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Abstract
Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae.
Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools
to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This reviewwill summarize
literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the
plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a
tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1
function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we
now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how
CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical
pathways) in cancer.
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1 Introduction

Caveolin-1 (CAV1) is a small, oligomeric scaffolding protein,
typically required to generate membrane curvature in struc-
tures, such as caveolae [123, 174]. Moreover, CAV1 binds to
many other proteins, controls cholesterol homeostasis, and
regulates a variety of cell functions, such as endocytosis, re-
ceptor internalization, cholesterol accumulation, and cell sig-
naling, proliferation, and death [29, 123]. CAV1-mediated
control of signaling events is relevant in cancer. As an exam-
ple, may it suffice to mention the interaction between CAV1
and Rho GTPases, such as RhoC, which favors the develop-
ment of metastasis by stimulating α5-integrin expression and
Src kinase-dependent activation of the p130Cas/Rac1, FAK/
Pyk2, and Ras/Erk1/2 pathways [6, 115]. Importantly,

however, CAV1 also functions as a tumor suppressor by
aiding E-cadherin in the sequestration of β-catenin, thereby
impeding activation of the β-catenin/Tcf-Lef-dependent tran-
scription of genes, like survivin, cyclooxygenase-2, cyclin D1,
and many others that favor cancer development [140, 165,
166]. Thus, CAV1 participates both as a tumor suppressor
and promoter in cancer (reviewed in [52, 123, 132]).

CAV1 is synthesized, then oligomerizes, and is inserted
into the ER membrane through the classical membrane/
secretory protein translocation pathway. The hydrophobic do-
main serves as an ER membrane anchor and adopts a loop
configuration exposing the N- and C-terminal domains to the
cytoplasm [109]. In addition, the N-terminal domain has a
DXE (Asp-X-Glu) sequence that allows CAV1 to concentrate
in ER exit sites and then be transported to the Golgi apparatus
with the help of the coat protein II (COPII) machinery. Once
in the Golgi apparatus, CAV1 undergoes conformational
changes and assembles (in a cholesterol-dependent process)
into larger and more stable complexes of about 160 caveolin
molecules, lipids, and membrane raft-associated cargos [59].
These are transported to the plasma membrane in vesicles and
inserted as planar caveolar domains, into which PTRF/cavin1
can be recruited, as well as other cavins, so as to generate the
caveola structures [59, 161]. Thus, because the protein traffics
to the cell surface and can then be internalized, CAV1 is also
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detectable at many intracellular sites. While subcellular loca-
tion is often considered fortuitous, it is becoming increasingly
clear that functionally important organelle-associated pools
exist, although their precise role remains largely obscure [44].

In caveolae or membrane rafts at the plasma membrane,
CAV1may serve to generate signaling hubs that control many
downstream events. As mentioned, CAV1 aids, together with
E-cadherin, in sequestering β-catenin to the plasma mem-
brane and in doing so regulates β-catenin/Tcf-Lef-dependent
signaling [45, 165, 166]. In addition, CAV1 is also implicated
in the internalization and turnover of the transforming growth
factor beta (TGF-β) receptor [36]. Some of these roles are
related to CAV1 function as a scaffolding protein; neverthe-
less, alternative possibilities exist. For instance, Raf-1 is a
proto-oncogene and serine/threonine protein kinase, which is
recruited to caveolae after epidermal growth factor (EGF)
stimulation and its presence there is necessary for the activa-
tion of the MAP kinase pathway [107]. However, others sug-
gest that caveolae are depleted of membrane proteins [155]
and participate indirectly in, for instance, Ras-dependent sig-
naling by changing lipid organization and cholesterol content
in domains of the plasma membrane [4, 144]. Thus, CAV1
plays a significant role in modulating cell signaling events at
the cell surface but can do so in different ways.

As indicated, CAV1 has been reported to function both as a
tumor suppressor and as a promoter of tumor progression and
metastasis (reviewed in [24, 133, 147]). A large number of
reports support the role of CAV1 as a tumor suppressor, asso-
ciating the reduced expression of CAV1 with cell transforma-
tion [12, 173, 178]. On the other hand, the re-expression of
CAV1, often observed in later stages of cancer, has been
linked to tumor progression, multi-drug resistance, and metas-
tasis [38, 73, 89, 95]. To what extent such variability may be
linked to the different ways in which CAV1 modulates sig-
naling at the cell surface or elsewhere is currently an area of
great interest.

The central region of CAV1 (residues 82–101), referred to
as the caveolin scaffolding domain (CSD), is proposed to bind
to many other proteins (containing a region enriched in aro-
matic residues termed caveolin-binding motif, CBM) and pre-
vent downstream signaling events [118]. For instance, CAV1
reportedly interacts with G proteins and suppresses their basal
activity by inhibiting GDP/GTP exchange [85, 124].
Moreover, this domain is implicated in regulating cell prolif-
eration and survival by inhibiting cell signaling proteins, such
as eNOS, Gi2α, and PKCα [136]. Furthermore, the CSD also
regulates Ca2+ influx into cells by interacting with and mod-
ulating the activity of certain ion channels, such as TRPC1
[117, 160], thereby leading to the alteration of cellular pro-
cesses, including cell proliferation [25] and tumor invasion
[117]. Moreover, this domain is suggested to be crucial in
controlling cell migration, possibly via STAT3, and also cell
cycle progression in several cancer cell lines [117].

In striking contrast, other reports describe how this domain
reduces the activity of the serine/threonine protein phospha-
tases PP1 and PP2A in order to sustain Akt activation and
thereby promotes cell survival in prostate [83] and pancreatic
cancer [61]. Others implicate the CSD in mediating interac-
tions between CAV1 and Rho GTPases. For instance, Rufini
and colleagues showed that the disruption of this interaction
by overexpressing CSD peptides in metastatic melanoma cells
led to diminished survival and extravasation of these cells [6].
Additionally, Hordijk and collaborators showed that CAV1
promotes directional cell migration via CSD-mediated inter-
action with the C-terminal domain of Rac1 [114].

However, several reports suggest that CAV1 effects are not
due to the interaction between a possible CBM in target pro-
teins and the CSD in CAV1. In general, proteins associated
with caveolae are not enriched in CBM. Moreover, CBM are
hydrophobic segments enriched in aromatic residues that are
buried within the protein structure, making it difficult to envi-
sion their participation in the interaction with other proteins
[20, 33]. In addition, the CSD is buried in the membrane and
inaccessible for the interaction with cytoplasmic proteins [5].
This data points towards the relevance of other mechanisms
through which CAV1 regulates signaling events, such as those
previously mentioned involving alterations in the lipid domain
organization or via interactions mediated by segments of the
protein that are phosphorylated.

