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Abstract. Cosmic inflation may have led to non-Gaussian initial conditions that cannot be
fully parametrised by 3- and/or 4-point functions. In this work, we discuss various strategies
to search for primordial non-Gaussianity beyond polyspectra with the help of cosmological
data. Our starting point is a generalised local ansatz for the primordial curvature perturba-
tion ζ of the form ζ = ζG + FNG(ζG), where ζG is a Gaussian random field and FNG is an
arbitrary function parametrising non-Gaussianity that, in principle, could be reconstructed
from data. Noteworthily, in the case of multi-field inflation, the function FNG can be shown
to be determined by the shape of tomographic sections of the landscape potential responsible
for driving inflation. We discuss how this generalised local ansatz leads to a probability dis-
tribution functional that may be used to extract information about inflation from current and
future observations. In particular, we derive various classes of probability distribution func-
tions suitable for the statistical analysis of the cosmic microwave background and large-scale
structure.
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1 Introduction

Our observable universe is consistent with an extremely simple set of initial conditions. For
all practical purposes, the observed cosmological inhomogeneities were seeded by a primor-
dial curvature fluctuation ζ distributed according to a Gaussian profile parametrised by an
almost scale invariant power spectrum [1–5]. The confirmation of this state of affairs by
future surveys would reinforce our confidence in the single-field slow-roll inflation paradigm,
that is, the idea that ζ was the consequence of quantum perturbations of a single scalar
fluid (the inflaton) that evolved adiabatically during inflation [6–10]. Tiny deviations from
Gaussianity, due to small nonlinear self-interactions affecting ζ, are known to emerge in
single-field inflation but these are predicted to be too small to be observed in the near future.
On the other hand, large non-Gaussianity (within current bounds) may emerge in models of
inflation beyond the canonical single-field paradigm, resulting from possible nongravitational
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self-interactions of ζ and/or interactions between ζ and other degrees of freedom. The obser-
vation of non-Gaussianity (NG) would therefore offer a unique opportunity to characterise
the class of interactions that affected ζ during inflation, allowing us to pin down certain
fundamental aspects about the period of inflation and, consequently, have a glimpse on the
structure of the ultra-violet (UV) framework where it is realised.

While current cosmic microwave background (CMB) observations show no evidence of
primordial non-Gaussianity, future large-scale structure (LSS) surveys, such as Lsst [11],
Euclid [12], Spherex [13] and Ska [14], promise to revitalise its search. The proliferation
of modes due to the three-dimensional volume probed by galaxy surveys is expected to yield
constraints on primordial non-Gaussianity that might not only complement current bounds
from CMB observations, but even surpass them. Among the most prominent effects of non-
Gaussianity on the matter distribution is the celebrated observation that a nonzero skewness
of the probability distribution function of ζ leads to an enhanced abundance of collapsed
structures and a scale dependent correction in the halo bias [15], a result which has brought
LSS surveys in the front line of the search for non-Gaussianity. Furthermore, there has been
an intense effort to study how UV physics can show up in the matter power spectrum and
bispectrum [16–19].

Given that inflation might not be unique1 in explaining the observed inhomo-
geneities [24], in order to confront future data with theory, we may adopt an agnostic per-
spective about the details involved in the description of the pre-Big-Bang dynamics. In that
case, we should agree that the main outcome from inflation, or any other framework intend-
ing to explain the initial conditions of our universe, consists of a relation giving us back the
profile of ζ(x) written in terms of a purely Gaussian random field ζG(x). Such a relation
must be of the form

ζ(x) = ζG(x) + FNG (ζG(x),∇) , (1.1)

where FNG represents a nonlinear function of the field ζG(x) and spatial gradients ∇ acting
on it. In Fourier space, the previous relation may be reexpressed as the following expansion
in powers of ζG, starting at quadratic order:

ζk = ζGk + (2π)3
∑

n=2

1

n!

∫

k1

. . .

∫

kn

δ(3)

(

k −
n
∑

i=1

ki

)

Fn (k1, . . . ,kn) ζ
G
k1
. . . ζGkn

, (1.2)

where
∫

k
≡ (2π)−3

∫

d3k, and where Fn (k1, . . . ,kn) are functions of the momenta, symmetric
under their permutations. This relation is sufficiently general to describe any form of pri-
mordial non-Gaussianity, and may be formally obtained in a generic manner from a quantum
field theoretical framework (see appendix A for details). The Fn functions parametrise the
non-Gaussian deviations generated by nonlinear interactions to which ζ were subject and, in
the case of inflation, may be deduced from a particular model by studying the evolution of
ζk from sub-horizon scales up until the end of inflation (e.g., using the in-in formalism). In
fact, any n-point correlation function for ζ may be computed out of (1.2). For instance, at
tree-level, the bispectrum parametrising the amplitude of the 3-point function is found to be
given by B(k1,k2,k3) = [Pζ(k1)Pζ(k2)F2(k1,k2) + perm.], where Pζ is the power spectrum
of the Gaussian field ζGk . In the particular case of single-field slow-roll inflation, up to first
order in the slow-roll parameters, the bispectrum is recovered as long as F2 is given by (up

1Other scenarios, such as the ekpyrotic [20, 21] and bouncing universe [22, 23], have been proposed as
models able to reproduce nearly Gaussian initial conditions.
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to terms that vanish upon imposing momentum conservation)

F2(k1,k2) =
1

2
(η − ǫ) +

ǫ

2

k1 + k2
|k1 + k2|

+ 2ǫ
k21 + k22

|k1 + k2|(k1 + k2 + |k1 + k2|)
,

where ǫ and η are the usual slow-roll parameters describing the steady evolution of the FLRW
background during inflation. The effective field theory (EFT) of inflation approach [25] to
study models beyond the canonical single-field paradigm will also yield a specific form of
F2(k1,k2), in which the sound speed of ζ plays an important role. Moreover, the well-known
local ansatz [26–33], related to the presence of multi-field dynamics, corresponds to another
particular instance of this relation, where F2 =

6
5f

local
NL .

One could thus take upon the challenge of directly reconstructing the form of FNG in
eq. (1.1) — or equivalently, the functions Fn appearing in (1.2) — out of cosmological data.
This would constitute a bottom-up approach to determine the properties of the model that
gave origin to the initial conditions. To guide such a reconstruction, one could consider
restricting the functions Fn according to certain rules dictated by the symmetries of the
alleged bulk model that led to (1.2) at the end of the pre-Big Bang period. For instance,
scale invariance of the spectra is equivalent to the invariance of Fn under the simultaneous
rescaling of all the momenta: Fn(λk1, . . . , λkn) = Fn(k1, . . . ,kn). Furthermore, the validity
of soft theorems [29, 34–43] (under certain circumstances) would require some relations among
Fn of different order in the limit where one or more of the momenta vanish.

An objection to this program (the direct reconstruction of FNG) is that perturbation
theory applied to the study of the evolution of ζ implies that the expansion involved in the
writing of eq. (1.2) is hierarchical. That is, given a small dimensionless coupling constant
g parametrising the self-interactions experienced by ζ during inflation, the Fn functions are
naturally expected to satisfy

Fn ∝ gn−1. (1.3)

For instance, in the case of single-field slow-roll inflation g happens to be of order ǫ and
η and hence, non-Gaussianity is expected to be well-parametrised by the bispectrum. In
noncanonical single-field models described by the EFT of inflation, where the ζ fluctuations
propagate with a reduced sound speed cs < 1, the coupling g is enhanced by a factor c−2

s , but
in order to trust perturbation theory, one still requires that it stay sufficiently suppressed.
Based on this argument, we could say that most efforts to characterise non-Gaussianity so
far have focused on a truncated version of (1.2), where only F2(k1,k2) and F3(k1,k2,k3)
(which at tree-level give the bispectrum and trisprectrum) are taken under consideration,
with the Planck data implying weak constraints on the form of F2(k1,k2), with the help of
the so-called local, equilateral, orthogonal and folded templates [4].

In the present article, we wish to argue in favour of reconstructing the full function FNG

of eq. (1.1) from CMB and LSS observations without necessarily assuming a hierarchical
dependence of the functions Fn on a given coupling constant g. We posit that the search
for non-Gaussianity focused on low n-point correlation functions may miss the existence of
richer types of statistics [44–50] that we may be unable to predict by following standard
perturbation theory techniques. For example, in appendix A we show that in certain classes
of multi-field models, the function FNG is found to be proportional to the gradient of the
landscape potential ∆V (ψ) controlling the dynamics of the isocurvature field ψ. More to the
point, we show that

FNG(ζ) ∝
∂

∂ζ
∆V (ψ(ζ)) , with ψ(ζ) ≡ H

2πA
1/2
s

ζ, (1.4)
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where H is the Hubble expansion rate during inflation and As is the amplitude of the power
spectrum of ζ (constrained by Planck to be 109As = 2.105± 0.030 at the CMB pivot scale
k = 0.05Mpc−1 [2]). Hence, the shape of FNG provides a tomographic view of the landscape
potential away from the inflationary trajectory. Certainly, one cannot discard the possibility
of having potentials ∆V (ψ) characterised by a rich structure (i.e. with consecutive minima
separated by field distances smaller than the Hubble expansion rate during inflation) in which
case the bispectrum would not constitute an efficient tool to parametrise non-Gaussianity [48,
49]. A simple example of this, related to the presence of an axionic isocurvature direction,
is FNG(ζG) ∝ sin(ζG/fζ) with f

2
ζ < σ2ζ , where σ

2
ζ is the variance of the Gaussian field ζG. In

this case, the function FNG(ζG) remains bounded, but varies vigorously within the relevant
range determined by σζ .

Despite of having a well motivated construction justifying the need of studying non-
Gaussianity beyond polyspectra, we wish to keep the discussion as general as possible and,
thus, in the main part of this work we will not refer to any specific origin of this parametri-
sation. Instead, we will focus our attention on the consequences — for various cosmological
observables — implied by having initial conditions parametrised by a function FNG(ζ) not
necessarily respecting a hierarchical structure. In order to make the discussion more tractable,
we will focus on the specific case of local NG, for which FNG in eq. (1.1) does not involve
gradients and hence the coefficients Fn in the expansion (1.2) are independent of momenta.2

This implies a simplified version of (1.1) given by ζ(x) = ζG(x) + FNG (ζG(x)). However,
since in practice observations are restricted to a finite range of wavelengths, we will consider
a version of (1.1) recovered from (1.2) but with every momenta restricted to a finite range
(including those appearing in the integrals). This relation is given by

ζ(x) = ζG(x) + FNG [ζG] (x), with FNG [ζG] (x) =

∫

k

∫

y

eik·(x−y)F (ζG(y)) , (1.5)

where
∫

y
≡
∫

d3y. In the previous expression,
∫

k
≡ (2π)−3

∫

d3k is restricted to a given range

of scales specified by convenience3 (with ζ(x) and ζG(x) also restricted in that manner). In
this version of the ansatz, F (ζG) is the function of the Gaussian random field ζG that
determines the values of the Fn coefficients in (1.2) as Fn = ∂nζ F |ζ=0.

While similar approaches to study non-Gaussianity have been developed (for instance,
see refs. [44, 46], where the main focus is the analysis of non-Gaussianities arising from
preheating), our purpose in this work is to provide a description of local non-Gaussianity in
terms of the curvature perturbation field ζ in a way that explicitly reflects how the scales
involved in the computation affect the result, and therefore, on how the primordial deviation
from Gaussianity FNG can be related to predictions and observables in the CMB and LSS
by adjusting the set of scales to those involved in the measurement at hand.

1.1 Main results

The object that determines the statistics of fluctuations, either in the temperature or in
the density field, is the probability distribution function (PDF) from which one can com-

2See ref. [51] for a discussion on how the usual local ansatz involving fNL (where the momenta are disre-
garded) can in principle be observationally distinguished from an ansatz where the function F2 satisfies the
consistency relation. The methods used in [51] should be valid to analyse our proposed generalised version of
the local ansatz.

3For now, we do not need to specify the range of momenta and the reader may take the range as the entire
momentum space, in which case FNG = F . In section 2.2, we will consider the problem of reducing the range
of momenta (in a Wilsonian manner) and explore how the function F appearing in eq. (1.5) runs with the IR
and UV cutoffs employed to restrict the momenta.
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pute moments, cumulative functions and several other objects such as mass functions, bias
factors, etc. Since both the temperature and density fluctuations are sourced by curvature
perturbations, the parametrisation (1.5) of ζ in terms of Gaussian random fields allows us
to construct various classes of such functions characterising the statistics4 of CMB and LSS,
hence, enabling us to use their distributions as a probe of the primordial universe. In this
work we derive several classes of PDFs for the curvature perturbation ζ, the CMB temper-
ature fluctuation Θ ≡ ∆T/T and the matter overdensity δ ≡ δρ/ρ, all following from the
non-Gaussian ansatz (1.5) by using appropriate transfer functions.

Specifically, we achieve the following goals:

• We derive the full probability distribution functional implied by the generalised
ansatz (1.5). The result is shown in eq. (2.10) and it explicitly depends on the function
F (which at the same time, is related to the landscape potential in the case where the
primordial non-Gaussianity is produced during inflation).

• We use this functional to derive various statistical tests for CMB and LSS, among them,
1- and 2-point PDFs, written in eqs. (2.31) and (2.42). We also write the corresponding
PDFs for the CMB temperature anisotropies in eqs. (3.9) and (3.16).

• We derive the NG halo mass function expressed in terms of the function F . This result
is shown in eqs. (4.8)–(4.10). We further comment on how statistical estimators probing
the PDF can be used in LSS datasets in connection to primordial NG via eq. (4.13).

• We derive a generalised version of the linear halo bias resulting from the non-Gaussian
deformation FNG. The result is written in eq. (4.27), where we show that the scale
dependent bias is sensitive to the full function F and not to any specific truncated
version of it. In other words, all nonlinearity parameters appear in a degenerate manner.

To summarise, we wish to point out that since non-Gaussianity has not shown up in low
n-point functions and given that its presence has solid foundations in our understanding of
UV physics and quantum field theory/gravity, extending our study towards other estimators
is part of the next step. The PDF is the object that fully encodes the statistical information
of fluctuations enclosing all possible cases and as such it may serve as a central tool in the
search for non-Gaussianity.

1.2 Structure of the paper

The article is organised as follows: in section 2, we write down the probability functional
describing the distribution of the curvature fluctuation ζ, its Fourier dual — the partition
function — as well as the 1-point and 2-point PDFs. We discuss several aspects regarding
the use of window functions related to renormalisation, survey sky coverage and secondary
NG effects. In section 3, we derive the temperature distribution and focus on the 2-point
PDF commenting on its use with CMB data. In section 4, we derive the halo mass function
and the halo bias for arbitrary local NG. We conclude in section 5, while in the appendices
we present various details regarding the NG ansatz and the functionals emanating thereof
presented in the main text.

