aggre-

gating, also known as bagging. Bagging [5] consists in

creating bootstrapped replicas of the original dataset with

replacement (i.e., different copies of the same instance can

be found in the same bag), so that different classifiers are

trained on each replica. Originally each new dataset or bag

maintained the size of the original dataset. Nevertheless,

underbagging and overbagging strategies embed a resam-

pling process, so that bags are balanced by means of

undersampling or oversampling techniques. To classify an

unseen instance, the output predictions of the weak clas-

sifiers are collected performing a majority vote in order to

produce the joint ensemble prediction. The purpose of this

combination is to create a model to classify imbalanced

data, improving the generalization capacity without sacri-

ficing overall accuracy. As shown in Fig. 2, our approach
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Table 1 Characteristics of the

dataset
Variable All patients Readmitted Not readmitted

n = 99858 n = 3425 n = 96433

Age, mean (SD) 41.0 (22.4) 36.1 (22.9) 41.2 (22.4)

Male sex (%) 44956 (45.0) 1624 (1.6) 43332 (43.4)

Daytime (%) 69321 (69.4) 2171 (2.2) 67150 (67.2)

Evaluation, mean (SD) 5.0 (3.3) 4.8 (3.5) 5.0 (3.3)

Fragility idx, mean (SD) 0.0 (2.5) 0.0 (2.3) 0.0 (2.5)

Triage (%)

I 182 (0.2) 2 (0.0) 180 (0.2)

II 12694 (12.7) 317 (0.3) 12377 (12.4)

III 77813 (77.9) 2718 (2.7) 75095 (75.2)

IV 9131 (9.1) 387 (0.4) 8744 (8.8)

V 38 (0.0) 1 (0.0) 37 (0.0)

Pathology (%)

Gineco-obstetrics 236 (0.2) 6 (0.0) 230 (0.2)

General medicine 77192 (77.3) 2458 (2.5) 74734 (74.8)

Pediatrics 7094 (7.1) 563 (0.6) 6531 (6.5)

Traumatology 15336 (15.4) 398 (0.4) 14938 (15.0)

Destination (%)

External center 3372 (3.4) 116 (0.1) 3256 (3.3)

Home 71999 (72.1) 2703 (2.7) 69296 (69.4)

Hospital 14700 (14.7) 61 (0.1) 14639 (14.7)

Left without being seen 9787 (9.8) 545 (0.5) 9242 (9.3)

Reason for consultation (%)

Cephalea 6421 (6.4) 192 (0.2) 6229 (6.2)

Pain—abdomen gen. 9861 (9.9) 404 (0.4) 9457 (9.5)

Pain—epigastrium 3177 (3.2) 143 (0.1) 3034 (3.0)

Pain—lumbar 2964 (3.0) 107 (0.1) 2857 (2.9)

Pain—foot 2909 (2.9) 92 (0.1) 2817 (2.8)

General malaise 3027 (3.0) 78 (0.1) 2949 (3.0)

Other 10867 (10.9) 374 (0.4) 10493 (10.5)

...

Saturation, mean (SD) 96.6 (9.6) 96.2 (12.1) 96.6 (9.5)

Tad, mean (SD) 74.1 (22.3) 67.6 (29.4) 74.3 (21.9)

Tas, mean (SD) 125.8 (35.9) 114.5 (48.8) 126.2 (35.3)

Temperature, mean (SD) 35.9 (4.5) 35.5 (5.9) 35.9 (4.4)

Heart rate, mean (SD) 87.2 (22.3) 92.7 (29.1) 87.0 (22.0)

Breath rate, mean (SD) 17.0 (5.6) 15.1 (7.6) 17.0 (5.5)1

Prevision (%)

2 5943 (6.0) 180 (0.2) 5763 (5.8)

5 3641 (3.6) 108 (0.1) 3533 (3.5)

6 27903 (27.9) 1022 (1.0) 26881 (26.9)

9 11060 (11.1) 432 (0.4) 10628 (10.6)

18 44464 (44.5) 1468 (1.5) 42996 (43.1)

35 1011 (1.0) 30 (0.0) 981 (1.0)

37 1103 (1.1) 33 (0.0) 1070 (1.1)

48 2074 (2.1) 70 (0.1) 2004 (2.0)

...

