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Abstract—Subglottal air pressure plays a major role in voice 

production and is a primary factor in controlling voice onset, 

offset, sound pressure level, glottal airflow, vocal fold collision 

pressures, and variations in fundamental frequency. Previous 

work has shown promise for the estimation of subglottal pressure 

from an unobtrusive miniature accelerometer sensor attached to 

the anterior base of the neck during typical modal voice 

production across multiple pitch and vowel contexts. This study 

expands on that work to incorporate additional accelerometer-

based measures of vocal function to compensate for non-modal 

phonation characteristics and achieve an improved estimation of 

subglottal pressure. Subjects with normal voices repeated /p/-

vowel syllable strings from loud-to-soft levels in multiple vowel 

contexts (/ɑ/, /i/, and /u/), pitch conditions (comfortable, lower than 

comfortable, higher than comfortable), and voice quality types 

(modal, breathy, strained, and rough). Subject-specific, stepwise 

regression models were constructed using root-mean-square 

(RMS) values of the accelerometer signal alone (baseline 

condition) and in combination with cepstral peak prominence, 

fundamental frequency, and glottal airflow measures derived 

using subglottal impedance-based inverse filtering. Five-fold 

cross-validation assessed the robustness of model performance 

using the root-mean-square error metric for each regression 

model. Each cross-validation fold exhibited up to a 25% decrease 

in prediction error when the model incorporated multi-

dimensional aspects of the accelerometer signal compared with 

RMS-only models. Improved estimation of subglottal pressure for 

non-modal phonation was thus achievable, lending to future 

studies of subglottal pressure estimation in patients with voice 

disorders and in ambulatory voice recordings. 

Index Terms—subglottal pressure, clinical voice assessment, 

neck-surface accelerometer, ambulatory voice monitoring 

I.INTRODUCTION 

OICE disorders affect approximately 30% of the adult 

population in the United States at some point in their lives 
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and up to 7.6% at any given point in time [1, 2], with far-

reaching social, professional, and personal consequences [3]. 

Subglottal air pressure (Ps) plays a major role in voice 

production and is a primary factor in controlling voice onset, 

offset, and intensity, and contributes to volitional control of 

fundamental frequency. In terms of clinical voice assessment, 

Ps alone and ratios incorporating Ps and airflow (e.g., 

aerodynamic resistance and vocal efficiency measures), have 

been shown to differentiate between normal and disordered 

voice production and to provide insight into changes in vocal 

function associated with treating voice disorders [4-11]. Ps is a 

central component of vocal efficiency metrics [12-16] and is 

associated with aspects of perceived vocal effort [17-19]. Other 

aerodynamic measures showing discriminatory power include 

parameters of the glottal airflow waveform, such as peak-to-

peak airflow and maximum flow declination rate (MFDR) [11, 

20]. 

Measurements of Ps, however, are underutilized in clinical 

settings due to the invasive techniques or specialized/expensive 

equipment required. Direct Ps measurement includes rarely-

used invasive methods such as tracheal puncturing [21, 22] and 

transglottal passage of miniature pressure transducers [23, 24]. 

Cumbersome indirect methods include full body 

plethysmography [25, 26] and esophageal balloon techniques 

[23, 27]. In specialized settings where clinical estimates of Ps 

are obtained, the typical approach involves well-controlled 

productions of sustained vowels (constant pitch and loudness at 

a set syllable rate) interrupted volitionally by bilabial closure 

(/p/ or /b/ consonants) to temporarily equilibrate Ps with 

intraoral pressure, which is measured via pressure sensor 

attached to a translabial catheter [28]. A related mechanical 

airflow interruption technique has been subsequently developed 

[29] but also is limited to estimating Ps during isolated vowel 
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contexts. Even though such Ps estimates provide valuable 

information about vocal function, the information is inherently 

limited by uncertainties about how well the vowel-based 

measures reflect glottal function during natural speech where 

pitch, loudness, and rate of speech vary rapidly. 

An inexpensive, non-invasive accelerometer sensor has 

shown promise to unobtrusively estimate voice characteristics 

during natural voice production [30-33]. When positioned on 

the anterior neck during phonation, the accelerometer signal 

consists of components related to tissue-to-tissue transmission 

of vocal fold collision forces through the thyroid cartilage and 

air-to-tissue transmission of aerodynamic energy through the 

tracheal wall to the neck surface [30, 34]. The field of 

ambulatory voice monitoring has taken advantage of 

accelerometers and contact microphone sensors to estimate 

basic characteristics of fundamental frequency (fo) and sound 

pressure level (SPL), with the primary objective of quantifying 

the accumulated impact of prolonged voice use [35-43]. 

Additional salient measures related to the glottal airflow 

waveform—peak-to-peak airflow, open quotient, and MFDR—

have been extracted from the accelerometer signal using 

subglottal impedance-based inverse filtering [44]. 

Previous work has shown that average Ps is correlated with 

the root-mean-square (RMS) amplitude of the neck-surface 

accelerometer signal during normal modal voice production 

across multiple pitch and vowel contexts [45]. Those results 

suggest that a linear fit between accelerometer RMS amplitude 

and Ps can be used to calibrate the accelerometer signal level in 

terms of Ps estimates that can be performed in a continuous 

(frame-based) manner during natural speech production. 

Critically, the accelerometer-based estimation of Ps during 

normal modal voice production exhibited less uncertainty than 

traditional estimation of SPL from accelerometer RMS 

amplitude [46]. The coefficient of determination between 

accelerometer RMS amplitude and Ps within 10 adult 

participants was high (r2 = 0.68–0.93). These relationships 

were stronger than between accelerometer RMS amplitude and 

SPL (r2 = 0.46–0.81). Higher degrees of uncertainty are 

problematic, as SPL estimates obtained from accelerometer 

data are often used to derive voice-use parameters such as 

distance dose and energy dissipation dose [37, 38]. 