4There are several nonprimordial sources of non-Gaussianity, especially in late-time fields. Here, we always
refer to its primordial component; see section 2.5 for comments on the limitations posed by secondary effects.
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2 ζ statistics

In this section we derive the probability distribution functional (and other classes of distri-
butions) for the primordial curvature perturbation ζ. Our starting point is the generalised
local ansatz shown in eq. (1.5). The resulting PDF’s will set the stage for later sections,
where we explore the consequences their non-Gaussian deviations may have on both CMB
and LSS datasets.

2.1 Probability distribution functional: “bare” theory

The first task we can perform, and the most readily available to us thus far, is to attempt to
use eq. (1.5) to its full potential and derive directly the complete functional distribution that
governs the ζ statistics: given that we know how a Gaussian random field is distributed, we
may simply perform a change of variables to obtain the probability distribution functional
P[ζ] for ζ(x) such that

〈ζ(x1) · · · ζ(xn)〉 =
∫

Dζ P[ζ] ζ(x1) · · · ζ(xn), (2.1)

where Dζ is the functional measure of the PDF. Such an approach was used in [52] for
the study of certain non-Gaussian initial conditions from inflation, in [53] in the context of
nonlinear evolution of the correlation function of matter overdensities, while in [54, 55] it was
shown how initial conditions with nonzero skewness/kurtosis can be described by the change
of variables from a Gaussian PDF. Here, we extend this technique to the case of the generic
NG field of eq. (1.5).

The resulting distribution must account, to leading order in the perturbation FNG, for
every conceivable correlation function that may be constructed from the field ζ(x) and for
every expectation value of function(al)s of ζ(x). To start with, the Gaussian random field
ζG is drawn from the following functional distribution:

PG[ζG] = N exp

[

−1

2

∫

x

∫

y

ζG(x)Σ
−1(x,y)ζG(y)

]

= N exp

[

−1

2

∫

k

ζG(k)ζG(−k)

Pζ(k)

]

, (2.2)

where N is an overall normalisation constant, while Σ−1(x,y) and Pζ(k) are the covariance
matrix and the power spectrum respectively, related as

Σ−1(x,y) ≡
∫

k

eik·(x−y)

Pζ(k)
. (2.3)

In implementing the transformation ζ(x) = ζG(x)+FNG[ζG](x), there are two contributions
that emerge: one is composed by the terms that come out of the Taylor expansion of the
Gaussian distribution by regarding the perturbation FNG as small, and the other arises from
the functional determinant of the transformation. The latter is given by

det

(

δζ(y)

δζG(x)

)

= exp

[

tr

(

ln

(

δζ(y)

δζG(x)

))]

= exp

[

tr

(∫

k

eik·(x−y) ln

{

1 +
dF

dζ
(ζG(x))

})]

= exp

[∫

x

∫

k

ln

{

1 +
dF

dζ
(ζG(x))

}]

. (2.4)
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As long as the determinant exists (concretely, dF/dζ > −1) and is nonzero, we may, in
principle, find an inverse to the relation ζ = ζG+FNG[ζG] and denote it with ζG(x) = G[ζ](x).
Then we may change variables from the PDF associated to ζG, to find

P[ζ] = N exp

[

−1

2

∫

x

∫

y

G[ζ](x)Σ−1(x,y)G[ζ](y)−
∫

x

∫

k

ln

{

1 +
dF

dζ
(ζG(x))

}]

. (2.5)

This is an exact result. However, if F is small in comparison to the typical scales of the
background theory on which the fluctuation field ζ lies, and so is dF/dζ, we can approxi-
mate the logarithm in the exponential with the first term in its power series expansion, and
furthermore, we may approximate the inverse mapping by G[ζ] ≈ ζ − FNG[ζ]. This yields
a non-Gaussian exponential correction to the PDF, the exponent of which, to first order in
FNG, reads

P[ζ] = PG[ζ]× exp

[∫

x

∫

y

ζ(x)Σ−1(x,y)FNG(ζ(y))−
∫

x

δ

δζ(x)

∫

k

∫

y

eik·(x−y)FNG(ζ(y))

]

.

(2.6)
Using the definition of the covariance (2.3), we may finally write the result as

P[ζ] = PG[ζ]× exp

[∫

x

∫

k

∫

y

eik·(x−y)

(

ζ(x)

Pζ(k)
− δ

δζ(x)

)

FNG[ζ](y)

]

. (2.7)

This functional will serve as the guiding principle for all subsequent results. Note that even
in a first order approximation, the probability distribution is always positive. However, to
make computations tractable, we find it convenient to also perform a power series expansion
of the non-Gaussian exponential factor. Then, to first order in FNG, we find that

PF [ζ] = PG[ζ]×
[

1−
∫

x

∫

y

∫

k

eik·(x−y)

(

δ

δζ(x)
− ζ(x)

Pζ(k)

)

FNG[ζ](y)

]

= PG[ζ]×
[

1−
∫

y

∫

k

e−ik·y
(

δ

δζ(−k)
− ζ(k)

Pζ(k)

)

FNG[ζ](y)

]

. (2.8)

The functional distribution (2.8) has support at all the scales where the underlying theory
does, or at least, at the scales where the corresponding EFT is presumed to hold true.
However, observable quantities do not typically involve all of the scales, and therefore it may
be that the “bare” departure from Gaussianity FNG is not the most adequate quantity to
describe them. We thus now turn to the discussion of using window functions and how to
integrate scales out.

2.2 Probability distribution functional: running and renormalising

When making predictions, any EFT will force us to recognise certain scales at which the
theory is no longer well-suited to describe physical observables. This typically implies a
high-energy scale, where the theory has to be cut off. Thus, we will set kUV as the maximum
possible wavenumber the mode expansion of the curvature perturbation can have. Simi-
larly, while it is not always introduced, one can make the same assertion with the very long
wavelengths. As much as our theory may have predictions concerning phenomena happening
beyond the present Hubble radius, they are currently unobservable. Therefore, in establish-
ing predictions for observable quantities it seems natural to integrate out those scales, so

– 7 –



J
C
A
P
0
2
(
2
0
2
0
)
0
2
7

that they are properly incorporated into the final, effective result. Because of this, we will
take a conservative attitude and also define an infrared cutoff kIR, which can be thought of
as the inverse of the current Hubble radius, thus bounding the domain of the theories we will
be studying to k ∈ (kIR, kUV).

Moreover, in realistic situations the experiment at hand may not allow us to access
every value for the momentum scale k evenly. In those cases we may wish to introduce a
window functionW (k) to filter our results and give more weight to some scales. Accordingly,
one would be interested in the statistics of the filtered field

ζW (x) ≡ [W ⋆ ζ](x) =

∫

k

∫

y

eik·(x−y)W (k)ζ(y). (2.9)

To derive the probability distribution functional of the field ζW (x) it is enough to perform
the change of variables ζ → ζW (k) =W (k)ζ(k) in (2.8). One obtains

PW [ζW ] = NW exp

[

−1

2

∫

k

ζW (k)ζW (−k)

PW (k)

]

×
[

1−
∫

y

∫

k

e−ik·yW (k)

(

δ

δζW (−k)
− ζW (k)

PW (k)

)

FNG

[∫

q

e−iq·yζW (q)

W (q)

]

(y)

]

,

(2.10)

where PW (k) ≡W 2(k)Pζ(k). Leaving aside the argument of the deviation from Gaussianity
FNG for a moment, this PDF has the same structure as the unfiltered PDF of eq. (2.8).

This expression for PW poses an interesting question: what if the window function of
choice is defined (as usual) with hard cutoffs, just as if we were redefining the limits of our
EFT? That is to say, how does PW look if we have

W (k) =

{

1 if k ∈ (kL, kS)

0 if k 6∈ (kL, kS),
(2.11)

as the window function? It turns out that, for the functional integral to be well-defined, we
have to integrate out of the theory all the modes which will not take part in our observable
quantities. Upon doing so, we can avoid dealing with ζW (q)/W (q), which from the perspec-
tive of the theory with the window function would be ill-defined for the scales where W = 0,
but is perfectly finite (and equal to ζ(q)) from the perspective of the original theory. To
this end, let us take the original functional distribution (2.8) (with k-space variables) and
integrate out the modes outside the support of the window functionW . We may write this as

PW [ζ] =

∫

Dζ|k|/∈(kL,kS)P[ζ]. (2.12)

Upon integration over the prescribed range of modes, the purely Gaussian term in (2.8)
gives a reduced Gaussian measure that considers only k ∈ (kL, kS). To integrate the term
containing FNG it is convenient to separate the integral over momentum space in (2.8) into
two contributions:
∫

k

e−ik·y
(

δ

δζ(−k)
− ζ(k)

Pζ(k)

)

FNG[ζ](y) =

∫

|k|∈(kL,kS)
e−ik·y

(

δ

δζ(−k)
− ζ(k)

Pζ(k)

)

FNG[ζ](y)

+

∫

|k|6∈(kL,kS)
e−ik·y

(

δ

δζ(−k)
− ζ(k)

Pζ(k)

)

FNG[ζ](y).

(2.13)
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In this form, it is easy to see that upon integrating over ζ(k), the term in the second line
of (2.13) vanishes after performing a functional partial integration. Thus, we will only need
to know how to deal with the quantity5

(

δ

δζ(−k)
− ζ(k)

Pζ(k)

)∫

Dζ|k|/∈(kL,kS) exp

[

−1

2

∫

k

ζ(k)ζ(−k)

Pζ(k)

] ∫

y

∫

|k|∈(kL,kS)
e−ik·yFNG[ζ](y),

(2.14)
so as to see if, and how, the interaction is renormalised. It turns out that if we define

F̄ (ζW (x))≡
∫

Dζk/∈(kL,kS) exp

[

−1

2

∫

|k|/∈(kL,kS)

ζ(k)ζ(−k)

Pζ(k)

]

F (ζ(x)) =

∫ ∞

−∞

dζ̄
e
−

(ζW (x)−ζ̄)2

2σ2
out

√

2πσ2
out

F (ζ̄),

(2.15)
then we may identify

F̄NG[ζ](x) =

∫

y

∫

|k|∈(kL,kS)
eik·(x−y)F̄ (ζ(y)), (2.16)

as the effective self-interaction, because we would have integrated out all the scales that are
outside the range of interest and still leave the other scales within the measure P of the PDF,
while maintaining its analytic structure.

The last equality of (2.15), the Weierstrass transform of F (ζ), can be obtained in
numerous manners. If one were to follow standard diagrammatic perturbation theory, it
arises from summing back every “loop” contraction performed by the Gaussian measure of
FNG with itself. Since the momenta flowing through those loops are bounded by the range
being integrated out, and there is no “external” momenta flowing through the diagrams, we
have that their numerical value is the same for every loop and equal to the variance

σ2out =

∫

|k|6∈(kL,kS)
Pζ(k), (2.17)

that was subtracted from the Gaussian field statistics when the modes |k| 6∈ (kL, kS) were
integrated out of the theory. Therefore, by using these results in eq. (2.12), we obtain

PFNG,W [ζ] = PF̄NG
[ζ|k|∈(kL,kS)], (2.18)

i.e., that PW [ζ] for the restricted variable (2.9) has the same functional form as the original
PDF, with the only modification that now the departure from Gaussianity is given by a
“filtered” interaction F̄NG instead of the “bare” interaction FNG.

In practice, there is more than one way of how to represent the running of F depending
on the scales one wants to include in the theory. Perhaps the most ethereal representation,
but at the same time the most revealing of the theory’s structure, is through the differential
expression of the Weierstrass transform, as in

F̄ (ζ) = exp

[

σ2out
2

∂2

∂ζ2

]

F (ζ). (2.19)

5Note that when considering the functional integration of the first line of eq. (2.13), the differential operator
(

δ
δζ(−k)

− ζ(k)
Pζ(k)

)

involves scales |k| ∈ (kL, kS), while the functional integration goes over modes with |k| /∈

(kL, kS). We may thus pull it out of the integral.
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This expression makes clear how the theory runs by removing more or less scales, as well
as the fact that the transformation rule between F at different scales follows an adequate
composition property: integrating out ranges of momenta A and B is implemented via σ2out,A
and σ2out,B, and doing so yields the same result independently of the order in which one
subtracts the modes from the theory. Furthermore, this shows that the functional form
of FNG and F̄NG is the same, in the sense that the quantities that determine its concrete
expression are exactly the same; the only thing that the window does is to restrict the range
of modes entering in the observables.

Conversely, just as the PDF may be recast in an analogous manner to that of the
original theory, the field with modes between kL and kS may also be written down as a local
departure from Gaussianity

ζW (x) = ζGW (x) + F̄NG

[

ζGW
]

(x), (2.20)

merely because it follows statistics analogous to ζ. Here we have to remind the reader that
this is only so for W (k) of the form (2.11). Other window functions still give rise to an
explicit PDF, namely equation (2.10), but the deviations from Gaussianity may no longer be
written as concisely as in (2.20). The difference lies in that a general window function does
not render irrelevant some degrees of freedom of the theory; it only gives them dissimilar
weights in the final result. However, in order to obtain the function F̄NG it is crucial that we
reduce the number of independent variables in our theory by integrating out their effects, as
all of them will leave their signature, if small, in any given correlation function. Having made
this point explicit, from now on, and for the rest of this paper, we will go back to considering
general window functions.

Thus far, we have established how we may write the probability distribution functional
of our theory depending on the scales under consideration and also how we may incorpo-
rate window functions into the distribution functional. Before passing to simpler statistical
estimators stemming from this functional, we now discuss the partition function.

2.3 Partition function and n-point correlators

In practice, using the full probability distribution functional directly on cosmological data
proves to be difficult, as there is only one realisation of our universe to probe and conduct
measurements in, so it is not possible to take a frequentist approach to its statistics. While
this suggests the use of Bayesian analysis to find the most probable FNG given the data by
the means of the functional (2.8), it also reveals why one typically chooses to work with
correlation functions to probe departures from Gaussianity: they can be computed from
many Fourier modes on the sky, whose past history is presumably independent (at least if
the nonlinearities are turned off), and therefore averages may be performed and compared
with the theoretical predictions for the expectation values or correlations.

Fittingly, there is an object that encapsulates the information of all the correlation
functions in a perhaps clearer way than the full probability density functional P. This is
the partition function Z[J ], which is the object that generates the n-point functions via
functional differentiation:

〈ζ(k1) · · · ζ(kn)〉 =
δnZ[J ]

(iδJ(−k1)) · · · (iδJ(−kn))

∣

∣

∣

∣

J=0

, (2.21)
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or equivalently, the functional Fourier transform of the PDF, which in the context of proba-
bility theory is called the characteristic function,

Z[J ] =

∫

Dζ P[ζ] ei
∫

k
ζ(k)J(−k). (2.22)

Both expressions may be employed to obtain Z[J ]: the first requires to know all the
n-point functions beforehand and reconstruct the object that has them as its functional
derivatives, while the second requires to know an explicit expression for the probability dis-
tribution functional. Since we have the latter, we may carry out this computation explicitly6

to first order in FNG, obtaining

Z[J ] = exp

[

−1

2

∫

k

J(k)J(−k)Pζ(k)

]

×








1−
∫

x

∫

k
eik·xJ(−k)

∫

k
eik·xJ(−k)Pζ(k)

∫

ζ̄

exp

[

−(ζ̄−i
∫

k
eik·xJ(−k)Pζ(k))

2

2σ2
ζ

]

√
2πσζ

(

σ2ζ
∂

∂ζ̄
− ζ̄

)

F (ζ̄)









.