5738 Neural Comput & Applic (2020) 32:5735–5744

123



consists in applying a balancing preprocess to each subset

obtained from the bootstrap. Following, a ensemble clas-

sifier is built, combining ELM and decision tree classifiers

using soft voting as combination strategy. The black-box

nature of ELMs (and ensemble methods in general) is

combined with the comprehensibility of a decision tree.

Some works [14] have combined ELM with DT due to its

interpretable ability as ‘IF-THEN’-like rule generator.

4.3 Evaluation metrics

The evaluation metrics that we have used are: accuracy,

recall, specificity and area under ROC curve (AUC),

defined as follows (Table 2):

Accuracy In binary classification, accuracy is defined as

the proportion of true results among the total population:

Accuracy ¼ TNþ TP

TNþ TPþ FNþ FP
ð1Þ

where TN is a true negative, TP is a true positive, FN is a

false negative, and FP is a false positive. In heavily skewed

datasets it is not very meaningful because a simple strategy

such as assigning each test sample to the majority class

provides high accuracy.

Recall aka sensitivity is a classification performance

measure defined as the proportion of correctly classified

positives:

Recall ¼ TP

TPþ FN
ð2Þ

Recall provides more informative about the success on the

target class.

Specificity is defined as the proportion of negatives that

are correctly identified as such:

Specificity ¼ TN

TNþ FP
ð3Þ

AUC The area under ROC curve (AUC) shows the trade-

off between the sensitivity or TPrate and FPrate (1 -

specificity):

AUC ¼ 1þ TPrate � FPrate

2
ð4Þ

Fig. 1 Distribution of readmission class among different attributes (readmission in green, blue normal admissions) (color figure online)
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where the true positive rate is equal to the sensitivity and

the false positive rate is defined as FPrate ¼ FP
FPþTN

.

5 Results

In order to evaluate the effectiveness of our proposed

approach, henceforth denoted bagging ensemble, we

compare its performance with other well-known classifiers,

namely naive Bayes, decision tree, random forest and

extreme learning machine. We have evaluated each method

using (1) the original data distribution, and (2) applying

random undersampling (RUS) as a preprocessing technique

to achieve a training dataset with balanced a priori class

distribution. Our experiments were implemented using the

open source machine learning library scikit-learn. All the

evaluations were performed using fivefold cross-validation.

According to the results shown in Table 3, it is clear that

class imbalance conditions overall performance of the

model, regardless of the classifier we use. When original

skewed data are employed, high accuracy scores (above

90% in all cases) and fairly poor recall scores are achieved.

This behavior, sometimes referred as ‘accuracy paradox’,

is caused by a high class imbalance that imposes a strong

bias toward the majority (normal admission) class. When

random undersampling is applied, accuracy decreases and

recall increases due to the a priori class probability bal-

ancing. Tree-type algorithms (DT and RF) achieve better

AUC scores when class balancing techniques are applied

(increases of 3.6 and 6.8%, respectively). This improve-

ment, on the other hand, does not occur when using naive

Bayes and ELM, which perform similarly in both

scenarios.

The area under the ROC curve (AUC) is the most widely

used metric to evaluate readmission risk prediction in the

literature. According to the results shown in Table 3, our

bagging ensemble achieves the best score followed by

random forest with random undersampling preprocessing.

Figure 3 shows the ROC curves for different classifiers

using random undersampling for data balancing. We can

Fig. 2 Bagging ensemble method flowchart

Table 2 Confusion matrix for a binary classifier

Predicted

Positive Negative

Actual

Positive True positive False negative

(TP) (FN)

Negative False positive True negative

(FP) (TN)
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see that bagging ensemble (red) is the best performing

method, followed by random forest (blue dots).

The individual classifiers with better sensitivity perfor-

mance are DT and ELM with class balancing. This

explains why bagging ensemble has the best sensitivity

scores (47.4%). Random forest and naive Bayes, on the

other hand, score poorly in comparison (37.3 and 21.1%,

respectively).