The current work follows up on these results to quantify the 

impact of non-modal phonation on amplitude-based 

accelerometer estimates of Ps and compensate for this impact 

by incorporating additional accelerometer-based measures of 

glottal function. Non-modal phonation refers to voicing that 

deviates from the most common type of voice qualities that are 

characterized by periodic vocal fold vibration [47]. Examples 

of non-modal phonation include categorical qualities such as 

vocal fry and diplophonia, as well as more continuously scaled 

qualities of breathiness, roughness, and strain. Auditory 

perceptions of breathy, rough, and strained/pressed voice 

qualities are often evaluated during clinical voice assessment 

due to their presence in the speaking voice of individuals with 

voice disorders [48].  

Accelerometer-based estimates of Ps have recently been 

evaluated in studies with vocally healthy speakers who 

produced breathy, rough, and strained p-vowel syllable strings 

[49] or who were instructed to modulate their vocal effort [50]. 

The take-home message of these studies was that the baseline 

regression line between accelerometer RMS level and Ps for 

modal phonation was significantly affected when non-modal 

phonation or higher vocal effort was produced. In particular, the 

intercepts of the regression line generally increased for non-

modal phonatory conditions without concomitant changes in 

the slope. Thus, the Ps required for speakers to initiate voicing 

and maintain phonation at given levels of neck-surface 

vibration tended to increase when their phonation was more 

breathy, strained, or rough. Similar results have also been 

reported for pressed voice quality, where lower MFDR values 

were produced for the same levels of Ps [51]. 

Fig. 1 illustrates the increased intercept effect and added 

variance of data points when adding non-modal phonatory 

qualities to the typical scatterplot mapping Ps to accelerometer 

RMS amplitude. This study hypothesizes that additional 

accelerometer-based measures of vocal function can 

compensate for non-modal phonation characteristics and 

achieve improved estimation of Ps. The mean accelerometer-

based cepstral peak prominence within each phonatory 

condition in Fig. 1 is shown to illustrate a potential 

compensatory measure. Related work has shown that 

accelerometer-based measures of jitter, shimmer, spectral 

amplitudes, and spectral entropy can classify modal, breathy, 

and pressed, with accuracy reaching 82.5% [52]. Similarly, to 

systematically determine the impact of non-modal phonation on 

accelerometer-based estimates of Ps in a controlled manner, 

data from the vocally normal individuals from our prior study 

who produce voice samples in different voice qualities [49].  

II.METHODS 

A. Subject Recruitment 

Twenty-six vocally healthy adult speakers (18 women, 8 

men) were recruited to participate in this study. For women, the 

mean (SD) participant age was 26 (7.6) years, ranging from 19 

to 47 years; for men, the mean (SD) participant age was 33 (9.9) 

years, ranging from 19 to 50 years. Sixteen of the 26 subjects 

had vocal training. Subjects had no history of voice disorders or 

Fig. 1. Effect of non-modal phonation on the relationship between 
accelerometer root-mean-square (ACC RMS) and subglottal pressure (Ps), and 

the ability of mean cepstral peak prominence (CPP) to quantify non-modal 

characteristics. 
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current complaints related to their vocal status. They also 

underwent laryngeal videostroboscopy to verify that their vocal 

folds exhibited typical vibratory patterns with straight edges, as 

assessed by a licensed speech-language pathologist specializing 

in voice disorders. 

B. Subject Protocol 

Subjects repeated /p/-vowel syllable strings from loud-to-soft 

levels in multiple vowel contexts (/pɑ/, /pi/, and /pu/), pitch 

conditions (comfortable, lower than comfortable, higher than 

comfortable), and voice quality type. A voice-specialized 

speech-language pathologist monitored the data collection and 

visually evaluated the flatness of the intraoral pressure plateaus. 

If plateaus were not visibly flat (see [53] for the various 

intraoral pressure waveshapes that speakers can exhibit), 

subjects were instructed to repeat that trial. To determine the 

impact of non-modal phonation on ACC estimates of Ps, 

participants were asked to produce four different voice 

conditions: modal, breathy, strained, and rough. The elicited 

voice qualities were chosen to mimic pathological glottal 

conditions and are drawn from the perceptually rated 

dimensions in the Consensus Auditory-Perceptual Evaluation 

of Voice (CAPE-V) clinical form [48]. It should be noted that 

the intent of eliciting the non-modal phonatory conditions was 

not to obtain pure examples of breathy, strained, and rough 

qualities, but rather to elicit a variety of voice conditions that 

might influence the relationship between Ps and accelerometer 

signal measures. 

The terms “modal” and “non-modal” were defined using an 

established nonmodal taxonomy [47], where “modal” referred 

to the usual or baseline type of phonation and “non-modal” 

referred to any phonation that differs from or contrasts with the 

usual voice quality. Since all the participants were speakers 

with healthy voices, modal phonation was used as the reference 

category when assessing the impact of non-modal phonatory 

conditions, consistent with prior studies [54]. 

For modal productions, participants were instructed to 

produce a string of p-vowel tokens in one breath starting from 

a loud vocal intensity and gradually decreasing in loudness to a 

soft vocal intensity. This method allowed for the acquisition of 

a wide range of loudness levels and large number of data points 

in a short period of time [13, 45], relative to the conventional 

method of eliciting one vocal intensity per syllable string. For 

breathy productions, participants were asked to produce the 

same task using a breathy or airy voice. For strained 

productions, participants were asked to perform the task using 

a voice as if they were lifting something heavy while speaking. 

For the rough productions, participants were asked to produce 

the task using a voice with a rough quality (e.g., mimic “Cookie 

Monster” and “Batman” character voices). When necessary, the 

task was modeled by the investigators. 

