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Abstract— Motivated from the fact that universal source coding
on countably infinite alphabets (∞-alphabets) is not feasible, this
work introduces the notion of “almost lossless source coding”.
Analog to the weak variable-length source coding problem studied
by Han (IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1217–1226,
Jul. 2000), almost lossless source coding aims at relaxing the
lossless block-wise assumption to allow an average per-letter
distortion that vanishes asymptotically as the block-length tends
to infinity. In this setup, we show on one hand that Shannon
entropy characterizes the minimum achievable rate (similarly to
the case of finite alphabet sources) while on the other that almost
lossless universal source coding becomes feasible for the family of
finite-entropy stationary memoryless sources with ∞-alphabets.
Furthermore, we study a stronger notion of almost lossless
universality that demands uniform convergence of the average
per-letter distortion to zero, where we establish a necessary and
sufficient condition for the so-called family of “envelope distri-
butions” to achieve it. Remarkably, this condition is the same
necessary and sufficient condition needed for the existence of a
strongly minimax (lossless) universal source code for the family
of envelope distributions. Finally, we show that an almost lossless
coding scheme offers faster rate of convergence for the (minimax)
redundancy compared to the well-known information radius
developed for the lossless case at the expense of tolerating a
non-zero distortion that vanishes to zero as the block-length
grows. This shows that even when lossless universality is feasible,
an almost lossless scheme can offer different regimes on the rates
of convergence of the (worst case) redundancy versus the (worst
case) distortion.

Index Terms— Universal source coding, countably infinite
alphabets (∞-alphabets), weak source coding, envelope distri-
butions, information radius (i-radius), metric entropy analysis.

I. INTRODUCTION

THE problem of Universal Source Coding (USC) has a
long history on information theory [3]–[7]. This topic

started with the seminal work of Davisson [6] that formalizes
the variable-length lossless coding and introduces relevant
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information quantities (mutual information and channel capac-
ity [4]). In lossless variable-length source coding, it is well-
known that if we know the statistics of a source (memoryless
or stationary and ergodic) the Shannon entropy (or Shannon
entropy rate) provides the minimum achievable rate [4]. How-
ever, when the statistics of the source is not known but it
belongs to family of distributions �, then the problem reduces
to characterize the worst-case expected overhead (or worse-
case redundancy) that a pair of encoder and decoder expe-
riences due to the lack of knowledge about true distribution
governing the source samples to be encoded [3], [8].

A seminal information-theoretic result states that the least
worst-case overhead (or minimax redundancy of �) is fully
characterized by the information radius of � [3]. The infor-
mation radius (i-radius) has been richly studied by the
community and there are numerous contributions [9]–[13],
including applications to universal prediction of individual
sequences [14]. In particular, it is well-known that the i-
radius growths sub-linearly for the family of finite alphabet
stationary and memoryless sources [3], which implies the
existence of an universal source code that achieves Shannon
entropy for every distribution in this family provided that
the block length tends to infinity. What is intriguing in this
positive result obtained for finite alphabet memoryless sources
is that it does not longer extend to the case of station-
ary and memoryless sources on countably infinite alphabets
(∞-alphabets), as was clearly shown in [5], [7], [9]. From
an information complexity perspective, this infeasibility result
implies that the i-radius of this family is unbounded for any
finite block-length and, consequently, lossless universal source
coding for ∞-alphabet stationary and memoryless sources is
an intractable problem. In this regard, the proof presented by
Györfi et al. [5, Theorem 1] is constructed over a connec-
tion between variable-length prefix-free codes and distribution
estimators, and the fact that the redundancy of a given code
upper bounds the expected divergence between the true dis-
tribution and the induced (through the code) estimate of the
distribution. Then, the existence of an universal source code
implies the existence of an universal estimator in the sense
of expected information divergence [15].1 The impossibility
of achieving this learning objective for the family of finite
entropy memoryless sources [5, Theorem 2] motives the main

1Distribution estimator consistent in information divergence and reversed
order information divergence were introduced by Barron et al. in [15].
The connection between distribution estimation consistent in expected infor-
mation divergence and universal source coding can be found in [5] and
[15, Sec. III.A].
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question addressed in this work that is, the study of a “weak
notion” of universal variable-length source coding.

In this framework, we propose to address the problem
of universal source coding for ∞-alphabet stationary and
memoryless sources by studying a weaker (lossy) notion of
coding instead of the classical lossless definition [3], [4]. This
notion borrows ideas from the seminal work by Han [16]
that allows reconstruction errors but assuming known statistic.
In this paper, we investigate the idea of relaxing the lossless
block-wise assumption with the goal that the corresponding
weak universal source coding formulation will be reduced to
a learning criterion that becomes feasible for the whole family
finite entropy stationary and memoryless sources on countably
infinite alphabets. In particular, we move from lossless coding
to an asymptotic vanishing distortion fidelity criterion based
on the Hamming distance as a fidelity metric.

A. Contributions

Assuming that the distribution of the source is known,
we first introduce the problem of “almost lossless source
coding” for memoryless sources defined on countably infinite
alphabets. Theorem 3 shows that Shannon entropy character-
izes the minimum achievable rate for this problem. The proof
of this theorem adopts a result from Ho and Verdú [17]
that provides a closed-form expression for the rate-distortion
function Rμ(d) on ∞-alphabets. From this characterization,
we show that limd→0 Rμ(d) = H(μ) which is essential to
prove this result.2

Then, we address the problem of almost lossless universal
source coding. The main difficulty arises in finding a lossy
coding scheme that achieves asymptotically zero distortion,
i.e., point-wise over the family, while guaranteeing that the
worst-case average redundancy –w.r.t. the minimum achiev-
able rate– vanishes with the block-length [3]. The proof of
existence of an universal code with the desired property relies
on a two-stage coding scheme that first quantizes (symbol-by-
symbol) the ∞-alphabet and then applies a lossless variable-
length code over the resulting quantized symbols. Our main
result, stated in Theorem 4, shows that almost lossless univer-
sal source coding is feasible for the family of finite entropy
stationary and memoryless sources.

We further study the possibility of obtaining rates of
convergence for the worst-case distortion and the worst-case
redundancy. To this end, we restrict our analysis to the
family of stationary and memoryless sources with 1D-densities
dominated by an envelope function f , which was previously
studied in [9], [10], [20], [21]. Theorem 5 presents a nec-
essary and sufficient condition on f to achieve an uniform
convergence (over the family) of the distortion to zero and,
simultaneously, a vanishing worst-case average redundancy.
Remarkably, this condition ( f being a summable function) is
the same necessary and sufficient condition needed for the
existence of a strongly minimax (lossless) universal source
code [9, Theorems 3 and 4].

2This result is well-known for finite alphabets, however the extension on
countably infinite alphabets is not straightforward due to the discontinuity of
the entropy [18], [19].

Finally, we provide an analysis of the potential benefit of
an almost lossless two-stage coding scheme by exploring the
family of envelope distributions that admits strong minimax
universality in lossless source coding [8], [9]. In this con-
text, Theorem 6 shows that we can have an almost lossless
approach that offers a non-trivial reduction to the rate of
convergence of the worst-case redundancy, with respect to the
well-known i-radius developed for the lossless case, at the
expense of tolerating a non-zero distortion that vanishes with
the blocklength. This result provides evidence that even in the
case where lossless universality is feasible, an almost lossless
scheme can reduce the rate of the worst-case redundancy and
consequently, it offers ways of achieving different regimes for
the rate of convergence of the redundancy versus the distortion.
The proof of this result uses advanced tools by Haussler and
Opper [11] to relate the minimax redundancy of a family
of distributions with its metric entropy with respect to the
Hellinger distance. Indeed, this metric entropy approach has
shown to be instrumental to derive tight bounds on the i-radius
for summable envelope distributions in [10]. We extended
this metric entropy approach to our almost lossless coding
setting with a two-stage coding scheme to characterize the
precise regime in which we can achieve gains in the rate of
convergence of the redundancy.

B. Organization of the Paper

The rest of the paper is organized as follows. Section II
introduces some definitions and preliminary results. Section III
introduces our main weak source coding problem and shows
that Shannon entropy is the minimum achievable rate provided
that the statistics of the source is known. Section IV presents
the problem of almost lossless universal source coding and
proves its feasibility for the family of finite entropy memo-
ryless distributions on ∞-alphabets. Section V elaborates a
result for a stronger notion of almost lossless universality, and
Section VI studies the gains in the rate of convergence of
the minimax-redundancy that can be obtained with an almost
lossless scheme for families of distributions that admit lossless
USC. Finally, Section VII concludes with a summary of the
work. The proofs of the main results of this paper are presented
in Section VIII, while some supporting results are relegated
to the Appendix section.

C. Basic Notation

The following notations and conventions are used through-
out this article: (xn)n will denote an infinite dimensional
sequence in �

�; (xn)n � (yn)n or, alternatively, (xn)n being
o(yn), means that limn→∞ xn

yn
= 0; (xn)n being o(1) means

that limn→∞ xn = 0; (xn)n ≤ (yn)n means that xn ≤ yn for all
n ≥ 1; (xn)n ≤ (yn)n eventually in n means that there exists
N > 1 such that xn ≤ yn for all n ≥ N ; (xn)n ∼ (yn)n means
that limn→∞ xn

yn
= 1; X will denote the countably infinite

alphabet and P(X ) the collection of probability measures in
X ; for any function f : X −→ �, f is said to be summable
(denoted by f ∈ �1(X )) if

∑
n∈X | f (x)| < ∞; and for

μ, v ∈ P(X ), μ � v means that if v(B) = 0 then μ(B) = 0
for any B ⊂ X .
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II. PRELIMINARIES

This section introduces some useful concepts, definitions
and results that will be needed across the paper. Let
X = {Xi }∞i=1 be a stationary and memoryless process (or
i.i.d. source) with values in a countably infinite alphabet
(∞-alphabets) X equipped with a probability measure μ
defined on the measurable space (X ,B(X)).3 Let Xn =
(X1, . . . , Xn) denote a finite block of length n of the process
following the product measure μn on (X n,B(Xn)).4 Let
us denote by P(X ) the family of probability measures in
(X ,B(X)), where for every μ ∈ P(X ), we understand fμ(x) :
= dμ

dλ (x) = μ({x}) to be a short-hand for its probability mass
function (pmf). Let supp( f ) = {x ∈ X : | f (x)| > 0} and let
PH(X ) := {μ : H (μ) < ∞} ⊂ P(X ) denote the collection of
finite Shannon entropy probabilities [22] where

H (μ) = −
∑
x∈X

fμ(x) log fμ(x), (1)

with log function on base 2.
Given an i.i.d. source X = {Xi }∞i=1 with distribution

μ ∈ P(X ), let us consider a (variable length) lossless code
fn of length n as a prefix-free mapping from X n to finite
sequences of symbols in {0, 1} [4]. It is well-known that
�Xn {L( fn(Xn))} ≥ H (μn) [4], where L(·) indicates the
functional that returns the length of binary sequences in
{0, 1}� := ∪k≥1 {0, 1}k . Then, the average length (in bits) used
to encode Xn with fn can be measured relative to H (μn),
which motivates the introduction of the average redundancy
(or redundancy) of fn by the expression: �Xn {L( fn(Xn))} −
H (μn). When μ is known, the Huffman code uses that infor-
mation to offer an optimal prefix-free mapping (minimizing
the average code-length) whose redundancy is upper bound
by 1 [4].

A. Strong Minimax Universality, Information Radius and
Envelope Families

In universal source coding (USC), we need to encode a
stationary memoryless source X with an unknown proba-
bility μ that belongs to a class of models � ⊂ P(X ).
In this context, a natural performance for a prefix-free encoder
fn : X n → {0, 1}� is the worse-case (over the family �)
redundancy expressed by:

R( fn, μ
n) := sup

μn∈�n

(
�Xn∼μn

{L( fn(X
n))
}− H (μn)

)
,

where �n := {μn, μ ∈ �} ⊂ P(X n) is a short-hand for
the family of n-fold (product) distributions induced by �.
This worse-case performance indicator motivates the adoption
of the minimax design principle: min fn R( fn , μ

n) frequently
used in USC [3], where the optimization is carried over
the family of prefix-free codes. Importantly, there is a well-
documented correspondence between prefix-free codes for X n

and probabilities in P(X n) [4]. In fact, the Kraft-MacMillan
inequality defines a probability in P(X n) from a prefix-free

3B(X ) denotes the power set of X .
4The product measure satisfies the memoryless condition for all B1 ×· · ·×

Bn ∈ X n then μn(B1 × · · · × Bn) = μ(B1) · · ·μ(Bn).

code of length n [4], and conversely arithmetic coding provides
a prefix-free code for X n from a probability v ∈ P(X n), where
the length of this code (in bits) is �− log v(xn)� + 1 for any
xn ∈ X n [4], [23]. Then the minimax redundancy problem for
USC reduces to the solution of the i-radius problem [3]:5

R+(�n) := inf
v∈P(X n)

sup
μn∈�n

D(μn |v) (2)

and

D(μn |v) =
∑

xn∈X n

fμn (xn) log
fμn (xn)

fv (xn)
(3)

is the divergence of μn with respect to v [3], [4], [24]. Again
using this connection between codes and distributions, a class
� ⊂ P(X ) of i.i.d. sources will be said to be weakly universal
if there is a sequence of probabilities (vn)n (where vn ∈ P(Xn)
for all n) such that supμ∈� limn→∞ 1

nD(μn|vn) = 0, and it
will be strongly universal (or strongly minimax universal)
if limn→∞ supμ∈� 1

nD(μn |vn) = 0. For the last stringent
USC objective, the minimax redundancy sequence (R+(�n))n
of � in (2) determines if the family is strongly minimax
universal [3], [8]. For ∞-alphabets i.i.d. sources, it is known
that R+(P(X)n) = ∞ and, furthermore, weak minimax
universality is not feasible [5], [7], [9]. This motivates the
study of strong minimax universality over sub-collections of
distributions whose 1D densities are dominated by an envelope
function [9], [10], [20]:

Definition 1: Given a non-negative function
f : X −→ �

+, the envelope family indexed by f is
given by:

� f := {μ ∈ P(X ) : fμ(x) ≤ f (x), for x ∈ X}. (4)

The next result by Boucheron et al. [9] establishes a neces-
sary and sufficient condition to make � f strongly minimax
universal:

Theorem 1: [9, Ths. 3 and 4] Let us consider
f : X → �

+, with X an ∞-alphabet, and the family of
i.i.d. envelope distributions

{
�n

f , n ≥ 1
}

. It follows that:
i) If f is summable, i.e., f ∈ �1(X ), then R+(�n

f ) < ∞
for all n ≥ 1, and furthermore (R+(�n

f ))n is o(n).
ii) Otherwise, R+(�n

f ) = ∞ for all n ≥ 1.