(2.23)

Here we have defined σ2ζ ≡
∫

k Pζ(k) as the 1-point variance associated to the power spectrum
for the relevant range of momenta. Window functions are easily incorporated by substituting
J(k) with J(k)W (k), as this procedure will add a factor of W (k) to every external leg in
any given diagram.

Now that we have equation (2.23), we may compute the n-point functions directly, with-
out having to resort to functional integration as we would with (2.8). Moreover, the structure
that will emerge in these correlations is more closely related to (2.23), as is demonstrated by
their explicit expressions in position space

〈ζW (x1) · · · ζW (xn)〉c = fn−1

n
∑

i=1

∫

x

∫

k
W (k)eik·(xi−x)

∫

k
eik·(xi−x)W (k)Pζ(k)

(

n
∏

i=1

∫

k

W (k)Pζ(k)e
ik·(xi−x)

)

,

(2.24)
where the subscript c indicates the result only considers the fully connected piece. For
completeness, we write down their counterparts in momentum space

〈ζW (k1) · · · ζW (kn)〉c = fn−1 (2π)
3δ(3)

(

n
∑

i=1

ki

)





n
∏

j=1

W (kj)Pζ(kj)





n
∑

i=1

1

Pζ(ki)
, (2.25)

where the coefficients7 fn are given by (probabilists’) Hermite moments of F :

fn ≡ − 1

σnζ

∫ ∞

−∞
dζ

e
− ζ2

2σ2
ζ

√
2πσζ

Hen

(

ζ

σζ

)

F (ζ). (2.26)

The coefficients fn are quantities of mass dimension 1 − n, which are invariant under the
renormalisation procedure, discussed in section 2.2, in a very fitting sense: because {fn}∞n=2

6The details of this derivation are presented in appendix B.
7In a more standard notation, the first few terms would correspond to f2 = fNL, f3 = gNL, etc.
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are the coefficients of a Hermite polynomial expansion,8 we have

F (ζ;σ2ζ ) = −
∞
∑

n=2

fn
n!
σnζ Hen

(

ζ

σζ

)

= −
∞
∑

n=2

fn
n!

exp

[

−
σ2ζ
2

∂2

∂ζ2

]

ζn, (2.27)

where we have introduced the variance σ2ζ as an argument of F in order to emphasise that

the associated field has the corresponding amplitude for its fluctuations. This means that F̄
in eq. (2.15), or equivalently eq. (2.19), takes the following form:

F̄ (ζ) = exp

[

σ2out
2

∂2

∂ζ2

]

F (ζ;σ2ζ ) = F (ζ;σ2ζ − σ2out), (2.28)

where the coefficients {fn}n remain unchanged; only the variance gets reduced to its new
value after integrating some modes out.

Nonetheless, it is important to point out that each individual n-point function does
not encapsulate all of the non-Gaussian information contained in F . Indeed, each correlation
function only yields one term of an infinite series expansion of F , all of which are independent,
at least in principle. Therefore, it is natural to try and find objects that are able to keep
all of this information, without having to compute an infinite number of quantities. For this
reason, we now turn to exploring 1- and 2-point probability density functions.

2.4 Fixed-point probability distribution functions

In the presence of a generic deviation from Gaussian statistics, involving both local and non-
local terms, to assume that it is possible to capture all non-Gaussian information by looking
at the single-point statistics of a field (i.e., correlations with all of the spatial coordinates
at the same position) seems misguided, as the restriction to a single point is likely to mix
local and nonlocal effects, making it difficult to disentangle them. However, if we restrict
ourselves to local deviations from Gaussianity only, it is indeed possible to capture all such
information.

In this subsection we write down explicit 1-point and 2-point PDFs for the curvature
perturbation. In order to alleviate the discussion, we shall leave some of the details for
appendix C.

2.4.1 1-point probability distribution function

Now we set ourselves to derive the simplest distribution that can be obtained within this
framework: a density function for the 1-point statistics. It is defined as the distribution
P(ζ;x) that satisfies

〈ζn(x)〉 =
∫ ∞

−∞
dζP(ζ;x)ζn. (2.29)

Given that we assume a homogeneous universe, P(ζ;x) cannot depend on x. Thus, we write
P(ζ;x) = P(ζ). From a functional perspective, it is given by

P(ζ̄) =

∫

Dζ P[ζ] δ(ζ(x)− ζ̄), (2.30)

8We omit n = 0, 1 in the Hermite expansion because we assume 〈ζ〉 = 0 and 〈ζζ〉 to be set by the free
theory matching the power spectrum of observations. To put it differently, with this definition of the local
ansatz, due to orthogonality properties of the Hermite polynomials, the power spectrum of ζ is not modified
to first order in the nonlinearity parameters [56].
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which may be evaluated in the same way as the partition function Z[J ] by writing down the
Dirac delta as δ(ζ(x) − ζ̄) =

∫

γ e
iγ(ζ(x)−ζ̄) and noticing that what will be left with in the

functional integral is exactly Z[J(−k) = γe−ik·x]. Then the remaining integral over γ may
be carried out by completing squares.

Thus, in the same spirit as the probability distribution functional we obtained ear-
lier represents a first-order correction to Gaussian statistics, the 1-point probability density
function may also be written as a slight departure from Gaussianity. Moreover, this density
function resembles more closely the structure of Z[J ] than that of P[ζ] because marginalising
over all the other positions in presence of a finite range of wavelengths induces a filtering,
which is manifest in Z[J ] but not so in P[ζ]. Given the various applications it may find in
LSS or in primordial black hole formation [50], it is of interest to write it for an arbitrary
window function.

Smoothing the field and its variance as in eq. (2.9), the resulting expression is

P(ζW ) =
1√

2πσW
e
− ζ2W

2σ2
W [1 + ∆W (ζW )] , (2.31)

where

∆W (ζW ) ≡
∫ ∞

0
dx

4πx2W (x)

s2(x)

∫ ∞

−∞
dζ̄

exp

[

−(ζ̄−b(x)ζW )
2

2σ2
W (x)

]

√
2πσW (x)

(

ζ̄ − σ2ζ
∂

∂ζ̄

)

F
(

ζ̄
)

. (2.32)

Here we have written W (x) =
∫

k
eik·xW (k), the position-space representation of the window

function W , with x = |x|, and we have also defined the (co)variances

σ2W ≡
∫

k
W 2(k)Pζ(k) , s2(x) ≡

∫

k
eik·xW (k)Pζ(k) , σ2W (x) ≡ σ2ζ − b2(x)σ2W , (2.33)

with a “bias” factor9 given by

b(x) ≡ s2(x)

σ2W
. (2.34)

In words, this expression means that, given a range of modes defining the cutoffs of
the theory, the perturbative correction to the PDF scans for the structure of the effective
interaction at those scales through the action of (ζ̄ − σ2ζ∂ζ̄), and then filters it, through the
Weierstrass transform, according to the difference between the variance and the correlation
implied by incorporating window functions. This observable can account for all the informa-
tion contained within the local function F . This can be seen from the fact that all of the
information concerning F is stored within the fn coefficients, which can be retrieved by look-
ing only at the 1-point statistics (cf. eq. (2.24)). Indeed, an analysis aiming to constrain the
departure from Gaussianity FNG by the means of the 1-point CMB temperature distribution
has already been performed in [49].

Before passing to the 2-point functional, and in order to make contact with current
literature, let us comment on the relation of this PDF to the Edgeworth representation. If

9This parameter is not the usual bias. If we think of the window as setting the scale of a tracer, we can
define a bias as the ratio of field-tracer to the tracer-tracer correlation functions. b here is the ratio of the
field-tracer to the 1-point tracer-tracer correlation functions.
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we use the Hermite polynomial expansion of F , given in eq. (2.27), the effect of the Gaussian
filtering of eq. (2.32) becomes transparent:

∫ ∞

−∞
dζ̄

exp

[

−(ζ̄−b(x)ζW )
2

2σ2
W (x)

]

√
2πσW (x)

F (ζ̄;σζ) = F
(

bζW ; b2σ2W
)

=
∞
∑

n=2

fn
n!

Hen

(

ζW
σW

)

s2n(x)

σnW
, (2.35)

that is, it replaces the field variable with the biased one. Using the fact that the Weierstrass
transform commutes with derivatives, the latter now being evaluated at the biased field with
its corresponding variance, and that (x−σ2∂x)Hen(x/σ) = σHen+1(x/σ), we can rewrite the
NG deviation of the 1-point PDF as

∆W (ζW ) =
∞
∑

n=2

fn
n!

Hen+1

(

ζW
σW

)

1

σn+1
W

∫ ∞

0
dx 4πx2W (x)s2n(x)

=
∞
∑

n=2

Hen+1

(

ζW
σW

)

(n+ 1)!

〈ζn+1
W 〉c
σn+1
W

, (2.36)

where 〈ζnW 〉c is given by eq. (2.25) integrated over momenta. This is exactly the Edgeworth
expansion of a non-Gaussian PDF truncated to first order in the couplings f , since we have
restricted our derivation of the PDF (2.32) to first order10 in F .

Moreover, in this case it is possible to invert the Edgeworth expansion (2.36) in terms
of the function F . Taking the mth Hermite moment of this expansion gives

〈ζmW 〉c
σmW

=

∫ ∞

−∞
dζW

e
− ζ2W

2σ2
W√

2πσW
Hem

(

ζW
σW

)

∆W (ζW ), (2.37)

and by replacing the cumulant 〈ζmW 〉c in terms of fm we get

fn =
σn+1
W /(n+ 1)

∫∞
0 dx 4πx2W (x)s2n(x)

∫ ∞

−∞
dζW

e
− ζ2W

2σ2
W√

2πσW
Hen+1

(

ζW
σW

)

∆W (ζW ), (2.38)

which means that we have obtained the coefficients of the Hermite polynomial expan-
sion (2.27) of F . Therefore, all one needs to write an explicit expression for F is to perform
the correlation integrals

∫∞
0 dx 4πx2W (x)s2n(x), and then sum back11 its Hermite expan-

sion (2.27). This allows for a direct test of NG in a given dataset and provides a way of
constraining the primordial quantities involved in its generation, in a manner that is identi-
cal to what has been previously done in [49].

However, this type of analysis integrates out information about the momentum depen-
dence of the correlation functions, which can be used to place tighter constraints on the
parameters of a given model. We now proceed to explore the two-point PDFs for the filtered
primordial perturbations, which do contain such information.

10In principle, there is nothing stopping us from computing the Edgeworth expansion to any order in the
couplings; indeed, we can expand the exact PDF of eq. (2.5) to any order in F . We choose, however, for
simplicity to truncate the series to first order.

11The precise scaling with n of the correlation integrals depends on the window function of choice W , and
thus it is not always possible to give the result for F in a closed form.
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2.4.2 2-point probability distribution function

Now we would like to write down an observable able to account for the non-Gaussian statistics,
without integrating out the information about correlations in the sky at different scales.
Therefore it cannot be a single-point PDF. Thus, we try to do the next least complicated
thing: a 2-point PDF P(ζ1, ζ2;x1,x2). This function satisfies

〈ζnW (x1)ζ
m
W (x2)〉 =

∫

dζ1dζ2 PW (ζ1, ζ2; |x1 − x2|)ζn1 ζm2 , (2.39)

where we have written P(ζ1, ζ2;x1,x2) = P(ζ1, ζ2; |x1 − x2|) because we are assuming our
universe to be statistically homogeneous. One way to obtain such an object is by conditioning
in two points in a manner analogous to eq. (2.30),

P(ζ1, ζ2; |x1 − x2|) =
∫

Dζ P[ζ] δ(ζ(x1)− ζ1)δ(ζ(x2)− ζ2), (2.40)

where again, the final result can only depend on the spatial coordinates through the distance
between the two positions x1 and x2. With this in mind, let us define the scalar variables

r ≡ |x1 − x2|, r1 ≡ |x− x1|, r2 ≡ |x− x2|. (2.41)

Then, by inspecting the n-point functions of the theory (2.24) evaluated at the two
points of interest, we obtain a similar expression as the 1-point PDF, but with two points
defining the filtering instead of one:

PW (ζ1, ζ2, r) = PG,W (ζ1, ζ2, r)









1−
∫

x

∫ ∞

−∞
dζ̄

exp

[

−(ζ̄−ζW (r,r1,r2))
2

2σ2
W (r,r1,r2)

]

√
2πσW (r, r1, r2)

×
{

W (r1)

s2(r1)

(

G11
∂

∂ζ̄
−G12

)

+
W (r2)

s2(r2)

(

G21
∂

∂ζ̄
−G22

)}

F
(

ζ̄
)









,

(2.42)

where PG,W (ζ1, ζ2, r) is the bivariate Gaussian measure, with a covariance matrix given by
the 2 × 2 bottom right block of ΣΣΣ, defined below in eq. (2.43). Let us go through this
expression: the first thing to notice is the presence of two points, x1 and x2, defining a
filtering through the same function as in the 1-point case. The second important aspect is
that now the Gaussian that is convoluted with F has a different mean and variance. However,
they emerge in the same manner as σ2W (x) and ζW (x) emerge in the 1-point case: σ2W (r, r1, r2)
and ζW (r, r1, r2) are the variance and mean of ζ̄ after conditioning on the values of (ζ1, ζ2),
starting from a joint Gaussian distribution for (ζ̄ , ζ1, ζ2) with covariance matrix

ΣΣΣ =





σ2ζ s2(r1) s2(r2)

s2(r1) σ2W σ2W,ext(r)

s2(r2) σ
2
W,ext(r) σ2W



 , (2.43)

where we have written the covariance between the two externally chosen points x1 and x2 as

σ2W,ext(r) =

∫

k
eik·(x1−x2)W 2(k)Pζ(k). (2.44)
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The functions Gij also appear in a similar way: Gi1 and Gi2 are “rotated” versions of σ2ζ
and ζ̄, involving combinations of the free theory covariances that make the overall expression
reduce to that of the 1-point PDF as x1 → x2. Their precise definitions are listed in
appendix C. In there, we delineate how to obtain the 2-point PDF in an alternative way: we
start from correlators of the type 〈ζnW (x1)ζ

m
W (x2)〉 and we deduce the function from which

they emanate, corresponding to (2.39).

