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Abstract
Drying and rewetting (D/W) of soil have significant impacts on soil organic matter (SOM) turnover. We hypothesised that
frequent D/W cycles would release the labile organic matter locked away in soil aggregates, increasing the priming effect (PE)
(acceleration or retardation of SOM turnover after fresh substrate addition) due to preferential utilisation by microbes. 13C-
labelled lignocellulose was added to the soil, and the effects of 0, 1, or 4 cycles of D/W were evaluated at 5 °C and 25 °C after a
27-day incubation of undisturbed soil cores from a temperate forest (Araucaria araucana). Following the incubation, macroag-
gregates (> 250 μm), microaggregates (250–53 μm), and silt + clay materials (< 53 μm) were separated. For each aggregate size
class, three organic matter (OM) fractions (light (fPOM < 1.6 g cm−3), occluded (oPOM 1.6–2.0 g cm−3), and heavy (Hf >
2.0 g cm−3) were determined. D/W cycles caused macroaggregates to increase and a decrease in microaggregates (> 15%) at
warm temperatures, and preferential use of the novel particulate organic matter (13C labelled), formerly protected fPOM. CO2

efflux was three times higher at 25 °C than at 5 °C. The D/W cycles at 25 °C had a strong negative impact on cumulative CO2

efflux, which decreased by approximately − 30%, induced by a negative PE of −50 mg C kg−1 soil with 1 D/W cycle and −
100 mg C kg−1 soil with 4 D/W cycles, relative to soil under constant soil moisture receiving 13C-labelled lignocellulose, but no
cycles. Increasing the temperature and the number of D/W cycles caused a decrease in substrate use efficiency of particulate
lignocellulose. In conclusion, D/W cycles at warm temperatures accelerated OM turnover due to preferential use from fPOM,
increasing macroaggregates at the expense of microaggregates. A novel pathway of OM release and PE due to the D/W cycles is
discussed.

Keywords Soilprimingeffect .Particulate soil organicmatter .Dryingandrewettingcycles .Aggregate stability .Carbon turnover
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Introduction

Drying/rewetting (D/W) cycles lead to gains or losses in soil
carbon (C) from soil organic matter (SOM), effects that are
enhanced under extreme climatic events (Kim et al. 2012).
However, soil C turnover is dependent upon other environ-
mental conditions, e.g. temperature (Davidson and Janssens
2006). Small changes in mean annual temperature can have
significant effects on soil CO2 release (Billings and Ballantyne
IV 2013). Soil organic C turnover is further modified by to-
pography, vegetation, and soil type (Balser and Firestone
2005; Vargas et al. 2010). Other factors, such as physical
protection of organic matter (OM) (von Lützow et al. 2007)
or the frequency of D/W cycling during dry seasons, also play
critical roles in soil C dynamics (Hibbard et al. 2005).

Cycles of D/W are assumed to affect the overall functions
of soils in terrestrial ecosystems and to affect soil emission of
greenhouse gases such as CO2, methane, and nitrous oxides
(Corti et al. 2002; Lal 2004; Vicca et al. 2014). Increasingly
frequent D/W cycles could therefore cause a breakdown of
aggregates (slacking), exposing the physically protected OM
to microbial decomposition (Adu and Oades 1978; Appel
1998; Oztas and Fayetorbay 2003). Greater intensities of
drought could intensify negative impacts on CO2 flow and
microbial activity (Sinha and Cherkauer 2010; Meisner et al.
2015). After rewetting, an increase in gas fluxes occurs via the
Birch effect (Birch 1958). The Birch effect is driven by the
labile particulate organic matter (POM), determined by densi-
ty fractionation as the light fraction (fPOM < 1.6 g cm−3),
which consists mostly of pieces of plant residue and fungal
hyphae. These materials can be occluded POM (oPOM 1.6–
2.0 g cm−3), protected by the aggregates (Christensen 1992;
von Lützow et al. 2007). The CO2 efflux from the soil can
decline with successive D/W events as a result of an increas-
ingly limited pool of labile substrates (Schimel and Mikan
2005; Fernández et al. 2006; Goldberg et al. 2008).