Participants produced two to three trials per pitch level for 

each modal/non-modal phonatory condition, yielding up to 36 

trials (3 trials x 3 pitch levels x 4 phonatory conditions). It 

should be noted that for most participants, it was difficult to 

change pitch when producing the rough condition, so only the 

comfortable pitch was included in the analysis. The entire 

recording session typically lasted approximately 20 minutes, 

and participants were encouraged to take breaks as needed to 

minimize any potential confounding effects of vocal fatigue. 

C. Data Collection 

Fig. 2 shows the laboratory setup where synchronous 

recordings were made in a sound-treated booth using a 

pneumotachograph mask (Glottal Enterprises, Syracuse, NY) 

with oral airflow (PT-2E, Glottal Enterprises) and intraoral 

pressure (PT-75, Glottal Enterprises) sensors, electroglottograph 

(EG-2, Glottal Enterprises), and head-mounted condenser 

microphone positioned 15 cm from the lips (ME102, 

Sennheiser Electronic GmbH, Wennebostel, Germany). All 

signals were low-pass filtered at 8 kHz (CyberAmp Model 380, 

Axon Instruments, Union City, CA) prior to digital sampling at 

20 kHz and 16-bit quantization (Digidata 1440A, Axon 

Instruments). FLO, IOP, and MIC signals were calibrated to 

physical units of mL/s, cm H2O, and Pa, respectively. 

Fig. 3. In-laboratory data acquisition setup. (A) Synchronized recordings are 

made of signals from an acoustic microphone (MIC), electroglottography 

electrodes (EGG), accelerometer sensor (ACC), high-bandwidth oral airflow 

(FLO), and intraoral pressure (PRE). From [51]. 

Fig. 2. An example of the repeated /pa/ gesture with descending loudness for 

male participant M2. (A) Time-aligned signals from the acoustic microphone 

(MIC), neck-surface accelerometer (ACC), and intraoral pressure (IOP) 
sensor are displayed with voice activity label (S = silence, V = vowel). The 

boxed region is expanded in (B) to illustrate the boundary detection of each 

vowel segment and IOP pulse. 
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A high-bandwidth accelerometer sensor (BU-27135; 

Knowles Corp., Itasca, IL) was affixed halfway between the 

thyroid prominence and the sternal notch using hypoallergenic 

double-sided tape (Model 2181, 3M, Maplewood, MN) to 

measure neck-surface vibration in units of cm/s2. Since data 

were collected as part of a larger study involving ambulatory 

voice monitoring, the accelerometer signal was recorded at an 

11 025 Hz sampling rate and 16-bit quantization onto a 

smartphone whose audio drivers and filters were modified for 

high-quality sampling instead of default telephone-optimized 

settings [55, 56]. 

D. Signal Analysis 

Fig. 3 displays an example of microphone, ACC, and IOP 

signals for one trial in a modal phonatory condition for one male 

participant. The voiceless /p/ plosives of the p-vowel gestures 

created a sequence of descending pulses in the IOP signal. 

Vowel segments can be seen in the microphone and ACC 

signals between IOP pulses. 

Reference subglottal pressure estimation 

First, boundaries of the vowel segments were determined in 

the microphone signal using Praat version 6.0.30, which 

identified sounding/silent intervals (Boersma & Weenink, 

2013). The built-in algorithm was configured to detect a −25 dB 

change in signal amplitude from the maximum amplitude 

within 32-ms sliding windows (minimum silent interval = 25 

ms, minimum sounding interval = 50 ms). Fig. 3A displays the 

resulting TextGrid of labeled vowel segment and silent interval 

boundaries. Boundaries for the first and last plosive of each 

breath group were verified visually to create a trial label for 

each permutation of pitch, vowel, and phonatory conditions. 

Second, boundaries of each intervocalic IOP pulse were 

detected automatically using a custom algorithm (Fig. 3B). The 

IOP signal was low-pass filtered with a fifth-order Butterworth 

filter (80 Hz 3-dB cutoff frequency) to remove harmonic 

information that might confound the boundary determination. 

Next, the silent interval boundaries were extended by 25% to 

the left and right, resulting in IOP pulse boundaries that 

compensated for the slight overlap between the preceding 

vowel segment and the rise of the subsequent IOP signal. 

Third, the IOP plateaus were defined as the peak amplitude 

of each IOP pulse. Estimates of Ps for each vowel segment were 

determined by computing the mean of the IOP pulse peak 

amplitudes preceding and following each vowel. Alignment of 

the smartphone-recorded ACC signal was achieved using a 

custom algorithm in MATLAB that shifted the accelerometer 

signal (up-sampled to the acoustic sampling rate of 20 kHz) 

such that the absolute value of the cross-correlation between the 

two signals was maximized. 

Inverse filtering of the oral airflow signal 

Boundaries of the vowel segments were determined from the 

microphone signal using Praat Version 6.0.30, which identified 

sounding/silent intervals [57]. The built-in algorithm was 

configured to detect a −25-dB change in signal intensity from 

the maximum intensity within 32-ms sliding windows 

(minimum silent interval = 25 ms, minimum sounding interval 

= 50 ms). 

Fig. 4 illustrates an example airflow waveform and its 

inverse filtered counterpart. A common inverse filtering 

technique was applied to the oral airflow signal to cancel out 

the effects of the first formant and estimate the glottal airflow 

waveform from which measures were extracted to characterize 

the glottal volume velocity voicing source [20]. For each vowel 

segment, the oral airflow signal was lowpass filtered at 1100 Hz 

due to the bandwidth of the pneumotachograph mask, which 

exhibited an antiresonance at 1500 Hz. Then, a single-notch 

filter (a conjugate pair of zeros with unity gain at DC) was 

applied to reduce waveform ripple during the glottal closed 

Fig. 4. Parameterization of the (A) original and (B) inverse-filtered waveforms from the oral airflow (black) and neck-surface acceleration (ACC, red-
dashed) waveform processed with subglottal impedance-based inverse filtering (IBIF). Adapted from [42]. 
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phase without the need for closed-phase detection. The center 

frequency of the filter was swept from 200 Hz to 1000 Hz in 1 

Hz steps (filter bandwidth was fixed at 70 Hz). Each single-

notch filter was applied to each vowel waveform. The optimal 

center frequency was determined when the following 

expression was minimized: ∑ |∆2𝑥𝐼𝐹[𝑛]|
𝑁−1
𝑛=0 , where 𝑥𝐼𝐹[𝑛] is 

the inverse-filtered waveform at sample 𝑛 and 𝑁 is the number 

of samples in the vowel segment. The associated glottal airflow 

waveform was chosen for further parameterization. 

