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Abstract

The line generated by two distinct points, x and y, in a

finite metric space M V d= ( , ), is the set of points

given by

∈z V d x y d x z d z y d x y

d x z d z y

{ : ( , ) = | ( , ) + ( , )|or ( , )

= | ( , ) − ( , )|}.

It is denoted by xyM . A 2‐set x y{ , } such that xy V=M

is called a universal pair and its generated line a

universal line. Chen and Chvátal conjectured that in

any finite metric space either there is a universal

line, or there are at least |V| different (nonuniversal)

lines. Chvátal proved that this is indeed the case

when the metric space has distances in the set

{0, 1, 2}. Aboulker et al proposed the following

strengthenings for Chen and Chvátal conjecture in

the context of metric spaces induced by finite graphs:

First, the number of lines plus the number of bridges

of the graph is at least the number of points. Second,

the number of lines plus the number of universal

pairs is at least the number of points of the space. In

this study, we prove that the first conjecture is true

for bipartite graphs different from C4 or K2,3, and that

the second conjecture is true for metric spaces with

distances in the set {0, 1, 2}.
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1 | INTRODUCTION

In a metric space M V d= ( , ) a line defined by two distinct points ∈x y V, is the subset of V
defined by

∈xy z V d x y d x z d z y d x y d x z d z y= { : ( , ) = | ( , ) + ( , )| or ( , ) = | ( , ) − ( , )|}(see [7]).M

A line xyM is universal if xy V=M ; in this case x y{ , } is a universal pair. The number of
distinct lines in M is denoted by ℓ M( ).

In [5], Chen and Chvátal proposed the following conjecture.

Conjecture 1. Any finite metric space M V d= ( , ) with at least two points and
ℓ M V( ) < | | has a universal line.

Conjecture 1 is a generalization of a classical result in Euclidean geometry asserting that every
set of n noncollinear points in the Euclidean plane determines at least n distinct lines (see [9]).

The current best lower bound for the number of lines in a metric space with no universal
line is ℓ M n( ) = Ω( ) ([1]).

Although in general the distance function ranges over the nonnegative reals, to prove Con-
jecture 1, it was observed in [2] that it is enough to consider nonnegative integers. This motivates
the definition of k‐metric space, with k a positive integer, to be a metric space in which all
distances are integral and are at most k. In this context, it was also proved in [1] that if M is a
k‐metric space, then the previous bound can be improved to ℓ ≥M n k( ) /(5 ), for each ≥k 3.

One particular metric space with integer distances is the metric space induced by a graph.
Here the points are the vertices of the graph and the distance between two vertices is defined by
the length of a shortest path between them. To ease the presentation we will refer to the metric
space induced by a graph G V E= ( , ), just as G. Hence, xyG denotes the line defined by two
distinct vertices x and y in V .

In [4] and [2] it was proved that Conjecture 1 holds for metric spaces induced by chordal
graphs and for distance‐hereditary graphs, respectively.

In [3] two new ingredients were considered: bridges and nontrivial modules. On the one
hand, a set of vertices S of a graphG is a nontrivial module ofG if it has at least two vertices and
for every ∉ ∩ ∅x S N x S, ( ) =G , or ⊆S N x( )G . On the other hand, an edge e of a graph G is a
bridge if G e− has more connected components than the graph G. Let GBR( ) denote the
number of bridges of G. Notice that if ab is a bridge of G, then the line abG is universal. The
main result in [3] is the following, where G| | denotes the number of vertices of G.

Theorem 2 (Theorem 2.1 in Aboulker et al [3]). Every graph G such that every induced
subgraph of G is either a chordal graph, has a cut vertex or a nontrivial module satisfies
ℓ ≥G G G( ) + BR( ) | |, unless G is one of the six graphs depicted in Figure 1.
Given this result, the authors in [3] proposed the following conjecture:

Conjecture 3 (Conjecture 2.2 in Aboulker et al [3]). There is a finite set of graphs

0 such that every connected graph ∉G 0 either has a pendant edge or satisfies
ℓ ≥G G G( ) + BR( ) | |.

In this study, we prove the following.
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Theorem 4. Let G be a connected bipartite graph with at least three vertices. If
∉G C K{ , }4 2,3 then

ℓ ≥G G G( ) + BR( ) | | ,2

where ℓ G( )2 is the number of distinct lines in G, defined by vertices at distance two.

The proof is based on the study of the lines defined by vertices at distance 2. In this context,
we prove two interesting results: first, we prove that given two vertices x and y at distance two
in a graphG, the graph induced by xyG either has diameter two or has a cut vertex in x y{ , }. As a
consequence, a 2‐connected graph G of diameter at least three can not have a universal pair
whose vertices are at distance two.

Second, we prove that 2‐connected bipartite graphs have more lines than vertices. We do
that by counting the lines generated by vertices at distance 2. At first glance, this restriction
made the problem harder as it reduces the number of pairs of vertices that can generate lines.
However, it also reduces the possibilities for two pairs of vertices to generate the same line. We
think that this trade‐off can be exploited in other contexts as well, since in general, it is not easy
to characterize pairs of vertices that define the same line.

Our result also proves, for bipartite graphs, the following conjecture made by Zwols [11]: if
ℓ G G( ) < | |, then eitherG has a bridge or it containsC4 as induced subgraph. It also allows us to
extend Theorem 2, by adding bipartite graphs as an option for the induced subgraphs.

Notice that graphs of Figure 1 satisfy Conjecture 1 because they have universal lines.
Moreover, they have more than one pair of vertices that define universal lines. This is a
phenomena that appears in all the examples of graphs with few different lines. Inspired in this
observation, the following conjecture was proposed in [3]:

Conjecture 5 (Conjecture 2.3 in Aboulker et al [3]). Let G V E= ( , ) be a connected graph
with at least two vertices. Then, ℓ ≥G G V( ) + UP( ) | |, where GUP( ) denotes the number of
universal pairs in G.

In this study, we study this conjecture in a more general setting. The main result we get is
the following.

FIGURE 1 Graphs excluded in
Theorem 2
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Theorem 6. Every finite 2‐metric space with at least three points satisfies ℓ M( )*

≥M V+ UP( ) | |, where ℓ M( )* denotes the number of distinct nonuniversal lines in M and
MUP( ) denotes the number of universal pairs in M .

Notice that when MUP( ) = 0 we have that ℓ ℓM M( ) = ( )* . Hence, our result implies that
Conjecture 1 holds for 2‐metric spaces, a result previously proved in [6,8]. Our proof does not
use the result in [6,8], then giving an alternative proof for it.

An important role in this study is played by pair of twins. We say that v v( , ′) is a pair of twins
of a metric space M V d= ( , ), if v and v′ are two distinct points in V such that ≠d v v( , ′) 1 and
for all ∉u v v d v u d u v{ , ′}, ( , ) = ( , ′). In a metric space induced by a connected graph, a pair of
twins is usually called a pair of false twins.

2 | METRIC SPACES DEFINED BY FINITE GRAPHS

In a metric space induced by a graph G, the distance between two vertices is the length of a
shortest path between them. As usual, N x( )G will denote the neighborhood of the vertex x.

Although our main result is about metric spaces defined by bipartite graphs, we start by
proving some preliminaries results which are valid for arbitrary graphs. We shall use them in
the proof of our main result.

A crucial point in our development is that we only count lines defined by vertices at distance
two. The following lemma shows part of the structure of these lines:

Lemma 7. Let x y, be vertices of G at distance 2. If two vertices a and b are such that
d b x d b y d y x( , ) = ( , ) + ( , ) and d a y d a x d x y( , ) = ( , ) + ( , ), then any path P between a

and b contained in xyG contains the set x y{ , }.