In this respect, CAV1 phosphorylation on tyrosine 14
(pY14-CAV1) [105] has emerged as being important.
Phosphorylation at this site is associated with modulation of
focal adhesion dynamics, cell migration, invasion, and tumor
metastasis as will be detailed later on [48, 71, 115, 119].
Interestingly, Nabi and colleagues showed that CAV1 phos-
phorylation on tyrosine 14 stabilizes focal adhesion proteins
and promotes cell motility in a CSD-dependent manner in
prostate cancer cells [105]. The authors suggest that CAV1
phosphorylation favors the interaction between the CSD and
several focal adhesion proteins, which in turn promotes focal
adhesion tension and cell migration, thus identifying pY14-
CAV1 as a molecular regulator of such processes (see also
review in this same special edition by Nabi and co-workers).
Other reports also mention the existence of a link between
pY14-CAV1 and the CSD, whereby CAV1 phosphorylation
on tyrosine 14 is suggested to trigger conformational changes
within the oligomeric structure of CAV1 molecules that in-
crease CSD accessibility for interactions with other proteins
[150, 186].

The regulation of all the signaling pathways described
above is attributed to CAV1 presence at the plasmamembrane
(canonical and predominantly studied roles). However, an
analysis of information available in data bases reveals that
CAV1 localizes to many cell organelles and subcellular com-
partments (Table 1 and Fig. 1), suggesting that CAV1 func-
tion is not likely to be limited to the plasma membrane, and
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moreover, that these CAV1 pools modulate important cellular
functions that in general are less characterized (non-canonical
roles).

Thus, here, we will review in detail the literature available
on the role of CAV1 in cancer and specifically the canonical
and non-canonical functions of the proteins associated with
CAV1 at the plasma membrane and in other subcellular local-
izations, respectively.

2 Canonical role of CAV1 at the plasma
membrane

2.1 CAV1 as a tumor suppressor or promoter

At early stages, CAV1 has been ascribed roles as a tumor
suppressor in colorectal, breast, lung, and liver cancers. For
instance, the reduction of stromal CAV1 is associated with
poor patient survival in breast cancer [182]. CAV1 downreg-
ulation promotes proliferation, while the overexpression in-
duces apoptosis in lung cancer cell lines [49]. In addition,
CAV1 downregulation inhibits senescence, while promoting
lung tumor development and increasing mortality in mice
[173].

The regulation of CAV1 protein levels is poorly under-
stood. Low and Nicholson reviewed the effect of epigenetic
regulation of CAV1, concluding that hypermethylation of the
CAV1 promoter decreases protein levels in breast and prostate
cancer [98]. This result is also observed in gastric cardia ade-
nocarcinoma and alveolar rhabdomyosarcoma, where mRNA
and protein levels are downregulated by hypermethylation of
CpG islands, which is associated with a decrease in patient

survival [51, 67]. Treatment with DNA-hypomethylating
agents, such as 5-aza-2′-deoxycytidine, restores the expres-
sion of CAV1, not only in breast and prostate but also in
ovarian, colon, and liver cancer cells [98]. In addition, treat-
ment of colon cancer cells with histone deacetylase inhibitors,
such as trichostatin A, increases CAV1 expression and pre-
vents cell proliferation [35]. Besides, epigenetic regulation of
CAV1-associated proteins is involved in cancer development.
For instance, hypermethylation of the PTRF/cavin1 promoter
leads to a reduction in caveola formation and Ewing sarcoma
development. The re-introduction of PTRF/cavin1 and CAV1
increases caveola number, promotes cell death, and decreases
tumor size [68].

On the other hand, the analysis of CAV1 expression in
samples of patients at early stages of colorectal cancer reveals
that protein levels are downregulated, but there is no correla-
tion with a reduction in mRNA levels, probably due to post-
transcriptional regulation involving miRNA 124 [164].

In terms of the signaling pathways implicated in CAV1-
associated tumor suppression, there are several studies on its
role as a plasma membrane-bounded protein (see Section 1).
Furthermore, CAV1 has been shown to control proliferation
and apoptosis of human lung carcinoma cell lines. In these
cells, CAV1 reduces cadherin-11/Stat3/Rac1 signaling by in-
teractions at the plasma membrane involving the scaffolding
domain [49]. Also, CAV1 stabilizes cell–cell contacts and
inhibits the spread of tumor cells during metastasis by favor-
ing the plasma membrane localization of E-cadherin and
p120-Catenin and the development of adherent junctions in
ovarian carcinoma cell lines [108]. Alternatively, EGF treat-
ment induces caveola-dependent endocytosis of plasma mem-
brane E-cadherin/β-catenin complex, disrupts cell–cell

Table 1 Subcellular localizations of CAV1. The localizations indicated
here are inferred from protein topology analysis using UniProt
knowledgebase, sequence-based predictions using PSORT (Prediction
of Protein Sorting Signals and Localization Sites in Amino Acid

Sequences), gene ontology obtained from the Mouse Genome
Informatics (MGI) database as well as experimental results obtained
from the Protein Localization Database (LocDB) and the indicated
references

Localization UniProt PSORT II MGI LocDB
Topology Prediction Gene ontology Experimental

Golgi apparatus + + + + Fridolfsson et al. [44]

Plasma membrane + + + Fridolfsson et al. [44]

Endoplasmic reticulum + + Fridolfsson et al. [44]
Hayer et al. [59]

Cytosol + +

Mitochondria + + Fridolfsson et al. [44]

Nucleus + Fridolfsson et al. [44]

Endosome + Fridolfsson et al. [44]

Non-membrane-bounded organelle +

Cell projection + Joshi et al. [71]

Cytoplasmic vesicle + Fridolfsson et al. [44]

Lipid particle + Fridolfsson et al. [44]
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contacts, downregulates E-cadherin as well as CAV1, and
thereby promotes invasion of cancer cells [99].