This PDF contains all the information of the free theory, as having two points allows
to scan over all the range of distances in the sky, thus probing, among others, the 2-point
correlation function completely, which is the defining object of a Gaussian theory. Even
though eq. (2.42) has its non-Gaussian features encoded in a perhaps more complicated
fashion than its 1-point counterpart (2.31), both contain the same information about the
underlying function FNG. Indeed, one can obtain eq. (2.31) by integrating over one of the
field variables in eq. (2.42). However, observationally, it might be more efficient to have
information on the scale, since then we can, for example, disentangle different momentum
shapes of correlation functions.

2.5 Linear transfer functions and their limitations

The above discussion sets a clear framework to study various cosmological observables in the
late-time universe with linear perturbation theory. In particular, we can consider endowing
the window function W (k) with an additional argument, thus defining the transfer function
T (a,k), to obtain an observable A(a), where a is a label for the new quantity/field that is
linearly related to ζ as

A(a) =

∫

k

T (a,k)ζ(k), (2.45)

up to first order in cosmological perturbation theory. In the case of CMB and LSS, the
temperature fluctuations map

Θ(n̂) =

∫

k

T (n̂,k)ζ(k), (2.46)

and the matter density contrast

δ(x) =
3

5

∫

k

eik·xα(k)ζ(k), (2.47)

are well described by linear cosmological perturbation theory as long as the distance/mo-
mentum scales are sufficiently large/small so that late-time nonlinearities do not affect them.
This is indeed the case for the CMB scales 10−4Mpc−1 ≤ k ≤ 0.3Mpc−1

Planck ob-
served [3, 5], and for the large-scale structure of our universe provided that k . 0.1Mpc−1

and the redshift z satisfy z & 2 [57] so that gravitational nonlinear effects remain suppressed.
Sections 3 and 4 delve into statistical objects and probes that can be used to test for imprints
of non-Gaussianity in the CMB and LSS, respectively, in this way.

However, even though for Planck and Wmap linear perturbation theory is indeed ac-
curate enough, as the errorbars are expected to keep shrinking, this might not be the case for
future surveys [30, 58–71]. At this point, it is thus appropriate to clarify that our subsequent
discussion, as it stands, is valid for perturbation theory with linear transfer functions, and
as such, it will have some limitations inherited from this approach. For example, we will not
take into account the fact that the gravitational potentials differ at second order, nor will we
use the nonlinear transfer function corresponding to such higher order terms [68–70, 72, 73].
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We also do not discuss nonlocal effects like the ISW to second order, which can be included in
the window function via a convolution in time. That would complicate the formulas because
it would force us to include additional integrals over the history of our universe to preserve
the generality of the approach (and not only over a single spatial slice), which could in turn
reduce the usefulness of defining transfer functions in our setup, as including integrals over
time might often be equivalent to following the dynamical evolution of the perturbations
up to some fixed order in time-dependent perturbation theory. The alternative would be to
carry out a traditional perturbative computation, without resorting to a probability distri-
bution function in the process. There remains, hence, the question of what the information
extracted from measurements means for our understanding of the primordial universe: since
the late-time nonlinear evolution is only treated perturbatively, at some order one might lose
primordial information in the local ansatz because nonlinearities in the later evolution of the
universe will modify the observable consequences of the primordial FNG, and consequently,
the primordial PDF we would infer for ζ.

We note, however, that if the experimental precision demands to have control of the
cosmological perturbations up to second order, one can intent to proceed further and include
such effects by writing the full temperature field (or the matter density contrast δ) as Θ =
Θ(1) + Θ(2) + · · · . One could then induce a PDF for the fully nonlinear field taking into
account both primordial and secondary NG to any desirable order,12 allowing for generic
nonlocal mappings FNG. In other words, one can parametrise the generalised ansatz as
in eq. (1.5), in the manner of an effective object that adequately describes the late-time
observables, where the expansion coefficients account for nonlinearities in both the initial
conditions and due to gravitational evolution [70]. In [67, 71] it was shown that second order
effects provide for corrections to the skewness (albeit with distinguishable signals from the
primordial component) around the sensitivity of future CMB surveys like CMB-S4, and one
might, arguably, worry that this could also be the case for higher order correlators like the
trispectrum; it is, however, conceivable that the secondary effects would keep diminishing as
one considers higher order statistics. A way out could thus be a case-by-case evaluation of
the secondary effects in higher order n-point functions [70], or a full characterisation of the
secondary effects at the level of the PDF, via, e.g., simulations.

Even though, admittedly, we do not offer any crucial insight into the problem of dis-
entangling primordial from late-time NG, our results set the stage for further study of NG
signatures on PDF estimators, especially targeting models beyond single-field inflation (cf.
appendix A.1), where primordial local NG is enhanced compared to other shapes of NG and
secondary effects.

3 Θ statistics

Having set the stage for studying late-time cosmological perturbations, we can now turn to
discussing our specific scenarios of interest. To begin with, it is of particular relevance to write
down testable quantities that we can obtain by looking at the primordial information that
can be stored in spherical shells on the sky, such as the CMB. Namely, both the probability
distribution functional P[ζ] and its associated partition function Z[J ] may be projected onto
the celestial sphere to yield distributions of the temperature fluctuations δT (n̂).

12By doing so, one would have to consider the field and its gradient as independent Gaussian variables,
since the latter contributes to the second order curvature perturbation [72].
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Consider a generic linear transfer function T (k, n̂) from the primordial perturbations ζ
to an observable defined on the sphere Θ(n̂) such that

Θ(n̂) =

∫

k

T (n̂,k)ζ(k). (3.1)

Of course, we are interested in the specific case where Θ(n̂) = δT (n̂) = (T (n̂)−T0)/T0 (where
T (n̂) is the CMB temperature measured in a given direction n̂, and T0 its average over all
directions), however, the present discussion is also valid for more general observables that
depend on the line of sight n̂. Then, if we take Σ(n̂, n̂′) to be the covariance matrix defining
the observable’s correlations between different directions in the sky (n̂, n̂′), i.e.,

〈Θ(n̂)Θ(n̂′)〉 = Σ(n̂, n̂′), (3.2)

and Σ−1(n̂, n̂′) as its inverse matrix, we find that the probability distribution functional for
Θ is given by

P[Θ] = NΘe
− 1

2

∫

n̂

∫

n̂′ Θ(n̂)Σ−1(n̂,n̂′)Θ(n̂′)

[

1−
∫

x

Ker1(x)
∂FΘ

∂ζ
(ζΘ(x);x)

+

∫

x

Ker2(Θ;x)FΘ(ζΘ(x);x)

]

,

(3.3)

where now Ker1(x), Ker2(Θ;x), ζΘ(x), and FΘ(ζ;x) depend implicitly on the transfer func-
tion and, when noted, the variable of interest Θ(n̂). All of these quantities may be intuitively
understood as the result of projecting a field defined on three spatial dimensions over a
two-dimensional spherical surface. For instance, ζΘ(x) is given by

ζΘ(x) ≡
∫

k

∫

n̂

∫

n̂′

T (n̂,k)eik·xPζ(k)Σ
−1(n̂, n̂′)Θ(n̂′), (3.4)

which basically amounts to saying: take the original statistics of your theory, i.e., eik·xPζ(k),
project them onto the sphere by applying T (n̂,k) and then correlate it with the field of
interest Θ(n̂′) by means of its inverse covariance matrix Σ−1(n̂, n̂′). The integration kernels
have similar definitions:

Ker1(x) ≡
∫

k

∫

k′

∫

n̂

∫

n̂′

T (n̂,k)eik·xPζ(k)Σ
−1(n̂, n̂′)T (n̂′,k′)eik

′·x, (3.5)

Ker2(Θ;x) ≡
∫

k

∫

n̂

∫

n̂′

T (n̂,k)eik·xΣ−1(n̂, n̂′)Θ(n̂′). (3.6)

However, the function FΘ is a slightly different object than before. As a result of the pro-
jection, it acquires a spatial dependence, whose exact nature in terms of the primordial
departure from Gaussianity F is given by the Weierstrass transform:

FΘ(ζ;x) ≡ exp

[

σ2ζ − σ2ζΘ(x)

2

∂2

∂ζ2

]

F (ζ) =

∫

ζ̄

exp

[

− (ζ̄−ζ)2

2(σ2
ζ−σ2

ζΘ(x))

]

√

2π(σ2ζ − σ2ζΘ(x))
F (ζ̄), (3.7)

where σ2ζΘ(x) may be understood as a position-dependent effective variance of ζ, modified
by projection effects:

σ2ζΘ(x) ≡
∫

k

∫

k′

∫

n̂

∫

n̂′

T (n̂,k)eik·xPζ(k)Σ
−1(n̂, n̂′)T (n̂′,k′)eik

′·xPζ(k
′). (3.8)
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In all of the above, we have written Σ(n̂, n̂′) as a general function of the direction on the
sphere. However, if we take into account that our universe is homogeneous, it must be
possible to write it as a function of the angle between the two vectors, or equivalently, in
terms of their scalar product n̂ · n̂′. We will not overemphasize this in what follows, as the
notation we deem natural to treat n̂ and n̂′ is with them as separate directions, because they
will have to be multiplied with another vector, the integration variable x that will appear
in the NG kernel that modifies the PDF, which makes using n̂ · n̂′ notationally heavier than
just using (n̂, n̂′).

Now we have to find ways of using this. One option would be to compare how likely
is our present-day CMB given a certain primordial deviation from Gaussianity of the local
type F by using Bayesian statistics. However, in order for this to be useful at its maximum
capacity, it is likely that one would first have to establish a definitive imprint of primordial
NG and be forced to introduce extra parameters into the effective description because more
often than not a model comparison will favour the one with less parameters. Therefore, we
will turn to the observable we outlined at the end of section 2, which, to our knowledge, has
been largely unexplored in this context13 and may offer valuable constraints on the nature
of primordial NG: a 2-point PDF. We present this result after briefly discussing the 1-point
statistics.

3.1 1-point temperature distribution function

Given the discussion we have followed so far, it is now straightforward to reproduce the
results of [49] and compute the 1-point PDF of the temperature map. The only difference
is that the transfer functions map the fluctuations to the celestial sphere instead of the
three-dimensional universe, but this does not prevent us from finding the distribution that
generates the correlations. In analogy to (2.31), the result is given by

P(Θ) =
1√
2πσΘ

e
− ζ2Θ

2σ2
Θ [1 + ∆Θ(Θ)] , (3.9)

where

∆Θ(Θ) ≡
∫

x

WΘ(x, n̂)

s2Θ(x, n̂)

∫ ∞

−∞
dζ̄

exp

[

−(ζ̄−bΘ(x,n̂)Θ)
2

2σ2
Θ(x,n̂)

]

√
2πσΘ(x, n̂)

(

ζ̄ − σ2ζ
∂

∂ζ̄

)

F
(

ζ̄
)

, (3.10)

with the corresponding definitions of the window function

WΘ(x, n̂) =

∫

k

eik·xT (k, n̂), (3.11)

and that of the variances

σ2Θ ≡
∫

k
T 2(k, n̂)Pζ(k) , (3.12)

s2Θ(x, n̂) ≡
∫

k
eik·xT (k, n̂)Pζ(k) , (3.13)

σ2Θ(x, n̂) ≡ σ2ζ − b2Θ(x, n̂)σ
2
Θ , (3.14)

13The 2-point PDF has been used in LSS count-in-cells statistics [74].
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with bΘ given by

bΘ(x, n̂) ≡
s2Θ(x, n̂)

σ2Θ
. (3.15)

The final result is independent of the angular direction n̂ because of homogeneity. In practice
this appears because the form of the transfer functions T (k, n̂) will imply that the only
dependence on n̂ will be through scalar products with x or k, which as integration variables
span the whole space, and thus they render all directions statistically homogeneous.

In ref. [49], an analysis of the CMB statistics was carried out to search for non-Gaussian
signals by estimating the PDF (3.9) directly from the 2015 Planck dataset [75], with an
inconclusive result: if primordial non-Gaussianity of this type is present in the CMB, its
statistical imprints are smaller than the intrinsic noise to which the 1-point statistics are
subject to. With this and the forthcoming surveys in mind, we now proceed to outline
another statistical object whose reconstruction from observations shows promise to have a
lower intrinsic noise but still preserve all of the information contained within the 1-point
PDF: a 2-point PDF.

3.2 2-point temperature distribution function

It is interesting to write down expressions for quantities that are not typically used directly
when characterising cosmological datasets. For instance, one rarely bothers to write down
the full 2-point PDF for the CMB temperature map, as all of its information (in the Gaussian
case) is already specified through the power spectrum. However, the scale dependence of this
PDF may be a useful tool to search for non-Gaussianities. The result, analogously to what
we had in the simpler case of a spatial window function, is

PΘ(Θ1,Θ2, n̂1, n̂2) = PG,W (Θ1,Θ2, n̂1, n̂2)









1−
∫

x

∫ ∞

−∞
dζ̄

exp

[

−(ζ̄−ζΘ(x,n̂1,n̂2))
2

2σ2
Θ(x,n̂1,n̂2)

]

√
2πσΘ(x, n̂1, n̂2)

×
{

WΘ(x, n̂1)

s2Θ(x, n̂1)

(

GΘ
11

∂

∂ζ̄
−GΘ

12

)

+
WΘ(x, n̂2)

s2Θ(x, n̂2)

(

GΘ
21

∂

∂ζ̄
−GΘ

22

)}

F
(

ζ̄
)









.

(3.16)

As before, let us go through this expression: the first thing to notice is that the two filtering
points x1 and x2 in (2.42) are now replaced by two directions in the sky, n̂1 and n̂2. Secondly,
the Gaussian that is convoluted with F now has a different mean and variance, obtained by
conditioning the joint multivariate Gaussian PDF on the values of Θ1 and Θ2. The starting
point to this is a joint Gaussian distribution for (ζ̄ ,Θ1,Θ2) with covariance matrix

ΣΣΣ =





σ2ζ s2Θ(x, n̂1) s2Θ(x, n̂2)

s2Θ(x, n̂1) σ2Θ σ2Θ,ext(n̂1, n̂2)

s2Θ(x, n̂2) σ
2
Θ,ext(n̂1, n̂2) σ2Θ



 , (3.17)

where we have written the covariance between the two externally chosen points n̂1 and n̂2 as

σ2Θ,ext(n̂1, n̂2) =

∫

k
T (n̂1,k)T (n̂2,k)Pζ(k) = Σ(n̂1, n̂2), (3.18)
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and σ2Θ = σ2Θ,ext(n̂, n̂), which is independent of the direction n̂. The precise definitions of
all the additional functions involved in this section are given in appendix C. It is worth
mentioning, as a reminder to the reader, that, as in the 2-point PDF for curvature fluctua-
tions (2.42), both (3.16) (besides from the temperature variables) and Σ(n̂1, n̂2) depend only
on the angular distance between n̂1 and n̂2, or equivalently, on n̂1 · n̂2, and that this is a
consequence of our universe’s homogeneity.