Proof. For each ∈v G, we define the function ≔v d y v d x vΔ( ) ( , ) − ( , ). Since
d x y( , ) = 2, the function Δ takes only values in {−2, −1, 0, 1, 2}; moreover, for every
∈ ∈u xy u, Δ( ) {−2, 0, 2}G .
Since ∈b xyG and d b x d b y d y x( , ) = ( , ) + ( , ), bΔ( ) = −2. Equivalently, we deduce
aΔ( ) = 2. Notice that for two adjacent vertices u and v we have ≤u v|Δ( ) − Δ( )| 2; hence,

for u and v adjacent and both in xyG, we know that ∈u v|Δ( ) − Δ( )| {0, 2}. We deduce
that there exists a vertex c′ in P such that cΔ( ′) = 0. Let us assume that c′ is the first
vertex in P from b to a such that cΔ( ′) = 0. Since ∈ ∈ ∩c xy c N x N y′ , ′ ( ) ( )G

G G and the
neighbor w of c′ in P closer to b satisfies wΔ( ) = −2 and ≤d x w( , ) 2; it follows that
d w y( , ) = 0, which implies that ∈w y P= . With a similar argument applied to a we can
prove that ∈x P. □

Corollary 8. Let x y, be two vertices of G at distance 2. Let ∈z xyG with
∉ ∩z N x N y( ) ( )G G and let P be a path between z and x such that ⊆P xyG and ∉y P.

Then d z y d z x d x y( , ) = ( , ) + ( , ).

Proof. Since ∉ ∩z N x N y( ) ( )G G , ≠d x y d x z d z y( , ) ( , ) + ( , ). Suppose that d z x( , ) =

d z y d x y( , ) + ( , ). Since ⊆P xyG, Lemma 7 implies ∈y P, which is a contradiction. □
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Corollary 9. Let G V E= ( , ) be a 2‐connected graph and let x y, be two vertices of G at
distance 2. If xyG is a universal line, then x y( , ) is a pair of twins and ∪V x y N x= { , } ( )G .

Proof. Suppose that x and y are not twins. Without loss of generality we can assume that
there exists a vertex z which is neighbor of x but not of y; ∈z xyG because x y( , ) is a
universal pair. By Corollary 8 we have d z y d z x d x y( , ) = ( , ) + ( , ). Moreover, every path
between z and y contains x, by Lemma 7. This implies that x is a cut vertex; a
contradiction because G is a 2‐connected graph. Therefore, x and y are twins. When x

and y are twins the line ∪xy x y N x= { , } ( )G
G . As it is a universal line, we obtain the

second statement. □

Corollary 9 implies that lines defined by vertices at distance 2 are nonuniversal in
2‐connected graphs with diameter at least three. This motivates us to count the number of
distinct lines defined by vertices at distance two. The set of lines defined by vertices at distance
two is denoted by G

2 and its cardinality by ℓ G( )2 . For a subsetU of vertices ofG we shall denote
U( )G

2 the set of lines defined in G by pairs of vertices in U at distance two.
The next lemma is a refinement of part (2) in the proof of Theorem 2.1 in [3]. Here, instead

of considering arbitrary lines, we only consider lines defined by vertices at distance two. The
proof is the same, but we present it here for the sake of completeness.

Lemma 10. Let G be a bridgeless graph such that ∪ ∩G G G V G V G v= , ( ) ( ) = { }1 2 1 2

and ∪E G E G E G( ) = ( ) ( )1 2 . Then,

ℓ ≥ ℓ ℓG G G N v N v( ) ( ) + ( ) − 1 + | ( )|| ( )| .G G2 2 1 2 2 1 2

Proof. Let V V G= ( )i i , for i = 1, 2. It is easy to see that for each pair ∈u v V, i the
following holds:

∈ ∪uv uv uv V i{ , }, for = 1, 2.G G G
i3−i i

(1)

Therefore, only a universal line can belong to the intersection ∩V V( ) ( )G G
2 1 2 2  ; hence,

there are at least ℓ ℓG G( ) + ( ) − 12 1 2 2 lines in ∪V V( ) ( )G G
2 1 2 2  .

Now we prove that there are at least N v N v| ( )|| ( )|G G1 2
lines ofG not in ∪V V( ) ( )G G

2 1 2 2  .
Let ui be a neighbor of v inGi, for each i = 1, 2. We know that ∈u u G G

1 2 2 and it contains
exactly one neighbor ui of v in Gi, for each i = 1, 2. Since v has degree at least two in Gi,
for each i = 1, 2, as otherwise G has a bridge, at least one neighbor of v in Gi does not
belong to u u G

1 2 ; it follows from (1) that ∉ ∪u u V V( ) ( )G G G
1 2 2 1 2 2  .

Let u v,i i be neighbors of v inGi, for each i = 1, 2. We have that ≠u u v v{ , } { , }1 2 1 2 implies
≠u u v vG G

1 2 1 2 ; then, there are at least N v N v| ( )|| ( )|G G1 2
lines in ∪V V\( ( ) ( ))G G G

2 2 1 2 2   . □

2.1 | Bipartite graphs

In this section, we consider metric spaces defined by bipartite graphs.
Our starting point is the following simple observation: given a vertex v in a bipartite graph

and two vertices u and w in N v( )G , we have that ∩N v uw u w( ) = { , }G
G ; it follows that for each
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vertex v in a bipartite graph ℓ ≥G G, ( ) ( )
d v

2
( )

2
. Hence, locally, a vertex v in a bipartite graph is

associate with at least ( )
d v( )

2
different lines.

Two problems appear when one tries to move this idea from local to global. On the one
hand, two or more vertices can have the the same neighborhoods (pairs of twins or modules);
on the other hand, the same line can be generated by different pairs in several neighborhoods.

Both problems appear in C4, where ℓ ℓC C( ) = ( ) = 12 4 4 . This graph has two pairs of twins
and every pair of vertices at distance two generates a universal line.

The first situation also appears in K2,3, where ℓ ℓK K( ) = ( ) = 42 2,3 2,3 . In this case, all the
vertices in the bigger independent set have the same neighborhood. In the following figure we
show two cases where the second problem appears (Figure 2):

However, the following lemma shows that the existence of many lines locally is enough to
satisfy Conjecture 3 for complete bipartite graphs.

Lemma 11. If G K= p q, with ≤ ≤p q2 , then ℓ ( ) ( )G( ) = +
p q

2 2 2
unless p q= = 2. In

particular, if ≥p q+ 6, then ℓ ≥G p q G( ) + = | |2 .

Proof. Let X and Y be the maximal independent sets of Kp q, . Given two vertices a and b
of G at distance two we have ∪ab X a b= { , }G , if ∈a b Y, and ∪ab Y a b= { , }G , if

∈a b X, . Hence, when ≥p q+ 5, each pair of vertices in the same independent set
defines a distinct line in G

2 . □

To control the second problem, we need to characterize the pairs of vertices that define the
same line. We define the width of a line ℓ ∈ G

2 as the number of pairs of vertices x y{ , } with
d x y( , ) = 2 and ℓ xy= G. We now prove that the existence of lines of width at least two forces
some structure of the graph. We use this structure to prove, in the next section, our main result.