Moreover, CAV1 has been proposed to inhibit TGF-β
signaling, via caveolae/membrane raft-mediated endocy-
tosis and lysosomal degradation of TGF-β receptors [28,
175]. On the one hand, CAV1 interacts with TGF-β re-
ceptors, abolishing their interaction with SMAD proteins
and downstream events [28]. On the other hand, caveolae
and membrane rafts create a favorable environment for
the recruitment of ubiquitin ligases which promote the
ubiquitination and degradation of CAV1 and TGF-β re-
ceptors [28]. In this case, CAV1 recruits ubiquitinated
TGF-β receptors in the plasma membrane and aids in
transport to lysosomes, thereby inhibiting TGF-β signal-
ing. The reduction of the ubiquitination of CAV1 and
TGF-β receptors by the deubiquitinase POH1 reduces ly-
sosomal degradation of the TGF-β receptors in liver can-
cer cells. In doing so, POH1 promotes migration and in-
vasion via TGF-β signaling [175].

Quite to the contrary, CAV1 promotes metastasis and
multi-drug resistance in late stages of cancer. The expression
of CAV1 is higher in cancer compared to benign tissue and
correlates with poor prognosis [127]. The overexpression of
CAV1 is associated with increased cell survival, anchorage-
independent growth, and epithelial-mesenchymal transition,
migration, invasion, and resistance to anti-neoplastic drugs
[38, 94, 111, 127, 176].

An important step during the metastatic process is the
epithelial-mesenchymal transition (EMT), where CAV1, E-
cadherin, and the TGF-β receptor at the plasma membrane
are implicated [94, 127]. Looi and collaborators reviewed
the role of E-cadherin in EMT, where the protein is replaced
by N-cadherin, which disrupts adherent junctions and pro-
motes cancer cell spread [97]. Interestingly, during tumor pro-
gression, the switching of cadherins at the plasma membrane
is associated with augmented CAV1 expression. In this sense,
CAV1 increases migration of melanoma metastatic cells, but
the co-expression of CAV1 and E-cadherin inhibits tumor
formation and lung metastasis [94]. In addition, CAV1 repro-
grams the TGF-β signaling pathway from suppressing tumor
formation to being oncogenic. The lack of CAV1 increases the
expression of epithelial, but reduces the expression of mesen-
chymal TGF-β target genes in metastatic prostate cancer cells.
Moreover, CAV1 silencing increases the expression of E-
cadherin, integrin β4, and desmoplakin, thereby favoring ep-
ithelial integrity and inhibiting the tumor spread [127].

Recent studies from our laboratory indicate that not only
the expression of CAV1 at the plasma membrane but also the
phosphorylation of CAV1 on tyrosine 14 is necessary to in-
crease the metastatic potential of cancer cells in vitro and
in vivo [119]. Src family kinases are responsible for CAV1
phosphorylation on tyrosine 14 and alternatively, phosphory-
lated CAV1 aids in the recruitment of particularly Src to the
plasma membrane, leading to accumulation and activation of

Fig. 1 Subcellular localizations
of CAV1. Representative scheme
that summarizes the subcellular
compartments where CAV1 is
suggested to be localized as
supported by the UniProt,
PSORT II, MGI, and LocDB
databases and select references
(see Table 1). According to the
data, CAV1 is present in the
plasma membrane, Golgi appara-
tus, ER, nucleus, endocytic as
well as exocytic vesicles,
multivesicular bodies (MVB),
and lipid droplets. Additional ev-
idence places CAV1 at
mitochondria-ER interphase sites
(localizing CAV1 indirectly to
mitochondria), referred to as
mitochondria-associated ER
membranes (MAMs), as well as
lysosomal, peroxisomal, and
exosomal membranes, as will be
discussed in this review
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Src in focal adhesions [50]. In metastatic gastric cancer cells,
CAV1 promotes resistance to anoikis in a Src-dependent man-
ner by activation of the EGFR/integrin βI, PI3K/pAkt, and
MEK/ERK signaling pathways [176]. In addition, in hepato-
cellular cancer cell lines, CAV1 is required for the induction of
survival via the TGF-β/EGFR/pAkt signaling pathway [111].

2.2 Role of CAV1 in migration

The presence of CAV1 at the plasma membrane is necessary
for migration and invasion processes, since disruption of
membrane rafts by targeting CAV1 or cholesterol reduces
the metastatic potential of cancer cells [53, 181]. Also, the
phosphorylation of CAV1 is required for melanoma metasta-
sis. The expression of non-phosphorylatable CAV1 abolishes
the migration, invasion, and metastasis. On the other hand, the
expression of wild-type and phosphomimetic CAV1 increases
the metastatic potential of these cells [119]. Although CAV1
inhibits migration through its scaffolding domain in HeLa
cells [117], CAV1 increases migration via several signaling
pathways in metastatic cancer cells [15, 37, 119, 121].

On the one hand, pY14-CAV1 acts as a stabilizer of focal
adhesions through its scaffolding domain in metastatic cells.
For instance, pY14-CAV1 binds focal adhesion kinase (FAK)
and vinculin at the plasma membrane level promotes focal
adhesion traction and migration as mentioned earlier on
[105]. Furthermore, pY14-CAV1 promotes focal adhesion
turnover during migration [119, 168].

On the other hand, CAV1 enhances migration via activa-
tion of the Rab5/Rac1 pathway. CAV1 recruits p85α (a Rab5
GTPase-activating protein), thereby preventing Rab5 inacti-
vation. Active Rab5 increases the recruitment of Tiam1 (a
Rac1 guanine nucleotide exchange factor) to early
endosomes, allowing the activation of Rac1 [37]. In addition,
the presence of pY14-CAV1 in membrane rafts is required for
mechanical stress-induced metastasis mediated by PI3K(p85)/
Akt/mTOR activation. In this case, mechanical stress induces
cell motility, invadopodia formation, gelatin degradation, cy-
toskeleton remodeling, and metastasis, which are all blocked
by the treatment with membrane raft disruptors, such as
methyl-β-cyclodextrin [181].

Moreover, desmoglein 2 and CAV1 play an important role
in the migration of squamous carcinoma cells. Desmoglein 2
removes CAV1 from the cell surface and disrupts membrane
rafts. In this way, desmoglein 2 activates the EGFR signaling
pathway and increases migration in a Src-dependent manner
[121]. In addition, in metastatic cancer cells, activation of the
EGFR promotes the integrin/galectin3/pY14-CAV1/RhoA
signaling pathway, which stimulates cytoskeleton remodeling
and cell migration in a Src-dependent manner [15].