From this function, i.e., from the 2-point PDF (3.16), it is possible to obtain refined
constraints on the local ansatz. Given a dataset, one can construct the 2-point PDF as
follows: divide the angular distance into N bins of width δϑ and the temperature in M ×M
bins of size δΘ× δΘ, as in the 1-point PDF but now with two axes for the temperature field.
Now, for each bin associated to a given angular distance ϑn = n · δϑ, and for each value of
(i, j), count how many pairs of pixels separated by that angular distance ϑn have the values
(Θ[i],Θ[j]) for the temperature in their respective positions. This process would generate N
two-dimensional histograms, with two temperature axes, which we label by (Θ1,Θ2), whose
value at coordinate (Θ1[i],Θ2[j]) would give the number of pairs of pixels with temperatures
in the (i, j)th bin, separated by angular distance in the nth bin. A 1/2 symmetry factor must
be included in the number counts for temperature bins with i 6= j, as the bin (Θ1[i],Θ2[j]) is
equivalent to (Θ1[j],Θ2[i]).

How does this give refined constraints on the local ansatz? Let us appreciate that this
set of PDFs contains information on the scale, or more concretely, on the temperature power
spectrum and of its expansion in spherical harmonics (the standard Cℓs) through the 2-point
correlation Σ(n̂1, n̂2). If NG is absent, then at each value of the angular distance the 2-point
PDF will be a 2-variable Gaussian probability density with variances σ2Θ and covariance
σ2Θ,ext(n̂1, n̂2) = Σ(n̂1, n̂2). Then, in the presence of NG, each 2-point PDF will undergo a
NG deviation induced by the same primordial mechanism F , but for each angular separation
this deviation will be experienced differently because the covariance matrix implied by the
Gaussian part is different. This means that for each angular distance, the kernel that acts
upon F in (3.16) gives a different deviation from Gaussianity, and therefore, each of the
2-point PDFs gives an independent estimator on the primordial NG field. For local NG, all
of the N 2-point PDFs at different angular separations in the sky should give consistent14

constraints/estimations of F . Conversely, if NG is measured and it does not adjust to the
statistics implied by (3.16) at different angular scales, then purely local NG would be ruled
out. Therefore, looking towards possible future directions to be explored, this type of ob-
ject (a set of 2-point PDFs) shows promise to disentangle different shapes of NG, such as
equilateral or orthogonal templates, in particular, from the local ansatz.

In order to search for non-Gaussianity within a 2-point PDF, many approaches are
possible. Given a model, i.e., an explicit expression for F , and using it as a template with
few adjustable parameters is usually the method that will give the best constraints. In the
spirit of eq. (2.27), however, another one is worth mentioning: one can use bivariate Hermite
polynomials on the temperature variables (Θ1,Θ2), so as to express the PDF in terms of
a bivariate Edgeworth expansion [76, 77]. One then looks for any statistically significant
nonzero coefficient in the expansion, in analogy to what was done for the 1-point case in [49].
This way, the existence of NG can be tested as a yes/no question, as any nonzero coefficient
in an Edgeworth expansion implies a non-Gaussian distribution. This may be particularly
useful when searching for NG in the next generation CMB surveys [78].

14That is, within the experiment’s theoretical and systematic uncertainties.
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4 δ statistics

Upcoming cosmological surveys will focus on the statistics of LSS, promising to bring preci-
sion cosmology to a new era. Indeed, the proliferation of observed modes due to the three-
dimensional probe offered by LSS will enhance our statistics giving us invaluable information
about the fundamental aspects of the early/late universe.

At small scales several sources of nonlinearity induce NG, like gravitational interactions
and galaxy bias, obscuring the primordial contribution to the statistics. However, for rela-
tively long modes, k . 0.1Mpc−1 and higher redshifts [57], linear perturbation theory can
be trusted, which makes it easier to identify primordial signatures. Perturbative techniques
pushing our analytic control towards smaller, weakly nonlinear scales include several schemes
like SPT [79] and more recently EFTofLSS [80] and TSPT [81–83], which are set within a
hydrodynamics framework, while going even further requires full Boltzmann solvers via N-
body simulations. In this work, we will focus on the purely linear regime, leaving weakly
nonlinear evolution with NG initial conditions [83] for future study.

The main probes of non-Gaussianity are the bispectrum and/or trispectrum, number
counts and bias. The spectra retain information about the shape of the 3- and 4-point func-
tions in momentum space, which can be linked to the mechanism responsible for generating
NG. Number counts probe directly the 1-point PDF, which even though loses the shape in-
formation, it serves as a complementary and equally powerful estimator of NG [54, 84–89].
Finally, the halo bias serves as a third independent channel, which can give clear enhanced
signatures of local NG at large scales.

In this section, we wish to track how primordial NG, in the form of the generic local
ansatz (1.5), gets transmitted to the matter field in the linear regime. We extend our result,
the non-Gaussian PDF of curvature fluctuations, in two directions: 1) we deduce a PDF
for the matter density contrast δ, and hence, a halo mass distribution; 2) we compute the
effect of the generalised local ansatz on the halo bias. These are complementary probes of
the non-Gaussian initial condition via cluster number counts and power spectra, respectively,
which should be accessible by surveys such as Lsst, Euclid, Spherex and Ska.

4.1 Halo mass function

The matter overdensity δ(x) = δρ(x)/ρ̄, with ρ̄ = Ωmρcr, is related to the primordial New-
tonian potential, Φ = 3

5ζ, as

δ(k) = α(k)Φ(k), with α(k) =
2r2Hk

2T (k)D(z)

3Ωm
, (4.1)

where D(z) is the linear growth rate, rH the current Hubble radius and T (k) the transfer

function [90]. We smooth the density field over a radius RM = (3M/4πρ̄)1/3 as in eq. (2.9),

δW (x) =

∫

k

∫

y

eik·(x−y)WM (k)δ(k), (4.2)

using a top-hat filter WM (x) = V −1
M H(RM − x), with H the Heaviside function and VM

the volume enclosing a mass M. The probability distribution for the smoothed overdensity,
P(δW ), is then given by the 1-point PDF of eq. (2.31) upon the replacements

ζ → δ and W (k) =
3

5
WM (k)α(k). (4.3)
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Now, in principle, having the matter distribution function one can compute the halo number
density, that is, the number density of halos of mass between M and M + dM at redshift
z, and the observables derived from it. One way to do this is via the Press-Schechter (PS)
scheme [91] extended to the NG case [92, 93]. Let

µ>(M, z) =

∫ ∞

νc(z)
dν P(ν), (4.4)

(with ν ≡ δ/σW ) be the tail distribution above some threshold value δc(z). Then, one can
assert that the total fraction of mass collapsed into bound structures will be proportional to
this cumulative PDF:

1

ρ̄

∫ ∞

M
dm

dn

dm
m ∝ µ>(M), (4.5)

where dn(M) is the number density of halos with masses in the range M and M +dM . The
PS mass function then reads15

dnPS
dM

(M, z) = −2
ρ̄

M

dµ>

dM
(M, z). (4.6)

The collapse threshold, through which the z dependence arises, is taken to be given by the
spherical model as δc(z) ≃ 1.686 D(0)/D(z). The Gaussian PS function can be evaluated
exactly by replacing P → PG in eq. (4.4):

dnPS
dM

∣

∣

∣

∣

G

(M, z) = 2
ρ̄

M

e−
ν2c (z)

2√
2π

dνc(z)

dM
. (4.7)

For the NG case, the PS mass function is easy to compute from eq. (2.31):

dnPS
dM

(M, z) =
dnPS
dM

∣

∣

∣

∣

G

(M, z)

[

1− 1

δc

(

1− ν2c +
1

(ln νc)′
d

dM

)∫

x

W (x)F
(

bδc; b
2σ2W

)

]

,

(4.8)

where a prime stands for the derivative with respect to the mass, while F
(

bδc; b
2σ2W

)

is the
Weierstrass transform of the local ansatz [see eq. (2.35)] evaluated at the threshold δc(z) (note
that here, W (x) is the Fourier transform of the window function written in eq. (4.3)). Upon
using the Hermite expansion (2.27) of the function F , we may obtain a series representation
of the mass function (4.8):

dnPS
dM

(M, z) =
dnPS
dM

∣

∣

∣

∣

G

(M, z)

[

1 + ∆(νc(z))−
1

dνc(z)/dM

∞
∑

n=2

Hen (νc(z))

(n+ 1)!
κ′n+1

]

, (4.9)

where we have defined the reduced cumulants κn(M) ≡ 〈δnW 〉c
σn
W

. Equation (4.8) offers a

generalisation of the fNL, gNL truncation16 of the local ansatz (see e.g. refs. [84, 94]) to
arbitrary functions F . From its moment expansion (4.9), we can see that positive moments
of the PDF (κn, κ

′
n > 0) lead to overabundance of collapsed objects at the high mass end,

15The fudge factor 2 corrects for the cloud-in-cloud problem, that is, a collapsed object of mass M1 tracing
a volume V1 can be missed by the PS function if it is part of an underdense region of larger volume V2. The
Gaussian value 2 is a good approximation in case of a small NG deformation [54].

16For example, when truncated to n = 2, the expansion (4.9) agrees with eq. (4.19) of ref. [84].
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where ν, ν ′ ≫ 1, as long as (lnκn+1)
′ < νν ′, which is satisfied since the cumulants κ depend

weakly on the mass [94].
However, due to the highly nonlinear character of the collapse, one cannot fully parame-

trise collapsed objects by a single threshold number δc. Indeed, it has been shown that the
PS prescription does not accurately estimate the halo abundance even in the Gaussian case
(for example a small non-spherical perturbation can have a considerable impact) [95]. Hence,
the extension to the NG case is guaranteed to also have errors with respect to simulations.
What can be done though is to characterise the deviation from Gaussianity by comparing
the ratio of G-to-NG densities to that of the PS scheme [84, 96], since the latter is expected
to deviate equally in both cases:

dn

dM
(M, z) = rG(M, z)

dnPS
dM

(M, z), with rG(M, z) =
dn
dM

∣

∣

G
(M, z)

dnPS
dM

∣

∣

∣

G
(M, z)

. (4.10)

For the Gaussian mass function, dn
dM

∣

∣

G
, we can adopt a Sheth-Tormen (ST) ansatz [95], which

is better fitted to simulations than the Press-Schechter one, in which case the Gaussian ratio
reads

rG[νc(z)] =
√
aA
(

1 + (aν2c )
−p) e

ν2c
2
(1−a), (4.11)

with the ST parameters a = 0.707, A = 0.322184, p = 0.3. With the mass function (4.10)
at hand, which is just eq. (4.8) with the replacement nPS|G → nST, we may compute the
number of clusters per redshift bin above some mass M as [84]

dN

dz
(M, z) =

4π

H(z)

(∫

dz

H(z)

)2

fsky

∫ ∞

M
dm

dn

dm
(m, z), (4.12)

where fsky is the fraction of the sky covered by each survey.
This formula can serve as a template for the number density of clusters. For example, in

the context of light isocurvature axions one can compute the non-Gaussian PDF deformation
∆ [48] and thus the mass function dn

dM and create mock data via simulations. One can then
pick an estimator and devise an overlap between the template and the data, in exactly the
same manner that one uses the cosine estimator to measure the overlap of the local template
with the actual bispectrum. The simplest thing to do is to take the number counts as an
estimator. For example, given a model, one can count how many clusters of mass M exist at
redshift z in the mock data and compare this number to the real data.

We may also try to reconstruct the PDF from data using other statistical estimators.
This can be done by simply solving eq. (4.10), together with (4.6), as an ODE for the
cumulative PDF, µ>, to get

µ>[δc(z), σW ] =
1

2ρ̄

∫ ∞

M
dm

m

rG[νc(z)]

dn

dm
(m, z), (4.13)

with rG given by eq. (4.11). The left hand side now gives the tail distribution of δ, that is, the
probability of δ > δc at redshift z. On the right hand side we have the total mass of collapsed
objects with m > M at redshift z, accounting for corrections to the spherical collapse model
via assigning a mass value m(z) = mobs/rG[νc(z)] to an object of observed mass mobs and
multiplicity dn

dm(mobs, z); in principle, this can be deduced from number counts. One can now

apply statistical estimators like Minkowski functionals to the dataset
{

mobs
rG[νc(z)]

, dn
dm(mobs, z)

}

,
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whose difference from their Gaussian estimate, as in the CMB [97, 98] and LSS [99], will be a
direct probe the NG deformation of the primordial PDF. Let us note, however, that measuring
accurately the mass and redshift of clusters is a hard task, which might complicate a direct
connection between cluster counts and primordial NG in this manner.

To summarise, in the context of tomographic NG, one can 1) use eqs. (4.9) and (4.10)
as a template for the mass function and thus the number density up to arbitrary order in
the Edgeworth expansion; 2) assume a microphysical model, compute the PDF (as in e.g.
ref. [48]) and use eqs. (4.8) and (4.10) as a template without having to refer to moments; and
finally, 3) consider statistical estimators on the LSS dataset probing the primordial PDF via
the counting scheme implied by eq. (4.13).

4.2 Scale dependent halo bias

Another powerful probe of primordial non-Gaussianity is the halo bias, which enters in the
late-time power spectra. As already argued, non-Gaussian initial conditions alter the halo
abundance in a nontrivial way by increasing the number of rare density peaks that collapse
into halos. This is easier to visualise in the case of the quadratic local ansatz δ = δG +
fNLδ

2
G [15]: a positive fNL adds positive skewness to the density distribution; thus, the same

probability now corresponds to higher values of δ with respect to the Gaussian field, leading
to more probable enhanced peaks. In [15], it was shown how this is encoded in a scale
dependent correction to the halo bias given by

∆b(k) = 2δc(bG − 1)
fNL

α(k)
, (4.14)

where bG is the Eulerian Gaussian bias. The k2 factor in α (see eq. (4.1)) implies that
the effects of non-Gaussianity will be accentuated in large scales (the transfer function goes
to 1 for k → 0), which brings surveys like Ska and Lsst to the frontline of NG searches,
promising σ(fNL) . 1 [100, 101]. This result was rederived and generalised in [102, 103] using
different approaches and has been confirmed with N-body simulations (see e.g. refs. [104–
109]), while in refs. [56, 94], the scale dependent halo bias was computed for the case of cubic
gNL, τNL-type local NG — see refs. [110, 111] for reviews. In what follows we extend it to
the generalised local ansatz (1.5) and show how in the case of an isocurvature source, future
surveys can probe the landscape potential via measurements of the bias factor.