Let N y( )G
2 denotes the set of vertices at distance two from y. Given four vertices y x s, , and t ,

we say that yxst[ ] holds if there is a shortest path P between y and t containing x and s, such
that x belongs to the subpath of P between y and s. Equivalently, yxst[ ] holds if and only if

d y t d y x d x t

d y x d x s d s t

d y s d s t

( , ) = ( , ) + ( , )

= ( , ) + ( , ) + ( , )

= ( , ) + ( , ).

To ease the presentation we denote by xPy the subpath of a path P between two of its
vertices x and y.

(A) (B)

FIGURE 2 A, xy xt= ; and B, xy st=
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In the next result we need the following definition. A vertex x dominates a vertex y (or y is
dominated by x) if ⊆ ∪N y N x x( ) ( ) { }G G .

Proposition 12. Let G be a bipartite graph, x y s, , , and t vertices of G such that
d x y d s t( , ) = ( , ) = 2 and xy st=G G. If yxst[ ] holds, then either y is a cut vertex, or it is
dominated by x . The same statement holds for t and x , respectively.

Moreover, when G is 2‐connected we have the following:

(i) For each ∈z N y( )G
2 and each ∈w N t( )G

2 , d z t d x t d y s d w y( , ) = ( , ) = ( , ) = ( , ).
(ii) For each ∈ ≠z N y z x( ),G

2 and for each ≠v v t, , for which d z t d z v d v t( , ) = ( , ) + ( , )

holds, d v s d v t( , ) = ( , ). Similarly, for each ∈ ≠w N t w s( ),G
2 and for each ≠u u y, , for

which d y w d y u d u w( , ) = ( , ) + ( , ) holds, d u y d u x( , ) = ( , ).
(iii) The vertices x and s belongs to an induced cycle of length d x s2( ( , ) + 2).

Proof. To prove the first part, suppose the contrary: y is neither a cut vertex nor
dominated by x .

Since y is not dominated by x, there exists ∈b N y N x( ) \ ( )G G . From the definition of
xyG and the fact that G is bipartite, we have that ∈b xyG and d b x d b y d y x( , ) = ( , ) + ( , ).

Let P be a path from b to t not containing y. It exists as y is not a cut vertex. Since
d b x d b y d y x d t y d t x d x y( , ) = ( , ) + ( , ), ( , ) = ( , ) + ( , ) and y does not belong to P, from
Lemma 7, we deduce that P is not completely contained in xyG.

Let ∈w P′ be the closest vertex to b which is not in xyG, and let w be its neighbor in
P closer to b, which will belong to xyG.

If ∈w N x( )G , then the path bPwx would be completely contained in xyG; but this
contradicts Lemma 7 because d b x d b y d y x( , ) = ( , ) + ( , ) and d x y d x y d x x( , ) = ( , ) + ( , ).
So we may suppose ∉w N x( )G .

Since w′ is the first vertex not in xyG of P, the path ⊆ybPw xyG. From Lemma 7 we get
that this path does not contain x; otherwise, there is a path contained in xvG between
b and x not containing y. It follows from Corollary 8 that

d w x d w y d y x d w y( , ) = ( , ) + ( , ) = ( , ) + 2. (2)

Since the graph G is bipartite and ∉w xy′ G, we see that d x w d y w( , ′) = ( , ′). As
≤d y w d y w| ( , ) − ( , ′)| 1 and ≤d x w d x w| ( , ) − ( , ′)| 1, it follows that the only way to

satisfy Equation (2) is when

d y w d y w( , ′) = ( , ) + 1. (3)

Since yxst[ ] holds, there exist a y‐s‐path Q contained in stG that does not contain t .
Hence, the path wPbQ is a w‐s‐path contained in stG and Corollary 8 implies
d w t d w s d s t( , ) = ( , ) + ( , ). As before, we conclude that

d s w d s w( , ′) = ( , ) + 1. (4)
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Since d w t d w s d s t( , ) = ( , ) + ( , ), a shortest w‐s‐path must be contained in st xy=G G,
which implies it contains the vertices y and x (Lemma 7); in particular, we obtain that

d w s d w y d y s( , ) = ( , ) + ( , ). (5)

The following chain of equalities holds:

∉

≥

d s w d s w

d s y d y w

d s y d y w

d s x d x y d y w

d s x d x y d x w w xy

d s w d x y

( , ′) = ( , ) + 1 (by (4))

= ( , ) + ( , ) + 1 (by (5))

= ( , ) + ( , ′) (by (3))

= ( , ) + ( , ) + ( , ′)

= ( , ) + ( , ) + ( , ′) ( ′ )

( , ′) + ( , )

G

which implies d x y( , ) = 0, a contradiction. Hence, there is no such vertex b and the
vertex y is a cut vertex or it is dominated by x .

Now we assume that G is a 2‐connected graph.

(i) We first prove that for each ∈z N y d z t d x t( ), ( , ) = ( , )G
2 . It is obvious for z x= . For

≠z x we know that ≤d x t d y t d z t( , ) + 2 = ( , ) ( , ) + 2, by the triangle inequality.
Hence, ≤d x t d z t( , ) ( , ).

The other inequality comes from the fact that x dominates y; which implies
that d z x d z y( , ) = ( , ) = 2; then, ∉z xy st=G G, then d z t d z s( , ) = ( , ). Since
∈ ≤x st d z s d x s d x t, ( , ) ( , ) + 2 = ( , )G .
By a symmetric argument, for each ∈w N t( )G

2 we have that d w y d s y( , ) = ( , ).
As d y t d y s d x t( , ) = ( , ) + 2 = ( , ) + 2 we get the result.

(ii) Let v be such that d z t d z v d v t( , ) = ( , ) + ( , ) holds. On the one hand, since ∉z stG,
we obtain that

≤d z v d v t d z t d z s d z v d v s( , ) + ( , ) = ( , ) = ( , ) ( , ) + ( , )

which implies that ≤d v t d v s( , ) ( , ); on the other hand, since s dominates t , we have
that ≤d v s d v t( , ) ( , ). Hence, d v s d v t( , ) = ( , ). A symmetric analysis proves the
statement for each u satisfying d y w d y u d u w( , ) = ( , ) + ( , ).

(iii) Let ∈ ≠z N y z x( ),G
2 , and let P be a shortest path between z and t . We denote by

∩w P N t{ } = ( )G
2 and by ∩u P N t{ } = ( )G . Notice that by (ii), no vertex in zPw belongs

to stG.
Let Q be a shortest path between x and s. Then, Q and P are vertex disjoint,

because Q is contained in stG, which implies that C vPuQ= is a cycle containing x
and s, where ∈ ∩ ∩v N y N z N x( ) ( ) ( )G G G .

Now we prove that the cycle is induced. Assume that there is a chord ab in C. If
a v= , then ∈b N y( )2 , contradicting the fact that d y t d x s( , ) = ( , ) + 4, when ∈b Q,
or d y t d z w( , ) = ( , ) + 4, when ∈b P. A similar analysis shows that u can not be a
vertex of the chord. Hence, we can assume that ∈a P and ∈b Q. From triangular
inequality we get that

8 | MATAMALA AND ZAMORA



≤

≤

d z t d z s d z a d b s d w y d w x

d w a d b x

( , ) = ( , ) ( , ) + 1 + ( , ) and ( , ) = ( , )

( , ) + 1 + ( , );

but, we know from (ii) that d z t d x s d w y( , ) = ( , ) + 2 = ( , ). Replacing in the previous
inequalities and summing them we obtain

≤d x s d z a d a w d x b d b s2 ( , ) + 4 ( , ) + ( , ) + ( , ) + ( , ) + 2.