The addition of fresh organic matter to soils results in a C
cycle phenomenon known as the priming effect (PE)
(Bingemann et al. 1953). The PE is a strong, short-term
change in the turnover of SOM caused by an input of fresh
OM (Jenkinson et al. 1985; Kuzyakov et al. 2000). It is cal-
culated as the difference between unlabelled CO2 efflux and
labelled CO2 from 13C- (or 14C) added to the soil (Oades
1988; Jarvis et al. 2007). Priming can be positive
(acceleration) or negative (retardation) depending on the
quantity and quality of fresh input (Kuzyakov 2010; Garcia-
Pausas and Paterson 2011). Although the effect is considered a
short-term phenomenon, Fontaine et al. (2011) demonstrated
that priming could have long-lasting effects. Hence, under
frequent D/W cycles, the PE can have a significant impact
on the decomposition of OM fractions, triggering CO2 efflux
from native SOM in the ecosystem (Magid and Kjærgaard
2001; Gregorich et al. 2006).

In terms of the protection of OM in the aggregates, there is
a hierarchical order from the largest particles to the smallest
particles (Tisdall and Oades 1982; Oades 1984; Six et al.
2000). This protection is disrupted by D/W cycles (Denef
et al. 2001a, 2001b), which increase the accessibility of mi-
croorganisms to the soil C. Because the fPOM contains the
highest amount of labile C, providing a rich source of energy
for microorganisms, disruption of the aggregates by D/R cy-
cles can result in high CO2 emissions (Mikha et al. 2005;
Borken and Matzner 2009; Shi et al. 2014).

A new perspective on C release and PE due to the D/W
cycle is introduced in this study. Drying and rewetting cycles
are hypothesised to lead to the preferential use of new, unpro-
tected, and labile organic matter over native C, resulting in
negative PE values. Quantifying this effect under the applica-
tion of 13C-labelled fPOM to soils will facilitate (a) differen-
tiating the degree of physicochemical protection of the SOM
in various aggregate size classes and (b) estimating the sub-
strate use efficiency, i.e. the relative proportion of added
fPOM-C that is incorporated into microbial biomass.

Temperate forests in Chile have experienced increasing
temperatures and more frequent extreme climatic events, such
as severe droughts (Garreaud et al. 2017; Urrutia-Jalabert et al.
2018). In light of the effects of these events on soil moisture
content, it is important to understand the impact of D/W on
SOM turnover in these ecosystems. Three hypotheses were
tested: (i) priming of native C is induced by the amendment
of fresh C-input, but D/W cycles release OM, which primarily
consists of the fPOM from disrupted aggregates (Fig. 1).
Therefore, comparing the difference in the PE between 0 cycle
and D/W cycles will allow us to quantify the effect of D/Won
the actual PE. (ii) Native SOM decomposition will be retarded
(negative PE) due to the preferential use of new OM by mi-
croorganisms (Fig. 1). And, (iii) a cumulatively more negative
PE is expected with an increased number of D/W cycles. The
aim of this study was to evaluate the effects of two frequencies
of D/Wevents on the PE, soil aggregate size class distribution,
and their OM fractions, dependent upon temperature in a tem-
perate forest soil.

Materials and methods

Study site and sampling

Soil samples were collected from an Inceptisol (Soil Survey
Staff 2014) developed under an ancient temperate forest with
a dominant tree canopy of Araucaria araucana (Molina) K.
Koch in Nahuelbuta National Park (37°47′S, 72°59′W), Chile.
Important soil properties are provided in Table 1, and a more
detailed description of the site can be found in Bernhard et al.
(2018) and Oeser et al. (2018). Undisturbed cores (PVC 5-cm
diameter × 5-cm length) were taken from the uppermost soil
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horizons after litter removal. Cores were stored at 4 °C and
immediately transported to the laboratory of Agricultural Soil
Science of Georg-August University of Göttingen, Germany.

Microcosm experiment

CO2 effluxes were determined during the incubation period of
27 days. This timespan was selected because D/W-induced
differences in mineralisation of fPOM were expected directly
after the D/W cycles (Schimel and Mikan 2005; Goldberg
et al. 2008). The PE and substrate use efficiency (SUE) (for
details see below) were assessed to compare the microbial
incorporation of the 13C-labelled amendment into the new

organic matter. Aggregate size distribution and density frac-
tions from each aggregate class were determined to categorise
the SOM pools via different degrees of C protection.