Therefore for any envelope family in an ∞-alphabet, either it
is strongly minimax universal (i.e.,(R+(�n

f ))n is o(n)) or its
i-radius in (2) is unbounded for any finite block-length. The
last unbounded scenario means that for any n and any prefix-
free code fn there is a distribution μ in the family where
the average redundancy of fn (with respect to the entropy
H (μn)) is unbounded. Furthermore for a summable envelope
function f , a series of relevant results stipulate the way
(R+(�n

f )/n)n tends to zero function of specific tail attributes
of f [9], [10], [20]. We select a result here that will be
important for our exposition, for which some definitions are
needed:

Definition 2: (Bontemps et al. [10]) For a non-negative
envelope function f ∈ �1(X ) with |supp( f )| = ∞, we can

5In fact, it follows that R+(�n)+ 2 ≥ min fn R( fn, μ
n) ≥ R+(�n) [4].
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determine

l f := max

⎧⎨
⎩k :

∑
j≥k

f ( j) ≥ 1

⎫⎬
⎭

and the associated envelope probability μ f ∈ � f by:

μ f ({k}) :=

⎧⎪⎨
⎪⎩

0, for k < l f

f (k), for k > l f

1 − ∑
j>l f

f ( j), for k = l f .
(5)

Definition 3: (Bontemps et al. [10]) If we denote by
F f (u) := μ f ({1, . . . , u}) the envelope distribution and by
F̄ f (u) := 1 − F f (u) the tail function of f (for all u ≥ 1),
we can define the quantile of order 1

n of μ f as the solutions
of [10]:

u∗
f (n) := min

{
u ≥ 1 : F̄ f (u) <

1

n

}
for all n ≥ 1. (6)

Theorem 2: [9, Th. 4]& [10, Th. 2, Prop. 5] Let us
consider the envelope family

{
�n

f , n ≥ 1
}

in Def. 1 with
f ∈ �1(X ). Then there is a sequence (ξn)n being o(1) such
that

(1 + ξn)
(u∗

f (n)− 1)

4
log n ≤ R+(�n

f )

≤ 2 + log e + (u∗
f (n)− 1)

2
log n

holds eventually with n.
It has been shown that when f ∈ �1(X ) then (u∗

f (n) log n)n is
o(n) [10], therefore Theorem 2 is consistent with Theorem 1.
Importantly, (u∗

f (n))n captures the complexity of the envelope
family by determining the worse-case redundancy (and its
velocity of convergence to zero with n) that an optimal univer-
sal code can achieve in compressing (losslessly) a stationary
and memoryless source in this family.

III. ALMOST LOSSLESS SOURCE CODING

We now introduce the notion of a lossy variable-length
coding of n source symbols, which consists of a pair ( fn, gn)
where fn : X n −→ {0, 1}� is a prefix free variable-length
code (encoder) [4] and gn : {0, 1}� −→ X n is the inverse
mapping from bits to source symbols (decoder). Inspired by
the weak coding setting introduced by Han [16], the possibility
that {xn : gn( fn(xn)) �= xn} �= ∅ is allowed. In order to
quantify the loss induced by this encoding process, a per letter
distortion measure characterization ρ : X × X :−→ �

+ is
considered [25], [26], where for xn, yn ∈ X n the distortion is
given by

ρn(x
n, yn) := 1

n

n∑
i=1

ρ(xi , yi ). (7)

Given an information source X = {Xi }n
i=1, the average

distortion induced by the pair ( fn, gn) is

d( fn, gn, μ
n) := �Xn∼μn

{
ρn
(

Xn, gn( fn(X
n))
)}
. (8)

For the rest of the paper, we will focus on the special case
where ρ(x, y) = 1{x �=y}. Then, ρn(xn, yn) is the normalized

Hamming distance between the sequences (xn, yn). On the
other hand, the rate of the pair ( fn, gn) (in bits per sample) is

r( fn, μ
n) := 1

n
�Xn∼μn

{L( fn(X
n))
}
. (9)

At this stage, we can introduce the almost-lossless source
coding problem and with this, the standard notion of minimum
achievable rate.

Definition 4 (Achievability): Given an information source
X = {Xi }∞i=1, we say that a rate R > 0 is achievable
for almost-losslessly encoding X, i.e., with zero asymptotic
distortion, if there exists a sequence of encoder and decoder
mappings {( fn, gn)}n≥1 satisfying:

lim sup
n−→∞

r( fn, μ
n) ≤ R, (10)

lim
n−→∞ d( fn, gn, μ

n) = 0. (11)

The minimum achievable rate is then defined as:
Ral(X) := min {R : R is achievable for X} . (12)

Let Ral(μ) denotes the minimum achievable rate of a
stationary and memoryless source driven by μ ∈ P(X ). The
next theorem characterizes Ral(μ) provided that the source
statistics is known.

Theorem 3 (Known statistics): Given a stationary and
memoryless source on a ∞-alphabet driven by the probability
measure μ ∈ PH(X ), it follows that Ral(μ) = H (μ).

The proof is presented in Section VIII-A.
As it is expected, Shannon entropy characterizes the min-

imum achievable rate for the almost lossless source coding
problem formulated in Definition 4. In the proof of Theorem 3,
we adopt a result from Ho and Verdú [17] that provides a
closed-form expression for the rate-distortion function Rμ(d)
of μ on ∞-alphabet through a tight upper bound on the
conditional entropy for a given minimal error probability
[17, Theorem 1]. From this characterization, we show that
limd→0 Rμ(d) = H (μ), which is essential to show the result.6

A. A Two-Stage Source Coding Scheme

In this section, we consider a two-stage source coding
scheme that first applies a lossy (symbol-wise) reduction of
the alphabet, and second a variable-length lossless source
code over the restricted alphabet. Let us define the finite set
�k := {1, . . . , k}. We say that a two-stage lossy code of block-
length n and size k is the composition of: a lossy mapping
of the alphabet, represented by a pair of functions (φn, ψn),
where φn : X −→ �k and ψn : �k −→ X , and a fixed
to variable-length prefix-free pair of lossless encoder-decoder
(Cn,Dn), where Cn : �n

k −→ {0, 1}� and Dn : {0, 1}� −→ �n
k .

Given a source X = {Xi }∞i=1 and an (n, kn)-lossy source
encode (φn, ψn, Cn,Dn),7 the lossy encoding of X induced by
(φn, ψn, Cn) is a two-stage process where first a quantization

6Theorem 3 is well-known for finite alphabet stationary memoryless
sources, however its extension to countably infinite alphabets is not straight-
forward due to the discontinuity of the entropy. The interested reader may be
refer to [18], [19], [27] for further details.

7For brevity, the decoding function Dn : {0, 1}� −→ �n
k will be omitted

and considered implicit in the rest of the exposition.
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Fig. 1. Illustration of the two-stage lossy coding scheme (φn , ψn ,Cn ,Dn) presented in Section III-A.

of size kn over X n is made (letter-by-letter) to generate a finite
alphabet random sequence Y n := (φn(X1), . . . , φn(Xn)) and
then, a variable-length coding is applied to produce Cn(Y n).
Associated to the pair (φn, ψn), there is an induced partition
of X given by:

πn :=
{
An,i := φ−1

n ({i}) | i ∈ �kn

}
⊂ B(X ), (13)

and a collection of prototypes8
{

yn,i := ψn(i) ∈ An,i | i ∈
�kn

} ⊂ X . The resulting distortion incurred by this code is
given by

d(φn, ψn, μ
n) := �Xn∼μn

{
ρn
(

Xn,�n(
n(X
n))
)}
, (14)

where X̂n = �n(
n(Xn)) is a short-hand to denote(
ψn(φn(X1)), . . . , ψn(φn(Xn))

)
. On the other hand, the cod-

ing rate is:
r(φn, Cn, μ

n) := 1

n
�Xn∼μn

{L(Cn(
n(X
n))
)}
, (15)

with 
n(Xn) denoting (φn(X1), . . . , φn(Xn)). An illustration
of this two-stage process is presented in Figure 1.

At this point, it is worth mentioning some basic properties
on the partitions induced by (φn, ψn, Cn) on X .

Definition 5: A sequence of partitions {πn}n≥1 of X is said
to be asymptotically sufficient with respect to μ ∈ P(X ), if for
all x ∈ supp(μ)

lim
n→∞πn(x) = {x} , μ-almost everywhere, (16)

where πn(x) ⊂ X denotes the cell in π that contains x and
the almost-sure limit with respect to μ stated in (16) refers to
the condition:

μ

(
lim sup

n→∞
πn(x) \ {x}

)
= 0,

which is equivalent to lim
n→∞μ

(⋃
k≥n πk(x) \ {x}) = 0.

8Without loss of generality, we assume that yn,i ∈ An,i .

Consider now almost lossless coding for which we can state
the following.

Lemma 1: Let X be a stationary and memoryless source
driven by μ. A necessary and sufficient condition for
{(φn, ψn, Cn) : n ≥ 1} to have that lim

n→∞ d(φn, ψn , μ
n) = 0

is that {πn}n≥1 in (13) is asymptotically sufficient for μ.
The proof of Lemma 1 is presented in Appendix I-A.
Studying the minimum achievable rate for zero-distortion

coding requires the following definition.
Definition 6: For μ ∈ PH(X ) and a partition π of X ,

the entropy of μ restricted to the sigma-field induced by π ,
which is denoted by σ(π), is given by

Hσ(π)(μ) := −
∑
A∈π

μ(A) logμ(A). (17)

A basic inequality [3], [4] shows that if σ(π) ⊂ σ(π̄),
then Hσ(π)(μ) ≤ Hσ(π̄)(μ) for every μ. In particular,
Hσ(π)(μ) ≤ H (μ), where it is simple to show that
H (μ) = supπ∈�(X ) Hσ(π)(μ) with �(X ) representing the
collection of finite partitions of X . Furthermore, it is possible
to state the following result.

Lemma 2: If a sequence of partitions {πn}n≥1 of X is
asymptotically sufficient with respect to μ (Def. 5), then

lim
n−→∞ Hσ(πn)(μ) = H (μ). (18)

The proof of this result is presented in Appendix I-B.
This implies that if a two-stage scheme

{(φn, ψn, Cn) : n ≥ 1} achieves zero distortion, then{
πn =

{
φ−1

n ({i}) : i ∈ �k

}
: n ≥ 1

}
(19)

is asymptotically sufficient for μ (cf. Lemma 1). From the
well-known result in lossless variable-length source coding [4],

Authorized licensed use limited to: Universidad de chile. Downloaded on May 24,2020 at 00:07:04 UTC from IEEE Xplore.  Restrictions apply. 



654 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 1, JANUARY 2020

we have that:
r(φn, Cn, μ

n) ≥ 1

n
H
(

n(X

n)
)

= Hσ(πn)(μ) (20)

and consequently, Lemma 2 implies that
lim inf
n→∞ r(φn, Cn, μ

n) ≥ H (μ). Hence, letting R̄al(μ)

to be the minimum achievable rate w.r.t. the family of
two-stage lossy schemes in Definition 4, we obtain that
R̄al(μ) ≥ Ral(μ) = H (μ).

The next result shows that there is no additional overhead
(in terms of bits per sample), if we restrict the problem to the
family of two-stage lossy schemes.

Proposition 1: For a stationary and memoryless source
X = {Xi }∞i=1 driven by μ ∈ PH(X ),

R̄al(μ) = Ral(μ) = H (μ).

The proof is presented in Appendix I-C.

IV. UNIVERSAL ALMOST LOSSLESS SOURCE CODING

Consider a stationary and memoryless source {Xn}∞n=1 on
a ∞-alphabet with unknown distribution but belonging to a
family � ⊂ P(X ). The main question to address here is
if there exists a lossy coding scheme whose rate achieves
the minimum feasible rate in Theorem 3, for every possible
distribution in�, while the distortion goes to zero as the block-
length tends to infinity as defined below.