Since P and Q are shortest paths, it follows that d z w d z a d a w( , ) = ( , ) + ( , ) and
d x s d x b d b s( , ) = ( , ) + ( , ), which imply

≤d x s d z w( , ) + 2 ( , )

a contradiction because d x s d z w( , ) = ( , ) by (ii).

□

To apply Proposition 12 we need to understand in which situations two pairs of vertices x y, ,
and s t, , with d x y d s t( , ) = ( , ) = 2, and generating the same line, do satisfy yxst[ ].

Lemma 13. Let y x s t, , , such that ≠x y s t d x y d s t{ , } { , }, ( , ) = ( , ) = 2 and xy st=G G. IfG
is 2‐connected, bipartite and has no pairs of twins, then d x s d x t d y s d y tmax{ ( , ), ( , ), ( , ), ( , )}

is at least four. Moreover, if d y t d x s d x t d y s d y t( , ) = max{ ( , ), ( , ), ( , ), ( , )}, then yxst[ ] holds.

Proof. Let β d x s d x t d y s d y t= max{ ( , ), ( , ), ( , ), ( , )} and let y and t be such that
β d y t= ( , ). Since ≠x y s t{ , } { , }, we see that ≥β 1. If β = 1, then d x s d x t( , ) = ( , ) =

d y s d y t( , ) = ( , ) = 1. Moreover, since x y( , ) is not a pair of twins, there is z which is
adjacent to y and not adjacent to x; then, ∈z xyG and, since ∉β z s t= 1, { , }. As G is
bipartite, d z s d z t( , ) = ( , ) = 2 which implies the contradiction ∉z stG, since xy st=G G.

When β = 2 we cannot have d y s d y t( , ) = ( , ) + 2. As ∈y stG we get that
d y t d y s( , ) = ( , ) + 2 which implies that s y= . Similarly, as ∈t xyG, we conclude that
x t= . Thus, we get the contradiction x y s t{ , } = { , }.

As before, when β = 3 we cannot have d y s d y t( , ) = ( , ) + 2, hence, d y t( , ) =

d y s( , ) + 2 and then d y s( , ) = 1. Similarly, as ∈t xyG we conclude that d x t( , ) = 1.
Let ∈ ∩z N x N y( ) ( )G G which imply ∈z xyG. As d x t( , ) = 1 and d y s( , ) = 1, we have

that ≤d z s d z t( , ), ( , ) 2; but d y t( , ) = 3 implies d z t( , ) = 2. Since ∈z stG, we get that
z s= . In a similar way we can prove that ∩N s N t x( ) ( ) = { }G G .

We show that N s x y( ) = { , }G . In fact, if ∉z x y{ , } is a neighbor of s, then ∉z xy st=G G.
Then, ≠d z t d z s d s t1 < ( , ) ( , ) + ( , ) which forces that d z t( , ) = 2. This is not possible
since G would have a cycle of odd length. A similar argument shows that N x s t( ) = { , }G .

By Corollary 9, in a 2‐connected graph with no pairs of twins there are no universal
pairs. We shall get a contradiction by proving that x y( , ) is a universal pair. Let us assume
that ∉z xy st=G G. Then, ∉z x y s t{ , , , }. As β N x s t= 3, ( ) = { , }G and N s y x( ) = { , }G , a
shortest path P between z and x either contains y or contains t . In the first situation,
∈z xyG, so we can assume that t is in P, that is to say, d z x d z t( , ) = ( , ) + 1. By a

symmetric argument we can assume that a shortest path between z and s must contains
y. Hence, d z s d z y( , ) = ( , ) + 1.
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Since ∉z xyG and G is bipartite, we know that ≥d z x d z y( , ) = ( , ) 2. Therefore,

d z s d z y d z x d z t( , ) = ( , ) + 1 = ( , ) + 1 = ( , ) + 2

which contradicts ∉z stG.
Therefore ≥β d y t= ( , ) 4. Since ∈t xyG and ∈y stG, we get that d y t d x t( , ) = ( , ) +

d x y( , ) and d y t d y s d s t( , ) = ( , ) + ( , ).
For ∈ ∩z N x N y( ) ( )G G we have that ≤ ≤d y t d z t d x t d y t( , ) ( , ) + 1 ( , ) + 2 = ( , )

and then

≥d z t d x t d y t( , ) = ( , ) + 1 = ( , ) − 1 3.

We also have that ≤d z s d y s d y t d z t( , ) ( , ) + 1 = ( , ) − 1 = ( , ). Since ∈z stG, we get that
d z t d z s( , ) = ( , ) + 2. By using this equality we get that

≤d x s d z s d z t d x t( , ) ( , ) + 1 = ( , ) − 1 = ( , ).

Since ∈x stG, we get that d x s d x t( , ) + 2 = ( , ) and then yxst[ ] holds. □

2.2 | Proof of the main result

In this section, we prove our main result. We start by considering 2‐connected graphs without
pairs of twins.

2.2.1 | 2‐connected bipartite graphs with no pairs of twins

Before proving our result we need some definitions. LetG be a 2‐connected graph with no pairs
of twins and let x y, be two vertices ofG such that w xy( ) > 1G and d x y( , ) = 2. From Lemma 13
and Proposition 12 we know that x dominates y or y dominates x , since none of them is a cut
vertex. As G has no pairs of twins only one of these options can hold. We define X as the set of
vertices x such that there is a vertex ∈y N x( )G

2 with w xy( ) > 1G and such that x dominates y.
For each ∈x X , let Yx be the set of vertices ∈y N x( )G

2 with w xy( ) > 1G and set ∪ ∈Y Y= x X x.

Lemma 14. For X and Y defined above, ∩ ∅X Y = when G is a 2‐connected bipartite
graph without pairs of twins.

Proof. By contradiction, suppose there exists ∈ ∩y X Y . As ∈y Y , there is
∈x X such that ∈y Yx . Let ∈s t V, such that xy st=G G. Since G is a 2‐connected

bipartite graph without pairs of twins, by Lemma 13 we know that d y t( , ) =

≥d x s d x t d y s d y tmax{ ( , ), ( , ), ( , ), ( , )} 4 and yxst[ ] holds. By part (i) of Proposition 12
we know that x dominates y.

Since ∈y X , there is ∈z N y( )2 such that y dominates z. From Proposition 12
we know that d z t d x t d y t( , ) = ( , ) = ( , ) − 2. But then we get the contradiction:

≤d y t d z t d y t( , ) ( , ) < ( , ). □

10 | MATAMALA AND ZAMORA



From Corollary 9 we know that a 2‐connected graph G without pairs of twins has no
universal pairs x y( , ), with d x y( , ) = 2. Hence, to prove our result for these graphs, we have to
prove that there are at least G| | distinct nonuniversal lines defined by pairs of vertices at
distance two.

To this end, we define a function f from the set of vertices of the graph into the set of lines
of G. The function f associates to each vertex v a line generated by v and a vertex in N v( )G

2 ,
denoted by g v( ). If f is injective, then the number of distinct nonuniversal lines defined by pairs
of vertices at distance two is al least the number of vertices, and we are done.

Function f could not be injective for two reasons. The first reason is that there are distinct
vertices u and v such that v g v u g u{ , ( )} = { , ( )}. This is equivalent to g u u( ) =2 .

If g w w( ) =2 for no vertex ∈w V , then f still could fail to be injective if there are distinct

vertices u and v such that vg v ug u( ) = ( )
G G. From Proposition 12 we know that in this case

∈v X and ∈g v Y( ) or ∈v Y and ∈g v X( ) . Hence, either v dominates g v( ) or g v( ) dom-
inates v.