Interestingly, CAV1 presence and function at the plasma
membrane are not only related to caveolae. Historically,
CAV1 has been associated with its capacity to recruit and

retain proteins within caveolae. Nevertheless, more recent
studies reported on the exclusion of transmembrane proteins
from caveolae [155], suggesting that CAV1 modulates func-
tions in caveolae and also other compartments within the plas-
ma membrane. In fact, non-caveolar CAV1 oligomers, re-
ferred to as CAV1 scaffolds, participate in EGFR signaling,
endocytosis, and focal adhesion dynamics [78]. The role of
caveolar and non-caveolar CAV1 have also been studied in
PC3 prostate cancer cells, which express high levels of CAV1,
but lack of PTRF/cavin1 [63]. In this cell line, the caveola
formation observed upon PTRF/cavin1 overexpression corre-
lates with a reduction in migration that is associated with
CAV1 accumulation in caveolae at the cell rear, increases in
E-cadherin, and decreases in vimentin and metalloprotease 9
together with Rac-1 depolarization, all processes related to the
inhibition of EMT. On the other hand, the absence of PTRF/
cavin1 permits the polarized accumulation of non-caveolar
CAV1 and Rac1 in leading edge protrusions and increases
migration. All these observations confirm the notion that
CAV1 has different functions according to its localization,
even within the plasma membrane [8, 64]. Of note, caveola
formation or stability is assisted by other proteins implicated
in cancer, such as PACSINs [106, 146] and EHDs [84, 110].
A detailed discussion of these proteins and their participation
in related processes is however beyond the scope of this re-
view and can be found elsewhere [58, 66, 91, 131, 149].

In summary, CAV1 at the plasmamembrane participates in
a large number of signaling events that contribute to its role
both as a tumor suppressor and promoter of metastasis. How
these vastly distinct roles are coordinated within seemingly
similar sites remains an enigma that merits resolving in the
future.

3 Non-canonical role of CAV1 in mitochondria

In general, cancer cells utilize aerobic glycolysis instead of
mitochondrial oxidative phosphorylation, which is a metabol-
ic event known as the Warburg effect [177]. Although aerobic
glycolysis is an inefficient way of producing ATP, it is very
effective in generating the metabolites required for cell prolif-
eration, migration, and invasion [56, 57, 172]. Most recent
studies reported on the existence of different tumor microen-
vironments with symbiosis between different types of cancer
cells. Hypoxic cancer cells breakdown glucose by glycolysis
to produce lactate, which is used by oxygenated cancer cells
via mitochondrial respiration to generate energy [158].
Moreover, cancer cells reprogram stromal cells to provide
metabolites required to meet their anabolic demands [100].

In addition, there are several reports which explain the pos-
sible reasons why the loss of CAV1 in tumor stroma is con-
sidered a poor prognostic marker in cancer from a metabolic
point of view. In this regard, Lisanti and colleagues initially
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described that fibroblasts obtained from CAV1-deficient mice
and CAV1-deficient tumor stroma samples from human
breast cancer patients display catabolic features with a shift
towards aerobic glycolysis and autophagy/mitophagy due to
augmented oxidative stress [13, 125, 179]. These results led
the authors to propose a two compartment model of tumor
metabolism, known as the “reverse Warburg effect” which
proposes that a glycolytic, CAV1-deficient tumor stroma
may transfer catabolites, such as ketones, L-lactate, fatty acids,
and amino acids, to anabolic tumor cells and thus stimulate
mitochondrial metabolism in cancer cells [179]. However, to
the contrary, CAV1 knockdown has also been described to
decrease aerobic glycolysis, which was mainly reflected in
diminished lactate accumulation and intracellular ATP levels
accompanied by increased autophagy via AMPK-p53 signal-
ing in colon cancer cells [55, 116]. Thus, CAV1 appears to
participate in molecular mechanisms that control metabolic
switching both in the stromal and cancer cell compartments.

3.1 CAV1 localization in mitochondria-associated
membranes

In terms of mitochondrial localization of caveolin proteins,
some reports indicate that CAV3 in particular, is transferred
to this organelle as a consequence of interactions between
mitochondria and caveolae in response to sublethal ischemia
in cardiac myocytes [43, 44]. As for CAV1, there are several
reports which have detected this protein not only at the mito-
chondrial level [86], but rather enriched in mitochondria-
associated ER membranes (MAMs) [19, 143]. MAMs are
contact sites between the ER and mitochondria important for
Ca2+ and lipid homeostasis [135, 143], which when purified
contain proteins from the outer mitochondrial membrane and
inter-membrane mitochondrial space, but not from the inner
mitochondrial membrane [143]. ER and mitochondria interact
directly allowing for mitochondrial Ca2+ uptake through at
least three multiprotein complexes at the ER surface (IP3R),
outer mitochondrial membrane (VDAC1), and inner mito-
chondrial membrane (MCU) [18, 41, 139]. Ca2+ stimulates
pyruvate dehydrogenase and the F0/F1-ATPase required for
pyruvate decarboxylation, Krebs cycle activity, and ATP syn-
thesis [26, 163], thus leading to the suggestion that mitochon-
drial Ca2+ uptake promotes mitochondrial metabolism.

Numerous studies have reported on the role of CAV1 in
metabolism. For instance, CAV1 null mice develop substan-
tial metabolic alterations and mitochondrial dysfunction in
white adipose tissue, associated with compensatory gluconeo-
genesis and reduced steatosis in the liver [7]. Another report
describes that the absence of CAV1 in brown adipose tissue
leads to decreased β-oxidation and substantial alterations in
mitochondrial morphology, possibly due to an altered osmotic
gradient occurring between the inner mitochondrial mem-
brane and the cytoplasm of these adipocytes after being

exposed to fasting/cold treatment [32]. Normal mouse embry-
onic fibroblast cells derived from CAV1-knockout mice are
characterized by mitochondrial dysfunction, cholesterol accu-
mulation, and apoptosis [14]. In addition, CAV1 knockdown
in mouse embryonic fibroblasts inhibits mitochondrial respi-
ration and ATP production due to impaired cardiolipin bio-
synthesis and SIRT1 signaling. These cells have higher ex-
pression levels of p53 and p21 (cell cycle arrest markers) and
develop premature senescence [184]. In an opposite manner,
cancer cells with mitochondrially localized CAV1 are more
resistant to ER stress, have a more stable mitochondrial mem-
brane potential, and have increased mitochondrial biogenesis
and cell survival [43]. Thus, CAV1 appears to be necessary
for mitochondrial functionality in normal cells, but the over-
expression of CAV1 in cancer cells may promote malignancy
in these cells.