Definition 7: A family of distribution � is said to admit
an almost lossless USC scheme, if there is a lossy source code
{( fn, gn)}n≥1 simultaneously satisfying:

sup
μ∈�

lim
n→∞ d( fn, gn, μ

n) = 0, (21)

and
lim

n→∞ sup
μ∈�

(
r( fn, μ

n)− H (μ)
)

= 0. (22)

An almost lossless universal code provides a point-wise con-
vergence of the distortion to zero for every μ ∈ � while
constraining the worst-case expected redundancy to vanish
as the block length tends to infinity. It is obvious from
Definition 7 that if � admits a classical lossless universal
source code [6], [7], i.e., the worst-case average redundancy
vanishes with zero distortion for every finite n, then it admits
an almost lossless USC. The next result shows that there is
a richer family of distributions that admits an almost lossless
USC scheme:

Theorem 4 (Feasibility): The family PH(X ) admits an
almost lossless USC scheme.

The proof is presented in Section VIII-B.
Remarkably, Theorem 4 shows that a weak notion of univer-

sality allows to code the complete collection of finite entropy
stationary memoryless sources defined on ∞-alphabets. Since
the same result for lossless source coding is not possible [5],
an interpretation of Theorem 4 is that a non-zero distortion (for
any finite block-length) is strictly needed to make the average
redundancy of an universal coding scheme vanishing with the
block-length. To obtain this result, the two-stage approach
presented in Section III-A was considered.

If we restrict the family of two-stage schemes to have an
exhaustive first-stage mapping, i.e., πn(x) = {x} for all x ∈ X
and n ≥ 1, then we reduce the approach to the lossless setting
(i.e., zero distortion for every finite block-length). In this case,
if we apply the condition to obtain Theorem 4 (stated in
Lemma 4 in Section VIII-C), this reduces to verify that the
i-radius of the family grows sub-linearly with the block-length
(more details presented in Sections VIII-B and VIII-C), which
is the condition known for a family of distributions to have a
nontrivial minimax redundancy rate [3], [5]–[7], [9].

A. Entropy Estimation With an Almost Lossless Universal
Code: A Side Comment

In the lossless case, the existence of a weak minimax
source coding scheme

{
fn : X n → {0, 1}∗ , n ≥ 1

}
for a fam-

ily of distribution� implies that supμ∈� limn→∞
(
r( fn, μ

n)−
H (μ)

) = 0 [3]. Consequently, the average length of the
code r( fn, μ

n) = � {L(Cn(
n(Xn)))} /n is a weak consistent
estimator of the entropy distribution-free in μ ∈ � [28]. For
the family of finite entropy stationary and memoryless sources,
we have that it is not feasible to have a weak minimax USC
scheme in ∞-alphabets. In fact, [5, Theorem 2] says that for
every code fn and n ≥ 1, there exists μ ∈ PH(X ) such that
r( fn, μ

n) = ∞. In other words, there is no lossless variable-
length source coding scheme that offers a weakly consistent
estimator of the entropy using its average block-length (per
letter). In contrast, Theorem 4 shows that there is an almost
lossless USC scheme

{
(φn, ψn, Cn,Dn) : n ≥ 1

}
with an

average length that offers a distribution-free weakly consistent
estimation of the entropy in PH(X ). In fact from the proof of
Lemma 4 (Sec.VIII-C), we have that

lim
n→∞ sup

μ∈PH(X )

(
r(φn, Cn, μ

n)− Hσ(πn)(μ)
) = 0,

and from the fact that {πn : n ≥ 1} is asymptotically sufficient
for PH(X ) (Definition 12 in Section VIII-B), it follows that:
limn→∞ r(φn, Cn, μ

n) = H (μ), for all μ ∈ PH(X ). Then,
by relaxing the lossless block-wise assumption (introducing a
non-zero distortion), we control the worse-case redundancy,
which is bounded by the i-radius of PH(X ) restricted to a
sub-sigma field (see (38)). This flexibility enables the capacity
to balance two sources of errors: r(φn, Cn, μ

n) − Hσ(πn)(μ)
(a kind of estimation error) and H (μ) − Hσ(πn)(μ) (an
approximation error), that at the end offers an distribution-free
estimate of the entropy (point-wise) using the average length
of the code.

V. UNIFORM CONVERGENCE OF THE DISTORTION

In this section, we further focus on a stronger notion of
universal weak source coding. We study whether is possible to
achieve an uniform convergence of the distortion to zero (over
the entire family �), instead of the point-wise convergence
stated in Definition 7. To this end, we restrict the analysis
to the rich family of envelope distributions introduced in
Section II-A. We can state the following dichotomy:

Theorem 5 (Uniform convergence): Let us consider the
family of envelope distributions � f .
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i) If f ∈ �1(X ), then there is a two-stage coding scheme
{(φn, ψn, Cn) : n ≥ 1} with |πn| < ∞ (finite size) such
that

lim
n→∞ sup

μ∈� f

d(φn, ψn , μ
n) = 0, and

lim
n→∞ sup

μ∈� f

(
r(φn, Cn, μ

n)− H (μ)
)

= 0.

ii) Otherwise, i.e., f /∈ �1(X ), for any two-stage code
(φn, ψn, Cn) of length n with |πn | < ∞ it follows that

sup
μ∈� f

d(φn, ψn, μ
n) = 1,

while if |πn | = ∞, then

sup
μ∈� f

(
r(φn, Cn, μ

n)− H (μ)
)

= ∞.

More generally, for a lossy code ( fn, gn) of length n,
provided that

sup
μ∈� f

d( fn, gn, μ
n) < 1,

then
sup
μ∈� f

(
r( fn, μ

n)− H (μ)
)

= ∞.

The proof is presented in Section VIII-D.
Theorem 5 states that if the envelope function is summable,

there is a two-stage coding scheme of finite size that offers
a uniform convergence of the distortion to zero (over � f ),
while ensuring that the worst-case average redundancy (over
� f ) vanishes with the block-length. On the negative side, for
all stationary memoryless sources indexed by a non-summable
envelope function, it is not possible to achieve an uniform
convergence of the distortion to zero with a finite size two-
stage coding rule. An infinite size rule is indeed needed, i.e.,
|πn| = ∞, eventually with n, that on the down-side it has an
unbounded i-radius (details presented in Lemmas 5 and 1 at
Section VIII-D). Importantly, this impossibility result remains
when enriching the analysis with the adoption of general lossy
coding rules (details in Sec. VIII-D.3).

Finally, it worths noting that the family � f with
f ∈ �1(X ) has a finite regret and redundancy in the context
of lossless universal source coding [9, Ths. 3 and 4]. Further-
more, summability is the necessary and sufficient condition
on f that makes this collection strongly minimax universal in
lossless source coding [9]. Then, based on this strong almost
lossless source coding criterion (with a uniform convergence
to zero of the distortion and the redundancy) it is not possible
to code (universally) a richer family of distributions when
restricting the analysis to envelope families.

VI. REDUNDANCY GAINS FOR SUMMABLE

ENVELOPE FAMILIES

Theorem 5 states that we can achieve a uniform convergence
of the distortion to zero while the worst-case redundancy
vanishes with a two-stage lossy scheme if, and only if, � f has
a summable envelope function. On the lossless variable-length

source coding side, if f ∈ �1(X ) we know from Theorem 1
that the i-radius of the family

R+(�n
f ) = min

vn∈P(X n)
sup

μn∈�n
f

D(μn |vn),

is o(n) [9, Ths. 3 and 4], which is equivalent to state
that � f is strongly minimax universal [3]. Therefore, under
the assumption that f ∈ �1(X ), the lossy approach with
asymptotic vanishing distortion may appear to not be useful if
no gains are observed in the way the worst-case redundancy
approaches zero in (22), with respect to the normalized i-radius
sequence (R+(�n

f )/n)n≥1 that governs minimax redundancy
in the lossless case [3], [9].

This section explores the feasibility of obtaining gains
in terms of the minimax redundancy of a two-stage lossy
approach tends to zero, when compared to the minimax
redundancy (of the lossless scenario) for � f when f ∈ �1(X ).
We focus on the finite size tail-based partition scheme used
to prove Theorem 4 and the achievability part of Theorem 5.

A. Preliminaries

Let us consider a positive and non-decreasing sequence of
integers (kn)n and the collection of tail partitions induced by:

π̃kn := {{1} , · · · , {kn − 1} , �c
kn−1

}
, ∀n ≥ 1, (23)

where �k = {1, . . . , k}. Note that π̃kn resolves all the elements
of �kn−1 = {1, . . . , kn − 1} and consequently, there is a pair
(φ̃n, ψ̃n) associated with π̃kn such that ∀μ ∈ � f ,

d(φ̃n, ψ̃n, μ
n) ≤ μ(�c

kn−1) ≤
∑
x≥kn

f (x). (24)

Consequently, it follows that

sup
μ∈� f

d(φ̃n, ψ̃n, μ
n) ≤

∑
x≥kn

f (x) < ∞. (25)

It is then easy to verify that (1/kn)n being o(1) is the necessary
and sufficient condition for the tail-based scheme to have the
uniform convergence (over � f ) of the distortion to zero.

Concerning the worst-case minimax redundancy of the two-
stage scheme induced by

{
π̃kn

}
in (22), we can consider a

lossy mapping (φ̃n, ψ̃n) consistent with π̃kn (first-stage), where
it is clear that the entropy of Y n = (φ̃n(X1), .., φ̃n(Xn)), which
is H (
̃n(Xn)) = nHσ(π̃kn )

(μ) ≤ nH (μ), is a lower bound
for the performance of any prefix-free code acting on Y n .
Then given the first-stage (φ̃n, ψ̃n), we define the worse-case
redundancy of any Cn : �n

kn
→ {0, 1}∗ as follows:

R̄(�n
f , π̃kn , Cn) := sup

μ∈� f

(
r(φ̃n, Cn, μ

n)− Hσ(π̃kn )
(μ)
)
.

Therefore for any finite n and first-stage partition π̃kn , the
minimax redundancy of the second-stage is:

min
Cn :�n

kn
→{0,1}∗

R̄(�n
f , π̃kn , Cn). (26)

For the second stage, we can use again the connection between
prefix-free codes and distributions to map Cn to a probability v
in P(�n

kn
), where the redundancy r(φ̃n, Cn, μ

n)− Hσ(π̃kn )
(μ)

can be expressed as one over n the divergence restricted to
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the cells of π̃kn [24], more precisely as 1
nDσ(π̃kn ×···×π̃kn )

(μn |v)
where:
Dσ(π̃kn ×···×π̃kn )

(μn|v) :=
∑

A∈π̃kn ×···×π̃kn

μn(A) log
μn(A)
v(A) ,

with π̃kn ×· · ·×π̃kn being a short-hand for the product partition
of X n induced by π̃kn . Consequently, the USC problem of the
second-stage in (26) given the first stage, i.e., given π̃kn in (23),
can be expressed by 1

n R+(�n
f , σ (π̃kn )) where:

R+(�n
f , σ (π̃kn )) := min

v∈P(X n)
sup
μn∈�n

f

Dσ(π̃kn ×···×π̃kn )
(μn |v).

(27)
R+(�n

f , σ (π̃kn )) can be interpreted as the i-radius of �n
f

restricted to the events of the sub-sigma field σ(π̃kn × · · · ×
π̃kn ).

9

B. Redundancy Gain Analysis

Returning to our question, in the context of Eq. (27) we
know that Dσ(π̃kn ×···×π̃kn )

(μn |v) ≤ D(μn |v) [24], therefore
for any sequence (kn)n of positive integers, it follows that
R+(�n

f ) ≥ R+(�n
f , σ (π̃kn )) for all n, Consequently, we have

that

lim inf
n→∞

R+(�n
f )

R+(�n
f , σ (π̃kn ))

≥ 1. (28)

In particular, we want to determine regimes on (kn)n that
guarantee an asymptotic gain in minimax redundancy in the
sense that

lim
n→∞

R+(�n
f , σ (π̃kn ))

R+(�n
f )

= 0, (29)

subject to the condition that (1/kn)n is o(1). If (kn)n offers
an asymptotic gain on minimax redundancy in the sense
of Eq. (29), then any sequence where (k̃n)n such that
(k̃n)n ≤ (kn)n eventually in n offers a gain in the minimax
redundancy.10 Therefore it is important to determine the largest
size sequence for the tail partition such that (29) is satisfied.

Note that any sequence (kn)n offers a non-zero worst-case
distortion for a finite block-length, and if (1/kn)n is o(1) this
worst case distortion goes to zero at rate function of (kn)n
and the envelope function f . From this, one could suspect
a gain in the minimax redundancy, in the sense established
by (29), no matter how fast (kn)n tends to infinity with the
block-length as long as kn < ∞ for any n. In other words,
one simple conjecture is that the complexity of a family of
distributions with infinite degrees of freedom, measured in
terms of the rate of convergence to zero of the minimax
redundancy per sample (R+(�n

f )/n)n , cannot be reached by
projecting this family into finite but dynamic (with the block-
length) alphabets. However, the following result refutes this
initial guess and determines a non-trivial regime for (kn)n with
no minimax redundancy gain. Importantly, this regime is fully
determined by (u∗

f (n))n (see Def.3 in Section II-A), which can
be interpreted as a sequence of critical dimensions for � f that

9More details are presented in (44) and (45) in Sec. VIII-C.
10This is a simple consequence of the fact that k ≥ k̃

implies σ(π̃k̃) ⊂ σ(π̃k).

was introduced by Bontemps et al. [10] and Bontemps [20]
in the context of lossless USC.