Therefore, when defining g v( ) it is important to try to choose g v( ) such that ≠g v v( )2 and
neither v dominates g v( ) nor g v( ) dominates v.

One way to guarantee these two properties is that v and g v( ) belong to an induced
cycle of length at least six. In Figure 3 we show the case of a cycle of length six. If the
vertices of the cycle are labeled v v v, , …, k0 1 2 +1, then by defining g v v( ) =i i+2, for every
i k g v v= 0, …, 2 − 1, ( ) =k2 0 and g v v( ) =k2 +1 1, we get the desired property. Indeed, in this
case we have that ≠g v v( )i i

2 , for each i k= 0, …, 2 + 1 and since the cycle is induced, there is
no vertex in the cycle dominated by another vertex in the cycle.

LetW be the set of vertices included in some induced cycle of length at least six. If every
vertexG is contained inW , then by applying iteratively the idea presented above, we can define
g v( ) for each vertex v such that v and g v( ) are in an induced cycle of length at least six. Then,

we will have that ≠g v v( )2 and ≠vg v ug u( ) ( )
G G, because neither v dominates g v( ) nor g v( )

dominates v. Therefore, for 2‐connected bipartite graphs we can prove the conjecture of Zwols
mentioned in the introduction since in this case every vertex belongs toW .

When a vertex x does not belong toW , then for each ∈y N x( )2 there is an induced cycle
of length four that contains x and y. In such situation we can still define g such that

≠g w w( )2 , for each ∈w V . But, there are graphs containing a vertex x such that for each
∈y N x( )2 the width of line xyG is at least two. In Figure 4 vertex x has this property. We

shall prove that when this happens all pair of vertices at distance two defining the line xyG

contains x . Hence, to avoid f x f z( ) = ( ) we only need to define ≠g z x( ) . In the next lemma
we prove that this can always be done since when three distinct vertices x u, , and z are such
that ∈d x u d x z d u z x X( , ) = ( , ) = ( , ) = 2, and ∈u z Y, x, then ∈u z W, .

FIGURE 3 Defining function g. An arrow from u to v means that v g u= ( )
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Lemma 15. Let ∈u z V, and ∈x X be such that d u x d z u d z x( , ) = ( , ) = ( , ) = 2 and
∈u z Y, x. Then, ∈u z W, .

Proof. From the definition of X and Yx, there are ∈ ∈s X u Y, ′ s such that su ux′ =G G.
Let v be a neighbor of z in a shortest path between z and u′. On the one hand,
∈ ⊆v N z N x( ) ( )G G since x dominates z, and then ∈v xu su= ′G G; on the other hand,

from part (ii) of Proposition 12, d v s d v u( , ) = ( , ′); then d v s d v u( , ) = ( , ′) = 1. This
implies that x s= and ∈ ∩ ∩v N x N u N z( ) ( ′) ( )G G G . Since d z u( , ′) = 2, a similar
argument shows that there is ∈ ∩ ∩w N u N x N z( ) ( ) ( )G G G .

Notice that the roles of u and z are symmetric with respect to x. Hence, there is z′ such
that xz xz= ′G G and there are ∈ ∩ ∩v N u N z N x′ ( ) ( ′) ( )G G G and ∈ ∩ ∩w N u N x N z′ ( ′) ( ) ( ′)G G G .
Therefore, the cycle uwzvu w z v u′ ′ ′ ′ has length eight and it is an induced cycle because
d u u d z z( , ′) = ( , ′) = 4. As u and z belong to this cycle, we get the conclusion. □

Now we can prove our main result for 2‐connected bipartite graph without pairs of twins.

Theorem 16. Let G be a 2‐connected bipartite graph without pairs of twins. Then

ℓ ≥G G( ) | | .2

Proof. Under the assumptions, from Corollary 9 we know that G has no universal pairs
at distance two. Moreover, from Lemma 13 we also know that if there are x y s t, , , such
that d x y d s t( , ) = ( , ) = 2 and xy st=G G, then we can assume that yxst[ ].

We prove that there exists a function →g V V: satisfying d u g u( , ( )) = 2 for each
∈u V , and such that the function →f V: G

2 defined by f u ug u( ) = ( )
G is injective. By

Corollary 9 the function f ranges over nonuniversal lines since G has no pairs of twins.
The definition of g is made in several steps:

• We first define g in the setW . Iteratively, we take any induced cycleC of length at least
six having vertices where g has not been defined. We define g in all the vertices of the
cycle. If for some of them g has been previously defined, we redefine g for these
vertices. Let C be a cycle given by u u u, , …, k0 1 2 +1, with ≥k 2. Then

∈g u v g u u g u u i k( ) = , ( ) = , and ( ) = , {0, 1, …, 2 − 1}.k k i i2 0 2 +1 1 +2

We have that w u g u( ( )) = 1i i , since neither ui dominates g u( )i , nor ui is dominated by

FIGURE 4 The vertex x always generates lines of width 2

g u( )i as C is an induced cycle of size greater than 4. It is clear that ≠g u u( )i i
2 , for

each i k= 0, …, 2 + 1.
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It is important to point out that by redefining the function g over an induced cycle of
length at least six, we keep the property ≠g u u( )2 , for every u, for which g u( ) is defined,
even if u does not belong to the cycle.

To ease the presentation let ≔ ⋃ ∈Z N x( )x X G
2 be the set of all the neighbors at distance

2 of vertices in the set X . Notice that ⊆Y Z and that from Proposition 12 the set
≔ ⋃ ∈Y N y( )y Y G

2 2
x

is included in Z . We also define the set ≔ ∪ ∪C V Z X W\( ).

• We define g in C. Let ∈u C:
If there exists ∈v N u( )G

2 with ≠g v u( ) , then we define g u v( ) = . Since ∈u C, we
know that ∉u Z . Then, ∉v X and w f u( ( )) = 1.

If g v u( ) = for each ∈v N u( )G
2 , then we claim that N u( )G

2 has at least two vertices
z z, ′ such that ∩ ∩N u N z N z( ) ( ) ( ′)G G G is not empty. In fact, since ∉u W we know that
u is contained in a cycle of size four. Let z be the vertex at distance 2 of u in this cycle.
Since the other two vertices of the cycle do not form a pair of twins, there exists a vertex
z′ which is neighbor of only one of them and such that d z u( ′, ) = 2. Then,
g z g z u( ) = ( ′) = .

By using z and z′ we define g u z( ) = and redefine g z z( ) = ′ (see Figure 5); since
∩ ∅N u X( ) =2 , we know that ∉z z X, ′ and then w zz( ′ ) = 1G and as ∉u X , we get

w ug u( ( ) ) = 1
G . Moreover, ≠g u z u( ) = ′2 and ≠g z z z( ′) = ′2 . Notice that with these

definitions ⊆ ∪g C W C( ) .
• Now we define g for ∈ ∪u Z X W\( ) such that there exists ∈ ∩x X N u( )G

2 with ∉u Yx.
In this case, we set g u x( ) = . We have w f u( ( )) = 1 because ∉u Yx. If ∈x W , then

≠g x u( ) because ∉u W . Otherwise g x( ) has not been defined yet, so we will show
later that ≠g x u( ) .