To begin with, let us rewrite the NG ansatz (1.5) for the Newtonian potential Φ = 3
5ζ as

Φ(x) = φ(x) +
3

5
FNG[φ](x), (4.15)

where φ is a Gaussian random field with standard deviation σ0 =
√

〈φ2〉. The 3/5 factor
is put explicitly to relate the primordial curvature perturbation ζ to the late-time (matter-
dominated era) gravitational potential Φ. Following the peak-background split method [112,
113], we now separate the Gaussian gravitational potential into long and short modes with
respect to some characteristic halo scale R⋆ ∼ R(M) as

φ = φL + φS , (4.16)

which induces a similar split in the variance, σ20 = σ2L + σ2S = 〈φL(x)2〉 + 〈φS(x)2〉. With
the help of the expansion in Hermite polynomials (2.27), and using known identities of these
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polynomials, we can write

F (φL + φS ;σ
2
0) = F (φL, φS) =

∞
∑

m=0

βm (φL)

m!
σmS Hem

(

φS
σS

)

, (4.17)

where

βm (φL) ≡ −
∞
∑

s=0

fm+s

s!
σsLHes

(

φL
σL

)

, (4.18)

with f0 = f1 = 0. How is this expansion of F useful? If one is mainly interested in the
short-wavelength dynamics (for instance, to study the gravitational collapse of the matter
distribution into galaxies), this expansion allows one to identify the functions βm of long-
wavelength fluctuations as effective nonlinearity parameters for the short modes, as may be
seen directly from (4.17): m = 1 is a correction to the amplitude of the short modes, m = 2
a nonlinearity of fNL-type, m = 3 a nonlinearity of gNL-type, etc.

We now have to understand quantitatively how long wavelength density fluctuations
affect the statistics of short modes and thus the halo number density per unit of halo mass,
dn/dM , which from now on we denote by nL(x), through each term in the expansion (4.17).
Generically, the halo mass function is a function of the matter contrast and the amplitude
of the short modes:

nL = nL[ρ(x),∆φS ]. (4.19)

Firstly, because of the dependence on ρ, irrespective of the presence of non-Gaussianity, a
long wavelength perturbation δL will induce a linear background shift in n as

nL[ρ̄(1 + δL(x))] = n̄

(

1 +
∂ log nL
∂δL

δL(x)

)

, (4.20)

where n̄ = nL[ρ̄]. Moving to the non-Gaussian part, the purely long wavelenght contributions
— m = 0 coefficient in the expansion (4.17) — by definition will not affect the power spectra,
and hence, the bias to first order in the nonlinearity parameters fm, so we may disregard
them. From a short-wavelength modes’ perspective, they are constant numbers that will only
affect the background density through δL in the previous expression.

Next, we may observe that the coefficient of the term linear in φS (m = 1) depends on
φL. Therefore, a long mode will induce a shift in n(x) through this term, since short modes
feel a background perturbed by the local amplitude of the long wavelength perturbation as
∆φS → (1 + β1(φL))∆φS , leading to

nL(x) = n̄

(

1 +
∂ log nL
∂δL

δL(x) + β1 (φL)
∂ lognL
∂ log∆φS

)

. (4.21)

Finally, we need to take into account that the halo density depends on the local amplitude
of the long modes through all the functions βm (φL) for all m ≥ 2, since each βm acts
as a nonlinearity parameter assuming a local value set by the long wavelength fluctuation
φL [56, 103]. That is, we should consider the halo density as a function of the form

nL(x) = nL[ρ(x); {βm}m], (4.22)

where β1 controls the amplitude of the short modes, and the rest controls the amplitude of
their nonlinearities. Thus, we can write

nL(x) = n̄

(

1 +
∂ log nL
∂δL

δL(x) +
∑

m=1

∂ lognL
∂βm

βm(φL(x))

)

. (4.23)

– 26 –



J
C
A
P
0
2
(
2
0
2
0
)
0
2
7

From this expression we can now compute the linear bias, defined as

b(k) =
Pmh(k)

Pmm(k)
, (4.24)

where the matter-halo power spectrum is defined as

Pmh(k) = Fx−y[〈δL(x)nL(y)〉](k), (4.25)

and the matter-matter one as

Pmm(k) = Fx−y[〈δL(x)δL(y)〉](k) = |δk|2. (4.26)

Thus, we will need to compute the matter-halo correlator and Fourier transform it (F). The
matter contrast δ is related — in subhorizon scales — to the Newtonian potential through
the Poisson equation (4.1), so that Pφδ = Pδδ/α. The first term in eq. (4.23) is trivial since
it just yields the δ propagator, which in Fourier space cancels the denominator in eq. (4.24),
resulting in the standard constant bias, while the second yields the scale dependent correction.
Putting everything together, we get

b(k) = bG +
1

α(k)

∞
∑

m=1

∂ log nL
∂βm

〈β′m(φL)〉 = bG − 1

α(k)

∞
∑

m=1

∂ lognL
∂βm

fm+1. (4.27)

Evidently, the coefficient of the scale dependent correction contains a summation over all the
nonlinearity parameters, or better put, the whole function F . In order to see this, we can
write it down, equivalently, as

b(k) = bG +
1

α(k)

∫ ∞

−∞
N (φL;σL)

dF (φL;σL)

dφL
dφL, (4.28)

where N ≡ e−φ2L/2σ2
L√

2πσL

∑∞
m=1

∂ lognL
∂βm

1
σm
L
Hem

(

φL
σL

)

. Consequently, a scale-dependent halo bias

can only signal the presence of some form of local NG but not of a specific parametrisation
of it.

A downside of this is that the derivatives of nL w.r.t. βm in eq. (4.28) would have
to be computed from simulations if one is to obtain information about F , or alternatively,
assume a model of collapse into haloes. In the first case, one may compute the derivatives
of the halo mass function by varying the initial conditions of the simulations. However, the
coefficients (4.18) of the scale dependent bias cannot be observed in real data in this manner,
i.e, by repeating the collapse process as one would do in simulations, because they only come
once and with the same initial condition for the curvature perturbation field ζ. Therefore, it
becomes necessary that the next step be a connection between the effective bias coefficient
∫

N dF
dφ dφ and observable quantities by modelling the halo mass functional nL in some way.
It turns out that the previous section 4.1 provides enough tools to accomplish this. In

particular, if one models local NG at short scales φS using the extended PS scheme, as in
eq. (4.10), the variation with respect to the effective nonlinearity parameter d log nL/dβm
may be computed directly as d log nL/df

S
m, where f

S
m is the local nonlinearity parameter of

the short-scale theory (and, to first order in the perturbation F , it also defines the corre-
sponding nonlinearity parameter of the full theory because of eq. (2.27)). This can be done
systematically using eqs. (2.36), (4.9) and (4.27).
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The first scale dependent NG correction (m = 1), associated to cubic NG, was computed
in ref. [103] assuming a universal mass function, in agreement with the result of ref. [15]:

∂ log nL

∂fS1
= 2δc(bG − 1), (4.29)

where bG ≡ ∂ lognL
∂δL

is the Gaussian bias. The second term (m = 2), corresponding to a
gNL-type of NG, was computed in ref. [94] using an Edgeworth expansion of the halo mass
function and was found to be given by

∂ log nL

∂ log fS2
=
κ3(M)

6
He3 [νc(M)]− κ′3(M)

6ν ′c(M)
He2 [νc(M)] , (4.30)

where κn(M), is the reduced cumulant defined below eq. (4.9). It turns out that when (4.27)
is expanded up to f3 = gNL, the resulting expression is in very good agreement with simula-
tions [94]. Derivatives of the halo mass function with respect to the higher NG nonlinearity
parameters f4, f5, . . . , may be easily computed from eqs. (2.36) and (4.9). Concretely, they
are given by

fSm
∂ lognL
∂βm

=
∂ log nL
∂ log fSm

=
κm+1(M)

(m+ 1)!
Hem+1 [νc(M)]− κ′m+1(M)

ν ′c(M)(m+ 1)!
Hem [νc(M)] , (4.31)

where primes denote derivatives w.r.t. the mass of the halo M . These terms can (and
should) also be tested with N-body simulations for fSm>3 NG initial conditions, but such
a computation is beyond the scope of this paper.

From eq. (4.27) it is clear that the bias alone cannot differentiate between fNL, gNL or
any higher order NG but it can give an answer to the question of whether Gaussianity is
present or not.17 However, given a specific model for primordial NG, this can be a powerful
probe in the sense of matching a template against data. For example, in appendix A, we show
that one particular realisation of this situation is the presence of an isocurvature mode with a
potential ∆V (ψ). In this case, the function F of the generalised local ansatz (1.5), is related
to the potential as F ∝ ∆V ′. Thus, a measurement of or a constraint on the bias would
translate into a constraint on the parameters of the landscape potential. In such a context,
one can choose a well-motivated potential ∆V , which fixes the function F , depending on few
parameters (two or three cover most physically motivated potentials). Then, with the help of
simulations, one can use the PDF (2.10) with the replacements (4.3) to draw appropriate NG
initial conditions for the density fluctuation field, and then look for a bias of the form (4.27).
For example, within the axion parameter space, there are regions that lead to such cases [48]
and may be probed in the near future with LSS surveys.

5 Concluding remarks

Non-Gaussianity, notwithstanding how small, is a robust prediction of inflation, and may be
detectable if the inflaton had the chance to interact with other degrees of freedom during
inflation. Up until now, NG does not show up in low n-point correlation functions of the
temperature map [4], at least not in the form of a bispectrum nor a trispectrum, when

17A proposal for partially disentangling the contributions of different cumulants is the density-in-spheres

1-point PDF [88], which does so by taking into account both overdense and underdense regions, thus breaking
the degeneracy between odd/even moments.
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their estimators are compared to the well-motivated local, equilateral, folded and orthogonal
templates. However, primordial NG might be hidden in the data in the form of patterns that
need to be revealed through different estimators.

In this work, we have focused on the object that contains the full information about
the distribution of anisotropies of the temperature and density fields, that is, the probability
density function. Our starting point has been the bottom-up parametrisation of the curvature
perturbation as a Gaussian random field plus an arbitrary analytic function thereof. Instead
of truncating the series expansion of this function to the first few terms, corresponding to
the standard fNL, gNL parametrisation, we have kept the entire series enabling us to derive
a probability functional that encodes the full local ansatz.

The various kinds of distributions derived from this functional provide us with new
estimators, like the 1-point and 2-point statistics, which constitute complementary channels
for the search of NG. In particular, the 2-point PDF encoding the scale dependence of the
temperature distribution can serve as a full probe of the power spectrum able to disentangle
local NG from other shapes. Moreover, the community has been shifting the focus towards
LSS statistics as the latter will probe much more modes enhancing the statistical power of
the datasets. With a view towards the near-future LSS surveys, we have computed the dis-
tribution of halos of massM at redshift z showing that it is directly related to the primordial
NG deviation. Finally, we computed the NG scale dependent correction to the linear halo
bias arguing that it is the full local ansatz that contributes to the scaling. Therefore, the bias
offers a unique probe of local NG in full generality, which cannot be used to distinguish the
set of nonvanishing nonlinearity parameters, since these contribute as a sum to the correction.

Our results can be used with the future CMB/LSS data in various ways. For example,
one can obtain refined constraints on the local ansatz from an Edgeworth expansion of the
2-point CMB temperature PDF. In addition, upon assuming well-motivated microphysical
models leading to NG, one can use the formulas for the halo mass function and the bias as
templates to be compared with data. Finally, we may use other types of statistical estimators
like Minkowski functionals on the CMB/LSS datasets to draw conclusions on the primordial
PDF. Let us, nevertheless, stress once more that, as discussed in section 2.5, our treatment is
strictly valid only within linear perturbation theory and as such it is more accurate in cases
where primordial NG dominates over secondary effects, especially when one considers higher
n-point functions, which are well-motivated, for instance, from multi-field effects [48, 49] or
reheating models [44, 46].

Let us finish by pointing out that even though this work is focused on local primordial
non-Gaussianity, it should be possible to extend the discussion to other cases. An “equi-
lateral” ansatz of the form discussed in the Introduction would lead to a different scale
dependence in the 2-point PDF, which could in turn serve as an equilateral NG estimator.
Note that constraining such an object via e.g. an appropriate Edgeworth expansion could
be less costly than that of n-point functions using the standard templates. Finally, one may
be able to further generalise this by including combinations of spatial derivatives acting on
the curvature fluctuation that lead to enfolded correlators. In this more general case, by the
same procedure of changing variables in the Gaussian, one would be able to fully describe all
the four momentum shapes employed at the level of the PDF.
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A Generalised ansatz from quantum fluctuations during inflation

During inflation, the primordial curvature perturbation ζ is sourced by quantum fluctuations
of the inflaton field or possibly other degrees of freedom such as isocurvaton fields. As a
general statement, one can write down the field operator ζ(x) at the final time slice t as

ζ(x, t) = U †(t, t0)ζI(x, t)U(t, t0), (A.1)

where U is the temporal evolution operator in the interaction picture of quantum mechanics,
and ζI the interaction-picture field, which follows the dynamics of the free theory.

Naturally, the field ζ will generate a specific set of n-point functions when computing
expectation values. One can then construct a PDF P[ζ] that generates these statistics through
functional integration

〈ζ(x1) · · · ζ(xn)〉 =
∫

DζP[ζ]ζ(x1) · · · ζ(xn), (A.2)

over the field configurations ζ(x). Quantum mechanics does provide the tools to determine
P[ζ] directly, at least in principle. The operation ζ = U †ζIU can be reframed in terms of a
functional expression

ζ(x) = O[ζI ,ΠI , {ψIi ,ΠIi }i](x), (A.3)

that depends on the whole spacetime evolution of the interaction-picture fields, ζI and other
degrees of freedom ψIi , and that of their conjugate momenta, ΠI and ΠIi . In principle, one
can compute correlations directly from this expression. However, if the dependence of O on
the interaction-picture fields is known, one can determine the PDF of ζ by integrating over
all possible configurations:

P[ζ]=

∫

DζIDΠI

(

∏

i

DψIiDΠIi

)

PG[{ψIi ,ΠIi }i]
(

∏

x

δ
(

ζ(x)−O[ζI ,ΠI , {ψIi ,ΠIi }i](x)
)

)

,

(A.4)
where PG is a Gaussian measure, with appropriate prescriptions to take into account the
ordering of operators in O. The measure is guaranteed to be Gaussian because the free fields
evolve linearly in time, and therefore the contraction of quantum field operators obeys Wick’s
theorem, which is equivalent to saying that the statistics are Gaussian.

Once P[ζ] is obtained, the statistics of ζ is fully determined. Computationally, however,
it is useful to have a probability distribution from which one knows how to obtain expectation
values. On the other hand, one knows that the observed statistics for ζ are consistent with
Gaussianity, and that deviations, if any, must be small. This motivates finding a functional
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map ζG(x) = G[ζ](x), with inverse ζ(x) = ζG(x) + F [ζG](x), such that ζG has Gaussian
statistics, i.e., such that

PG[ζG] = P[ζG + FNG[ζG]]× det

(

δζ

δζG

)

. (A.5)

The difficulty, of course, lies in finding such a mapping. Afterward, one can include another
mapping, that makes the power spectrum of ζG to be consistent with current observations,
if this is not the case already.