Theorem 6 (Minimax redundancy gains): Let � f ⊂
P(X ) be an envelope family with f ∈ �1(X ) and |supp( f )| =
∞. In addition, let

{
π̃kn : n ≥ 1

}
be the collection of tail-

based partitions in (23) driven by a positive non-decreasing
sequence (kn)n . It follows that:

i) If (kn)n ≥ (u∗
f (n))n eventually in n, then there is no gain

in minimax redundancy in the sense that:

lim
n→∞

R+(�n
f , σ (π̃kn ))

R+(�n
f )

= 1.

ii) Conversely, if (kn)n is o(u∗
f (n)),

i.e., limn→∞ kn/u∗
f (n) = 0, then we have a minimax

redundancy gain:

lim
n→∞

R+(�n
f , σ (π̃kn ))

R+(�n
f )

= 0.

The proof is presented in Section VIII-E.
Analysis and interpretation of Theorem 6:
1) First, we note that the sequence (u∗

f (n))n in (6) defines
a notion of critical dimension (or cardinality) for the
family � f , as it characterizes a boundary (or phase
transition) on the size of the tail-based two-stage coding
schemes above from which no gains in terms of the rate
of minimax redundancy are obtained.

2) If we consider the regime of redundancy gain, i.e., where
(kn)n is o(u∗

f (n)), it is simple to note that any arbi-
trary partition scheme {πn : n ≥ 1} such that |πn| =∣∣π̃kn

∣∣ = kn satisfies:

lim
n→∞

R+(�n
f , σ (πn))

R+(�n
f )

= 0.

Then, this scenario of redundancy gain can be extended
to any finite alphabet partition strategy, and conse-
quently, we can say that the condition (kn)n is o(u∗

f (n))
offers a trivial regime of minimax redundancy gain.
However, what is not evident is the fact that the tail-
based partition offers a non-trivial regime of redundancy
gain, in the sense that the condition (kn)n ≥ (u∗

f (n))n
eventually with n suffices to guarantee that:

lim
n→∞

R+(�n
f , σ (π̃kn ))

R+(�n
f )

= 1.

From this angle, the tail-based partition is efficient (or
sufficient) to capture the asymptotic complexity of � f

with a minimum alphabet size. Complementing this
richness property of

{
π̃kn

}
, it is simple to verify that the

tail partition is an optimal solution when the objective
is to minimize the worst-case distortion of a two-stage
lossy coding scheme restricting the finite size k > 0 on
the quantization.

3) From a complexity view-point, R+(�n
f ) measures the

complexity of the lossless coding task. Then, for a
given finite partition πn ∈ B(X ), R+(�n

f ) − R+(�n
f ,

σ (πn)) ≥ 0 can be interpreted as the reduction on
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complexity by the process of projecting �n
f into a finite

alphabet, i.e.,

�n
f /σ(πn) := {μn/σ(πn × · · · × πn) : μ ∈ � f

}
where μ/σ(π) := {μ(A) : A ∈ σ(π)} ∈ P(X , σ (π))
is a short-hand for the probability μ restricted to the
sub-sigma field induced by π (details presented in
Section VIII-E.3). Then, it is interesting to know if
the i.i.d. family of envelope distributions

{
�n

f : n ≥ 1
}

with f ∈ �1(X ) admits a finite but dynamic alpha-
bet reduction that captures its complexity asymptoti-
cally with n. For that question, we can introduce the
following:
Definition 8: We say that � ⊂ P(X ) has a
finite alphabet reduction, if there exists a partition
scheme {πn : n ≥ 1} with |πn | = kn < ∞ such
that limn→∞ R+(�n,σ (πn))

R+(�n)
= 1, or, equivalently, that

{�n : n ≥ 1} is equivalent to {�n/σ(πn) : n ≥ 1} in
terms of asymptotic information complexity. In this case,
we say that (kn)n is a sequence of sufficient sizes (or
sufficient) to represent �.
Definition 9: We say that (k∗

n)n is the critical (or
minimal) size to represent � f , if (k∗

n)n is a sequence of
sufficient size to represent � (Def. 8), and no sequence
(ln)n exists such that: (ln)n is sufficient to represent �
and (ln)n � (k∗

n)n .
In this context, the proof of Theorem 6 shows as a
corollary that (u∗

f (n))n is the critical size to represent
� f . The achievability part is obtained using the tail-
based partition and some metric entropy lower bound
for the i-radius extended from [10], [11], [20]. On the
other hand, the converse argument derives from basic
i-radius results for i.i.d. sources over finite alphabets [3]
and results for envelope families on countably infinite
alphabets [9].
Finally, from Boucheron et al. [9, Ths. 3 and 4, and
Cor. 2], we have that � f has either a finite alphabet
reduction with a sub-linear critical size sequence given
by (u∗

f (n))n (if f ∈ �1(X )), or infinite minimax redu-
dancy for all n ≥ 1.

4) To illustrate the result, let us consider the exponentially
decreasing envelope class studied in [9], [20]:

� fCe−α = {μ ∈ P(X ), fμ(x) ≤ fCe−α (x) = Ce−αx} ,
where C > 0 and α > 0. It has been shown in [20,
Prop. 6] that

1

α
ln(Cx) ≤ U fCe−α (x)+ 1 ≤ 1

α
ln(κCx)

where κ = 1/(1− e−α) and U f (x) is defined in Def. 20
(see Section VIII-E for details). Importantly for our
analysis, it follows that u∗

fCe−α (n) − 1 ≤ U fCe−α (n) <
u∗

fCe−α (n) (see Section VIII-E.2), therefore we have that
for all n ≥ 1

1

α
ln(Cn)+ 1 < u∗

fCe−α (n) ≤ 1

α
(ln(κ)+ ln(Cn)).

Consequently, the critical dimension of this exponential
family, which determines the regime of redundancy gain,

scales like ∼ ( 1
α ln n)n . Similar analysis can be con-

ducted on the power-law envelopes and sub-exponential
envelopes classes studied in [9], [10], [20], [21]. See
also an excellent exposition of these last results in [8].

VII. SUMMARY AND CONCLUDING REMARKS

The problem of almost lossless universal source coding
for countably infinite alphabet sources is introduced in this
work. Our main result shows that a weak notion of universal
(variable length) source coding is feasible for the entire class
of finite entropy stationary memoryless sources. This result
is obtained by tolerating a (non-zero) single-letter distortion
in the encoding process that vanishes asymptotically with the
block-length. To this end, one key idea is an induced sequence
of partitions of the ∞-alphabet, which offers a way to control
the worst-case average redundancy associated with the i-radius
of a class of distributions restricted to a subsigma-field. We
have also studied a stronger almost losses condition, asking
for uniform convergence of the distortion to zero (over the
family of distributions), where it turns out that this variation
of weak universality can be achieved for the same class of
envelope distributions that is strong minimax universal in
the lossless case. This last result suggests that asking for a
non-zero distortion that convergence to zero point-wise (over
the family of distributions) is the strongest relaxation from
the lossless criterion that allows us to control the worst-case
redundancy of the problem. Finally, we show that it is possible
to obtain gains in the rate of convergence of the worst-case
redundancy of an almost lossless scheme, with respect to the
worst-case redundancy of the lossless case, by tolerating a
non-zero distortion that tends to zero with the block-length.
In this context, we fully characterize the regime of gains for
a two-stage lossy scheme induced by tail based partitions.

VIII. PROOFS OF THE MAIN RESULTS

A. Theorem 3

First, we introduce a result and some definitions that will
be used in the proof.

1) Preliminaries:
Definition 10: For μ ∈ P(X ) its rate distortion function is

given by [4], [25], [26]:

Rμ(d) := inf
P(X̃ |X) st. �(X̃ �=X)≤d

I (X; X̃).

Definition 11: For any μ ∈ P(X ) and θ > 0, let us define
μ̃θ ∈ P(X ) by: μ̃θ ({i}) := min {θ, μ({i})} for all i > 1 and
μ̃θ ({1}) := 1 − κθ where κθ :=∑i>1 μ̃θ ({i}).

Lemma 3: (Ho and Verdú [17, Th. 1]) Let us consider μ ∈
P(X ), where X is an ∞-alphabet, then there is d0 > 0 such
that ∀d ≤ d0

Rμ(d) = H (μ)− H (μ̃θ(d)) (30)

with μ̃θ introduced in Def.11 and θ(d) > 0 being the solution
of the condition κθ =∑i>1 μ̃θ ({i}) = d .
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2) Proof of Theorem 3: We consider the non-trivial case
where μ has infinite support over X , i.e., infx∈X fμ(x) = 0,
otherwise the problem reduces to a finite alphabet scenario
where this result is known [3], [4].

We begin with the converse argument. This reduces to prove
that any lossy coding scheme with zero asymptotic distortion
has a rate that convergences to a limit that is grater or equal
to H (μ) (see Def. 4). For that, let us assume that we have a
lossy scheme {( fn, gn) : n ≥ 1} such that

lim
n−→∞ d( fn, gn, μ

n) = 0 ⇔

lim
n−→∞

1

n

n∑
i=1

�
{

Xi �= (gn( fn(X
n)))i
} = 0. (31)

If we denote by X̂n := gn( fn(Xn)) the reconstruction, from
lossless variable length source coding it is well-known that [3]:

r( fn, μ
n) ≥ 1

n
I (Xn , X̂n)

≥ 1

n

n∑
i=1

I (Xi ; X̂i ) ≥ 1

n

n∑
i=1

Rμ
(
�{Xi �= X̂i }

)

≥ Rμ

(
1

n

n∑
i=1

�
{

Xi �= X̂i
})

= Rμ
(
d( fn, gn, μ

n)
)
, (32)

where for the inequalities in (32), we use that X is memoryless,
the non-negativity of the conditional mutual information [4],
and the convexity of the rate-distortion function of μ [4], [25].
For the rest we assume that μ is organized in decreasing order
in the sense that fμ(1) ≥ fμ(2) ≥ · · · 11 and that we are in
the regime where d ≤ do (introduced in Lemma 3). Using
Lemma 3, we have that Rμ(d) = H (μ)− H (μ̃θ(d)), where if
we consider

Kμ(d) := min
{

k > 1 : fμ(k + 1) ≤ θ(d)
}
, (33)

it is simple to verify that:

H (μ̃θ(d)) = (1 − κθ(d)) log
1

1 − κθ(d)

+ (Kμ(d)− 1) · θ(d) log
1

θ(d)
+
∑

i>Kμ(d)

fμ(i) log
1

fμ(i)
.

(34)

From (30) and (31), we focus on exploring H (μ̃θ(dn)) when
dn → 0. First, it is simple to verify that d → 0 implies
that θ(d) → 0 by definition. Then, for a fix μ ∈ PH(X )
with infinite support, the problem reduces to chacaterize
limθ→0 H (μ̃θ ). Note that μ̃θ converges point-wise to the
degenerate probability μ∗ = (1, 0, · · · ) as θ vanishes.12

However, by the entropy discontinuity [18], [19], [30], the con-
vergence of the measure to μ∗ is not sufficient to guarantee
that limθ→0 H (μ̃θ) = H (μ∗) = 0.

11We note that for the charcaterization of Rμ(d) as d → 0 this assumption
implies no loss of generality.

12In the ∞-alphabet the point-wise convergence of probabilities to a
limit is equivalent to the weak convergence and the convergence in total
variations [29].

First, it is simple to note that κθ → 0, as θ → 0 considering
that μ̃θ (i) → 0 for all i ≥ 1, μ ∈ PH(X ), and the dominated
convergence theorem [31]. Then, limθ→0(1 − κθ ) log 1

1−κθ =
0, which is the limit of the first term in the RHS of (34).
For the rest, we define the self-information function iμ̃θ (i) :
= μ̃θ ({i}) log 1/μ̃θ ({i}) > 0, for all i > 1, and iμ̃θ (1) := 0.
By definition limθ→0 iμ̃θ (i) = 0 point-wise in X , noting that
limθ→0 Kμ(θ) = ∞ and H (μ) < ∞. Furthermore, there is
θ0 > 0 such that for all θ < θ0, 0 ≤ iμ̃θ (i) ≤ iμ̃θ0 (i) for all13

i ≥ 1, where from the assumption that H (μ) < ∞, and the
fact that Kμ(θ0) < ∞, then (i ˜μθ0 (i)) ∈ �1(X ). Again by the
dominated convergence theorem [31], limθ→0

∑
i≥1 iμ̃θ (i) = 0

and consequently, limθ→0 H (μ̃θ) = 0 from (34).
Returning to (32), it follows that for all n ≥ 1,

r( fn, μ
n) ≥ Rμ

(
d( fn, gn, μ

n)︸ ︷︷ ︸
dn :=

)
= H (μ)− H

(
μ̃θ(dn)

)
. (35)

Finally, as dn → 0,

lim inf
n→0

r( fn, μ
n) ≥ H (μ)− lim sup

dn→0
H
(
μ̃θ(dn)

)
= H (μ)− lim

θ→0
H (μ̃θ )

= H (μ). (36)

Therefore, the inequality in (36) implies that Ral(μ) ≥ H (μ)
from Definition 4.