Moreover, the behavior of normal and cancer cells with
alterations in CAV1-expression is different in MAMs.
Normal cells derived from CAV1 knockout mice have less
contact surface between ER and mitochondria, which leads
to cholesterol accumulation in MAMs [143]. This effect was
also described by Pol and collaborators, who detected mito-
chondrial cholesterol accumulation and concomitant mito-
chondrial dysfunction in normal cells derived from CAV1
knockout mice. In these cells, CAV1 knockout reduces mito-
chondrial metabolism, but increases reactive oxidative species
production and apoptosis [14]. On the other hand, CAV1
overexpression inhibits ER-mitochondria communication
and remodeling upon ER stress in cancer cells, such as
HeLa cells overexpressing CAV1 or MDA-MB-231 cells
with high endogenous levels of CAV1. These cells have de-
creased Ca2+ levels and mitochondrial metabolism. Dynamin-
related protein 1 (DRP1) phosphorylation by PKA is required
for mitochondrial stability upon ER stress. By inhibiting PKA,
CAV1 reduces pDRP1 levels and thereby affects mitochon-
drial function [19]. One of the limitations of this study was the
fact that the authors were unable to define whether the afore-
mentioned effects of CAV1 were due to the specific localiza-
tion of this protein within MAMs or outside these structures.
Thus, the authors considered that CAV1 located outside the
mitochondria should also be taken into account when
assessing effects on mitochondrial metabolism [19].

CAV1 is considered a key regulator of mitochondrial func-
tion that is important for its role as a tumor suppressor during
cancer development. For instance, in H-Ras-transformed fi-
broblasts, CAV1 re-expression promotes Ca2+ reentry, thus
making them prone to cell death [137]. Indeed, any alteration
to the CAV1/Ca2+ axis triggersmitochondrial dysfunction and
apoptosis in transformed cells [137, 138]. Interestingly, how-
ever, CAV1 has also been shown to promote tumor develop-
ment by regulating Ca2+ homeostasis in breast, stomach, lung,
colon, and liver cancers [138].
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4 Non-canonical role of CAV1 in ER and lipid
droplets

As indicated above, CAV1 is important in the formation of
caveola structures at the cell surface. Initially, CAV1 is syn-
thesized in the endoplasmic reticulum (ER), oligomerized,
and transported to the Golgi complex and then on to the plas-
ma membrane as large complexes associated with lipids and
membrane raft-associated cargos via vesicular carriers [30,
59]. Once at the plasma membrane, CAV1 recruits PTRF/
cavin1 required for caveola formation [11, 59]. In addition,
CAV1 domains at the plasma membrane are enriched in phos-
pholipids, such as phosphatidylserine and phos-
phatidylinositol-4,5-bisphosphate, which are necessary for
cavin protein recruitment during the formation of the cave-
like structures [77]. Thus, specific phospholipid composition
as well as the presence of cholesterol are essential in caveola
assembly and composition.

Furthermore, CAV1 aids in shuttling cholesterol between
the plasma membrane and the ER/Golgi and also in the traf-
ficking Golgi resident proteins back to the cell interior from
the cell surface [44]. Additionally, CAV1 plays a role in the
formation and stabilization of lipid droplets. These cytosolic
storage organelles of neutral lipids are known to act as major
regulators of lipid metabolism, trafficking, and signaling in
several in vitro and in vivo models exposed to stress [128,
156]. Concerning lipid droplet biogenesis, CAV1 promotes
accumulation of lipids and proteins at specific sites in the
ER before entering these organelles [70]. Moreover, a posi-
tively charged sequence in the CSD along with the last 20
residues of CAV1 are held responsible for the sorting of
CAV1 into lipid droplets [70, 74]. Simulation of lipid droplet
biogenesis reveals that CAV1 reduces bilayer thickness of
lipid aggregates and thereby reduces the energy barrier to
facilitate pinching-off of these aggregates from the host bilay-
er [129].

In the context of cancer, these anti-lipotoxic organelles tend
to accumulate in tumor cells with an aggressive phenotype, as
well as in tumor cells exposed to hypoxic or nutrient/lipid-
deprived conditions. Furthermore, recent studies suggest that
these dynamic organelles are capable of abolishing nutrient
and oxidative stress and, therefore, promote tumor cell surviv-
al and growth by protecting, for instance, their contents from
damage due to peroxidation [128, 156]. Moreover, while the
majority of normal tissues synthesize new structural lipids by
using extracellular pools of lipids, tumor cells may prefer de
novo fatty acid synthesis, despite the availability of these ex-
tracellular lipids, in order to meet their specific lipid require-
ments and/or to maintain proliferation in a stressful environ-
ment [128, 141].

Human metastatic breast cancer cell lines, such as the triple
negative MDA-MB-231 cells, contain greater levels of cho-
lesterol and fatty acids in lipid droplets when compared to

non-metastatic and hormone-responsive breast cancer cells,
like MCF-7. Coincidentally, MDA-MB-231 cells express
high endogenous levels of CAV1, LDL receptors, and ace-
tyl-CoA:cholesterol acyltransferase 1 (ACAT1) enzymes [2,
3, 156], which facilitate incorporation into LDL particles and
promote proliferation [2]. Moreover, Siddiqui and colleagues
showed that the migration potential of MDA-MB-231 cells is
dependent on ACAT1 and correlates with increased lipid ac-
cumulation in these cells [3]. Furthermore, treatment with
ACAT1 inhibitors reduces LDL receptor expression and
LDL-enhanced proliferation [3]. Another report shows that
the treatment of triple negative breast cancer cells with bitter
melon extract reduces the accumulation of esterified choles-
terol, ACAT1, and LDL receptor expression, thereby reducing
tumor growth in mammospheres implanted into mice [152].
Interestingly, ACAT1 inhibition has been reported to promote
downregulation of the CAV1/MAPK pathway, which en-
hances pancreatic cancer aggressivity [82]. Therefore,
ACAT1 appears to increase the tumor-promoting function of
CAV1, by favoring LDL uptake, as reported in endothelial
cells [42], and also the formation and stabilization of lipid
droplets, which aid in sustaining tumor cell proliferation under
adverse conditions.

Gao and collaborators also describe the adjuvant effects of
simvastatin, an hydroxymethyl glutaryl CoA reductase inhib-
itor or statin that delays the progression of castration-resistant
prostate cancer by blocking cholesterol biosynthesis and
thereby regulating the expression of CAV1 [47]. Also, lova-
statin, in combination with non-steroidal anti-inflammatory
drugs, decreases the expression and membrane localization
of CAV1. This leads to the inhibition of CAV1-dependent cell
survival signals mediated by Akt activation, as well as other
downstream signaling effectors like ERK and STAT3 in
HCT-116 cells [54].