Thus, we have justified writing ζ in terms of a Gaussian field ζG,

ζ(x) = ζG(x) + F [ζG](x), (A.6)

where the functional FNG is, in principle, arbitrary, and should be determined from the
specifics of the inflationary model at hand. We now give an example of a model that motivates
searching for non-Gaussianity wherein

FNG[ζG](x) =

∫

y

∫

k

eik·(x−y)F (ζ(y)), (A.7)

which is the main focus of our work.

A.1 A concrete example: multi-field inflation

Our current understanding of fundamental theories, such as string theory and supergravity,
requires us to take into consideration the existence of many scalar fields. In such a framework,
it does not make much sense to talk about an inflaton field; instead, one has an inflationary
path meandering through a landscape potential. Consequently, curvature fluctuations may
have been coupled to (many) other dynamically active degrees of freedom inevitably sourcing
departures from Gaussianity. Even in the simplest extension — from single-field to multi-field
inflation — one finds a rich phenomenology that can be tested by near-future surveys. The
presence of multiple fields during inflation leaves unique imprints in the CMB, a subject that
has gained a lot of attention in the last years with quasi-single field inflation [114, 115] and
the Cosmological Collider program [116]. The “smoking gun” signature of massive degrees of
freedom active at the inflationary energy scale is a bispectrum of the local shape that peaks
for triplets of modes with one momentum going to zero.

In the case of two-field models of inflation, the Lagrangian describing the dynamics
of the curvature fluctuation ζ interacting with an isocurvature field ψ is found to have the
following generic form:

L = a3
[

ǫ(ζ̇ − αψ)2 − ǫ

a2
(∇ζ)2 + 1

2
ψ̇2 − 1

2a2
(∇ψ)2 − 1

2
µ2ψ2

]

+ Lint. (A.8)

In the previous expression, a is the scale factor, ǫ = −Ḣ/H2 is the first slow-roll parameter
(whereH = ȧ/a is the Hubble expansion rate during inflation), µ is the so-called entropy mass
of the isocurvature field ψ, and α is a coupling that appears as a consequence of the shape
of the background inflationary path in the multi-field space. It parametrises the bending of
inflationary paths in field space [117–119], with α = 0 corresponding to the case of geodesic
trajectories (a straight line in field space). The piece Lint contains operators of cubic order
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(and higher) in terms of the fields ζ and ψ. A nonvanishing value of α makes ψ act as a
source for the amplitude of ζ via the quadratic mixing term

L(2)
mix = −2ǫa3αζ̇ψ. (A.9)

Crucially, this mixing allows the transfer of non-Gaussian statistics from the isocurvature
field to the curvature fluctuation (but not the other way around [120]). The generated non-
Gaussianity will depend on the particular form of Lint.

A standard approach to deal with (A.8) consists in assuming that Lint can be organised
perturbatively in terms of powers of both fields ζ and ψ. Such an approach supposes that

the nonlinear dynamics is dominated by cubic operators Lint ⊃ L(3)
int , and implies that the

main non-Gaussian departures will be parametrised by the bispectrum, the amplitude of the
3-point function in momentum space [26–33]. Within this approach, one finds that the main
operators leading to a nonvanishing bispectrum are given by a self-interaction term and a

mixing term of the forms L(3)
self ∝ a3gψ3 and L(3)

mix ∝ a3αζ̇ψ2, respectively. Any other term

in L(3)
int turns out to be suppressed by powers of the slow-roll parameters. Both interaction

terms lead to a non-analytic behaviour of the bispectrum: in the µ/H < 3/2 regime, one
obtains an NG amplitude enhanced by g, with the bispectrum following an irrational power
law in the squeezed limit leading to an intermediate shape between the equilateral and local
ones [114, 115]; the other region µ/H > 3/2 leads to a bispectrum with a shape sensitive
to the value of the entropy mass, displaying oscillatory patterns [121–124], while in the
µ/H ≫ 3/2 limit the heavy field may be fully integrated out, leading to equilateral shape
NG [125].

However, one may conceive regimes characterised by interaction Lagrangians Lint in
which one is not allowed to disregard terms of higher powers in the fields. For instance, the
field ψ may have a potential ∆V (ψ) displaying a rich structure within a wide field range
∆ψ [126]. In this case, the Lagrangian (A.8) can be rewritten as

L = a3
[

ǫ(ζ̇ − αψ)2 − ǫ

a2
(∇ζ)2 + 1

2
ψ̇2 − 1

2a2
(∇ψ)2 −∆V (ψ)

]

+ · · · , (A.10)

where we have absorbed the mass term in ∆V (ψ) by means of the identification µ2 ≡ ∆V ′′(0),
where primes denote derivatives with respect to ψ. The elipses · · · denote terms that are
either suppressed by slow-roll parameters or by α/H, which is assumed to be small. This
Lagrangian (A.10) describes the dynamics of perturbations in those cases where the landscape
potential has a rich structure in directions orthogonal to the inflationary path. If the potential
remains shallow, i.e. ∆V/H4 ≪ 1, the field ψ will display characteristic fluctuations ∆ψ that
could traverse many minima and maxima of the potential, therefore probing the structure
of the landscape. In this case, one cannot just stick to computations involving the first two

terms of the expansion ∆V = µ2

3 ψ
2 + g

3!ψ
3 + · · · ; instead, one has to perform perturbative

computations where information about the entire potential ∆V is kept under control. As
shown in [48, 49], as long as ∆V/H4 ≪ 1, it is indeed possible to compute every n-point
correlation function for ζ and derive its probability distribution function, P(ζ). Remarkably,
this PDF turns out to be given by a Gaussian profile with small non-Gaussian corrections
determined by the shape of the landscape potential ∆V . Thanks to this property, it is
in principle possible to reconstruct the shape of the landscape potential ∆V out of CMB
observations [49], providing information about a section of ∆V during the period of inflation
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when the modes of wavelengths relevant to the CMB were exiting the horizon (hence the
term, tomographic non-Gaussianity) and beyond.

The generation of tomographic non-Gaussianity may be traced back to the self-inter-
actions of an isocurvature field ψ. These self-interactions are transferred to the curvature
perturbations thanks to a linear interaction coupling both fields [see eq. (A.10)]. To appreci-
ate how self-interactions give rise to this form of non-Gaussianity, we may start by recalling
that in the interaction picture, the evolution of the field ψ(x, τ) is given by

ψ(x, τ) = U(τ, τ0)ψI(x, τ)U
†(τ, τ0). (A.11)

From a quantum-mechanical perspective in the Heisenberg picture, one can write

ψ(x, τ) = ψ(x, τ0) + i

∫ τ

τ0

dτ ′[H(τ ′), ψ(x, τ ′)]. (A.12)

Similarly, the interaction picture gives that to first order in the interaction the field is given by

ψ(x, τ) = ψI(x, τ) + i

∫ τ

dτ ′[HI(τ
′), ψI(x, τ)], (A.13)

where the subscript I informs us that the corresponding operator is in the interaction picture
and evolves as a free field. If, for simplicity, we take de Sitter spacetime as a background, the
interaction-picture Hamiltonian reads HI(τ) =

∫

x a
4(τ)∆V (ψI(x, τ)) with a(τ) = −1/Hτ .

With this, we may work on our previous equation to obtain

ψ(x, τ) = ψI(x, τ) + i

∫ τ

dτ ′
∫

x
a4(τ ′) [ψI(x

′, τ ′), ψI(x, τ)]
∂∆V

∂ψ
(ψI(x

′, τ ′)). (A.14)

With the help of canonical commutation relations for the appropriate field v ≡ aψ [48, 120],
the commutator [ψI(x

′, τ ′), ψI(x, τ)] is just a number and we can carry out the integral over
τ ′ explicitly provided that:

1. The quantum field ψI(x
′, τ ′) in the argument of ∂∆V/∂ψ may be treated as a constant

over time τ ′.

2. The range of modes under consideration involves superhorizon modes with |kτ ′| . 1.

In fact, if the range of modes satisfies |kτ ′| ≪ 1 for all k, then the first condition is implied
by the second.

Let us give some comments about these conditions: the first point seems natural in the
sense that the statistics of ψI do not evolve over time: it may be seen as a Gaussian random
field with a definite covariance. The second point, although appealing, is both physically
and mathematically suspect, since in principle the interaction-picture Hamiltonian involves
every mode (i.e. every momentum scale). Nonetheless, from an EFT perspective this is
perfectly acceptable, as long as the potential ∆V is responsible for describing the physics
at those scales. Moreover, this is the appropriate course of action when studying CMB or
LSS modes that spent a large number of e-folds outside the horizon, because they do satisfy
|kτ ′| ≪ 1 throughout most of their history (practically for every time after horizon crossing
this condition is fulfilled).

Using these considerations, one obtains

ψ(x, τ) = ψI(x, τ)−
∆N

3H2

∫

y

∫

k

eik·(x−y)∂∆V

∂ψ
(ψI(y, τ)), (A.15)
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where ∆N is the number of e-folds spent outside the horizon by the range of modes under
consideration, which we take to satisfy ∆N ≫ 1. While the former may seem to be a heavy
restriction, if we consider that the currently observable range of scales in the CMB satisfies
ln(kS/kL) ≃ 8 [3] and ∆N ∼ 60, we see that approximating ∆N by a single value for all
modes in the considered range is justified. Of course, as was earlier suggested, a rigorous proof
of this requires to go through every n-point function, performing an adequate renormalisation
procedure to make the computations consistent at every bounded range of momenta. This
was thoroughly dealt with in previous works [48, 49], although stopping just short of writing
down eq. (A.15).

The curvature perturbation ζ(x, τ) may be obtained in a completely analogous manner,
only that we now have to consider an extra commutator to account for the quadratic mixing
term (A.9):

ζ(x, τ) = ζI(x, τ)+ i

∫ τ

dτ ′ [Hα
I (τ

′), ζI(x, τ)]−
∫ τ

dτ ′
∫ τ ′

dτ ′′ [HV
I (τ

′′), [Hα
I (τ

′), ζI(x, τ)]]+ · · · ,
(A.16)

where HV
I is the term of the interaction-picture Hamiltonian that contains the ψ self-

interactions and Hα
I contains terms associated to the quadratic mixing. The ellipsis · · ·

stand for higher order terms. It is of crucial importance to obtain the correct result to notice
that the commutators in the last term of (A.16) only give a nonzero result when the pieces
of the interaction Hamiltonian are written in that order. This, alongside the time order-
ing, yields an additional 1/2 factor for the statistical transfer of the nonlinear perturbation
∆V . After a calculation analogous to the one that led us to (A.15), with the same working
assumptions, one obtains

ζ(x, τ) = ζI(x, τ) +
α

H
∆N

(

ψI(x, τ)−
1

2

∆N

3H2

∫

y

∫

k

eik·(x−y)∆V ′ (ψI(y, τ))

)

. (A.17)

This equation can accommodate a variety of regimes. However, we choose to work in a
situation wherein the linear transfer from ψ to ζ dominates. Even though this last equation
is a perturbative result, ζ = α∆N

H ψ + ζ0 is an exact solution of the equations of motion
on superhorizon scales [120]. This allows us to neglect the first term. Furthermore, since
conventionally ζ should satisfy 〈ζ〉 = 0, from this point forward we will consider

ζ(x, τ) ≈ α

H
∆N

(

ψI(x, τ)−
1

2

∆N

3H2

∫

y

∫

k

eik·(x−y)[∆V ′ (ψI(y, τ))− 〈∆V ′ (ψI(y, τ))〉]
)

,

(A.18)
or equivalently, omitting the temporal coordinate and the projection integration

∫

y

∫

k
eik·(x−y),

ζ(x) = ζG(x)−
α2∆N2

2H2

∆N

3H2

[

∂

∂ζ

(

∆V

(

HζG(x)

α∆N

))

−
〈

∂

∂ζ

(

∆V

(

HζG(x)

α∆N

))〉]

, (A.19)

where we have written ζG instead of ψI to stress the nature of our result: ζ is made up from
a Gaussian contribution plus a local non-Gaussian term. This result has the desired form
ζ(x) = ζG(x) + FNG[ζG](x). To identify FNG it is convenient to recognise that, because at

linear order ζ ≃ α∆N
H ψ, the power spectrum of ζ satisfies Pζ =

α2∆N2

H2 Pψ, where k
3Pψ/2π

2 =
H2/4π2 (because in the free theory ψ behaves as a massless field). This allows one to find [49]
α2∆N2 = 4π2As where As = k3Pζ/2π

2 is the amplitude of the power spectrum Pζ of ζ. This
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finally leads to

FNG(ζ) ∝
∂

∂ζ
∆V

(

H

2πA
1/2
s

ζ

)

, (A.20)

which is the result18 reported in the Introduction.

B The partition function

The defining property of a partition function is that upon functional differentiation as in
eq. (2.21), it should give the n-point functions:

〈ζ(k1) · · · ζ(kn)〉 =
δnZ[J ]

(iδJ(−k1)) · · · (iδJ(−kn))

∣

∣

∣

∣

J=0

=

∫

DζP[ζ]ζ(k1) · · · ζ(kn). (B.1)

This is accomplished by the following functional:

Z[J ] =

∫

Dζ P[ζ] ei
∫

k
ζ(k)J(−k) =

∫

Dζ P[ζ] ei
∫

y
ζ(y)J(y). (B.2)

To evaluate this expression, let us use the expression for P[ζ] as given in eq. (2.8):

PF [ζ] =PG[ζ]×
[

1−
∫

x

∫

k

∂F

∂ζ
(ζ(x)) +

∫

x

∫

y

ζ(x)

∫

k

eik·(x−y)

Pζ(k)

∫

z

∫

q

eiq·(y−z)F (ζ(z))

]

=PG[ζ]×
[

1−
∫

x

∫

k

∂F

∂ζ
(ζ(x)) +

∫

x

∫

k

∫

z

ζ(x)
eik·(x−z)

Pζ(k)
F (ζ(z))

]

. (B.3)

We will now evaluate (B.2) by expanding F in a power series and using Wick’s theorem.
Since (B.2) may be read as computing the expectation value of

ei
∫

y
ζ(y)J(y)

[

1−
∫

x

∫

k

∂F

∂ζ
(ζ(x)) +

∫

x

∫

k

∫

z

ζ(x)
eik·(x−z)

Pζ(k)
F (ζ(z))

]

(B.4)

over a Gaussian measure, we will do exactly that. Therefore, we will have to compute
〈

ei
∫

y
ζ(y)J(y)∂F

∂ζ
(ζ(x))

〉

G

and
〈

ei
∫

y
ζ(y)J(y)ζ(x)F (ζ(z))

〉

G
, (B.5)

where the subscript G instructs to take the expectation value over a Gaussian measure. Note
that the second expectation value, per Wick’s theorem, can be written as the sum of two
expectation values

〈

ei
∫

y
ζ(y)J(y)ζ(x)F (ζ(z))

〉

G
= i

∫

w

J(w) 〈ζ(w)ζ(x)〉G
〈

ei
∫

y
ζ(y)J(y)F (ζ(z))

〉

G

+ 〈ζ(x)ζ(z)〉G
〈

ei
∫

y
ζ(y)J(y)∂F

∂ζ
(ζ(z))

〉

G

= i

∫

w

J(w)Σ(w,x)
〈

ei
∫

y
ζ(y)J(y)F (ζ(z))

〉

G

+Σ(x, z)

〈

ei
∫

y
ζ(y)J(y)∂F

∂ζ
(ζ(z))

〉

G

.