The achievability part (i.e., Ral(μ) ≤ H (μ)) follows from
the proof of Proposition 1 in Appendix I-C.

B. Theorem 4

For the proof of Theorem 4, we first introduce some
definitions and an achievability result:

1) Preliminaries: Regarding the distortion, we need the
following definition:

Definition 12: A sequence of partitions {πn : n ≥ 1} of X
is asymptotically sufficient for � ⊂ P(X ), if it is asymptoti-
cally sufficient for every measure μ ∈ � (cf. Definition 5).

Concerning the analysis of the worst-case average redun-
dancy in a lossy context, it is instrumental to introduce the
divergence restricted to a sub-sigma field [24].

Definition 13: Let π be a partition of X and σ(π) ⊂ B(X )
its induces sigma-field. Then, for every μ, v ∈ P(X ), the
divergence of μ with respect to v restricted to σ(π) is [24]:

Dσ(π)(μ|v) :=
∑
A∈π

μ(A) log
μ(A)
v(A) . (37)

Definition 14: Let � ⊂ P(X ) and π be a partition of
X . Fot any n ≥ 1, the information radius of �n ⊂ P(X n)
restricted to σ(π) is given by:

R+(�n, σ (π)) := min
vn∈P(X n)

sup
μn∈�n

Dσ(π×···×π)(μn |vn), (38)

where π × · · · × π denotes the product partition of X n ,
P(X n) is the set of probability measures in (X n,B(X n)), and

13This follows from the fact that the function θ log 1
θ is monotonically

increasing in the range of (0, θ0) for some θ0 > 0.
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�n denotes the collection of all i.i.d (product) probabilities
measures in (X n,B(X n)) induced by �.

Lemma 4: Let us consider � ⊂ P(X ). If there is a
sequence of partitions {πn : n ≥ 1} of X such that:

• {πn : n ≥ 1} is asymptotically sufficient for � (Def. 12),
and

• (R+(�n, σ (πn)))n is o(n),

then the family of stationary and memoryless sources with
marginal distribution in � admits an almost lossless source
coding scheme.

The proof is presented in Section VIII-C.
2) Proof of Theorem 4: Let us consider a collection of finite

size partitions {πn : n ≥ 1} ⊂ B(X ) with kn = |πn | < ∞ for
all n. We note that if⋂

m≥1

⋃
l≥m

πl(x) = {x} , for all x ∈ X (39)

then, this partition scheme is asymptotically sufficient
for P(X ). Concerning the information radius, we have that
kn = |πn | < ∞, which reduces the analysis to the
finite alphabet case. In this context, it is well-known that
[3, Theorem 7.5]:

kn − 1

2
log n−K1 ≤ R+(P(X n), σ (πn)) ≤ kn − 1

2
log n+K2,

(40)
for some universal constants K1 and K2. Then, provided that
(kn)n is o(n/ log n) it follows that (R+(P(X n), σ (πn)))n is
o(n). There are numerous finite partition sequences that satisfy
the conditions stated in (39) and (kn)n being o(n/ log n).
For example, the tail partition family given by π̄kn :={
{1} , {2} , · · · , {kn − 1} , �c

kn −1

}
, where �k := {1, · · · , k}

and �0 := ∅, considering that (1/kn)n is o(1) and (kn)n is
o(n/ log n). Finally, for all �n ⊂ P(X n) we have by definition
that R+(�n, σ (πn)) ≤ R+(P(X n), σ (πn)), which proves the
result by applying Lemma 4.

C. Proof of Lemma 4

Proof: First note that if {πn : n ≥ 1} is asymptotically
sufficient for the family �, it means that for all μ ∈ �,
limn→∞ μ(∪k≥nπk(x) \ {x}) = 0 (Def. 5). If we denote by
kn = |πn| and πn = {An.i : 1 ≤ i ≤ kn}, then we can construct
φn : X n → {1, . . . , kn} such that φ−1

n (i) = An,i for all
1 ≤ i ≤ kn . On the other hand, we can choose an arbitrary
yn,i ∈ An.i for each i ∈ �kn , and the mapping ψ : �kn → X
in the way ψ(i) = yn,i . At this point, we observe:

d(φn, ψn, μ
n) = �(X �= ψn(φn(X)))

=
kn∑

i=1

∑
x∈An,i

fμ(x)ρ0,1(x, yn,i )

=
kn∑

i=1

μ(An,i \ {yn,i
}
)

= μ

(
X \

kn⋃
i=1

{
yn,i
})

. (41)

Then, from the hypothesis that {πn : n ≥ 1} is asymptotically
sufficient for μ, and the use of bounded convergence the-
orem, it is simple to verify that the RHS of (41) goes to
zero (see Section I-A). Therefore, this convergence happens
point-wise ∀μ ∈ �.

Remark 1: It worth mentioning that (41) tends to zero,
if and only if, limn→∞ ∪k≥nπk(x) = {x} μ-almost surely
(cf. Lemma 1). Hence, to achieve a point-wise convergence
to zero of the distortion over �, for this two-stage scheme,
it is necessary and sufficient that {πn : n ≥ 1} is asymptotically
sufficient for �.

Regarding the second coding stage, we ideally need to find
a lossless code with the least worst-case average redundancy
over the family

�n/σ(πn) := {μn/σ(πn × · · · × πn) : μ ∈ �}
⊂ P(X n, σ (πn × · · · × πn)),

where μ/σ(π) ∈ P(X , σ (π)) is a short hand for the proba-
bility μ restricted to the sub-sigma field induced by π ,14 and
P(X , σ ) denotes the collection of probabilities restricted to
the events of the sub-sigma field σ ⊂ B(X ).

In fact, for a lossless prefix-free code Cn : �n
kn

→ {0, 1}∗,
associated to the first stage φn , its worst-case average redun-
dancy over �n is given by:

R(�n , φn, Cn) := sup
μ∈�

(
r(φn, Cn, μ

n)− H (μ)
)
. (42)

For any fixed μ ∈ �, it is clear that the entropy of

n(Xn) is a lower bound for the average rate of the code,
i.e., r(φn, Cn, μ

n) ≥ 1
n H (
n(Xn)) = Hσ(πn)(μ), then con-

straining to the events of σ(πn), we are interested in control-
ling the following stringer worst-case overhead:

R̄(�n, φn, Cn) := sup
μ∈�
(
r(φn, Cn, μ

n)− Hσ(πn)(μ)
)
. (43)

Note that Hσ(πn) − H (μ) ≤ 0 and thus,
R̄(�n, φn, Cn) ≥ R(�n, φn, Cn). Then, we can choose a
code solution to the following mini-max problem:

C∗
n := arg min

Cn :�n
kn

→{0,1}∗
R̄(�n, φn, Cn), for all n ≥ 1. (44)

From the close connection between probabilities and prefix
free codes [3], the performance of the optimal code in (44) is
tightly related to the i-radius of the family �n/σ(πn) in (38),
in the sense that ∀n ≥ 1:

R+(�n, σ (πn))

n
≤ R̄(�n, φn, C∗

n ) ≤ R+(�n, σ (πn))+ 2

n
.

(45)
Finally, from the hypothesis on the information radius
and (45), we have that:

lim
n→∞ R(�n, φn, C∗

n ) ≤ lim
n→∞ R̄(�n, φn, C∗

n ) = 0. (46)

Remark 2: The inequalities in (45) states that the
sub-linear trend (with the block-length) on the i-radius of

14Note that if μ ∈ P(X ), then the restriction μ/σ(π) ∈ P(X , σ (π))
reduces to the evaluation of μ over the cells of π . In fact, {μ(B) : B ∈ π}
plays the role of the probability mass function of μ/σ(π) on the measurable
space (X , σ (π)).
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{�n/σ(πn) : n ≥ 1} is a necessary and sufficient condition
for the existence of a strongly minimax universal code for
{�n/σ(πn) : n ≥ 1}.

D. Theorem 5

Let us first introduce some notations, definitions and results
that will be used in the proof of Theorem 5.

Definition 15: For � ⊂ P(X ) its i-radius is given and
denoted by:

R+(�) := inf
v∈P(X )

sup
μ∈�

D(μ|v).

Definition 16: For a function φ : X → I (where I is
either a finite or a countably infinite set) and μ ∈ P(X ), let
us denote by vμ ∈ P(I) the distribution induced by φ in I
trough the standard construction:15 vμ(B) := μ(φ−1(B)) for
all B ⊂ I.

Lemma 5: Let φ : X → I be a mapping where I is
a countably infinite set. Then for any non-negative envelope
function f : X → �

+, there is f̃ : I → �
+ given by16

f̃ (i) := min

⎧⎨
⎩∑

x∈Ai

f (x), 1

⎫⎬
⎭ , (47)

such that
{
vμ : μ ∈ � f

} = �̃ f̃ :={
v ∈ P(I) : fv (i) ≤ f̃ (i) for all i ∈ I

}
.

The proof of this result is presented in Appendix I-D.
Lemma 5 implies that envelope families on X map to

envelope families on I through the mapping φ. In this context,
the result by Boucheron et al. [9] in Theorem 1 (in Section II)
is instrumental to prove Theorem 5.

Proof of Theorem 5:
1) Achievability: If f ∈ �1(X ), the fact that � f has a

uniform bound on the tails of the distributions suggests that
a family of tail truncating partitions should be considered to
achieve the claim i). Let us define

π̃kn := {{1} , · · · , {kn} , �c
kn

}
, (48)

which resolves the elements of �kn = {1, . . . , kn} and, conse-
quently, there is a pair (φ̃n, ψ̃n) associated with π̃kn such that
∀μ ∈ � f :

d(φ̃n, ψ̃n, μ
n) ≤ μ(�c

kn
) ≤
∑
x>kn

f (x). (49)

In fact, supμ∈� f
d(φ̃n, ψ̃n, μ

n) ≤ ∑x>kn
f (x) < ∞, and

(1/kn)n being o(1) is a sufficient condition to satisfy the
uniform convergence of the distortion to zero. Furthermore,
from the proof of Lemma 4 (Eq.(45)) and (40), there is a loss-
less coding scheme

{
C̃n : �n

kn+1 → {0, 1}∗ : n ≥ 1
}

such that

supμ∈� f

(
r(φn, C̃n, μ

n)− H (μ)
) ≤ kn · log

√
n/n + O(1/n).

Therefore, we can consider (kn)n being O(nτ ) with τ ∈ (0, 1)
to conclude the achievability part.

15There is no question about the measurability of φ(·) as we consider that
B(X ) is the power set.

16 Ai := φ−1({i}) for any i ∈ I .

2) Converse for Two-Stage Lossy Coding Schemes: 17 For
the converse part, let us first consider an arbitrary two-stage
lossy rule (φn, ψn, Cn) with a finite partition kn = |πn| <
∞. If we denote its prototypes by Yn := {ψ(i) : i ∈ �kn

}
,

it is clear that there exists μ ∈ � f such that supp(μ) ⊂
Yc

n , and consequently, d(φn, ψn, μ
n) = 1 for all n. Therefore,

for any finite size partition rule (φn, ψn, Cn) it follows that
supμ∈� f

d(φn, ψn, μ
n) = 1 for all n ≥ 1 and hence, when

f /∈ �1(X ) no uniform convergence on the distortion can be
achieved with a finite size lossy rule.

On the other hand, for the family of infinite size partition
rules, i.e., (φn, ψn , Cn) such that |πn | = ∞, we focus our
analysis on R+(�n

f , σ (πn)) in (38). Let us fix a block-length
n > 0 and a rule (φn, ψn, Cn) of infinite size. For sake
of clarity, we consider that φn : X → I, where I is a
∞-alphabet. For any μ ∈ � f , vμ denotes the induced measure
in I by the mapping φn trough the standard construction (see
Def. 16). In addition, it is simple to verify that for any pair
μ1, μ2 ∈ P(X )

Dσ(πn)(μ1|μ2) = D(vμ1 |vμ2)

=
∑
i∈I

fvμ1
(i)

fvμ1
(i)

fvμ2
(i)
, (50)

where πn = {An,i = φ−1
n ({i}) : i ∈ I} and fvμ(i) := μ(An,i )

∀i denotes the pmf of vμ on I. Then,

R+(�n
f , σ (πn)) = R+(

{
vn
μ : μ ∈ � f

}
) (51)

where vn
μ denotes de product probability on In with mar-

ginal vμ and P(In) is the collection of probability measures
on In . Then, the i-radius of �n

f restricted to the product sub-
sigma field σ(πn × · · · × πn) is equivalent to the information
radius of

{
vn
μ : μ ∈ � f

} ⊂ P(In) (Def. 15). From Lemma 5,{
vn
μ : μ ∈ � f

}
is an envelope family with envelope function

given by (47). It is simple to verify that f /∈ �1(X ) implies
that f̃ /∈ �1(I), then Theorem 1 and (51) tell us that
R+(�n

f , σ (πn)) = ∞. Finally, since the i-radius in (51) tightly
bounds the least-worst expected redundancy for the second
lossless coding stage (see (44) and (45)), this implies that:

sup
μ∈� f

(r(φn, Cn, μ
n)− H (μ)) = ∞, (52)

which concludes the argument.
3) Converse for General Variable-Length Lossy Codes: Let

us consider a general lossy code ( fn, gn) of length n > 0
introduced in Section III. Without loss of generality we can
decouple fn as the composition of a vector quantizer φn :
X n → In , where In is an index set, and a prefix-free losses
mapping Cn : In → {0, 1}∗, where f (xn) = Cn(φn(xn)) for all
xn ∈ X n . From this, we characterize the vector quantization
induced by ( fn, gn) as follows:

πn :=
{
φ−1

n ({i}) : i ∈ In

}
⊂ B(X n). (53)

17We first present this preliminary converse argument, as it provides the
ground to explore the redundancy gain analysis presented in Section VI.
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Using this two-stage (vector quantization-coding) view, it is
possible to show that:18

R̄(� f , fn) := sup
μ∈� f

(
r( fn, μ

n)− 1

n
Hσ(πn)(μ

n)
)

≥ 1

n
inf

v∈P(X n)
sup
μ∈� f

Dσ(πn)(μ
n|v), (54)

which means that the worst-case overhead, expressed by
R̄(� f , fn), is lower bounded by the i-radius of the n-fold
family �n

f projected into the sub-sigma field induced by πn ,
i.e., a quantization of X n . Considering that f /∈ �1(X ), we fol-
low the construction presented in [9] that shows that there is
an infinite collection of distributions �̃ = {μ̃ j ∈ � f , j ∈ J }
with |J | = ∞, where if we denote by

Aμ̃ j := supp(μ̃ j ) =
{

x ∈ X : fμ̃ j (x) > 0
}
,

then
∣∣∣Aμ̃ j

∣∣∣ < ∞ for each j ∈ J and for any j1 �= j2, Aμ̃ j1
∩

Aμ̃ j2
= ∅. In this context, for each j ∈ J An

μ̃ j
:= Aμ̃ j × . . .×

Aμ̃ j ∈ X n is the support of μ̃n
j .