The microcosm experiment consisted of 28 undisturbed
core samples (~ 78.5 g dry soil, bulk density 0.8 ±
0.1 Mg m−3) pre-incubated for 4 days at field capacity
(0.34 m3m−3, − 33 kPa). Following incubation, the cores were
placed on a ceramic pressure plate within a closed acrylic
chamber, modified from Poll et al. (2010), and equipped with
a septum for gas sampling (Fig. 2). Briefly, approximately
3 mg of 13C uniformly labelled lignocellulose milled residue
(maize derived, isotopic purity 97 atm % 13C (IsoLife –Stable
Isotope Labelled Plant Products for the Life Sciences,

Table 1 Properties and standard
deviation (±) of studied soil (0–8-
cm depth)

Variable Units Value

pH water 4.3 ± 0.3 Acid soil (1:2.5 water)

pH CaCl2 3.3 ± 0.2 Acid soil (1:2.5)

Soil C g kg−1 soil 106 ± 9.9 Total soil carbon at 0–8-cm depth

Soil N g kg−1 soil 5.0 ± 0.5 Total soil nitrogen 0–8-cm depth

Soil C:N 21 0–8-cm depth.

Litter C:N 60 Araucaria araucana litter 0–2 cm

Alp g kg−1 soil 6.4 ± 2.2 Pyrophosphate extractable Al

Fep g kg−1 soil 3.5 ± 1.9 Pyrophosphate extractable Fe

Alo g kg−1 soil 8.7 ± 2.8 Oxalate extractable Al

Feo g kg−1 soil 6.7 ± 1.4 Oxalate extractable Fe

Sio g kg−1 soil 0.3 ± 0.2 Oxalate extractable Si

Ald g kg−1 soil 12.2 ± 1.6 Dithionite extractable Al

Fed g kg−1 soil 4.7 ± 0.3 Dithionite extractable Fe

Alp/Alo 0.8 > 0.5 organo-mineral nature

Alo + 0.5Feo % 1.3 > 2 andic properties

AlK cmol+ kg−1 6.8 ± 2.5 Exchangeable Al

CECe cmol+ kg−1 9.0 ± 1.6 Effective cation exchange capacity

Fig. 1 Schematic illustration of
the impact of drying/rewetting
(D/W) events on the soil C
dynamics and CO2 efflux after
fresh C addition. D/W cycles
breakdown soil macroaggregates
and release labile particulate
organic matter (fPOM) that was
formerly protected. Increasing
number of D/W cycles raises
microbial respiration from
decomposition of new organic
matter of the POM fraction rather
than using older, more stabilised
OM, thus generating a negative
PE
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Wageningen, Holland)) were suspended in 10 ml of distilled
water and spread uniformly on top of each core using several
injections with a syringe. Drying and rewetting cycles
consisted of 3 days of drying followed by 3 days of wetting.
Dry conditions were achieved using a vacuum pump (Leroy-
Somer™) from the bottom of the ceramic plate, reaching −
80 kPa for 3 h. Rewetting was conducted by watering the core
soil on the top and leaving the soil to equilibrate for 30 min
until the moisture content reach field capacities. This was
achieved using 12 needles connected to another pump (model
ISM404B, ISMATEC™). Microcosms received either 1 or
4 cycles. Control soils with labelled lignocellulose additions
were subjected to zero D/W cycles and observed alongside the
other treatments. In addition to determining the natural isoto-
pic abundance of 13C, moist soil cores without labelled ligno-
cellulose additions were also incubated. All treatments were
replicated four times.

CO2 sampling

CO2 gas samples were collected during 27 days of incubation
from the first day of each drying or rewetting (12 h apart)
period and thereafter, with one sample collected for each day
until the next drying. All samples were collected via a 10-ml
syringe through the septum on top of the microcosm container
(Fig. 2). The gas samples were injected into a vacutainer
(Exetainer, Labco Limited, 12 ml) and stored at 5 °C until
measurement. After sampling, each acrylic flask was ventilat-
ed with CO2-free air. At the end of the 27-day incubation
period, the soil was carefully extracted from each core for
further analyses.