(B.6)

18A similar expression with a generic NG deviation parametrised by some function was written in refs. [44, 46]
in the context of preheating. Here we see that another natural interpretation of such non-Gaussianity is an
isocurvature potential, with the trigonometric case corresponding to an axion [48].
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Now, using that Σ(x, z) =
∫

q
Pζ(q)e

iq·(x−z), and replacing the last term into the correspond-

ing term of (B.4), we get
∫

x

∫

k

∫

z

eik·(x−z)

Pζ(k)

∫

q

Pζ(q)e
iq·(x−z)

〈

ei
∫

y
ζ(y)J(y)∂F

∂ζ
(ζ(z))

〉

G

. (B.7)

Then, integrating over x gives |q| = |k|, and thus yields
∫

z

∫

k

〈

ei
∫

y
ζ(y)J(y)∂F

∂ζ
(ζ(z))

〉

G

, (B.8)

which is equal but opposite in sign to the first term of (B.5). Therefore, those two cancel
out, and we only have to compute

∫

x

∫

k

∫

z

eik·(x−z)

Pζ(k)
i

∫

w

J(w)Σ(w,x)
〈

ei
∫

y
ζ(y)J(y)F (ζ(z))

〉

G
. (B.9)

If we define

F (ζ) =
∞
∑

n=0

gn
n!
ζn, (B.10)

then the object of interest in the computation is

imgn
m!n!

〈(∫

y

ζ(y)J(y)

)m

ζ(z)n
〉

G

. (B.11)

There are three type of contractions in this expression: two self-contractions of fields origi-
nating from equivalent expressions and a mixed one. Performing the combinatorics gives

imgn
m!n!

∑

m′,n′,ℓ′

2m′+ℓ′=m

2n′+ℓ′=n

m!

2m′m′!(m− 2m′ − ℓ′)!

(∫

x

∫

y
J(x)Σ(x,y)J(y)

)m′

× 1

ℓ′!

(∫

y

J(y)Σ(y, z)

)ℓ′

× n!

2n′n′!(n− 2n′ − ℓ′)!
(Σ(z, z))n

′

,

(B.12)

which one can sum over n,m to eliminate the constraints on the m′, n′, ℓ′ sums. This gives
〈

ei
∫

y
ζ(y)J(y)F (ζ(z))

〉

G

=
∞
∑

n′,m′,ℓ′=0

i2m
′+ℓ′g2n′+ℓ

2m′m′!2n′n′!ℓ′!

(∫

x

∫

y
J(x)Σ(x,y)J(y)

)m′ (∫

y

J(y)Σ(y, z)

)ℓ′

(Σ(z, z))n
′

= exp

[

−1

2

∫

x

∫

y
J(x)Σ(x,y)J(y)

] ∞
∑

n′,ℓ′=0

g2n′+ℓ′
1

n′!

(

1

2
Σ(z, z)

)n′

1

ℓ′!

(

i

∫

y

J(y)Σ(y, z)

)ℓ′

= e−
1
2

∫

x

∫

y J(x)Σ(x,y)J(y)
∞
∑

n′,ℓ′=0

(

i
∫

y
J(y)Σ(y, z) ∂∂ζ

)ℓ′

ℓ′!

(

1
2Σ(z, z)

∂2

∂ζ2

)n′

n′!

( ∞
∑

n=0

gn
n!
ζn

)∣

∣

∣

∣

∣

ζ=0

= e−
1
2

∫

x

∫

y J(x)Σ(x,y)J(y) exp

[

Σ(z, z)

2

∂2

∂ζ2

]

F (ζ)

∣

∣

∣

∣

ζ=i
∫

y
J(y)Σ(y,z)

. (B.13)
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Identifying σ2ζ = Σ(z, z) and using the Weierstrass transform, we get

∫

x

∫

k

∫

z

eik·(x−z)

Pζ(k)
i

∫

w

J(w)Σ(w,x)
〈

ei
∫

y
ζ(y)J(y)F (ζ(z))

〉

G

= ie−
1
2

∫

x

∫

y J(x)Σ(x,y)J(y)
∫

z

J(z)

∫ ∞

−∞
dζ

exp

{

−
(

ζ−i
∫

y
J(y)Σ(y,z)

)2

2σ2
ζ

}

√

2πσ2ζ

F (ζ). (B.14)

Finally, we use that

∂

∂ζ
e
−(

ζ−i
∫
y J(y)Σ(y,z))

2

2σ2
ζ = e

−(
ζ−i

∫
y J(y)Σ(y,z))

2

2σ2
ζ

(

i

∫

y

J(y)Σ(y, z)− ζ

)

1

σ2ζ

=⇒ e
−(

ζ−i
∫
y J(y)Σ(y,z))

2

2σ2
ζ =

1

i
∫

y
J(y)Σ(y, z)

(

ζ + σ2ζ
∂

∂ζ

)

e
−(

ζ−i
∫
y J(y)Σ(y,z))

2

2σ2
ζ , (B.15)

to get, after integration by parts,
∫

x

∫

k

∫

z

eik·(x−z)

Pζ(k)
i

∫

w

J(w)Σ(w,x)
〈

ei
∫
y
ζ(y)J(y)F (ζ(z))

〉

G

= e−
1
2

∫
x

∫
y
J(x)Σ(x,y)J(y)

∫

z

J(z)
∫

y
J(y)Σ(y, z)

∫ ∞

−∞

dζ

exp

{

− (ζ−i
∫
y
J(y)Σ(y,z))

2

2σ2
ζ

}

√

2πσ2
ζ

(

ζ−σ2
ζ

∂2

∂ζ2

)

F (ζ)

= exp

[

−1

2

∫

k

∫

y

|J(k)|2Pζ(k)

]

×
∫

x

∫

k
eik·xJ(−k)

∫

k
eik·xJ(−k)Pζ(k)

∫ ∞

−∞

dζ

exp

{

− (ζ−i
∫
k
eik·xJ(−k)Pζ(k))

2

2σ2
ζ

}

√

2πσ2
ζ

(

ζ−σ2
ζ

∂2

∂ζ2

)

F (ζ), (B.16)

which gives

Z[J ] = exp

[

−1

2

∫

k

J(k)J(−k)Pζ(k)

]

×








1−
∫

x

∫

k
eik·xJ(−k)

∫

k
eik·xJ(−k)Pζ(k)

∫

ζ

exp

[

−(ζ−i
∫

k
eik·xJ(−k)Pζ(k))

2

2σ2
ζ

]

√
2πσζ

(

σ2ζ
∂

∂ζ
− ζ

)

F (ζ)









,

(B.17)

as shown in the main text.

C Details of the fixed-point PDFs

C.1 2-point PDF: general case

In the main text we argued that the 2-point PDF can be deduced from the probability density
functional upon conditioning in two points. Here we arrive at the same result starting from
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the corresponding 2-point correlators and deriving the PDF. To our knowledge, this has not
been derived earlier and thus we outline the procedure in some detail.

As in the previous case, the PDF must include the non-fully connected contributions.
This is a combinatorial mess, for we expect

〈ζn1(x1)ζ
n2(x2)〉 =

∑

m1,m2,mt

#ni,n2,m1,m2,mt

(

σ2ζ |x1

)m1
(

σ2ζ (x)
)mt

(

σ2ζ |x2

)m2

× 〈ζn1−2m1−mt(x1)ζ
n2−2m2−mt(x2)〉c.

(C.1)

Let us calculate #n1,n2,m1,m2,mt : we have an overall factor n1!n2! from which we must divide
out the overcounted terms. In this counting, we have mt! redundant permutations when
connecting x1 and x2, plus 2m1m1!2

m2m2! when pairing amongst themselves. Finally, the
ones that are assigned to the fully connected contribution undergo no further permutation,
thus we must also divide by (n1 − 2m1 −mt)!(n2 − 2m2 −mt)!. Thus,

〈ζn1(x1)ζ
n2(x2)〉 =

∑

m1,m2,mt

n1!n2!
(

σ2ζ |x1

)m1
(

σ2ζ (x)
)mt

(

σ2ζ |x2

)m2

2m1m1! (n1 − 2m1 −mt)!mt! (n2 − 2m2 −mt)! 2m2m2!

× 〈ζn1−2m1−mt(x1)ζ
n2−2m2−mt(x2)〉c.

(C.2)

Careful inspection of this result reveals that (C.2) leads to a 2-point distribution analogous
to what was obtained in [49], but with two points defining the filtering instead of one:

P(ζ1, ζ2, r) = PG(ζ1, ζ2, r)









1 +

∫

x

∫ ∞

−∞
dζ̄

exp

[

−(ζ̄−ζ(r,r1,r2))
2

2σ2
ζ (r,r1,r2)

]

√
2πσζ(r, r1, r2)

×

{

W (r1)

s2(r1)

(

G11
∂

∂ζ̄
−G12

)

+
W (r2)

s2(r2)

(

G21
∂

∂ζ̄
−G22

)}

F
(

ζ̄
)









,

(C.3)

where the coefficients Gij , defined right below, depend on both the field variables and the
spacetime positions x,x1,x2 via the scalar variables

r ≡ |x1 − x2|, r1 ≡ |x− x1|, r2 ≡ |x− x2|.

In obtaining this expression, we have defined a number of functions that depend uniquely
on the structure of the Gaussian theory. The variance σ2ζ (r, r1, r2) and ζ(r, r1, r2) are the

regression coefficients obtained by conditioning a Gaussian distribution of (ζ̄ , ζ1, ζ2) over
(ζW1 , ζW2 ), with covariance matrix given by (2.43):

σ2W (r, r1, r2) =σ2ζ +
2s2(r1)s

2(r2)

σ4W − σ4W,ext(r)
σ2W,ext(r)−

s4(r1) + s4(r2)

σ4W − σ4W,ext(r)
σ2W , (C.4)

ζ(r, r1, r2) =
s2(r1)ζ1 + s2(r2)ζ2
σ4W − σ4W,ext(r)

σ2W − s2(r1)ζ2 + s2(r2)ζ1
σ4W − σ4W,ext(r)

σ2W,ext(r). (C.5)
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Furthermore, the coefficients Gij are given by

G11 ≡ σ2ζ − s2(r2)
s2(r2)σ

2
W − s2(r1)σ

2
W,ext(r)

σ4W − σ4W,ext(r)
, (C.6)

G12 ≡ ζ̄ − s2(r2)
σ2W ζ2 − σ2W,ext(r)ζ1

σ4W − σ4W,ext(r)
, (C.7)

G21 ≡ σ2ζ − s2(r1)
s2(r1)σ

2
W − s2(r2)σ

2
W,ext(r)

σ4W − σ4W,ext(r)
, (C.8)

G22 ≡ ζ̄ − s2(r1)
σ2W ζ1 − σ2W,ext(r)ζ2

σ4W − σ4W,ext(r)
. (C.9)

C.2 2-point PDF: map to the sphere S2

The only difference with the previous appendix is that the window function should be a map
onto an angular coordinate n̂ instead of a three-dimensional (flat) space. In the text, we
wrote

PΘ(Θ1,Θ2, n̂1,n̂2) = PG,W (Θ1,Θ2, n̂1, n̂2)









1−
∫

x

∫ ∞

−∞
dζ̄

exp

[

−(ζ̄−ζΘ(x,n̂1,n̂2))
2

2σ2
Θ(x,n̂1,n̂2)

]

√
2πσΘ(x, n̂1, n̂2)

×

{

WΘ(x, n̂1)

s2Θ(x, n̂1)

(

GΘ
11

∂

∂ζ̄
−GΘ

12

)

+
WΘ(x, n̂2)

s2Θ(x, n̂2)

(

GΘ
21

∂

∂ζ̄
−GΘ

22

)}

F
(

ζ̄
)









.

(C.10)

Here we have

WΘ(x, n̂) ≡
∫

k
eik·xT (k, n̂) and s2Θ(x, n̂) ≡

∫

k
eik·xT (k, n̂)Pζ(k), (C.11)

while the regression coefficients are given by

σ2Θ(x, n̂1, n̂2) =σ2ζ +
2s2Θ(x, n̂1)s

2
Θ(x, n̂2)

σ4Θ − σ4Θ,ext(n̂1, n̂2)
σ2Θ,ext(n̂1, n̂2)

− s4(x, n̂1) + s4(x, n̂2)

σ4Θ − σ4Θ,ext(n̂1, n̂2)
σ2Θ, (C.12)

ζΘ(x, n̂1, n̂2) =
s2Θ(x, n̂1)Θ1 + s2Θ(x, n̂2)Θ2

σ4Θ − σ4Θ,ext(n̂1, n̂2)
σ2Θ

− s2Θ(x, n̂1)Θ2 + s2Θ(x, n̂2)Θ1

σ4Θ − σ4Θ,ext(n̂1, n̂2)
σ2Θ,ext(n̂1, n̂2). (C.13)
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Finally, the functions GΘ
ij read

GΘ
11 ≡ σ2ζ − s2Θ(x, n̂2)

s2Θ(x, n̂2)σ
2
Θ − s2Θ(x, n̂1)σ

2
Θ,ext(n̂1, n̂2)

σ4Θ − σ4Θ,ext(n̂1, n̂2)
, (C.14)

GΘ
12 ≡ ζ̄ − s2Θ(x, n̂2)

σ2ΘΘ2 − σ2Θ,ext(n̂1, n̂2)Θ1

σ4Θ − σ4Θ,ext(n̂1, n̂2)
, (C.15)

GΘ
21 ≡ σ2ζ − s2Θ(x, n̂1)

s2Θ(x, n̂1)σ
2
Θ − s2Θ(x, n̂2)σ

2
Θ,ext(n̂1, n̂2)

σ4Θ − σ4Θ,ext(n̂1, n̂2)
, (C.16)

GΘ
22 ≡ ζ̄ − s2Θ(x, n̂1)

σ2ΘΘ1 − σ2Θ,ext(n̂1, n̂2)Θ2

σ4Θ − σ4Θ,ext(n̂1, n̂2)
. (C.17)
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