When it comes to decision tree classifiers, in our pre-

liminary experiments we have used the default configura-

tion of the CART algorithm [22] implemented in scikit-

learn. In that case, the maximum depth of the tree is not

specified beforehand, so that tree’s depth is set according to

a certain termination criterion. In order to analyze the

effect of the maximum tree depth in the overall perfor-

mance of the model, we have evaluated several decision

trees with different ‘maximum tree depth’ values. Figure 4

shows the AUC scores of decision tree classifiers trained

using both original and balanced datasets. Both configu-

rations achieve the best results at a depth of 5–10 and

results get worse afterward, although trends are different.

However, when we explore the behavior of recall scores,

we find that classifiers trained with imbalanced dataset

achieve poor results as shown in Fig. 5. Class balancing, on

the other hand, improves classifiers’ performance to a 55%.

In order to determinate the impact that the number of

hidden units of the ELM has in the performance of our

bagging ensemble, we have conducted a test consisting of

measuring the recall scores of models with different hidden

unit values. Figure 6 shows a peak at 30 hidden units and a

plateau at around 150 units. According to the results, in our

tests we have used 30 hidden units.

Table 3 Comparison of

different machine learning

methods (mean ± standard

deviation) measured by AUC,

recall, specificity, and accuracy

Model AUC Recall Specificity Accuracy

Bagging ensemble – 0.647 ± .01 0.474 ± .04 0.759 ± .00 0.736 ± .03

Naive Bayes – 0.587 ± .01 0.145 ± .01 0.944 ± .00 0.917 ± .00

rus 0.589 ± .01 0.211 ± .03 0.894 ± .00 0.869 ± .03

Decision tree – 0.517 ± .01 0.071 ± .01 0.959 ± .00 0.929 ± .00

rus 0.553 ± .00 0.470 ± .02 0.555 ± .00 0.647 ± .01

Random forest – 0.559 ± .00 0.001 ± .00 0.999 ± .00 0.965 ± .00

rus 0.627 ± .00 0.373 ± .01 0.665 ± .00 0.761 ± .01

ELM – 0.546 ± .02 0.001 ± .00 0.999 ± .05 0.965 ± .00

rus 0.551 ± .02 0.452 ± .1 0.626 ± 0.00 0.624 ± 0.09

rus random undersampling is applied

Fig. 3 Comparison of ROC

curves for different methods

with random undersampling
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6 Conclusions

In this paper, we have presented a ensemble method that

combines random undersampling with bootstrap aggrega-

tion (bagging) and an ensemble of extreme learning

machine (ELM) and decision tree (DT) pairs for modeling

heavily imbalanced datasets. We have presented the results

of a comparative study where the performance of different

classification approaches is evaluated and the effect of

various parameters examined, in the context of short-time

ED readmission risk prediction. Our experiments were

carried out using a real clinical dataset from the Hospital

Clinico Universidad de Chile.

Experiments have shown that our approach outper-

formed other well-known classification algorithms. The

combination of two heterogeneous classifiers along with

random undersampling and bagging produced a more

robust classifier, achieving better overall results in terms of

AUC and recall.

Class imbalance is a major problem in machine learning

in general and in readmission risk prediction in particular,

due to the bias it introduces toward the majority (negative)

class. Our experiments demonstrate that random under-

sampling is an effective mechanism to overcome the class

imbalance problem, according to the specific characteris-

tics of our dataset. Although performance results are

modest, we achieve AUC scores above 0.64, what is a

state-of-the-art performance, according to the results pre-

sented in the review by Kansagara et al. [12]. Taking into

account that our dataset is composed of pediatric and adult

patients altogether, and the relatively low number of clin-

ical indicators of the patient (such as comorbidities or

treatments), our approach proves to perform reasonably

well. As future work we plan to extract IF-THEN-like rules

Fig. 4 AUC versus maximum

DT depth

Fig. 5 Recall versus maximum

DT depth
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from our model (based on the decision tree) in order to

analyze them with the practitioners and get feedback for

further experiments. We also plan to enhance the dataset by

gathering further features extracted from the EHR. Feature

subset selection techniques are to be utilized with the aim

of reducing the complexity of the model as well as

improving the predictive model’s performance.
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15. López V, Fernández A, Garcı́a S, Palade V, Herrera F (2013) An

insight into classification with imbalanced data: empirical results

and current trends on using data intrinsic characteristics. Inf Sci

250:113–141

16. Mateo F, Soria-Olivas E, Martınez-Sober M, Téllez-Plaza M,
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