Aggregate size classes

Aggregate size distribution was determined by dry sieving.
Soil was air-dried at 40 °C and sieved through 250 μm and
53μmmeshes on the Vibratory Sieve Shaker AS 200 (Retsch,
Germany) for 5 min, at an amplitude of 1.5 mm. Three

aggregate size classes were obtained: macroaggregates (>
250 μm), microaggregates (250–53 μm), and silt + clay size
particles (< 53 μm). The D/W cycles impact soil aggregate
turnover, and differences in aggregate size composition be-
tween soils with 1 and 4 cycles and soils with constant mois-
ture (0 cycle) were regarded as the proportional effects of the
D/W cycles.

Organic matter density fraction

Organic matter fractions were obtained by density fraction-
ation from each aggregate size class using sodium
polytungstates (SPT) (Gunina and Kusyakov 2014). Three
OM density fractions were obtained, dried at 40 °C, and
weighed: light fraction (fPOM, < 1.6 g cm−3), occluded frac-
tion (oPOM, 1.6–2.0 g cm−3), and heavy fraction (Hf >
2.0 g cm−3). The effect of D/W on the gain (negative values)
or loss (positive values) of aggregate mass and its associated C
was obtained using the difference between the 0 cycle, which
received labelled residue but no D/W cycling, and the 1 cycle
or 4 cycle treatments. For the aggregate calculations, the same
subtraction for the proportional change in the OM density
fractions was utilised.

Priming effect

The priming effect (PE) was calculated as defined by Guenet
et al. (2010):

PE ¼ Alignin−Asample

Alignin−Asoil

! "
" Qsample−Qsoil ð1Þ

where Alignin, Asample, and Asoil represent the isotopic abun-
dance of 13C-lignocellulose residue added to the soil, the iso-
topic abundance of the CO2 from the amended soil core sam-
ple with labelled lignocellulose, and the isotopic abundance of
the CO2 from non-amended (natural) soil core sample, respec-
tively. Qsample and Qsoil represent the quantity of released CO2

in the microcosm headspace of freshly C amended soil and the

and leacheates colector setup Microcosm chamber Fig. 2 Microcosm chambers
(acrylic materials) setup for the
drying and rewetting cycles and
CO2 collection. Note: The top of
the main chamber has a small
additional chamber to which
several irrigation needles were
connected to apply the irrigation
water uniformly
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CO2 in the headspace of non-amended soil, respectively.
Equation 1 was used to calculate the priming of SOM induced
by the amendment of lignocellulose. The D/W cycles were
assumed to release fPOM, which primarily consists of ligno-
cellulose. Therefore, the difference in PE between soil with D/
W cycles and soil with no D/W cycles allowed us to quantify
the effect of D/W cycles on priming (PEc).

Soil analyses

Soil C and nitrogen (N) contents were determined by dry
combustion using a CN Elemental analyser (CHN NA 1500,
Carlo Erba). Microbial biomass C (MB-C) was determined by
the difference in extractable C in 0.5 M K2SO4 of fumigated
(chloroform free of ethanol) and unfumigated soils and mul-
tiplied by the factor 2.64, used by Vance et al. (1987a, 1987b).

13C/12C isotope ratio

The carbon isotope ratios (13C/12C) of all fractions, CO2,MB-
C, and bulk soil samples were measured at the Centre for
Stable Isotope Research and Analysis (KOSI) of Georg-
August-University of Göttingen, Germany. The CO2 concen-
tration and the carbon-isotope ratio were measured in a gas
chromatograph combustion isotope ratio mass spectrometer
(GC-C-IRMS). Soil C contents were measured using an ele-
mental analyser (Vario EL II, Germany), and the isotopic ratio
was measured using an elemental analyser in dual-element
analysis mode (Carlo Erba 1108,Milano, Italy). The C isotope
ratio was expressed relative to the international Pee Dee
Belemnite (PDB) limestone standard as δ13C.

Substrate use efficiency

The SUE was calculated at the end of the incubation as the
ratio between labelled microbial biomass (13CB),

13CO2 re-
spired, and 13CB (Spohn and Chodak 2015):

SUE ¼
13CB

13CO2 þ 13CB
ð2Þ

where SUE estimates the relative proportion of the labelled
MB-C to respiration.