Subglottal impedance-based inverse filtering of the 

accelerometer signal 

Subglottal impedance-based inverse filtering (IBIF) was 

applied to the same vowel segments to estimate glottal airflow 

measures from the accelerometer signal [44]. This estimation 

was optimized on a per-segment basis, i.e. optimized within 

each vowel segment. Although computationally expensive, this 

was to provide the best possible automated IBIF, in lieu of 

applying a single IBIF inverse filter to all vowel segments per 

subject. The parameter space given by the skin model and 

tracheal geometry was adjusted to minimize the error between 

oral airflow and accelerometer-based glottal volume velocity 

waveforms [20, 58]. Five parameters were estimated for each 

subject—three parameters for a skin model (skin inertance, 

resistance, and stiffness) and two parameters for tracheal 

geometry (tracheal length and accelerometer position relative to 

the glottis). The waveforms were aligned, and model properties 

were obtained via particle swarm optimization, a constrained 

multivariate optimization procedure [44, 58]. 

Accelerometer-based features 
 

TABLE I lists the accelerometer- and glottal airflow–based 

measures that were used in multiple linear regression models to 

better estimate average Ps. Fig. 4 illustrates the 

parameterization of the oral airflow signal before and after 

inverse filtering and the accelerometer signal before and after 

IBIF. 

The first set of measures quantifies accelerometer signal 

properties related to RMS amplitude, fo [55], and cepstral peak 

prominence (CPP) [43]. In particular, accelerometer-based CPP 

has been shown to correlate highly with acoustic-based CPP 

[31], which is often used as an indicator of breathiness [59] and 

overall dysphonia [60, 61]. Data in Fig. 1 illustrate the potential 

of CPP to categorize the modal (27.2 dB), breathy (21.4 dB), 

and rough (14.9 dB) voice qualities and thus to potentially act 

as a strong factor in the accelerometer-based Ps prediction 

equation. 

The second set of measures was extracted from the glottal 

airflow waveform derived from the neck-surface accelerometer 

signal using IBIF [43, 44]: peak-to-peak flow (ACFL), 

maximum flow declination rate (MFDR), open quotient (OQ), 

speed quotient (SQ), spectral slope (L1–L2) [33], harmonic 

richness factor (HRF), and normalized amplitude quotient 

(NAQ). OQ is defined as tO/(tO + tC), and SQ is defined as 

100(top/tcp). NAQ is a measure of the closing phase and is 

defined as the ratio of AC Flow to MFDR normalized by the 

period duration (tO + tC) [62]. 

E. Stepwise Linear Regression Modeling 

Subject-specific, linear regression models were constructed 

using accelerometer signal RMS alone and in combination with 

the additional accelerometer-based measures to estimate Ps 

across vowel, pitch, and voice quality contexts. Glottal airflow 

measures from inverse filtering the oral airflow waveform (IF) 

were initially added to the regression models to assess whether 

IBIF exhibited any significant change in performance. Cross-

validation assessed the robustness of model performance using 

the root-mean-square error (RMSE) metric for each regression 

model. 

First, CPP, fo, and IBIF measures were screened for potential 

contribution to improve Ps prediction. As shown in Fig. 5, each 

additional measure was added to the baseline regression model 

(accelerometer RMS as predictor of Ps) to create a two-

predictor linear regression model. If a measure were sufficiently 

useful—i.e., selected by MATLAB R2018b’s multilinear 

regression function stepwisefit (Statistics and Machine 

 

TABLE I 

ACCELEROMETER-BASED MEASURES AND GLOTTAL AIRFLOW MEASURES 

ESTIMATED USING INVERSE FILTERING AND SUBGLOTTAL IMPEDANCE-BASED 

INVERSE FILTERING 

Feature Description Units 

RMS RMS amplitude cm/s2 

fo Fundamental frequency Hz 

CPP Cepstral peak prominence  dB 

ACFL Peak-to-peak of the AC glottal airflow waveform mL/s 

MFDR Maximum flow declination rate: Negative peak 
of the first derivative of the glottal waveform 

L/s2
 

OQ Open quotient: Ratio of the open time of the 

glottal vibratory cycle to the corresponding cycle 
period 

% 

SQ Speed quotient: Ratio of the opening time of the 

glottis to the closing time 

% 

L1–L2 Difference between the log-magnitude of the first 

two harmonics 

dB 

HRF Harmonic richness factor: Ratio of the sum of the 
first eight harmonic log-magnitudes to the first 

harmonic magnitude 

dB 

NAQ Normalized amplitude quotient: Ratio of ACFL 
to MFDR divided by the glottal period (1/fo) 

 

 

Fig. 5. Two-step process to select accelerometer-based measures for 

improving the prediction of Ps. Step 1 includes creating a two-predictor linear 

regression model and testing the statistical significance of the additional 
measure’s impact on RMSE. Step 2 includes creating permuted subsets of the 

screened-in measures to determine the benefit of k additional measures. 
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Learning Toolbox version 11.4) to be included in the two-

predictor linear regression model—the measure was “screened-

in” to a set of measures for follow-up evaluation.  Second, the 

set of screened-in measures were permuted and added to the 

final multiple linear regression model to determine their 

collective utility for Ps prediction. Alternatives to this two-step 

selection process include all-possible-regressions, ridge 

regression, and lasso regression. The relatively small number of 

measures considered here suggests that all-possible-regressions 

was at least computationally feasible. However, a first step of 

screening individual measures was performed before 

considering the performance of permuted subsets of measures 

to gain insight into the potential impact of individual measures. 