5 Non-canonical role of CAV1 in endosomes
and lysosomes

5.1 Endocytosis and autophagy

In general terms, the process of endocytosis involves the in-
ward budding of vesicles that transport several macromole-
cules from the plasma membrane into the cell [104]. This
process is relevant not only to internalization per se but also
for many other cellular functions, such as cell polarization,
turnover of cell surface receptors, and cell–cell communica-
tion in response to extracellular stimuli [101, 112]. In addition,
the endocytic process may lead to the formation of endocytic
vesicles coated with clathrin or lacking this coat protein
(clathrin-independent endocytosis). In the latter case, these
vesicles are of plasma membrane or caveolar origin and are
mainly composed of sphingolipids and cholesterol. Such
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microdomains are enriched in G protein-coupled receptors
and GPI-anchored proteins involved in several signal trans-
duction events [101, 103, 104]. In this context, the group of
Sandvig studied the dynamic properties of the pinching-off or
internalization of caveolae, focusing on the role of CAV1.
They observed that the exchange rate of CAV1 between the
plasma membrane and other intracellular pools is slow, thus
implying that these bulb-shaped structures may be immobile
at the cell surface and that their stability is controlled by
CAV1 [170]. Nevertheless, others indicate that caveolae do
not behave as immobile structures because they can efficiently
bud as endocytic vesicles [16] or rapidly flatten into the plas-
ma membrane in response to mechanical stress [157].

Several reports suggest that CAV1 not only impedes the
pinching-off of caveolae from the cell surface but also nega-
tively regulates the internalization of many proteins that are
found in membrane rafts enriched with caveolae. Such is the
case of the autocrine motility factor (AMF), a multifunctional
protein with distinct functions depending on whether the pro-
tein is found inside (cytosolic glycolytic enzyme) or outside
(extracellular cytokine) the cell [39, 113]. As a cytokine, AMF
can bind to surface receptors and regulate cell motility, signal
transduction, and protein ubiquitination in an autocrine man-
ner [21]. Notably, the majority of the reports describe AMF as
a secretable protein that, like its receptor (AMFR), is highly
expressed in gastric, endometrial, and breast cancers, among
others [65, 76, 88]. Specifically, in disease, AMF is suggested
to promote tumor angiogenesis, cell migration and prolifera-
tion, as well as being anti-apoptotic [65]. In addition, de-
creased expression of CAV1 has been associated with in-
creased AMF endocytosis upon NIH-3T3 cell transformation
by Ras or Abl oncogenes [81]. Conversely, when non-
transformed cells are transfected with AMF, the protein pro-
motes cell transformation and survival via PI3K/Akt signal-
ing, along with a decrease in CAV1 expression [167]. Thus,
the diminished levels of CAV1 that are observed as a conse-
quence of the cell signaling events triggered by AMF render
CAV1 unable to control AMF turnover. Therefore, CAV1
function as a tumor suppressor appears attributable, at least
in part, to its ability to counteract the function of tumor-
promoting proteins like AMF.

An important trait that characterizes cancer cells is their
deranged endocytosis [104]. Indeed, several membrane pro-
teins required for endocytosis become dysfunctional during
cancer development, as is the case for CAV1. For instance,
CAV1 and dynamin-2, which are both important for caveola-
mediated endocytosis and caveola assembly, are highly
expressed in bladder cancer and possibly contribute to the
progression of this type of cancer [134].

Moreover, for some cancers where CAV1 is highly
expressed, such as pancreatic cancer, the tumor cells are high-
ly sensitive to albumin-bound or conjugated chemotherapeu-
tic drugs [27]. This observation led the authors to hypothesize

that CAV1 may be crucial for drug uptake and responsive-
ness. Indeed, CAV1 overexpression enhanced sensitivity to
the drugs and, as expected, downregulation of CAV1 rendered
these cells resistant to apoptosis induced by the albumin-
conjugated chemotherapeutic agent [27]. Another report fo-
cused on the role of CAV1 in the treatment of human EGFR2
(HER2)-positive breast cancers. Specifically, Chao and col-
leagues observed high levels of CAV1 in this type of cancer
and noted that sensitivity to treatment with an antibody–drug
conjugate, known as trastuzumab emtansine or T-DM1, main-
ly depended on the vesicle-trafficking properties of the tumor
cells. Specifically, these authors showed that CAV1 colocal-
izes with the drug in SKBR-3 breast cancer cells that express
moderate levels of the protein. Moreover, SKBR-3 cells were
at least five times more sensitive than BT-474 cells, which
lack CAV1 [31]. Belting and collaborators validated these
results by confirming the role of CAV1 in trastuzumab inter-
nalization via endocytosis. Furthermore, they demonstrated
that hypoxia regulates CAV1 redistribution facilitating the
translocation of CAV1 from intracellular pools to the plasma
membrane, inhibiting trastuzumab internalization and thereby
promoting resistance to T-DM1 treatment [17, 69]. These ob-
servations suggest that CAV1 may represent an effective
prognostic marker for the outcome of T-DM1-treated patients.

In addition, CAV1 regulates other processes modulated by
endocytosis and vice versa [9, 151]. Such is the case for au-
tophagy, a “self-eating” process used by eukaryotic cells to
eliminate unnecessary proteins and organelles via the lyso-
somal pathway and thereby aid in maintaining metabolic ho-
meostasis [142]. Indeed, downregulation of CAV1 promotes
autophagy along with lysosome function by membrane raft
disruption in breast cancer cell lines and in tumor-
compromised tissue [151], suggesting that CAV1 may inhibit
breast cancer development by modulating autophagy.
Alternatively, others found that the presence of CAV1 in high-
ly metastatic hepatocellular carcinoma cell lines not only pro-
motes cell proliferation, angiogenesis, and migration but also
inhibits autophagy [92]. Thus, CAV1 is considered a marker
of poor prognosis in hepatocellular carcinoma patients who
had undergone tumor resection. The authors suggest that
targeted therapy against CAV1 should aid in re-establishing
autophagy and thereby serve to treat this type of cancer [92].