Statistical analysis

Two-way ANOVA was performed to analyse the effects of
temperature and D/W cycles on CO2 efflux, PE, aggregate
size, OM-C fraction, and microbial biomass-C and its 13C-
lignocellulose distribution. The normality of the variances
was tested by the Shapiro-Wilk test, and the homogeneity of
variance was tested by Levene’s test. The data abnormally

distribution was log transformed until comparison data pre-
sented similar variance. Least significant difference (LSD)
and post hoc Tukey tests (p< 0.05) were performed to com-
pare mean values between variables. All analyses were con-
ducted using SPSS statistical software v23.0.0.0 (SPSS Inc.,
Chicago, IL, USA). Figures were developed with DataGraph
4.3 Visual Data Tools, 2006–2018, Inc.

Results

Soil weight and C recovery (%) following dry sieving varied
between 92 and 99%, respectively. The recovery of soil-
labelled 13C fluctuated between 6 and 52% and varied be-
tween 5 and 39% in the 13C MB-C. Leachates were minimal
and fluctuated between 0 and 7% (Table 2). The total recov-
ered lignocellulose-derived labelled 13C ranged from 73 to
99% (Table 2).

Aggregate size classes

The D/W-induced change in the distribution of aggregate size
classes and their C contents was obtained by subtracting D/W
0 cycle results from the aggregate size class abundance from
that of the 1 or 4 D/W cycle treatment (Fig. 3).
Macroaggregates (> 250 μm) were the most abundant aggre-
gate size class in the investigated soils (609–785 g kg−1),
followed by microaggregates (250–53 μm) (201–
308 g kg−1) and silt + clay particles (< 53 μm) (12–
23 g kg−1) (Table S1, Supplementary Materials). Drying and
rewetting had minimal influence on the mass of the aggregate
size classes and their C content at 5 °C (Fig. 3a). At 25 °C,
however, macroaggregate weight (Fig. 3b) and labelled C
(Fig. 3f) increased (positive value) after 1 D/W cycle, and
no significant differences were detected for 4 D/W cycles
(Table S4, Supplementary Materials). The same was true for
labelled C at 5 °C (Fig. 3e).

Density fractionation

Drying and rewetting cycles did influence the quantity of or-
ganic C, including labelled C (Fig. 4; Tables S2, S5,
Supplementary Materials). The interaction between tempera-
ture and D/W cycles influenced the distribution of C and
lignocellulose-derived 13C among the various OM fractions
(Tables S3, S5, supplementary Materials). The quantity of D/
W cycles did not have significant effects at 5 °C, but the total
C and lignocellulose-derived 13C content always increased
with 1 cycle and decreased with 4 cycles at the expense of
heavy fraction, which lost the respective mass or C (Fig. 4).
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Fig. 3 Proportional change effect
of aggregate size classes
(macroaggregates > 250 μm,
microaggregates 250–53 μm, and
silt + clay size < 53 μm)
obtained by subtracting zero
cycles (no cycle + labelled
residue) to 1 cycle D/W or 4
cycles D/W. Soils amended with
lignocellulose are displayed after
27 days of incubation at 5 °C (left)
and 25 °C (right), whereas
relative weight (a and b), total C
content (c and d), and
lignocellulose-derived 13C
incorporation (e and f) of the
aggregate size classes is shown.
Bars indicate standard errors of
the means

Table 2 Total recovery (%) of
soil weight, soil C, and labelled C
after dry sieving

Weight Soil C NB-13C-1 MB-13C2 13CO2
13C-
leached

Total

5 °C

0 cycle 97 95 21 39 13 0 73

1 cycle 99 92 32 20 33 3 88

4 cycles 100 106 47 20 17 5 89

25 °C

0 cycle 93 92 48 5 43 0 96

1 cycle 99 117 52 14 33 0.3 99

4 cycles 92 72 6.4 26 60 7 99

1Non-biomass
2Microbial biomass
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CO2 effluxes

Soil respiration was responsive to temperature, as demonstrat-
ed by the accumulated total CO2 and labelled

13CO2 efflux in
the undisturbed cores (Table S6, Supplementary Materials).
On average, the total amount of CO2 released at 25 °C was
approximately three times that released at 5 °C (Fig. 5). The
mineralisation of lignocellulose-derived 13C was roughly 2.5
times higher at 25 °C than that at 5 °C.