Step 1: Screening individual measures 

MATLAB’s stepwisefit function was used to create and 

evaluate the baseline regression model with one additional 

measure, i.e. accelerometer RMS and one additional measure as 

co-predictors of Ps. The stepwisefit function was configured to 

consider the inclusion of a second predictor by adding the 

measure from a multilinear model based on its statistical 

significance in improving Ps prediction. The p-value of an F-

statistic was computed to test models with and without the 

second predictor. The null hypothesis was that the second 

predictor would have a zero coefficient if added to the model. 

If there were statistically significant evidence to reject the null 

hypothesis (p < 0.05), the second measure was added to the 

model, i.e., screened in. 

Step 2: Evaluating n-choose-k sets of measures 

After each of the additional measures was screened in 

according to the procedure in Step 1, the entire set of screened-

in measures was permuted and evaluated based on an n-choose-

k subset for Ps prediction accuracy. This step was designed to 

demonstrate the potential for Ps prediction improvement by 

modeling with an arbitrary subset of the additional measures. A 

multiple linear regression model was built with glottal flow 

measures derived from IBIF measures and its Ps prediction 

performance was compared with one built with IF measures. 

The two non-IF measures—fo and CPP—were added to the 

models to demonstrate their utility as well. 

Fig. 6 shows the order in which accelerometer CPP and fo 

were introduced into the stepwisefit function. Since the non-IF 

measures were computationally inexpensive compared with the 

inverse-filtered glottal flow measures and showed high 

inclusion frequency, CPP and fo were fixed to be always 

included before the inverse-filtered measures. The order in 

which the remaining glottal flow measures were introduced into 

the stepwisefit function was fully permuted because the order in 

which the measures presented to the stepwisefit function can 

affect the inclusion and exclusion of a subsequent parameter 

(for example, the second of two highly correlated measures was 

expected to be excluded if the first were included). Therefore, 

each permutation of the glottal flow measures, or ordered 

sequence thereof, was presented to the stepwisefit function. The 

resulting RMSE was averaged across all possible permutations 

to obtain an average change in (Δ) RMSE to quantify the gain 

in incorporating accelerometer-based measures in addition to 

RMS amplitude. 

A five-fold validation was performed for each of the 

permuted set of accelerometer-based measures in  

TABLE I selected as co-predictors along with RMS amplitude. 

Within each of the five folds, a training portion comprising 80% 

of the vowel tokens was used to construct a linear regression 

model of accelerometer RMS and the additional measures as 

predictors of Ps, and 20% of the remaining vowel tokens was 

used to calculate RMSE between the predicted and reference 

estimates of Ps. 

III.RESULTS 

Across all subjects, baseline RMSE performance for 

predicting Ps for modal-only phonation using accelerometer 

RMS only was found to be 1.7 cm H2O on average. When non-

modal phonation was added to the modal data points, each fold 

of the five-fold cross-validation exhibited an increase in RMSE 

when accelerometer RMS–alone models were used to predict 

Ps. Improvements to model performance (decreases in RMSE) 

were found when CPP, fo, and glottal airflow measures of vocal 

function were included in the model. Critically, similar model 

performance was achieved when the same flow-based IF 

measures were derived from the accelerometer signal using 

IBIF, thus showing promise for accelerometer-only prediction 

of Ps for modal and non-modal phonation. 

Fig. 6. Creation of n-choose-k permutation subsets of the screened-in IF/IBIF 

measures for evaluation. (A) Direct measures comprising either accelerometer 
RMS alone or accelerometer RMS, CPP, and fo with a permuted sequence of 

1–6 screened-in IF/IBIF measures created predictor sets. (B) For each of the 

26 subjects, prediction performance is evaluated for accelerometer RMS alone 
(Model 1) and each of 2 x 1956 predictor sets that each constructed a multiple 

linear regression model (Model 2). 
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Step 1: Screening individual measures 
 

TABLE II shows the frequency of how often each additional 

measure is selected for prediction of Ps along with the baseline 

predictor accelerometer RMS. CPP was included 72% of the 

time for female subjects and 88% of the time for male subjects 

(77% of the time across all subjects). fo was selected 67%, 38%, 

and 58% percent of the time for the female, male, and combined 

group, respectively. ACFL, MFDR, L1–L2, and HRF from both 

IF and IBIF signals occur with relatively high frequency across 

the 26 subjects. There appear to be sex-based differences for the 

selection of fo and NAQ (both higher in female subjects). The 

inclusion frequency of SQ was low for both IF and IBIF 

measures. Based on this screening step, CPP and fo were 

screened in. SQ was screened out and not included in any 

subsequent model. 

Step 2: Adding IF and IBIF measures in permuted subsets 

For each of the five cross-validation folds, an RMSE value 

was calculated for the baseline regression model (accelerometer 

RMS only) and for multiple regression models using 

accelerometer RMS combined with a permuted sequence of 

additional measures (see Fig. 6). This cross-validation was 

performed for prediction of Ps during modal phonation and 

repeated for prediction of Ps during all phonatory conditions 

(modal, breathy, strained, and rough). An average RMSE per 

subject was computed across all folds and subsequently across 

all 26 subjects. 

Fig. 7 illustrates the improvement in RMSE for one cross-

validation fold of one of the subjects. The RMSE decreased 

from 4.1 cm H2O to 2.9 cm H2O (29.3% reduction) when 

additional IF measures were selected to create a multiple linear 

regression model to predict Ps (Fig. 7A). RMSE decreased 

similarly from 4.1 cm H2O to 3.1 cm H2O (24.4% reduction) 

when accelerometer-based measures derived using IBIF were 

selected (Fig. 7B). 