• Now we define g for ∈ ∪u Z X W\( ) such that for all ∈ ∩x X N u( )G
2 we have that

∈u Yx. In this case, we claim that there exists a vertex ∈z N u( )G
2 such that ∉z X . In

effect, if for every ∈z N u( )G
2 we have that ∈z X , then, by the assumption of this case,

∈u Yz. By Proposition 12 we obtain that every ∈z N u( )G
2 dominates u. This is a con-

tradiction since, when this happens, there is a pair of twins whose common neigh-
borhood is ∪N u u( ) { }G

2 inside the neighbors of u. Thus, there is ∈z N u( )G
2 such that

∉z X ; so we define g u z( ) = . Clearly, w f u( ( )) = 1, by definition.
If ∈z W , then ∈g z W( ) . Thus, ≠g u u( )2 , since ∉u W . By Lemma 15, ∉z Yx, for

all ∈ ∩x X N u( )2 . Hence, if ∈z Z W g z\ , ( ) was defined in the previous step and
satisfies ∈g z X( ) . Hence, ≠g u u( )2 , since ∉u X .

• The last step is to define g for ∈u X W\ . We pick ∈y Yu arbitrarily and define
g u y( ) = . From the definition of X we conclude that w f u( ( )) > 1. Notice that g y( ) was

FIGURE 5 Redefining g
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already defined in previous steps; moreover, in the previous steps we always have
defined g v( ) such that w f v( ( )) = 1; so we have that ≠g v v( )2 for all ∈v Z such
that ∈g v X( ) .

Finally we prove the injectivity of f . Suppose there exist ∈u u X, ′ such that
f u f u( ) = ( ′). Since ≠g u u( )2 and ≠g v v( )2 , we kwon that u g u{ , ( )} and v g v{ , ( )}

generate the same line. Since G is 2‐connected and has no pairs of twins, we can assume
that g u uu g u[ ( ) ′ ( ′)] holds. From part (iii) of Proposition 12 we have that u and u′ are
contained in a cycle of size d u u2( ( , ′) + 2), but ∉u W , which implies d u u( , ′) = 0 from
where we obtain the injectivity of f . □

2.2.2 | The general case: Proof of Theorem 4

Proof of Theorem 4. We proceed by induction on ≔n G| |. If n = 3, thenG is a path with
three vertices and satisfies ℓ G( ) = 12 and GBR( ) = 2.

Suppose thatG has a pendant edge ab with b a vertex of degree 1. Let ≔G G b′ − ; ifG′
is not isomorphic with C4 or K2,3, then by induction hypothesis we obtain that

ℓ ≥ ℓ ≥G G G G n( ) + BR( ) ( ′) + BR( ′) + 1 .2 2

When G′ is isomorphic with C4 or K2,3 a case analysis shows that the graph G satisfies
ℓ ≥G G( ) + 1 | |. Hence, we can assume in the sequel that G has no pendant edges. If G
has a bridge ab, let Ga andGb be the connected components ofG ab− that contain a and
b, respectively. AsG has no pendant edge, bothGa andGb have at least two vertices one of
them of degree at least two; hence they have at least three vertices. Let G′a be the
subgraph ofG induced by ∪V G b( ) { }a andG′b the subgraph ofG induced by ∪V G a( ) { }b .
As they have a pendant edge they are neither C4 nor K2,3. For two distinct vertices u and v
inG′a we have that ∈ ∪{ }uv uv uv G,G G G

b
′ ′a a . The analogous property holds for vertices in

G′b. Then, it follows that:

ℓ ≥ ℓ ℓG G G( ) ( ′ ) + ( ′ ) − 1.a b2 2 2

On the other hand G′a and G′b share a bridge, hence

G G GBR( ) = BR( ′ ) + BR( ′ ) − 1.a b

By plugging these two inequalities and using the induction hypothesis we obtain

ℓ ≥ ℓ ℓ

≥

G G G G G G

G G

n n

( ) + BR( ) ( ) + BR( ) + ( ) + BR( ) − 2

| | + | | − 2

= + 2 − 2 = .

′ ′ ′ ′

′ ′
a a b b

a b

2 2 2

Hence, in what follows we can assume that the graph G is bridgeless. We now
consider that G is bridgeless and has a cut vertex v. Let G1 and G2 be subgraphs of G
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such that ∪E G E G E G( ) = ( ) ( )1 2 and ∩V G V G v( ) ( ) = { }1 2 . Then from Lemma 10 we
know that

ℓ ≥ ℓ ℓG G G( ) ( ) + ( ) + 3.2 2 1 2 2

By induction hypothesis this quantity is greater than G| | unless G G C= =1 2 4 because
ℓ C( ) = 12 4 and ℓ K( ) = 42 2,3 . When G G C= =1 2 4 we can compute directly the value
ℓ G G( ) = 7 = | |2 . Hence, in the rest of the proof we can assume that G is 2‐connected.

If G has no pair of twins, then we obtain the conclusion from Theorem 16.
If G K= q p, , then from Lemma 11 we get conclusion as ≥( ) ( ) p q+ +

p q

2 2
when

≥p q+ 6. For ≤p q p q+ 5, + = 5 implies that G K= 2,3 and p q+ = 4 implies
that G C= 4.

To end the proof, we assume that G is 2‐connected, it has pairs of twins and it is not a
complete bipartite graph.

We choose M v v= { , }1 2 as a pair of twins, with ≔G G v′ − 1 having as few bridges as
possible.

The graph ≠G C′ 4, as otherwise G K= 2,3, and ≠G K′ 2,3, as otherwise G K= 3,3

or G K= 2,4.
From the induction hypothesis, we obtain that ℓ ≥G G G G( ′) + BR( ′) | ′ | = | | − 12 .
Set ∈xy x y V G d x y′ = { : , ( ′), ( , ) = 2}G . Since G′ is an isometric subgraph of G (ie,

for all ∈x y V G, ( ′), the distance between x and y inG′ is the same as it is inG), we have,
for all ∈a b V G ab ab, ( ′), =G G′

or ∪ab ab v= { }G G′
1 . Hence

ℓ ≥G G G| ′ | = ( ′) | | − 1 − BR( ′).2 (6)

Moreover, each line in ′ that contains v1 must contains v2.
Since G is not a complete bipartite graph, there is ∈ ∪t G M N M− ( ( )), with

d t v( , ) = 21 . It is clear that v1 is the unique vertex in M which belongs to the line
v tG1 . Hence, ∉v t ′G

1  and thus, if GBR( ′) = 0, we are done by (6). So we may assume
that G′ has at least one bridge ab. We will prove that the choice of M guarantees
that there is only one bridge in G′. Claim 17. For any bridge ab of G′, we have that
∈v a b{ , }2 , and there is a connected component in G ab′ − whose set of vertices is

a b v{ , } \ { }2 . Proof. Set Ga be the connected component that contains a and Gb the one
that contains b in the graph G ab′ − . Without loss of generality we can assume that
∈v Ga2 . Since G is bridgeless, v1 and v2 must have neighbors in Ga and Gb which implies

that v a=2 . Moreover, since G has no cut vertex, it follows that G b= { }b . □

Suppose that there exist at least two bridges ab and a b′ ′ in G′. By the claim, we can
assume that a a v= ′ = 2 and that N b N b v v( ) = ( ′) = { , }G G 1 2 . Then, b and b′ are twins and
the graphs G b− and G b− ′ are bridgeless, contradicting the choice of M . Hence, G′ has
only one bridge.