At this point, let us use the assumption that:
supμ∈� f

d( fn, gn, μ
n) < 1. This implies that

supμ∈�̃ d( fn, gn, μ
n) < 1. From the fact that �̃ is an

infinite collection of probabilities with disjoint supports and
the definition of the distortion, it is simple to verify that we
need to allocate at least one prototype19 per cell An

μ̃ j
, which

implies that |In | = ∞, because otherwise it follows that
supμ∈�̃ d( fn, gn, μ

n) = 1.
Using (54), we will focus on evaluating the information

radius of �̃n projected over the measurable space (X n, σ (πn))
considering that by definition:

inf v∈P(X n) sup
μ∈�̃

Dσ(πn)(μ
n|v)

≤ inf
v∈P(X n)

sup
μ∈� f

Dσ(πn)(μ
n|v). (55)

For every j ∈ J , let us define the covering of the support of
μ̃n

j ∈ �̃n by πn(An
μ̃ j
) :=
{

B ∈ πn : An
μ̃ j

∩ B �= ∅
}

and

B(An
μ̃ j
) :=

⋃
B∈πn(An

μ̃ j
)

B. (56)

By construction, we note that
∣∣∣An

μ̃ j

∣∣∣ < ∞ and consequently∣∣∣πn(An
μ̃ j
)
∣∣∣ < ∞ for all j ∈ J . Considering that πn has an

infinite number of cells, we can choose an infinite subset of
elements in �̃n =

{
μ̃n

j : j ∈ J
}

in the following way: We

fix j1 = 1 and μ̄1 = μ̃1 ∈ �̃, then we consider

j2 = min
{

j > j1, such that B(An
μ̃ j
) ∩ B(An

μ̄1
) = ∅

}
< ∞,

(57)

18The proof of (54) is presented in Appendix I-E.
19The prototypes of ( fn, gn ) is the set Bn =

{
gn ( fn(xn

1 )) : xn
1 ∈ X n

}
.

and we choose μ̄2 = μ̃ j2 ∈ �̃. Iterating this rule, at the k-stage
(k ≥ 2) we solve

jk =min

{
j > jk−1, such that B(An

μ̃ j
) ∩
(

k−1⋃
l=1

B(An
μ̄l
)

)
=∅
}

(58)

and we take μ̄k = μ̃ jk ∈ �̃, for all k ≥ 1. Note that the
solution of (58) is guaranteed from the fact that |J | = ∞
and
∣∣∣πn(An

μ̃ j
)
∣∣∣ < ∞ for all j . Finally, we define �̄n :={

μ̄n
l : l ≥ 1

} ⊂ �̃n . Importantly (for the computation of
the i-radius), this restricted family of distributions has the
property that their support coverings in (56) are disjoint by its
construction in (58). From �̄n , we can induce the following
partition:

ξn := {B(An
μ̄l
) : l ≥ 1)

} ∪
⎛
⎝X n \

⋃
l≥1

B(An
μ̄l
)

⎞
⎠ ⊂ σ(πn),

(59)
where the last identity is from the construction, as every cell
of ξn is a finite union of cells of πn (i.e., ξn � πn). It is not
difficult to check that for every v ∈ P(X n), we have that20

sup
μ̄l∈�̄

Dσ(ξn)(μ̄
n
l |v) = ∞. (60)

Consequently, we have that

inf
v∈P(X n)

sup
μ̃ j ∈�̃

Dσ(πn)(μ̃
n
j |v) ≥ inf

v∈P(X n)
sup
μ̃ j ∈�̃

Dσ(ξn)(μ̃
n
j |v)

≥ inf
v∈P(X n)

sup
μ̄l∈�̄

Dσ(ξn)(μ̄
n
l |v)=∞,

(61)

the first inequality derives from ξn � πn and the second from
�̄ ⊂ �̃. Finally (61) and the relationship between the worst-
case redundancy and the information radius in (54) (Prop. 2
in Appendix I-E) imply that

R̄(�̃, fn) = sup
μ̃ j ∈�̃

(
r( fn, μ̃

n
j )−

1

n
Hσ(πn)(μ̃

n
j )
)

= ∞. (62)

In other words, from (62) there is jo ∈ J such that
r( fn, μ̃

n
jo) − 1

n Hσ(πn)(μ̃
n
jo) = ∞, where considering that by

construction 1
n Hσ(πn)(μ̃

n
jo) ≤ H (μ̃ j o) < log

∣∣∣Aμ̃ jo

∣∣∣ < ∞, this
implies that r( fn, μ̃

n
jo) − H (μ̃ j o) = ∞. Therefore, we have

that

sup
μ̃ j ∈�̃

(
r( fn, μ̃

n
j )− H (μ̃n

j )
)

= ∞, (63)

which concludes the result considering that �̃ ⊂ � f .

E. Theorem 6

Without loss of generality, in this section we assume that
X is the integer set � \ {0}. To organize the proof, we first
introduce some definitions and a series of important results
that will be used in the main argument.

20This result follows from the fact that the elements of �̄n projected into
the sub-sigma field ξn degenerate, in the sense that Hσ(ξn)(μ̄

n
l ) = 0 for

all l ≥ 1.
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1) Preliminaries:
Definition 17: [10] For a non-negative function

f : X → �
+, the hazard function of � f is given by

h f (u) := − ln F̄ f (u)

for all u ∈ X .
Definition 18: [10] The continuous extension of

(h f (u))u∈X to the positive real line �
+ is defined by

means of the following linear interpolation:21

h̃ f (kλ+ (1 − λ)(k + 1)) := λh f (k)+ (1 − λ)h f (k + 1)

for k ∈ X and for all λ ∈ [0, 1).
Consistently with (h̃ f (x))x≥0, in Def.18, it is possible to

extend (F f (u))u∈X to �+ using the relationship expressed in
Def. 17:

Definition 19: Given f : X → �
+, the continuous exten-

sion of (F f (u))u∈X using (h̃ f (x))x≥0 (Def. 18) is denoted by
(F f (x))x≥0 and called the smoothed envelope distributions
of � f .

Definition 20: [10, Eq.(1)] Under the setting of Def. 19,
a function U f : [1,∞] −→ � can be defined as the solution
of:

U f (t) := F−1
f (1 − 1/t) , (64)

for all t ≥ 1.
Definition 21: Let ( f (x))x∈X be non-negative and in

�1(X ). A non-decreasing continuous function can be obtained
as:22

l f (1/�) :=
∫ 1/�2

1

U f (x)

2x
∂x,

for any � > 0.
Definition 22: Let (� f,n)n≥1 be the sequence obtained as

the solution (point-wise) of: l f (1/�) = n�2

8 for all n.
We are in the position to state two instrumental results:
Lemma 6: [9, Th. 4] Let

{
�n

f , n ≥ 1
}

be the enve-
lope collection of stationary and memoryless sources with
f ∈ �1(X ) and tail function (F̄ f (u))u∈X . Then for any n ≥ 1

R+(�n
f ) ≤ inf

u≥1

[
nF̄ f (u) log(e) + u − 1

2
· log n

]
+ 2.

Lemma 7: [10, Prop. 5] Under the setting of Lemma 6,
there is a sequence (ξn)n being o(1) (and function of f ) such
that:23

R+(�n
f ) ≥ (1 + ξn) log(e)

∫ n

1

U f (x)

2x
∂x, for all n ≥ 1.

(65)
We also use results from the seminal work of Haussler and

Opper [11] that we summarize here:
Definition 23: For any μ1, μ2 ∈ P(X ), the Hellinger dis-

tance is given/denoted by: dh(μ1.μ2)
2 :=∑x∈X (

√
fμ1(x)−√

fμ2(x))
2.

21This idea was proposed by Bontemps et al. [10] following Anderson [32].
22See Eq.(67).
23Remarkably, it has been shown in [10, Th. 2] that this closed-form

lower bound captures the precise asymptotic of the information radius of the

envelope class, meaning that: limn→∞ R+(�n
f )/ log(e)

∫ n
1

U f (x)
2x ∂x = 1.

Definition 24: [11] For � ⊂ P(X ) and � > 0, let D�(�)
be the smallest cardinality of a partition of �, whose cells
have a diameter smaller or equal then � (with respect to dh

in P(X )) or it is infinity if no finite partition satisfies the
diameter condition. Then, the metric entropy of � is given
by:

H�(�) := ln(D�(�)).
The following important results can be stated:

Lemma 8: [11, Lemma 7] Let us assume that � ⊂ P(X )
is totally bounded, i.e., H�(�) < ∞ for all � > 0. Then, for
all n ≥ 1,

R+(�n) ≥ log(e) · sup
�>0

min

{
H�(�),

n�2

8

}
− 1.

Corollary 1: From Lemma 8, if we let �∗
�,n :=

inf
{
� > 0 : H�(�) ≤ n�2

8

}
, we have that ∀n ≥ 1:

R+(�n) ≥ log(e) · H�∗�,n (�)− 1, (66)

and, consequently,

lim inf
n→∞ R+(�n)/ log(e) H�∗�,n (�) ≥ 1.

It is worth noting that the metric entropy lower bound for the
information radius stated in Corollary 1 is asymptotically tight
under a slowly variant condition on the behaviour of H�(�)
as � goes to zero [10].24

Importantly for envelope families, when f ∈ �1(X ) the
asymptotic of the metric entropy of � f , i.e., lim�→0 H�(� f ),
is known. More precisely, Bontemps et al. [10, Prop.4] have
shown that

H�(� f ) = (1 + o f (1))
∫ 1/�2

1

U f (x)

2x
∂x (67)

as � tends to 0.
2) Proof of Theorem 6— Regime of Gain in Minimax

Redundancy: Let us assume that (kn)n is o(u∗
f (n)). This

part derives directly from the tight lower and upper bounds
developed by Bontemps et al. [10, Th. 2] and Boucheron et al.
[9, Th. 4] for the case of summable envelopes. In particular,
from Lemmas 6 we have that

R+(�n
f ) ≤
[

nF̄ f (u
∗
f (n)) log(e) + u∗

f (n)− 1

2
log n

]
+ 2

≤ 2 + log(e) + u∗
f (n)− 1

2
log n.

On the other hand, it has been shown that25

∫ n

1

U f (x)

2x
∂x ≥ U f (n) log n

4
≥ (u∗

f (n)− 1)

4
log n. (68)

24More details are presented in [11, Lem. 8, Th. 4 and Th. 5].
25Notice that:

∫ n
1

U f (x)
2x ∂x = 1

2

∫ ln n
0

U f (e
y)∂y ≥ U f (n) ln n

4 , the last
inequality from the concavity and positivity of U f (e

y) shown in [10, pp. 814].
On the other hand, from their definitions ∀n ∈ X , u∗

f (n) − 1 ≤ U f (n) <
u∗

f (n).
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Consequently, from Lemma 7 we have that eventually with n:

(1 + ξn)
(u∗

f (n)− 1)

4
log n ≤ R+(�n

f )

≤ 2 + log(e) + (u∗
f (n)− 1)

2
log n, (69)

which means that (R+(�n
f ))n ≈ (u∗

f (n) log n). Moreover, it is
well-known that [3]:

R+(�n
f , σ (π̃kn )) ≤ R+(Pn(kn)) ≤ kn − 1

2
log n + K , (70)

for some K > 0, where P(kn) is a short-hand for the
collection all probabilities defined on the finite alphabet �kn ,
i.e., the simplex of dimension kn − 1. Consequently, under
the assumption that (kn)n is o(u∗

f (n)), from (69) and (70) it
follows that:

lim
n→∞

R+(�n
f , σ (π̃kn ))

R+(�n
f )

= 0.