Fig. 8 displays box-whisker plots of a grand-average RMSE 

as additional measures are added to the subject-specific 

regression models. For each permuted sequence of additional 

measures, the grand-average RMSE was calculated—first 

across the five folds of model building-testing runs per subject 

and then across the 26 subjects. Statistics of the grand-average 

RMSE were then accumulated across all permutations of a 

given sequence length. For example, the box-whisker plot for 

one additional IF/IBIF measure included six models that each 

included accelerometer RMS plus one of the six inverse-filtered 

measures from TABLE II (recall SQ never included). 

Permuting two IF/IBIF measures refers to prediction 

performance of 30 regression models (6-choose-2 

permutations). 

In Fig. 8A and Fig. 8B, when one to six IF/IBIF measures 

were added to accelerometer RMS to build the multiple linear 

regression model for the prediction of Ps, the grand-average 

RMSE was lowered progressively from 2.9 cm H2O as the 

number of additional measures were included. For IF measures, 

the RMSE plateaued around 2.5 cm H2O when all six additional 

measures were included. For IBIF measures, the RMSE 

plateaued around 2.6 cm H2O when all six additional measures 

were included. 

In Fig. 8C and Fig. 8D, one to six IF/IBIF measures were 

added to a new baseline model that included accelerometer 

RMS, CPP, and fo. The grand-average RMSE decreased 

 

TABLE II 
INCLUSION FREQUENCY (%) WITHIN SUBJECT GROUPS OF ACCELEROMETER-BASED MEASURES INTO MULTIPLE REGRESSION MODEL FOR PREDICTION OF PS  

 

Group Direct Oral airflow–based IF measure Accelerometer–based IBIF measure 

 CPP fo ACFL MFDR OQ SQ L1–L2 HRF NAQ ACFL MFDR OQ SQ L1–L2 HRF NAQ 

Female 

(n=18) 
72 67 83 78 50 28 78 67 56 78 78 61 6 72 78 78 

Male 

(n=8) 
88 38 63 75 88 50 75 88 75 63 75 63 13 75 75 50 

All 

(n=26) 
77 58 73 81 81 35 77 73 62 73 77 62 8 73 77 69 

 

Fig. 7. Example of one cross-validation fold plotting reference Ps (Psactual) 

against predicted Ps (Pspred) for one subject. The root-mean-square error 

improves when adding glottal airflow measures from either (A) inverse-filtered 

oral airflow or (B) accelerometer IBIF signal. 
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progressively from 2.9 cm H2O as the number of additional 

measures were included. For IF measures, the grand-average 

RMSE plateaued at approximately 2.4 cm H2O. For IBIF 

measures, the average RMSE plateaued at approximately 

2.5 cm H2O when all six additional measures were included. 

TABLE III reports results of the multiple regression model 

performance from a subject-specific point of view. Shown is the 

improvement in Ps prediction performance in terms of RMSE 

for each subject comparing the accelerometer RMS-only model 

(Model 1) with multiple regression models (Model 2) 

incorporating CPP, fo, and glottal airflow measures derived 

from the IF oral airflow waveform or from the IBIF 

accelerometer signal. This table indicates that the mean 

(standard deviation, SD) reduction in RMSE for the 

accelerometer-based multiple regression model is 12.5% (6.7 

percentage points). This is compared with the mean (SD) 

reduction in RMSE when using oral airflow–based IF measures 

in the regression models of 15.0% (9.4 percentage points). 

There is variation in performance from subject to subject, with 

RMSE reduction as high as 25.1% (subject M1). 

IV.DISCUSSION 

The objective of this work was to develop a methodology for 

the improved prediction of Ps that incorporates accelerometer-

based measures of vocal function to achieve improved 

prediction of Ps during non-modal phonation. The hypothesis 

was that the RMS amplitude of neck-surface vibration would 

not be enough to accurately predict Ps, especially in context of 

non-modal phonation such as that exhibited by speakers 

producing breathy, strained, and rough voice qualities. In this 

study, vocally healthy speakers were recruited to volitionally 

produce these different voice qualities. The advantage of this 

study design was to allow each subject to act as his or her own 

control to minimize across-subject variations in voice 

physiology and neck morphology. 

A previous analysis of ten vocally healthy speakers 

producing modal phonation yielded an average 95% prediction 

interval of ±2.5 cm H2O when accelerometer signal RMS was 

the predictor variable for Ps estimation [45]. The corresponding 

accelerometer RMS–only Ps prediction performance in the 

current study of 26 vocally healthy speakers yielded an average 

RMSE of 0.7 cm H2O. This error increased to 2.9 cm H2O 

when the non-modal phonatory conditions were included. To 

counteract the increase in error, a regression model with 

additional measures was proposed to improve Ps prediction 

performance. The measures were selected for their ability to be 

derived from the neck-surface accelerometer signal and to 

reflect changes in association glottal conditions. 

The final subject-specific regression models incorporated 

nine measures, including three measures computed directly 

from the accelerometer signal (RMS amplitude, CPP, and fo) 

and six measures parameterizing an estimate of the glottal 

airflow waveform (ACFL, MFDR, OQ, L1–L2, HRF, and 

NAQ). SQ did not contribute significantly to improved model 

Fig. 8. Decrease in average root-mean-square error (RMSE) across all permutations of additional measures added to the subject-specific regression 

models. RMSE of Ps predictions are shown in A) by using accelerometer RMS and permuted subsets of 1–6 IF measures as co-predictors; in B) by 
using accelerometer RMS and permuted subsets of 1–6 IBIF measures as co-predictors; in C) by using accelerometer RMS, CPP, fo and permuted 

subsets of 1–6 IF measures as co-predictors; and in D) by using accelerometer RMS, CPP, fo and permuted subsets of 1–6 IBIF measures as co-
predictors. In each plot, RMSE at 0 denotes the RMSE of using accelerometer RMS alone as the predictor of Ps. 
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performance. Estimates of the glottal airflow were computed 

using the IBIF algorithm that was optimized per vowel token 

[44]. RMSE decreased to 2.5 cm H2O with the final set of 

measures when averaged across all subjects. For certain 

subjects, RMSE decreased by up to 25% (e.g., from 4.1 cm H2O 

to 3.1 cm H2O). In other subjects, the performance gain was not 

as dramatic (see TABLE III). 