6 Non-canonical role of CAV1 in peroxisomes

During peroxisome biosynthesis, the peroxins (PEX) 3 and 14
are selectively released from the mitochondria in vesicular
structures called pre-peroxisomes. Subsequently, ER-derived
vesicles and pre-peroxisomes merge, incorporating
peroxisome-forming proteins, such as PEX16, into the struc-
ture, leading to increased import competence and peroxisomal
maturation [159]. During the elongation and fission processes,
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PEX11 indirectly recruits dynamin-like protein 1 (DLP1,
equivalent to DRP1 [183]) [87]. In fact, PEX11 interacts with
the mitochondrial fission factor (Mff) [75], an essential protein
for mitochondrial recruitment of DLP1 during mitochondrial
fission [120]. Once DLP1 has been recruited to peroxisomes,
this protein self-activates and polymerizes, thereby allowing
the pinching-off of daughter peroxisomes [75]. Moreover, the
silencing of DLP1 or Mff inhibits peroxisomal fission, which
leads to the development of tubular peroxisomes [46], sug-
gesting that these proteins participate not only in mitochondri-
al but also in peroxisomal fission.

In the liver, peroxisomes participate in the β-oxidation of
long-chain fatty acids [80] and in the bile acid synthesis
through the conversion of cholestanoic acid to cholic acid
[126]. Furthermore, peroxisomes are essential for the synthe-
sis of plasmalogens [169], which are required for membrane
biogenesis and protection against reactive oxidative species
[187]. Interestingly, progression of several tumors correlates
with overexpression of peroxisomal enzymes [22], like alpha-
methylacyl-CoA racemase, a mitochondrial and peroxisomal
enzyme involved in the metabolism of branched-chain fatty
acids and bile acid intermediates [154, 185]. On the other
hand, peroxisome disruption or inhibition leads to metabolic
stress, cancer cell death, and tumor reduction [22].

Information regarding the role of peroxisomal CAV1 is
scarce in the literature. However, CAV1 is reportedly enriched
in peroxisomal fractions of hepatocytes, specifically in
detergent-resistant microdomains [180]. In this sense, CAV1
colocalizes with peroxisomal proteins, such as catalase,
70 kDa peroxisomal membrane protein (PMP70), adrenoleu-
kodystrophy protein (ALDP), PEX14, and bile acid-
coenzyme A:amino acid N-acyltransferase (BAAT) [180]. In
addition, Faber and colleagues reported that, although CAV1
is not essential for peroxisome biogenesis, peroxisomal CAV1
is involved in hepatocyte proliferation and lipid metabolism
[180], and aberrant expression of the protein could promote
cancer development.

As mentioned previously, CAV1 impairs DLP-1 activation
by PKA at the mitochondrial level in cancer cells, which gen-
erates mitochondrial instability and dysfunction [19]. Taken
together, these data demonstrate the existence of a connection
between peroxisomes and mitochondria, not only in terms of
their function but also in their maturation. Bearing this in
mind, CAV1 presence or absence there may be associated
with organelle dysregulation and the development of cancer.

7 Non-canonical role of CAV1 in lipid-enriched
particles and vesicles

Beyond the literature discussed so far ascribing CAV1 roles in
different organelles within the cell, the protein reportedly also
exists in a secretable form that may modulate cell function in a

paracrine or autocrine manner. Given the characteristics of the
protein, several criteria must be met for this to occur. For
instance, Anderson and co-workers suggested that the trans-
membrane and hydrophobic region of CAV1 needed to be
embedded in lipid-enriched particles, while the cytoplasmic
regions of the protein should face the aqueous phase [86, 90].
Others showed that CAV1 accumulated specifically in the
lumen of secretory vesicles, together with apolipoproteins,
when pancreatic acinar cells or CAV1-transfected exocrine
cells were exposed to secretagogues, such as secretin, chole-
cystokinin, or dexamethasone [90]. Also, mechanistic insight
as to how CAV1 distribution may be modulated came by
showing that CAV1 phosphorylation on specific residues,
such as serine 80, targeted CAV1 to the secretory pathway
rather than to caveolae in AR42J pancreatic adenocarcinoma
cells [145].

The physiological role of CAV1 embedded in lipid parti-
cles was initially considered relevant in the context of lipid
transport between cellular compartments, such as lipid drop-
lets, caveolae, mitochondria, or the ER [86]. However, the
notion that secretable forms of CAV1 may be important in
the context of cancer arose when Thompson and collaborators
showed that androgen-insensitive prostate cancer cells secrete
CAV1 and, most importantly, that elevated levels of serum
CAV1 were detectable in samples from patients with ad-
vanced prostate cancer compared to the levels detected in
the serum of healthy subjects [162]. Moreover, these authors
evaluated the biological effects of the conditioned media ob-
tained from CAV1-expressing and secreting prostate cancer
cells (LNCaP-CAV1) on recipient LNCaP cells lacking
CAV1. Following incubation with conditioned media (CM),
recipient cells increased their viability and anchorage-
independent growth, and these effects were not observed
when the CM were depleted with a CAV1-specific antibody.
Importantly in an in vivomodel, consecutive injections of this
antibody ablated tumor growth and metastasis of CAV1-
expressing mouse prostate cancer cells [162]. In agreement
with the latter, Liu and colleagues analyzed the CM obtained
from LNCaP-CAV1 prostate cancer cells and found that
CAV1 was associated with small lipoprotein particles of ap-
proximately 15 to 30 nm in size, suggesting that these particles
may promote tumor growth and metastasis in vivo [10].
Furthermore, others also detected CAV1 in the CM of human
melanoma cells. Specifically, recipient cells exposed to CM
increased their migration and invasion capabilities, but such
effects were diminished when CM were depleted with a
CAV1-specific antibody [40]. Interestingly, Notario and col-
leagues found that Ewing’s sarcoma cells may regulate their
proliferation in an autocrine manner by taking up their own
secreted CAV1 [148].

Taken together, the evidence provided so far identified
CAV1 as a secretable protein present in small lipoprotein
structures that favor tumor development. However, others
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then identified CAV1, not only in small lipoparticles [10], as
mentioned, but also in membrane-enclosed structures called
prostasomes. These vesicles, released by metastatic prostate
cancer cell lines, such as PC-3, are enriched in membrane raft
components and may be several times larger in size than the
aforementioned lipoparticles [93]. Such membrane-enclosed
structures come in many flavors and are frequently employed
as vectors of communication among mammalian cells and
currently referred to as extracellular vesicles (EVs). In general,
EVs are characterized as containing a heterogeneous mixture
of sphingolipids and cholesterol in their membrane bilayer
and a large variety of molecular cargos (nucleic acids, lipids,
and/or proteins) that may be taken up by nearby or distant
recipient cells [102, 171].