3) Proof of Theorem 6 — Regime of No-Gain in Min-
imax Redundancy: Let us assume that (kn)n ≥ (u∗

f (n))n
eventually with n. Here we adopt results from the seminal
work of Haussler and Opper [11] that offers a lower bound
for the mutual information and consequently, the channel
capacity that corresponds to the information radius of a family
of distributions [3]. However in our problem, we have a
dynamic collection of distributions, explained by the process
of projecting � f into the dynamic collection of sub-sigma
fields

{
σ(π̃kn ) : n ≥ 1

}
. More precisely, and adopting the

notation introduced in Section VIII-C, we have the collection
of distributions:

�n
f /σ(π̃kn ) := {μn/σ(π̃kn × · · · × π̃kn ) : μ ∈ � f

}
⊂ P(X n, σ (π̃kn × · · · × π̃kn )), (71)

for all n ≥ 1, where μ/σ(π) := {μ(A) : A ∈ σ(π)} ∈
P(X , σ (π)) denotes the probability μ restricted to the
sub-sigma field induced by π and P(X , σ ) denotes the
collection of probabilities restricted to the events of the
sub-sigma field σ ⊂ B(X ). Furthermore, associated to
π̃kn = {Akn ,i : i = 1, .., kn

}
there is a lossy mapping φn :

X n −→ �kn where φ−1
n (i) = Akn ,i for i ∈ �kn . Consequently

through φn , every μ ∈ P(X ) induces a probability in �kn ,
which we denote by ρμ,kn ∈ P(�kn ), by the standard con-
struction: ρμ,kn (B) = μ(φ−1

n (B)) for all B ⊂ �kn . Note that
ρμ,kn is fully characterized by its pmf fρμ,kn

(i) = ρμ,kn ({i}) =
μ(Akn ,i ), ∀i ∈ �kn , where we have that fρμ,kn

(i) = fμ(i) if
i < kn and fρμ,kn

(kn) = 1 − μ(�kn−1). By letting

�̃ f,kn := {ρμ,kn : μ ∈ � f
} ⊂ P(�kn ),

from (51) we have that:
R+(�n

f , σ (π̃kn )) = R+(�̃n
f,kn
). (72)

Consequently, the problem reduces to characterize the
information radius of a family of dynamic distributions{
�̃n

f,kn
, n ≥ 1

}
(defined on a dynamic alphabet whose size

grows with the block-length). Using the envelope conditions
of � f and Lemma 5 in Section VIII-D, it is simple to show

that �̃ f,kn satisfies an envelope condition on P(�kn ), which
is expressed in (73), as shown at the top of the next page.
Then, if we consider the extended (over the integer) finite size
envelope function f̃kn : X −→ �

+ given by: f̃kn (i) := f (i)
for i = [1 : kn − 1], f̃kn (kn) := F̄ f (kn − 1) and f̃kn (i) := 0
for i > kn , �̃ f,kn is equivalent to � f̃kn

⊂ P(X ) and thus,

R+(�n
f , σ (π̃kn )) = R+(�̃n

f,kn
) = R+(�n

f̃kn
), ∀n ≥ 1. (74)

Therefore, studying the minimax redundancy gain reduces to
analyze the family of envelope distributions of finite size{
� f̃kn

: n ≥ 1
}

, where supp( f̃kn ) ⊂ �kn by construction. If
we consider,

�∗
n,k := inf

{
� > 0 : H�(� f̃kn

) ≤ n�2

8

}
, (75)

the straight adoption of Lemma 8 in this dynamic context
implies that

R+(�n
f̃kn
) ≥ log(e) · H�∗n,kn

(� f̃kn
)− 1

for all n and, consequently,

lim inf
n−→∞ R+(�n

f̃kn
) ≥ log(e) · lim inf

n−→∞ H�∗n,kn
(� f̃kn

)− 1. (76)

Following the approach proposed by Haussler and Opper [11],
the idea is to obtain a tight approximation (ideally in closed-
form) of the RHS of (76), assuming that the function
H�∗n,kn

(� f̃kn
) is asymptotically lower bounded by a continuous

non-decreasing function. With that objective in mind, the fol-
lowing important result (Theorem 7 below) can be obtained.
For the statement of this result, the following definition is
needed:

Definition 25: Given ( f (x))x∈X , non-negative and in
�1(X ), and a sequence of positive integers (kn)n , we say that
(�n)n ∈ (�+ \ {0})� is admissible for (kn)n given � f if

F̄ f (kn − 1) ≤ �2
n

16
(77)

holds eventually (with n).
Theorem 7: Let us consider � f ⊂ P(X ), with f ∈ �1(X )

and supp( f ) = X , and a sequence of non-decreasing positive
integers (kn)n such that (1/kn)n is o(1). If (� f,n)n (see Def. 22)
is admissible for (kn)n given � f (see Def. 25) then

lim inf
n→∞

R+(�n
f̃kn
)

log(e) · ∫ n
1

U f (x)
2x ∂x

≥ 1

The proof of Theorem 7 is presented in Section VIII-F.
Remark 3: In general we have that

R+(�n
f̃kn
) = R+(�n

f , σ (π̃kn )) ≤ R+(�n
f ),

the last inequality from (74). On the other hand, it is known
from [10, Th. 2] that there is a sequence (an)n being o(1)
where eventually in n

R+(�n
f ) ≤ (1 + an) log(e) · l f (

√
n)

= (1 + an) log(e) ·
∫ n

1

U f (x)

2x
∂x . (78)
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�̃ f,kn =
⎧⎨
⎩ρ ∈ P(�kn ) : fρ(i) ≤ f (i), for i = [1 : kn−1] and fρ(kn) ≤

∑
l>kn −1

f (l) = F̄ f (kn − 1)

⎫⎬
⎭ . (73)

Consequently, under the assumptions of Theorem 7 it follows
directly from this result and (78) that

lim
n→∞

R+(�n
f̃kn
)

R+(�n
f )

= 1. (79)

Returning to the proof, from Theorem 7, Definition 25 and
Remark 3, a sufficient condition to obtain (79) (i.e., no gain

in minimax redundancy) is that (
√

F̄ f (kn))n � (� f,n)n
(see some remarks about this in Lemma 10, Section VIII-F
below). Furthermore from the proof of Theorem 7, we have

that (� f,n) = (
√

8/n · l(1/� f,n))n ∼ (
√

8/n · l f (
√

n))n =
(

√
8/n · ∫ n

1
U f (x)

2x ∂x)n , where it is known that
∫ n

1
U f (x)

2x ∂x ≥
U f (n) ln n

4 [10, pp.814]. From the main assumption, which
consider that there is No > 0 such that ∀n ≥ No , kn ≥ u∗

f (n),
we note that(

F̄ f (kn)

(� f,n)2

)
n

∼
(

n · F̄ f (kn)∫ n
1

U f (x)
2x ∂x

)
n

,

where for the second series we have that:
n · F̄ f (kn)∫ n
1

U f (x)
2x ∂x

≤ 4 n · F̄ f (kn)

U f (n) ln n

≤ 4 n · F̄ f (u∗
f (n))

U f (n) ln n

<
4

U f (n) ln n
−→ 0. (80)

The strict inequality in (80) is by definition of u∗
f (n)

in (6), where 1/n ∈ (F̄ f (u∗
f (n)), F̄ f (u∗

f (n) − 1)]. The
last convergence in the RHS of (80) is from the fact that
U f (n) ∈ [u∗

f (n) − 1, u∗
f (n)) → ∞ as n tends to infin-

ity, this follows from (6) and the non-trivial assumption
that |supp( f )| = ∞. In summary, from (80) we have that(√

F̄ f (kn)

)
n

� (� f,n)n , then Theorem 7 and its corollary

in (79) implies that limn→∞
R+(�n

f̃kn
)

R+(�n
f )

= 1. This last limit and

the equalities in (74) conclude the proof.

F. Theorem 7

To organize the proof of Theorem 7, we present first two
instrumental results:

The first result is a simple extension of [11, Lemma 8]:
Lemma 9: Let us consider the dynamic collection of dis-

tributions
{
� f̃kn

: n ≥ 1
}

presented in (73) where f ∈ �1(X ),
and let (kn)n be a non-decreasing sequence of integers. In addi-
tion, let l : �+ → �

+ be a strictly increasing and unbounded
continuous function. Let us denote by (�l.n)n the solutions to
the expression: l(1/�) = n�2

8 for all n. If there is a sequence
(�n)n such that:

1) (�n)n ≤ (�l.n)n holds eventually with n, and

2) lim infn→∞
H�n (� f̃kn

)

l(1/�n)
≥ 1,

then26

lim inf
n→∞

R+(�n
f̃kn
)

log(e) · l(1/�n)
≥ 1.

The proof is presented in Section VIII-G.
The second result characterizes a sufficient condition on

(�n)n , function of (kn)n , i.e., the size sequence of tail based
partitions, where the metric entropy of our collection of
envelope distributions shares the same asymptotic than the
unconstrained family determined in (67).

Lemma 10: Let us consider a sequence of non-negative
integer (kn)n and a sequence of non-negative reals (�n)n ,
where (1/kn)n is o(1) and (�n)n is o(1). If f ∈ �1(X ) and
(�n)n is admissible for (kn)n given � f (see Def. 25) then

H�n (� f̃kn
) = (1 + an)

∫ 1/�2
n

1

U f (x)

2x
∂x

for a sequence (an)n being o(1), and consequently,

lim
n→∞

H�n (� f̃kn
)

l f (1/�n)
= lim

n→∞
H�n (� f̃kn

)

H�n (� f )
= 1, (81)

where l f (1/�) = ∫ 1/�2

1
U f (x)

2x ∂x for � > 0 (see Def. 21).
The proof of this result is presented in Section VIII-H.
Comments on Lemma 10:

1) Lemma 10 establishes concrete sufficient conditions
where (H�n (� f̃kn

))n has the same asymptotic than the
metric entropy of the unconstrained family (H�n (� f ))n ,

which is ∼ (
∫ 1/�2

n
1

U f (x)
2x ∂x)n from (67).

2) The proof of this result follows the volume comparison
arguments proposed by Bontemps in [20, Lemmas 1 and
2].

3) Note that if limn→∞ F̄ f (kn)/�
2
n = 0 implies that (�n)n

is admissible for (kn)n given � f .

4) Given (kn)n and f ,
√

F̄ f (kn) offers a lower bound on
the admissible regime for (�n)n (see Def.25).

5) If (k̃n)n � (kn)n , i.e., kn/k̃n → 0 as n → ∞, then from
Definition 25 (k̃n)n offers a bigger admissible range for
the (�n)n than its counterpart for (kn)n .

Finally, as the asymptotic of the metric entropy in (67) offers
a tight lower bound to the information radius of envelope
families [10, Th.2], Lemma 10 in conjunction with Lemma 9
provide the mean to characterize a regime of no gain in
minimax redundancy as presented in the proof of Theorem 7
below.

26In particular, if lim infn→∞
H�l,n (� f̃kn

)

l(1/�l,n )
≥ 1 then

lim infn→∞
R+(�n

f̃kn
)

log(e) ·l(1/�l,n ) ≥ 1.
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Proof of Theorem 7: Using the hypothesis that (� f,n)n is
admissible for (kn)n given � f , we have from Lemma 10 that
as n goes to infinity:

H� f,n (� f̃kn
) ≥ (1 + o(1)) · l f (1/� f,n), (82)

which implies that

lim inf
n→∞

H� f,n (� f̃kn
)

l f (1/� f,n)
≥ 1. (83)

Note that l f (x) = ∫ x2

1
U f (x̄)

2x̄ ∂ x̄ on [1,∞) (Def.21) is strictly
increasing, continuous and unbounded, consequently applying
Lemma 9 it follows that:

lim inf
n→∞

R+(�n
f̃kn
)

log(e) · l f (1/� f,n)
≥ 1

⇔ lim inf
n→∞

R+(�n
f̃kn
)

log(e) · n�2
f,n/8

≥ 1, (84)

where the last identity follows from the definition of � f,n

in Def. 22.
At this point we use the result in [10, Proposition 3] that

shows that the function (l f (x)) is very slowly variant [10,
Def. 4], in the sense that ∀η ≥ 0 and κ > 0,

lim
x→∞

l f (κxl f (x)η)

l f (x)
= 1. (85)

This slowly variant condition implies that (� f,n)n , as a (point-
wise) solution of the condition l f (1/�) = n�2/8, satis-
fies asymptotically (the argument is presented in the proof
of [11, Theorem 5]) that:
(
�2

f,n/8
)

n
∼
(

l f (
√

n)

n

)
n

=
(

1

n

∫ n

1

U f (x)

2x
∂ x̄)

)
n
. (86)

Consequently (86) and (84) prove the result.

G. Proof of Lemma 9

Proof: From Lemma 8 it follows that
R+(�n

f̃kn
)

l(1/�l,n )
≥

log(e) min

{H�l,n (� f̃kn
)

l(1/�l,n)
,

n�2

8 · l(1/�l,n)

}
− 1

l(1/�l,n)
,

= log(e) min

{H�l,n (� f̃kn
)

l(1/�l,n)
, 1

}
− 1

l(1/�l,n)
(87)

for all n. As (�l,n) ≥ (�n), without loss of generality we
assume that there is a mapping τ : � −→ � such that
�l,n = �τ(n) for every n, where τ (n) ≤ n eventually with n.
From construction (�l,n) is o(1) and thus, l(1/�l,n) −→ ∞.