Consider now the line v v G
1 2 ; sinceG is bipartite, N M( ) is an independent set and thus

∪v v M N M= ( )G
1 2 . We claim that ∉ ∪v v v t′ { }G1 2 1 which gives the result by (6).
In effect, we first note that ≠v v v tG G

1 2 1 , since ∉ ∪t M N M( ). So we may assume, for
the sake of contradiction, that ∈v v ′G

1 2  . Let ∈ ∪x y N M M v, ( ) − { }1 such that
d x y( , ) = 2 and ∪xy M N M= ( )G . Then, ∈x y N M, ( ) and ∩xy N M x y( ) = { , }G . Hence,
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N M x y( ) = { , }. As G′ has a bridge, we can assume that it is v x2 . This leads to a
contradiction, since when v x2 is a bridge, y is a cut vertex of G. □

3 | METRIC SPACE WITH FEW DISTANCES

Let M V d= ( , ) be a metric space. Let ∈a V and let ≔V V a\ { }a− . The set V a− endowed with
the restriction of d to V a− is a metric space that, in this study, we shall refer to
as M V d= ( , )a a a− − − .

Notice that for a metric space M defined by a graph, the metric space M a− may not be the
same as the metric space defined for the subgraph obtained after removing vertex a.

Recall that ℓ M( )* denotes the number of distinct nonuniversal lines in M . In metric spaces
we have the following relation between its lines and the lines of its subspaces.

Lemma 18. For every metric space ℓ ≥ ℓM V d M M= ( , ), ( ) ( )* * a− , for any ∈a V .

Proof. Let ≔ ≔V V d d′ , ′a a− − , and ≔M M′ a− . Let ∈x x y y V, ′, , ′ ′ such that
≔ ≠ ≔l xy l x y′ ′ ′M M′ ′

. Since these lines are different, we can assume there exists a
point ∈z V ′ such that ∈z l l\ ′. Since the distance between points in V ′ does not change
in V , it follows that d x y d x z d z y( , ) = | ( , ) ± ( , )| and ≠d x y d x z d z y( ′, ′) | ( ′, ) ± ( , ′)|

which implies that ≠xy x y′ ′M M .
Hence, two different lines in M′ extend to two different lines in M . Therefore,

ℓ ≥ ℓM M( ) ( ′)* * . □

Let us recall that v v( , ′) is a pair of twins of a metric space M V d= ( , ), if v and v′ are two
distinct points in V such that ≠d v v( , ′) 1 and for all ∉u v v d v u d u v{ , ′}, ( , ) = ( , ′).

The symmetric role of vertices in a pair of twins with respect to the distance function is
partially described in the following lemma.

Lemma 19. Let v v( , ′) be a pair of twins on M V d= ( , ) and let x y, two distinct points in
V v− ′. If ∉v x y{ , }, then ∈v xyM if and only if ∈v xy′ M .

Proof. By definition ∈v xyM if and only if d x y d x v d v y( , ) = | ( , ) ± ( , )|; but as v v( , ′) is a
pair of twins, we can replace v in previous equality by v′ and we get the result. □

To ease the presentation we denote by * the set of all metric spaces satisfying

ℓ ≥M M M( ) + UP( ) | | .*

One can check that every metric space with three points belongs to * .
Now we prove that a metric space with at least three points which is minimal not in *

cannot contain a pair of twins v v( , ′) such that, for every ∈u V v v d u v\ { , ′}, ( , ) = 1. For the
previous analysis we know that such metric space has at least four points.

Proposition 20. Let M V d= ( , ) be a minimal metric space not in * with at least three
points. If v v( , ′) is a pair of twins of M , then there is ∈u V v v\ { , ′} such that ≠d v u( , ) 1.
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Proof. For the sake of contradiction, let M be a minimal metric space not in * and let
v v( , ′) be a pair of twins of V such that for each ∈u V v v d v u\ { , ′}, ( , ) = 1. Then M has at
least four points. Since ≠d v v( , ′) 0, 1, we have that ≥d v v( , ′) 2. As M has at least four
points, there is ∉u v v{ , ′}. Then, for such u we have ≤d v u d u v( , ) + ( , ′) 2, which implies
that d v v( , ′) = 2. Hence,

∪ ∈vv v v u V d u v d u v V′ = { , ′} { : ( , ) = ( , ′) = 1} = .M

Thus, v v( , ′) is a universal pair of M .
Let M M′ = v− ′. By the minimality of M , the space M′ belongs to * . Hence,

ℓ ≥M M V( ′) + UP( ′) | | − 1* . From Lemma 18, we have that ℓ ≥ ℓM M( ) ( ′)* * . As
∉M * , we see that ≥ ℓV M M| | − 1 ( ) + UP( )* . Hence, ≥M MUP( ′) UP( ).
To get the contradiction we prove that M MUP( ) > UP( ′). Let x y( , ) be a universal pair

inM′. We prove that it is also universal inM . By Lemma 19 this is immediate if ∉v x y{ , }.
So, we can assume that x v= . As we know that d v y d v y( , ) = 1 = ( ′, ) and d v v( , ′) = 2,
we get that ∈v xy′ M , thus x y( , ) is a universal pair in M as well. To prove the strict
inequality notice that v v( , ′) is a universal pair in M but not in M′. □

3.1 | 2‐metric spaces

In this section, we prove that 2‐metric spaces with at least three points belong to * . We first
study the case when the metric space has no pairs of twins. To do that, we fix a point v of the
metric space and we count the different lines defined by v and the other vertices of the metric
space.

The following lemma summarizes the restrictions on a 2‐metric space M appearing when
there are repeated lines. The first statement appears in [6].

Lemma 21. Let M V d= ( , ) be a 2‐metric space. Let v x y z, , , points in V .

(i) If v x y, , are distinct, then vx vy=M M implies ≠d v y d v x( , ) ( , ) or x y( , ) is a pair of
twins with d v x d v y( , ) = ( , ) = 1.

(ii) If d v y( , ) = 2, then the only point in vyM at distance two from v is y.
(iii) If d v y d v x vy vx( , ) = 2, ( , ) = 1, =M M , d v z( , ) = 2, and d x z( , ) = 1, then z y= .

Proof. The first statement was proved in [6]. The second statement is direct because if a
point u satisfies d v u d v y( , ) = ( , ) = 2 and ≠u y, then ∉u vyM by definition. For the third
statement, it is immediate that ∈z vxM , since d v z d v x d x z( , ) = 2 = ( , ) + ( , ). From the
second statement we get that z y= , since vx vy=M M and d v y( , ) = 2. □

Let M V d= ( , ) be a 2‐metric space and ∈v V . We define the sets

∈ ∈F x V d x v S y V d v y= { : ( , ) = 1} and = { : ( , ) = 2}.

Notice that v F S{{ }, , } is a partition of the set V . In the rest of this section, we always will
consider this partition, that is to say, v is fixed for the discussion.

We consider the following sets of lines:
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• ≔ ∈ ≠vF vx x F vx V{ : , }M M .
• ≔ ∈ ≠vS vy y S vy V{ : , }M M .
• ≔ ∈ ≠S yw y w S y w{ : , , }* M .
• ∈ ∈ ∃ ∈ ∉FS xz x F z S y S vx vy z xy: ={ : , , s.t. , = , }M M M M .

We give example of lines in these sets in the metric space defined by the graph of Figure 6.

• ∈va v a b d vF= { , , , }M .
• ∈vd v a b d vS= { , , , }M .
• ∈de d e b S= { , , } *M .
• ad a d v b c= { , , , , }M .
• ∈ae a e c FS= { , , }M .

With previous notation we have the following properties that we shall use further on.

Proposition 22. Let M V d= ( , ) be a 2‐metric space.

(i) Let UPF (resp. UPS) be the number of universal pairs v u( , ) with ∈u F (resp. ∈u S)
and let UP v− be the number of universal pairs u w( , ) with ∉v u w{ , }. Then,

MUP( ) = UP + UP + UPv
S F

− , vS S| | = | | − UPS, and when M has no pairs of
twins, vF F| | = | | − UPF .