D/W cycle effects were isolated at each temperature by
one-way ANOVA. After day 18, the total CO2 efflux was
significantly higher for soils exposed to 1 D/W cycle than
those exposed to 4 cycles or provided with constant moisture
content (0 cycle) at 5 °C (p< 0.05) (Fig. 5a). Lignocellulose
mineralisation displayed the same pattern as the total CO2; it
was higher in soils exposed to only a single D/W cycle, com-
pared with those experiencing 0 or 4 cycles (Fig. 5c). Soil
Incubated at 25 °C with no D/W cycles had a higher total

Weight, total and labeled C of OM fractions increasing D/W cycles Fig. 4 Proportional change effect
of organic matter particles (POM)
from the entire soil; OM fraction
from the different aggregates was
reunited as light fraction <
1.6 g cm −3 (fPOM), occluded
fraction 1.6–2.0 g cm-3 (oPOM),
and heavy fraction > 2.0 g cm−3

(Hf) obtained by subtracting the
zero cycles (no cycle + labelled
residue) to 1 cycle D/W or 4
cycle D/W. Soils amended with
lignocellulose after 27 days of
incubation at 5 °C and 25 °C are
presented regarding the relative
weight of the OM fraction (a and
b), their total C content (c and d),
and their lignocellulose-derived
13C incorporation (e and f). Bars
indicate standard errors of the
means
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CO2 efflux than those of soils with 1 or 4 D/W cycles after
18 days of incubation (p< 0.05) (Fig. 5b). In the warmer soil,
the release of lignocellulose 13C was the highest when ex-
posed to 4 D/W cycles (cf. Fig. 5 b and d).

Priming effect

The PE response varied with the temperature, and differ-
ences between D/W treatments began to become evident
after 18 days of incubation (Fig. 6). Only the 0 D/W cycle
soil at 5 °C showed a positive PE, although it was not
significantly different from zero PE; soils with D/W cy-
cles showed a negative PE, and the soil with 4 D/W cy-
cles was the only treatment significantly different from
zero at the end of the incubation time (Fig. 6a). At
25 °C; however, the PE was always negative and soils
exposed to D/W, regardless of the number of cycles,
showed the most negative values (p< 0.05) (Fig. 6b). At
5 °C PEc, the differences between soil with 1 or 4 D/W
cycles and 0 cycle were significant between 0 and 18 days
and at the end of the incubation (Fig. 6c). However, at
25 °C the differences were expressed from day 9 and were
not perceptible at the end of the incubation (Fig. 6d).

Microbial biomass and substrate use efficiency

Temperature and D/W cycles had significant impacts on mi-
crobial biomass 13C incorporation (cf., Tables 2 and 3) and
SUE (Table 3; Fig. 7; and Table S7, Supplementary
Materials). High SUE occurred preferentially under lower
temperatures and was on average two times higher (p <
0.05) at 5 °C than at 25 °C (Fig. 7). Drying and rewetting
had a decreased effect on SUE values at 5 °C (Fig. 7a), but
at 25 °C, D/W cycles did not induce any significant effects on
SUE (Fig. 7b).

Discussion

Aggregates and particulate organic matter

Physical protection of SOM by aggregates is an important
mechanism for C stabilisation; differentiating the degree of
physicochemical protection afforded to the SOM by various
aggregate size classes remains challenging. Drying and
rewetting cycles were investigated in terms of their disruptive
effects on the degradation and formation of macroaggregates
(> 250 μm) and microaggregates at (250–-53 μm) (i.e. the

Total CO2 and 13CO2 effluxes inceasing D/W cycles Fig. 5 Total CO2 evolved during
27 days of incubation at 5 °C (a)
and 25 °C (b) from soil with
lignocellulose addition and D/W
(0 cycle, 1 cycle, and 4 cycles).
Dry period (triangle) started on
day 3 and continued for another
3 days of incubation. The wet
period (inverted triangle) started
on day 6 until the next drying.
13CO2 efflux through 27 days of
incubation at 5 °C (c) and 25 °C
(d). Small bars on the data point
indicate standard errors of the
mean. Large bars indicate the
least significant differences
(LSD) (p< 0.05)
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macroaggregate turnover) and the associated C dynamics in
the respective aggregate size classes found in a temperate
forest. Soil with D/W cycles experienced accelerated macro-
aggregate turnover at the expense of the microaggregates size
class, particularly at warmer temperatures of 25 °C (Fig. 3b).