Then,

lim inf
n−→∞

R+(�n
f̃kn
)

l(1/�l,n)
≥ log(e) min

{
lim inf
n−→∞

H�τ(n)(� f̃kn
)

l(1/�τ(n))
, 1

}

= log(e) · min

⎧⎪⎪⎨
⎪⎪⎩lim inf

n−→∞

H�n

(
� f̃k

τ−1(n)

)
l(1/�n)

, 1

⎫⎪⎪⎬
⎪⎪⎭

≥ log(e) ·
⎧⎨
⎩lim inf

n−→∞
H�n

(
� f̃kn

)
l(1/�n)

, 1

⎫⎬
⎭ (88)

≥ log(e), (89)

where the inequality in (88) follows from the fact that
H�

(
� f̃k

)
≤ H�

(
� f̃k̄

)
if k̄ ≥ k and that τ−1(n) ≥ n,

and (89) from the main hypothesis of Lemma 9.

H. Proof of Lemma 10

Proof: Following the lower bound for D�(� f ) elaborated
in [20, Lemma 3], which is based on a covering argument and
volume based inequality, we have that for all m ≥ 1 and any
arbitrary k such that m + l f ≤ k (see Def. 2),

D�(� f̃k
) ≥

Vol

(
l f +m∏

i=l f +1
[0,
√

f̃k(i)]
)

Vol (Bm(�))

=

l f +m∏
i=l f +1

√
f̃k(i)

�mVol(Bm)
, (90)

where Bm(�) denotes the ball in �
m of radius �, and

Bm := Bm(1). If we consider

N� := inf
{

m ≥ 1 : F̄ f (m) < �
2/16
}

and let Ñk
� := min {N� , k}, and we evaluate (90)

with m = Ñk
� − l f it follows that

H�(� f̃k
) = lnD�(� f̃k

) ≥
Ñk
�∑

i=l f +1

ln
√

f̃k(i)− ln Vol(BÑk
� −l f

)− (Ñk
� − l f ) ln 1/�. (91)

On the other hand, we can adopt the upper bound in
[20, Lemma 2] that is based on another volume comparison
argument, leading to

D�(� f̃k
) ≤

Vol

(
Ñk
�∏

i=1

[
−�/8,

√
f̃k(i)+ �/8

])

Vol
(
BÑk

�
(�/8)
)

=

Ñk
�∏

i=1

(√
f̃k(i)+ �/4

)
(�/8)Ñk

� · Vol(BÑk
�
)
. (92)

Authorized licensed use limited to: Universidad de chile. Downloaded on May 24,2020 at 00:07:04 UTC from IEEE Xplore.  Restrictions apply. 



666 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 1, JANUARY 2020

This inequality reduces to [10, Eq. (6)]

H�(� f̃k
) ≤

l f∑
i=1

ln

(√
f̃k(i)+ �/4

)
+

Ñk
�∑

i=l f +1

ln

(√
f̃k(i)

)

− ln
(

Vol
(
BÑk

�

))
+ Ñk

� − l f√
1 − e−b

+ Ñk
� ln 8/�, (93)

for b = − ln F̄(l f ) > 0.
If we consider the regime where N� < k, then it follows that

N� = Ñk
� and

{
l f + 1, . . . , N�

} ⊂ {1, . . . , k − 1}. Therefore
f̃k(i) = f (i) for all i ∈ {l f + 1, .., N�

}
. In this scenario,

we have that:

H�(� f̃k
) ≥

N�∑
i=l f +1

ln
√

f (i)− ln Vol(BN�−l f )

− (N� − l f ) ln 1/� (94)

and

H�(� f̃k
) ≤

l f∑
i=1

ln(
√

f (i)+ �/4)+
N�∑

i=l f +1

ln(
√

f (i))

− ln
(
Vol(BN� )

)+ N� − l f√
1 − e−b

+ N� ln 8/�. (95)

We point out that the RHS expression of (94) and (95) are
the very same lower and upper bounds derived in [10, Eq.(7)
and Eq.(6)] for H�(� f ), respectively. Consequently in this
regime, we obtain the lower and upper bound expressions of
the unconstrained (i.e., lossless) problem.

By definition N� < k is equivalent to the condition that
F̄ f (k − 1) ≤ �2

16 . Using the hypothesis that (kn) and (�n)
are such that the condition in Eq.(77) (in Def.25) is satisfied
eventually with n, it follows that

lim inf
n→∞ H�n (� f̃kn

) ≥

lim inf
n→∞

⎧⎨
⎩

N�n∑
i=l f +1

ln
√

f (i)− ln Vol (BN�n −l f )

−(N�n − l f ) ln
1

�n

}
, (96)

and

lim sup
n→∞

H�n (� f̃kn
) ≤

lim sup
n→∞

⎧⎨
⎩

l f∑
i=1

ln
(√

f (i)+ �/4
)

+
N�∑

i=l f +1

ln
(√

f (i)
)

− ln
(
Vol(BN� )

)+ N� − l f√
1 − e−b

+ N� ln
8

�

}
. (97)

To conclude, it has been shown in [10, Prop. 4] that
the RHS of both (94) and (95) behaves asymptotically as

(1 + o(1))
∫ 1/�2

1
U f (x)

2x ∂x when � goes to zero. Consequently
given that by hypothesis �n −→ 0, this fact implies that

H�n (� f̃kn
) = (1 + o(1))

∫ 1/�2
n

1
U f (x)

2x ∂x as n tends to infinity.
Finally (81) follows from (96), (97) and [10, Prop. 4].

APPENDIX I
SUPPORTING RESULTS

A. Proof of Lemma 1

Proof: Let first prove the sufficient condition. Let us
assume that {πn : n ≥ 1} is asymptotically sufficient for μ.
The induced distortion is given by

d(φn, ψn, μ
n) =

∑
x∈X

fμ(x) · ρ(x, ψn(φn(x)))︸ ︷︷ ︸
gn(x):=

. (98)

Considering that μ(lim supn πn(x)) = fμ(x) for all x ∈
supp(μ), then it follows that limn→∞ ψn(φn(x))) = x ,
μ-almost everywhere and limn→∞ gn(x) = 0, μ-almost
surely. Furthermore, gn(x) is a bounded function by defini-
tion, then the bounded convergence theorem [31] implies that
limn→∞

∫
X gn(x)dμ(x) = 0 ⇔ limn→∞ d(φn, ψn, μ

n) = 0.
For the converse, let us assume that ∩n≥1∪m≥nπm(x) �= {x},

μ-almost surely. In other words, ∃x, xo ∈ supp(μ) with x �=
xo such that {x, xo} ⊂ limn→∞ ∪m≥nπm(x). Consequently,
there exists N such that for all n ≥ N , d(φn, ψn, μ

n) ≥
min
{

fμ(x), fμ(xo)
} · min {ρ(x, xo), ρ(xo, x)} > 0.

B. Proof of Lemma 2

For the proof we need the following definitions:
Definition 26: Let us consider μ ∈ P(X ) and a function

g : X → �. g is said to be integrable with respect to
μ if

∑
x∈X |g(x)| fμ(x) < ∞. Finally, �1(μ) denotes the

collection of all integrable functions with respect to μ.
Proof: Let us consider:

H (μ)− Hσ(πn)(μ) =
∑
x∈X

fμ(x) · log
μ(πn(x))

fu(x)︸ ︷︷ ︸
g̃n(x):=

. (99)

From the assumption that H (μ) < ∞, then g̃n(x) ∈ �1(μ).
Furthermore, under the assumption that {πn : n ≥ 1} is asymp-
totically sufficient, we have that limn→∞ μ(πn(x)) = fμ(x)
for all x ∈ supp(μ) and thus, limn→∞ g̃n(x) = 0 μ-almost
everywhere. Finally considering that g̃n(x) ≤ log 1/ fμ(x) ∈
�1(μ), the dominated convergence theorem implies that
limn→∞

∑
x∈X fμ(x) · g̃n(x) = 0.

C. Proof of Proposition 1:

Proof: The argument reduces to verify the achievability
of the entropy using a two-stage lossy construction. For that
we consider the tail partition

πn = {{1} , . . . , {n} , {n + 1, . . . , }} , (100)

associated to φn(x) = x if x ∈ {1, .., n} and otherwise
φn(x) = 0. It is simple to verify that this scheme satis-
fies the zero distortion condition. For the lossless coding of
Y n = 
n(Xn) ∈ {0, 1, . . . , n}n , we can consider the prefix-
free Shannon code [4], whose rate is at most two bits away
from the entropy of Y n . Hence, there is Cn : {0, 1, .., n}n −→
{0, 1}∗ such that:

r(φn, Cn, μ
n) ≤ H (Y n)+ 1

n
= Hσ(πn)(μ)+ 1

n
, (101)
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which suffices to show that

lim sup
n−→∞

r(φn, Cn, μ
n) ≤ H (μ), (102)

and therefore Ral(μ) ≤ R̄al(μ) ≤ H (μ).

D. Proof of Lemma 5

Proof: First, it is direct to show that{
vμ : μ ∈ � f

} ⊂ �̃ f̃ . Then, it remains to prove that

for any v ∈ �̃ f̃ there is μ ∈ � f such that vμ = v, in total
variations. Let us fix an arbitrary i ∈ I. If we first assume
that
∣∣An,i
∣∣ < ∞, we propose the following approach:

x̂1 = arg min
x∈An,i

f (x), ŵx1 = f (x̂1)∑
x∈An,i

f (x)
,

x̂2 = arg min
x∈An,i \{x̂1} f (x), ŵx2 = f (x̂2)∑

x∈An,i
f (x)

,

, . . . , (103)

where finally x̂|An,i | ∈ An,i \ {x̂i : i = 1, . . . ,
∣∣An,i
∣∣− 1
}

and ŵx|An,i | = f (x̂|An,i |)∑
x∈An,i

f (x) . With this we define

μ(
{

x̂i
}
) = ŵx1 · v({i}) for each i ∈ {1, . . . , ∣∣An,i

∣∣}. Note
that μ(

{
x̂i
}
) ≤ f (x̂i ) and

∑
x∈An,i

fμ(x) = v({i}) by
construction. If

∣∣An,i
∣∣ = ∞ and

∑
x∈An,i

f (x) < ∞, we can
follow the same inductive approach than in (103) to construct
μ({x}) for all x ∈ An,i . On the other hand, if

∣∣An,i
∣∣ = ∞

and
∑

x∈An,i
f (x) = ∞, then f̃ (i) = 1 by definition, and we

can always find μi ∈ � f such that supp(μi ) ∈ An,i . Then,
we construct μ({x}) = μi (x) · v({i}), where it is clear that
μ(An,i ) = v({i}) and fμ(x) ≤ f (x) for all x ∈ An,i provided
by μi ∈ � f .

E. Proposition 2

Proposition 2: Let us consider a lossy code ( fn, gn) and
a family of distributions � ⊂ P(X ). If we denote by vμn the
probability in In induced by μn ∈ �n (the n-fold distributions
with marginal in �) and φn , by vμn ({i}) = μn(φ−1

n ({i}))
∀i ∈ In , then

R̄(�, fn) = sup
μ∈�

(
r( fn, μ

n)− 1

n
Hσ(πn)(μ

n)
)

≥ 1

n
R+(
{
vμn : μ ∈ �})

= 1

n
inf

v∈P(In)
sup
μ∈�

D(vμn |v)

= 1

n
inf

v∈P(X n)
sup
μ∈�

Dσ(πn)(μ
n|v). (104)

Proof: By definition r( fn, μ
n) = 1

n�Xn
1∼μn{L(Cn(φn(Xn

1 )))
}

. Consequently, if we let Yn = φn(Xn)
in In we have that Yn ∼ vμn , where vμn denote the
probability induced by μn and φn in P(In). We will consider
r(Cn, vμn ) = �Yn∼vμn {L(Cn(Yn))} = n · r( fn, μ

n), and as
r(Cn, vμn ) ≥ H (Yn) [4], for the rest we focus on a refined

worst-case redundancy, attributed to the second stage of fn ,
given by

R̄(�, Cn) := sup
μ∈�

(
r(Cn, vμn )− H (vμn )

)
. (105)

We note that H (vμn) = Hσ(πn)(μ
n), therefore

R̄(�, fn) = 1
n R̄(�, Cn). Considering (105) we have

that

R̄(�, Cn) ≥ min
C̃n :In→{0,1}∗

sup
μ∈�
(
r(C̃n, vμn )− H (vμn)

)
≥ inf
v∈P(In)

sup
μ∈�

D(vμn |v)
= R+(

{
vμn : μ ∈ �})

= inf
v∈P(X n)

sup
μ∈�

Dσ(πn)(μ
n|v). (106)

The first inequality in (106) is because we are solving the least
worst-case redundancy (fixing the first stage of fn ), the second
is from the tight connection between prefix-free mappings
and probabilities in P(In) and the role of the information
divergence in lossless variable length prefix-free coding [3],
and the last equalities are from the definition of the induced
probabilities in P(In) and the identity in (50). We note that
the expression in (106) is the information radius of our n-fold
family �n projected into the sub-sigma field induced by πn ,
i.e., first stage of fn .
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