Performance comparisons were made between IBIF-derived 

glottal airflow measures and conventional glottal airflow 

measures derived from inverse filtering the oral airflow 

waveform. In general, although not exactly the same, Ps 

prediction performance was similar when computing the glottal 

airflow measures using IBIF. Thus, the IBIF algorithm did not 

introduce significant noise in the processing and, as expected, 

yielded measures that were good surrogates of IF-derived 

measures. 

Ongoing work continues to demonstrate the need for novel 

clinically salient measures derived from the ambulatory 

accelerometer signal; e.g., average ambulatory estimates of 

sound pressure level and fo do not differentiate between patients 

with phonotraumatic lesions and matched healthy control 

subjects [63].  The results of the current study suggest that the 

error in estimating Ps in the laboratory setting is low enough 

such that Ps can be added to the suite of ambulatory voice 

measures that can be reliably derived from the neck-surface 

vibration signal. For example, the reduction in Ps prediction 

error becomes clinically meaningful when the error is low 

relative to differences in Ps (~4–5 cm H2O) that have been 

found between patients with voice disorders and typical 

speakers, e.g., phonotraumatic vocal hyperfunction compared 

to vocally healthy speakers [20]. 

Airflow interruption technique are limited to estimating Ps 

during isolated vowel contexts [28, 29]. Even though such Ps 

estimates provide valuable information about vocal function, 

the information is inherently limited by uncertainties about how 

well the measures reflect glottal function during natural speech 

where pitch, loudness, and rate of speech vary rapidly. The 

neck-surface accelerometer approach addresses these 

shortcomings by using an inexpensive, non-invasive sensor that 

can unobtrusively monitor Ps during natural speech. In practice, 

accelerometer-based Ps estimation requires an initial baseline 

model calibration with the oral airflow interruption technique, 

followed by the application of the subject-specific model to 

predict Ps during unconstrained, natural speech production. The 
 

TABLE III 

IMPROVEMENT IN PS PREDICTION PERFORMANCE IN TERMS OF ROOT-MEAN-SQUARE ERROR (RMSE) FOR EACH SUBJECT COMPARING THE ACCELEROMETER 

RMS-ONLY MODEL (MODEL 1) WITH MULTIPLE REGRESSION MODELS (MODEL 2) INCORPORATING CPP, FO, AND GLOTTAL AIRFLOW MEASURES DERIVED FROM 

THE IF ORAL AIRFLOW WAVEFORM OR FROM THE IBIF ACCELEROMETER SIGNAL. CHANGE IN (Δ) RMSE ALSO REPORTED IN CM H2O AND AS A PERCENTAGE 
 

Subject ID 

Oral airflow–based IF measures Accelerometer–based IBIF measures 

Model 1 

RMSE 

Model 2 

RMSE 

ΔRMSE 

(cm H2O) 

ΔRMSE 

(%) 

MODEL 1 

RMSE 

Model 2 

RMSE 

ΔRMSE 

(cm H2O) 

ΔRMSE 

(%) 