Generally speaking, we found strongly contrasting effects be-
tween the two temperature treatments, indicating a systematic
process underlying influence of temperature. Although we did
not determine the microbial community composition, fungal
growth could be significantly reduced at low temperatures and
fungal hyphae development could be stunted at higher tem-
peratures. Fungi can function as binding agents in soil (Denef
et al. 2001a), and at high temperatures, fungi could represent a
significant portion of the microbial biomass and could have
key function in building and stabilising macroaggregates
(Denef et al. 2001a). After 27 days of incubation at 25 °C,
the proportion of microaggregates’ weight (Fig. 3b), their C
content (Fig. 3d), and lignocellulose-derived 13C (Fig. 3f) de-
creased in soils exposed after 4 D/W cycles, but the effect was
not observed after 1 D/W cycle (Fig. 3b–f). Increasing the
number of D/Wevents could therefore have a negative impact
on microaggregate formation, while novel protected OM
within macroaggregates could contribute to its formation.
Density fractionation indicated a depletion of the fPOM and
an increase in Hf, supporting the acceleration of macroaggre-
gate turnover (Fig. 4b, d) and increasing the 13C fraction in the
oPOM (Fig. 4f). Microaggregates were depleted by accelerat-
ed turnover and the formation of new macroaggregates, which
only occurred in the short term under enhanced D/W cycles

Priming effect (PE) without and subtracting 0 cycles (PEc) inceasing D/W cycles Fig. 6 Priming effect (PE)
through 27 days of incubation at
5 °C (a) and 25 °C (b) for soil
with lignocellulose addition. Dry
period (triangle) started on day 3
and continued for another 3 days
of incubation. The wet period
(inverted triangle) started on day
6 until the next drying. Relative
priming effect as affected by
drying and rewetting (PEc),
calculated by substratcing
the zero cycles (no cycle +
labelled residue) to 1 cycle D/W
or 4 cycles D/W, is shown for
27 days of incubation at 5 °C (c)
and 25 °C (d) for soil with
lignocellulose addition. Small
bars on the data point indicate
standard errors of the mean. Large
bars indicate the least significant
differences (LSD) (p< 0.05)

Table 3 Total microbial biomass C (MB-C), MB-13C, and standard
error of the mean (±) of four replicates. Different lowercase letters in
each column and within each temperature indicate significant
differences (p < 0.05). Different capital letters in each column and
between temperatures indicate significant differences (p< 0.05)

Drying and rewetting Microbial biomass C

Total MB-C MB-13C
(mg C kg−1)

5 °C

0 cycle 456 ± 61aA 15 ± 4.0 aA

1 cycle 372 ± 28 aB 7.5 ± 1.0 bB

4 cycles 346 ± 51 aB 7.6 ± 3.0 bB

25 °C

0 cycle 317 ± 48 aC 2.0 ± 1.5 bD

1 cycle 313 ± 25 aC 5.4 ± 1.1 aC

4 cycles 345 ± 57 aBC 9.8 ± 4.0 aB
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(Denef et al. 2001a; Dorodnikov et al. 2011; Gunina and
Kusyakov 2014).

CO2 efflux

Drying and rewetting cycles affected the cumulative C
mineralisation at 25 °C. The total CO2 emitted throughout
the 27 days of incubation was strongly reduced compared to
the CO2 produced by soil at optimum moisture content (0 cy-
cle). Thus, rewetting does not compensate for the lower
mineralisation during drought periods but rather has a
medium-term impact (Fig. 5). Cumulative mineralisation is
linked to the intensity and duration of drying and the accessi-
ble pool of organic C during drying and rewetting (Borken
andMatzner 2009). Therefore, under field conditions, increas-
ing droughts could result in reduced Cmineralisation, whereas
increasing spring/summer precipitation could accelerate C
losses from physically protected organic matter. In our labo-
ratory study, drying and rewetting cycles caused higher mi-
crobial respiration of new organic matter added to the soil
(Fig. 5). This effect for 13CO2 became evident after 15 days
of incubation at both temperatures (Fig. 5c and d). Araucaria
araucana litter fall displayed a C:N ratio of 60 (Table 1) with a
high lignin:N ratio (70–90), which is generally associatedwith
a low mineralisation rate (Diehl et al. 2003; Bertiller et al.
2006). The lignocellulose-rich OM decomposed at a rate be-
tween 50 and 150 mg C kg soil−1 day−1, comparable to other
rates determined through similar incubations of Chilean forest
soils (Matus et al. 2008; Muñoz et al. 2016) or Mediterranean
forest soils (Almagro et al. 2009; Guntiñas et al. 2013).
Despite the recalcitrance of the fresh substrate, there was sig-
nificant C mineralisation from this material, supported by the
negative PE value (Fig. 6d).