(ii) ∀ ℓ ∈ ∃ ∈FS z S, such that ℓ ⊆ ∪F z{ }. In particular, if ≠ ∅FS , then ≥S| | 2.
(iii) ∪ ∩ ∪ ∅FS S vS vF( ) ( ) =* .
(iv) ≥ ∩FS vF vS| | + UP | |v− .
(v) ∪ ∪ ≥vF vS FS M n| | + UP( ) − 1, when M has no pairs of twins.
(vi) ∩ ∅S FS =* .

Proof.

(i) Direct from Lemma 21.
(ii) Let ℓ ∈ FS, then there exist ∈ ∈x F y S, , and ∈z S such that ℓ xz vx vy= , =M M M

and ∉z xyM .
First, notice that since ∈y vxM , we get that d x y d v y d v x( , ) = ( , ) − ( , ) = 1.
We claim that d x z( , ) = 2. In effect, if d x z( , ) = 1, then d y z( , ) = 1 because
∉z xyM; but this would imply that ∈z vxM and ∉z vyM, which is a contradiction,

since these lines are equal.
We have by definition that

∪xz x z u d u x d u z= { , } { : ( , ) = ( , ) = 1},M

FIGURE 6 The sets F and S defined by a graph
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which implies that ∉v xz.
Now we prove that ∩xz S z= { }M . By contradiction, suppose there exists a point
∈ ∩u xz SM , with ≠u z; it follows that d v u( , ) = 2 and d x u d u z( , ) = ( , ) = 1 which

implies that ∈u vx vy=M M; from part (iii) of Lemma 21 we get that u y= , a con-
tradiction, since d z y( , ) = 2. Hence, ⊆ ∪xz F z{ }M .

Finally, if ≠ ∅FS , there exists a point ∈z S, which, by definition, is different from
y, and then ≥S| | 2.

(iii) On the one hand, every line ℓ ∈ ∪vF vS contains the point v by definition; on the
other hand, ∉ ℓv ′ when ℓ ∈ S′ * and from part (ii) we get that lines in FS do not
contain v.

(iv) Let ∈y y S, …, r1 such that for each i r= 1, …, there exists ∈x Fi with vx vy=i
M

i
M

and ∩vF vS vy i r= { : = 1, …, }i
M . From part (iii) of Lemma 21 we deduce that if

x x=i j, then i j= . Let ⊆I r{1, …, } be the set of all indices such that x y( , )i i is a
universal pair of M . For each ∉i I there exists a vertex ∉z x yi i i

M. We claim that
∈z Si . In effect, suppose that ∈z Fi ; on the one hand if d z y d z x( , ) = ( , ) = 1i i i i ,

then ∈z vy vx\i i
M

i , a contradiction; on the other hand if d z y d z x( , ) = ( , ) = 2i i i i , then
∈z vx vy\i i

M
i , a contradiction again. Hence ∈z Si and ∈x z FSi i

M .
From part (ii) we get that d x z( , ) = 2i i and ⊆ ∪x z F z{ }i i

M
i . We shall prove

that all the lines defined in this way are different. In effect, suppose there
exist i j, such that x z x z=j j

M
i i

M ; on the one hand, it follows from (ii) that z z=i j;
on the other hand, from part (ii) of Lemma 21 it follows that x x=i j, since
d x z d x z( , ) = ( , ) = 2i i j j .

Therefore, ≥ ≥ ∩FS r I vF vS| | − | | | | − UP v− .
(v) Since M has no pairs of twins, from parts (iii) and (i), we get that

∪ ∪ ∩

∩

∩

vF vS FS M vF vS vF vS FS M

F S vF vS FS

M

F S vF vS FS

| | + UP( ) = | | + | | − | | + | | + UP( )

= | | − UP + | | − UP − | | + | |

+ UP( )

= | | + | | − | | + | | + UP ,

F S

v−

since MUP( ) = UP + UP + UPv
F S

− .
From part (iv) we get that ∩ ≥FS vF vS| | + UP − | | 0v− , which implies the con-

clusion, since F S n| | + | | = − 1.
(vi) Let ℓ ∈ ∩FS S*. On the one hand ℓ ∩ ≥S| | 2 by definition; on the other hand from

(ii) we get that ℓ ∩ S z= { } which implies that ∩ ∅FS S =* . □

Proposition 23. A 2‐metric space with at least three points and no pairs of twins belongs
to * .

Proof. If all distance inM are 0 or 1, then every pair of points defines a different line and
the result is immediate. Otherwise, there is ∈v V such that S is not empty.

From part (v) of Proposition 22 we get that for such v,

∪ ∪ ≥vS vF FS M n| | + UP( ) − 1.
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So we only need to find a nonuniversal line not in ∪ ∪vS vF FS. From parts (iii) and
(vi) of Proposition 22, we see that ∩ ∪ ∪ ∅S FS vF vS( ) =* . Hence, if S* is not empty we
are done.

Let us assume that ∅S =* . Hence, S has exactly one element y and the set FS is
empty. Since v y( , ) is not a pair of twins, there is some ∈x F such that d x y( , ) = 2. In
particular, ∉v xyM , since d v y d x y( , ) = ( , ) = 2. Thus, ∉ ∪xy vF vSM and x y( , ) is not a
universal pair. Therefore, the line xyM belongs to ℓ ∪M vF vS( ) \ ( )* which finishes the
proof. □

Now we are in position of proving Theorem 6.

Proof of Theorem 6. For the sake of contradiction, letM V d= ( , ) a 2‐metric space which
is minimal not in * . Then, M has at least four points. From Proposition 23 we can
assume that M has a pair of twins v v( , ′).

Let M M′ = v− ′ andV V′ = v− ′. Since M is minimal not in * and M′ has at least three
points we have that

ℓ ≥ ≥ ℓM M n M M( ′) + UP( ′) − 1 ( ) + UP( ).* * (7)

Let

≔ ∈U u V d v u vu V{ ′ : ( , ) = 2, = ′}M′

and

≔ ∈ ≠W u V d v u vu V{ ′ : ( , ) = 2, ′}.M′

Notice that

∪ ∪ ∪V v v z d v z d v z U W= { , ′} { : ( , ) = ( ′, ) = 1} .

As M is minimal not in * , Proposition 20 implies that U W| | + | | > 0.
For each point ∈ ∪u U W , the line v u′ M contains v′ and does not contain v. Part (ii) of

Lemma 21 implies that all these lines are distinct and Lemma 19 implies that none of
these lines can be generated by two points in V ′. Additionally, when ∈u U , the line vuM′

is not counted in ℓ M( ′)* because it is universal in M′. Hence, we get

ℓ ≥ ℓM M U W( ) ( ′) + 2| | + | | .* *

Plugging this inequality with (7) we get

≥M M U WUP( ′) − UP( ) 2| | + | | . (8)

Let x y( , ) be any universal pair of M′. From Lemma 19 we deduce that when
∩ ∅x y v v x y{ , } { , ′} = , ( , ) is also a universal pair in M . This is also true when x v= and

d v y( , ) = 1 since d v v d v y d y v( ′, ) = 2 = ( , ) + ( , ′). Hence, if x y( , ) is not a universal pair
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in M , we can assume that x v= and ∈ ∪y U W . By definition of W , if ∈y W , then
≠vy V ′M′ . Thus, ∈y U . Therefore, ≥U M M| | UP( ′) − UP( ). By replacing in (8) we

obtain

≥ U W0 | | + | | > 0

which is a contradiction. □
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