F1 1.75 1.71 −0.04 −2.40 1.75 1.68 −0.07 −4.09 

F2 1.43 1.28 −0.15 −10.71 1.43 1.23 −0.20 −14.13 

F3 1.68 1.36 −0.33 −19.40 1.68 1.35 −0.34 −19.90 

F4 2.38 2.18 −0.20 −8.31 2.37 2.23 −0.14 −6.01 

F5 1.97 1.82 −0.15 −7.55 1.97 1.66 −0.31 −15.51 

F6 2.96 2.42 −0.54 −18.28 2.97 2.62 −0.35 −11.72 

F7 2.94 2.62 −0.32 −10.97 2.94 2.77 −0.17 −5.70 

F8 1.91 1.63 −0.28 −14.80 1.91 1.78 −0.13 −6.89 

F9 1.49 1.39 −0.09 −6.30 1.49 1.44 −0.05 −3.36 

F10 2.57 2.34 −0.23 −8.88 2.57 2.40 −0.17 −6.60 

F11 2.98 2.55 −0.43 −14.43 2.98 2.20 −0.77 −25.90 

F12 2.17 1.87 −0.30 −13.93 2.17 1.99 −0.18 −8.10 

F13 3.09 2.70 −0.39 −12.52 3.09 2.79 −0.30 −9.72 

F14 2.07 2.00 −0.07 −3.25 2.07 2.02 −0.05 −2.39 

F15 2.61 2.27 −0.34 −13.13 2.61 2.32 −0.29 −11.18 

F16 4.68 3.72 −0.95 −20.41 4.67 4.09 −0.59 −12.53 

F17 7.38 6.33 −1.05 −14.26 7.38 6.43 −0.94 −12.77 

F18 2.01 1.77 −0.24 −11.92 2.01 1.74 −0.27 −13.59 

M1 4.15 2.91 −1.23 −29.75 4.15 3.11 −1.04 −25.09 

M2 3.34 2.98 −0.36 −10.77 3.34 3.01 −0.33 −9.76 

M3 2.35 1.71 −0.64 −27.34 2.35 1.90 −0.46 −19.35 

M4 4.36 3.24 −1.12 −25.74 4.36 3.41 −0.95 −21.80 

M5 2.21 1.33 −0.88 −39.74 2.21 1.71 −0.49 −22.39 

M6 4.21 3.73 −0.48 −11.30 4.19 3.51 −0.68 −16.31 

M7 2.68 2.62 −0.07 −2.43 2.68 2.49 −0.19 −7.20 

M8 3.72 2.51 −1.21 −32.44 3.72 3.24 −0.48 −12.82 

Mean 2.89 2.42 −0.47 −15.04 2.89 2.51 −0.38 −12.49 

SD 1.29 1.05 0.37 9.42 1.29 1.08 0.29 6.72 

Minimum 1.43 1.28 −1.23 −39.74 1.43 1.23 −1.04 −25.90 

Maximum 7.38 6.33 −0.04 −2.40 7.38 6.43 −0.05 −2.39 
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unobtrusive accelerometer sensor can then be affixed to a 

speaker’s neck for laboratory, clinical, and ambulatory 

assessment of vocal function, with the added potential of 

integration into smartphone applications for ease of use [43, 

55]. Monitoring Ps as individuals go about their daily activities 

may provide clinicians with additional insight into a person’s 

typical vocal functioning, including the potential to provide an 

objective measure of vocal effort in real-world environments 

[17, 19, 64]. 

Subglottal neck-surface vibration has been modeled as the 

output of the downward-traveling dipole voice source filtered 

by subglottal resonances and the transfer function between 

intra-tracheal acoustic pressure and the neck frequency 

response [44]. Thus, the glottal airflow waveform has been 

shown to be derivable from the neck-surface vibration signal, 

yielding AC voice signal properties such as MFDR, AC flow, 

OQ, etc. It may be surprising that information about a DC vocal 

function measure (mean Ps) can be derived reliably from an 

AC-only signal (neck-surface vibration). Strong associations 

have also been found between the DC signal property of mean 

Ps and the AC signal property of MFDR derived from the 

estimated glottal airflow waveform in vocally healthy speakers 

[65]. Consequently, for the same vowel, MFDR is known to 

correlate highly with acoustic SPL [66]. Following on that 

relationship, a first-order estimate of acoustic SPL (sound 

radiation from the oral opening) has traditionally been obtained 

using the magnitude of the neck-surface vibration signal 

measures by a contact microphone or accelerometer [46]. 

However, care must be taken to derive acoustic SPL from the 

subglottal neck-surface vibration signal when multiple vowel 

contexts are taken into account because of the impact of 

different vowel formant frequencies on radiated sound from the 

mouth [45]. Estimating mean Ps from neck-surface vibration 

yields a lower uncertainty due to the subglottal placement of the 

accelerometer, which is minimally influenced by supraglottal 

vowel formants. 

As phonation becomes non-standard, or non-modal, 

underlying assumptions and relationships among vocal function 

measures may be significant affected. For example, pressed 

phonation has been shown to yield lower MFDR values for 

similar mean Ps values relative to the modal phonatory 

condition [51]. The relationship between neck-surface vibration 

magnitude and mean Ps is analogously affected for 

pressed/strained, breathy, and rough voice qualities; i.e., higher 

mean Ps values have been observed for the same accelerometer 

RMS values [49]. The current study follows on these past 

studies by incorporating MFDR and other source-related voice 

measures that can be estimated accurately from the neck-

surface accelerometer signal to improve upon the baseline 

prediction of Ps. The RMSE improvement was expected to 

approach the average baseline RMSE (1.7 cm H2O) exhibited 

when predicting Ps in the modal-only condition using 

accelerometer RMS signal amplitude. Instead, the average 

RMSE across subjects plateaued at 2.6 cm H2O, indicating that 

alternative strategies for compensating for non-modal 

characteristics are areas of further investigation. 

It is acknowledged that the task of artificially producing non-

modal voice characteristics does not mimic voice qualities 

produced during naturalistic speech contexts nor reflects the 

non-modal behavior exhibited by patients with voice disorders. 

The extreme behaviors elicited thus may have created a 

complex situation in which Ps prediction performance was 

overly challenging (and, perhaps, unrealistic). Also, although 

the oral airflow interruption method has been validated using 

direct measurements of Ps [67, 68], limited evidence exists for 

the validity of similar estimation of Ps in the context of non-

modal voice production. Even in modal voice, over- and under-

estimation of the true mean Ps (directly measured via tracheal 

puncture) by the oral airflow interruption method has been 

reported in vocally healthy speakers [21], with larger Ps 

estimation errors observed during loud phonation conditions 

[69]. Even less information is available for individuals with 

voice disorders; individuals with spasmodic dysphonia have 

been studied, yielding inconsistent results for the indirect 

estimation of Ps [21]. Thus, as usual, caution is suggested when 

interpreting absolute values of mean Ps obtained using indirect 

methods. 

Future work is needed to study patients with voice disorders 

to provide evidence that accelerometer-based estimation of Ps 

is feasible, valid, and accurate for clinical use. Indeed, with 

higher degrees of dysphonia (such as the rough phonatory 

condition), many measures of vocal function may become 

unreliable, including basic metrics such as fundamental 

frequency. The collection of data from patients with voice 

disorders is necessary to investigate the sources of error and 

applicability of the technique to monitoring treatment (before 

and after surgery, or longitudinal progress over the course of 

multiple therapy sessions). 

V.CONCLUSION 

Improved estimation of subglottal pressure from neck-

surface vibration during non-modal phonation is achievable by 

incorporating accelerometer-based measures of cepstral peak 

prominence, fundamental frequency, and of the subglottal 

impedance-based inverse filtering waveform. This non-

invasive method for estimating Ps during natural speech should 

next be studied in the context of the clinical assessment of voice 

disorders, particularly for application to ambulatory monitoring 

and biofeedback as individuals go about their usual activities at 

home, work, and social settings. 
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