Priming effect

At 5 °C, there was a small but significant PE induced by the
lignocellulose amendment, while at 25 °C a stronger negative
PE was produced. The PE was negatively correlated with
respired 13C (r = − 0.59,p< 0.04, n = 12). This result indicates
that when less organic C is consumed from native SOM by
microorganisms (negative PE), more fresh 13C is mineralised.
This correlation clearly demonstrates the preferential C use of
the substrate, which is, in this study, a representative com-
pound of the soil’s fPOM fraction. These results were also
supported by the PEc, the difference in PE between 1 or 4 cy-
cles and 0 cycle (Fig. 6). In other studies, where complex OM
was added in the form of leaf and stem residues (13C-labelled
wheat residues), the results also showed intensive
mineralisation of the added OM, yielding a negative PE for
extended periods (Shahbaz et al. 2017); with the addition of
other materials, a temporary negative PE (up to 40 days) was
observed (Wang et al. 2015), likely due to preferential
utilisation of the added substrate and thus a pool substitution
(Shahbaz et al. 2017). This mechanism was effectively re-
vealed by the SUE, particularly at 5 °C (Fig. 7), because the
lignocellulose was incorporated into the microbial biomass by
a well-adapted microbial community (Borken and Matzner
2009). Soil microbial communities are resilient and able to
quickly recover after wetting in soils with high SOC stock
(Canarini et al. 2017). At 25 °C, however, lignocellulose-
derived C could be invested for highly energy demanding
processes, e.g. for enzyme synthesis, and less C was converted
into structural cell components (Ågren and Bosatta 1987;
Blagodatsky et al. 2000; Davidson and Janssens 2006;
Manzoni et al. 2012). This finding is in accordance with other
studies, which obtained similar results, i.e. a decreasing C use
efficiency with increasing temperature between 2 and 28 °C

Microbial substrate use efficiency (SUE) inceasing D/W cyclesFig. 7 Substrate use efficiency
(SUE) of 13C-lignocellulose at
5 °C (a) and 25 °C (b) estimated
after 27 days of incubation of the
D/W treatments, 0 cycle, 1 cycle,
and 4 cycles. Small bars indicate
standard errors of the mean. Large
bars indicate the least significant
differences (LSD) (p< 0.05)
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(Manzoni et al. 2012; Qiao et al. 2019). This phenomenon can
likely be associated with a change in metabolism rather than a
change in the microbial community structure (Manzoni et al.
2012; Bölscher et al. 2017; Di Lonardo et al. 2017). When the
number of D/W cycles was increased on undisturbed soil,
fPOM was negatively affected by warming and the accelera-
tion of aggregate turnover. Warming and aggregate turnover
could have significant implications for temperate forests fac-
ing global change. Faster macroaggregate turnover and deple-
tion of fPOM may prevent large stabilised SOM from
decomposing, leading to a lack of C stabilisation after repeat-
ed D/W cycles.

Conclusions

One drying-rewetting (D/W) cycle disrupted approximately
15% of the aggregates after 27 days. The fine particulate frac-
tion of organic matter (fPOM, < 1.6 g cm−3) released from
aggregates disrupted by D/W contained the most physically
exposed C (microbially available) as compared to the other C
pools. This fPOM, which we traced by added 13C-labelled
lignocellulose, was decomposed preferentially, covering mi-
crobial energy demand but not converted tomicrobial biomass
and therefore not contributing to long-term stabilisation in the
form of necromass residues. Increasing the number of D/W
cycles caused a negative priming effect (PE), i.e. preferential
utilisation of the added 13C-labelled lignocellulose released by
D/W cycles rather over other OM fractions. A new pathway is
proposed for C release by aggregate disruption, resulting in
negative PE due to D/W cycling. This scenario was reflected
by low substrate use efficiency (SUE), i.e. microbes preferen-
tially respiring the accessible fPOM, particularly at a high
temperature. Consequently, the D/W cycles at 25 °C signifi-
cantly increased microbial activity, which primarily regulated
fPOM decomposition.
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