Two major types of EVs, which mainly differ in their bio-
genesis, are considered in the literature. In the case of the
aforementioned prostasomes, the vesicles are also known as
microvesicles of tumor origin. They originate directly from
the plasma membrane by budding and vary in size, ranging
from 50 up to 1000 nm in diameter. The second type of EVs,
known as exosomes, are much smaller (50–150 nm) in size
than the aforementioned microvesicles and have attracted
great interest in the area of cancer research due to their widely
described role in promoting this process [72, 171]. Exosome
genesis begins at the plasma membrane, but the vesicles then
undergo a series of modifications at the early and then the late
endosome (multivesicular bodies, MVBs) stage. The sorting
of molecules into theseMVBs takes place by at least twomain
mechanisms. These may depend on the participation of the
endosomal sorting complexes required for transport
(ESCRT) machinery and may specifically include syntenin
and syndecans. On the other hand, exosome biogenesis has
also been described to be regulated by ESCRT-independent
pathways, which involve the participation of tetraspanins,
lipids, and RabGTPases [1, 62]. Subsequently, vesicles pinch
off towards the lumen of MVBs to generate intraluminal ves-
icles that contain the pre-sorted information and then, upon
fusion of the MVB compartment with the plasma membrane,
these vesicles are liberated into the extracellular space [102,
171]. Importantly, in the context of cancer, EVs have been
assigned highly diverse roles ranging from regulation of im-
mune responses [34] and the tumor microenvironment [130,
153] to preparation of the metastatic niche [72].

A currently unresolved question is how the presence of
CAV1 contributes to these processes attributed to EVs.
There is evidence that acidic pH conditions favor the delivery
of CAV1 in exosomes to less aggressive melanoma cells lack-
ing CAV1. This implies that specific pH conditions may fa-
cilitate cell-to-cell communication via exosomes, thereby pro-
moting the exchange of specific molecules including CAV1,
that modify the recipient phenotype, generally augmenting
their tumorigenic properties [122]. Notably, CAV1 was also
detected together with other tumor markers in exosomes from

plasma samples obtained from melanoma patients. Notably,
the ratio of CAV1-containing exosomes diminished signifi-
cantly when these melanoma patients underwent chemothera-
py compared to patients that did not receive such treatment
[96]. Furthermore, CAV1 has been detected in EVs from other
types of cancer models, apart from melanoma and prostate
cancer mentioned so far. For instance, Wong and colleagues
showed that only exosomes from metastatic hepatocarcinoma
(HCC) cell lines contain CAV1 along with other tumorigenic
proteins and RNAs, while this was not the case for exosomes
obtained from non-metastatic or immortalized hepatocyte cell
lines. Interestingly, the authors showed that the incubation of
non-motile HCC cell lines with exosomes derived frommotile
HCC cell lines leads to an increase in the migration and inva-
sion of these cells and that this may be due to the observed
activation of PI3K/Akt and MAPK signaling pathways, as
well as the increased secretion of the metalloproteinases
MMP-2 and MMP-9 by recipient cells [60].

Evidence from our laboratory also described the possible
role of CAV1 in EVs derived from the metastatic human
breast cancer cell line MDA-MB-231. Specifically, when an-
alyzing the protein content of these EVs by mass spectrome-
try, several proteins associated with the biological function
“adhesion,” and hence relevant in metastasis, were identified,
including tenascin, cysteine-rich angiogenic inducer 61
(Cyr61), and S100 proteins [23]. Importantly, these proteins
were only detected in CAV1-containing EVs. Also, in vitro
exposure of breast cancer cells lacking CAV1 to EVs contain-
ing CAV1 increased their migration and invasiveness as com-
pared to recipient cells of EVs derived from MDA-MB-231
cells in which CAV1 was silenced. These results not only
indicate that CAV1-containing EVs are capable of transferring
malignant traits to recipient cells but also underscore the im-
portance of CAV1 in this process [23]. An intriguing interpre-
tation of this data is that CAV1 plays an important role in
defining the molecular cargo of such EVs, a point which needs
to be addressed in future studies [24].

All together, these data identify a role for CAV1 in the
formation of EVs that specifically favor tumor development,
progression, and conditioning of the metastatic niche, al-
though the mechanisms by which this occurs remain to be
determined. Also, such studies open up the possibility of de-
veloping therapeutic strategies to prevent tumor progression
and metastasis by downregulating CAV1 and thereby reduc-
ing the transport of pro-metastatic cargoes to nearby and dis-
tant recipient cancer cells. Alternatively, and somewhat coun-
ter intuitively, CAV1-containing EVs may also be useful in
anti-tumor therapies, by aiding in transporting specific
cargoes, such as therapeutic drugs and/or nanoparticles, to
malignant cells. In this respect, a recent study showed that
B16F10 murine melanoma cells incubated with gold nanopar-
ticles (AuNPs) produce exosomes loaded with AuNPs that
preferentially accumulate in metastatic lung nodules formed
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following intravenous injection of these cells [79]. To what
extent the presence of CAV1 in EVs may aid in drug delivery
is an intriguing but as yet unresolved question.

8 Conclusions

In summary, we focused this discussion initially on literature
dealing with what we defined as canonical roles of CAV1, as a
modulator of signaling events at the plasmamembrane. There,
CAV1 is largely considered a scaffolding protein that func-
tions within caveolae; however, while roles for the non-
caveolar protein in regulating signaling via phosphorylation
on tyrosine-14 or modifying plasma membrane lipid compo-
sition have been described, they need to be explored in greater
detail in the future. Furthermore, we now know that CAV1
expression alters mitochondrial function in a number of ways,
yet the relevance of these mechanisms in cancer is still poorly
understood, as is also the case for peroxisomal CAV1. The
importance of CAV1 in lipid transport is well-established, but
again more research on the regulation of these processes and
their relevance to tumor biology is necessary. Thus, as stated
at the onset, CAV1 is present beyond the plasmamembrane in
numerous subcellular compartments. However, the precise
function of CAV1 at these sites often still remains to be de-
fined, as does the role of these pools in processes related to the
development of cancer (non-canonical roles, Fig. 2).
Undoubtedly, more research in this area is required to shed
light on these emerging new functions of the protein. Finally,
understanding how CAV1 participates in EV genesis and

function is an exciting new field of CAV1 research that holds
considerable promise in the development of cancer therapies.
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