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The access to real geometallurgical data is very limited in practice, making it difficult for
practitioners, researchers and students to test methods, models and reproduce results in the
field of geometallurgy. The aim of this work is to propose a methodology to simulate
geometallurgical data with geostatistical tools preserving the coherent relationship among
primary attributes, such as grades and geological attributes, with mineralogy and some
response attributes, for example, grindability, throughput, kinetic flotation performance and
recovery. The methodology is based in three main components: (1) definition of spatial
relationship between geometallurgical units, (2) cosimulation of regionalized variables with
geometallurgical coherence and (3) simulation of georeferenced drill holes based on geo-
metrical and operational constraints. The simulated geometallurgical drill holes generated
look very realistic, and they are consistent with the input statistics, coherent in terms of
geology and mineralogy and produce realistic processing metallurgical performance re-
sponses. These simulations can be used for several purposes, for example, benchmarking
geometallurgical modeling methods and mine planning optimization solvers, or performing
risk assessment under different blending schemes. Generated datasets are available in a
public repository.
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INTRODUCTION

At present, access to large mining exploration
and/or geometallurgical databases from industry, for
academic and/or educational purposes, is difficult,
and this due to confidentiality restrictions and/or

budget limitations. Development of realistic syn-
thetic geometallurgical databases as proposed in this
paper may allow an alternative to such problem and
may also offer a robust tool for the purposes of
benchmarking exploration and/or geometallurgical
modeling, mine planning methods or reserves esti-
mations (Garrido et al. 2019).

Geometallurgy has become an important field
in mining engineering because of its benefits on the
ore quality on mine planning, plant performance,
lower costs and product quality. To incorporate
these benefits into the mining value chain, key
metallurgical responses and proxy variables need to
be incorporated into the block model, which is the
main input to solve many optimization problems in
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mine planning (Ortiz et al. 2015; Dominy et al.
2018). This enriched block model with geometal-
lurgical variables is commonly termed a geometal-
lurgical block model (GMBM), and the
methodology of this research is based on the transfer
of the simulated attributes of the GMBM to a
geometallurgical database (GMDB), referred to a
drill holes of a geological exploration campaign.
From the point of view of practitioners, researchers,
teachers and students, there is another issue with
GMDB; that is, the important lack of available
GMDB that can be used because the data needed
are usually subject to confidentiality agreements.
This fact is the motivation to offer a methodology
for the simulation of GMDB, exemplified here with
a porphyry copper type deposit, but it can be applied
to any other type of mineral deposit.

There are several methodologies for building
such GMBM (Garrido et al. 2018b). The primary-
response framework for building geometallurgical
models is a very solid methodology for geometal-
lurgical modeling (Coward et al. 2009). Primary at-
tributes, such as grades, lithology and alteration, can
be proxies to response attributes such as grindability
indices, recovery, metallurgical rock properties
(Deutsch 2016), among others. As many of those
response attributes are not additive, traditional lin-
ear estimation methods are not valid and should not
be used to build the block model (Carrasco et al.
2008). Typically, there are three complementary
approaches to populate the GMBM with response
variables. The first approach is the use of predictive
regression models, from simple linear regressions
(Montoya et al. 2011; Boisvert et al. 2013), nonlinear
regressions (Carmona and Ortiz 2010; Keeney and
Walters 2011; Sepúlveda et al. 2017) and clustering
(Hunt and Jorgensen 2011). The second approach is
simulating the processing stage (Suazo et al. 2010).
The third approach is the use of mineralogy as the
main proxy. Mineralogy is of enormous importance
for geometallurgy as it plays a fundamental role in
the characterization of metallurgical responses
(Lamberg 2011; Hunt et al. 2013; Yildirim et al.
2014; Lund et al. 2015). This approach, nevertheless,
requires having the mineralogy characterization of
the deposit, which is expensive, often resulting in
limited data available.

The only related research on methodologies for
the simulation of geometallurgical block models, so
far according to the literature review done in this
paper, is Lishchuk (2016) thesis. In this thesis, a
methodology, termed geometallurgical testing

framework, was proposed for building a synthetic
ore deposit model with focus on geometallurgy. This
framework has three main modules: (1) a geological
module, (2) a mineral processing module and (3) an
economic module. The first two modules are the
most relevant modules for the simulation of syn-
thetic geometallurgical ore bodies. Imposing multi-
variate spatial correlations, which is missing in
Lishchuk�s methodology, is critical to ensure that the
desired spatial characteristics are reproduced with
geological sense and coherence (Maksaev et al.
2007).

In the mineral processing stage, there are very
limited simulation models available. A few com-
mercial simulators exist, but these do not disclose
the methods and parameters used to create the
models, and in most cases, are simple nonlinear
predictors that do not consider the uncertainty
associated with the response variable. Commercial
simulators are not designed to estimate the uncer-
tainty associated with geological variability, since
mineral characterization is a ‘‘constant’’ input and
does not vary over time processing.

The contribution of this paper is a robust
methodology to simulate a GMDB using openly
available geostatistical tools, which preserves the
coherent relationship among primary attributes,
mineralogy and geometallurgical response attri-
butes.

METHODOLOGY

To simulate a GMDB, the following steps are
needed:

1. Identification of variable types
2. Generation of a consolidated database
3. Simulation of geological primary variables

a. Definition of geometallurgical domains
b. Simulation of domains
c. Compositional geostatistical simulation

of minerals
d. Geochemical simulation

4. Simulation of geometallurgical responses
a. Simulation of variables for comminution

process
b. Simulation of variables for flotation

process
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5. Simulation of spatial drill holes
a. Topographic simulation
b. Simulation of density of drill holes
c. Survey and length simulation

These steps and some tools recommended for
this stage are provided in Figure 1. This methodol-
ogy allows simulating a GMDB for different pur-
poses. In this research, we show an application to
geometallurgical uncertainty in mine planning (long
term).

SIMULATING A GEOMETALLURGICAL
DATABASE

Through a case study, we illustrate the appli-
cation of the proposed methodology in a synthetic
typical porphyry copper deposit. The methods pre-
sented are not new, and their details are available in
the published references cited herein (Table 1);
however, the proposed workflow is novel in the
sense that it provides the logical steps for the con-
struction of the exploration and geometallurgical
database, including the design of a realistic drilling
campaign, according to the typical exploration pro-
cess.

Identification of Variable Types

Different types of variables must be treated
differently. Conventionally, variables are classified
as categorical or continuous; however, some con-
siderations must be kept in mind before modeling:

Categorical variables take a unique discrete
value within a pool of exhaustive and mutually
exclusive outcomes, in other words, at every location
one and only one of the K categories prevail.
However, categorical variables may be nominal or
ordinal:

� Nominal categories have no order relation
between them. Typical examples are the
lithological codes assigned to samples, which
can also be represented with numerical codes,
or the mineralization zone assigned to each
sample or location. In general, estimation and
simulation domains can be seen as nominal
categorical variables.

� Ordinal variables are ranked categories usu-
ally with unknown distance between the cat-

egories. An example of an ordinal variable is
the alteration intensity, labeled with a scale of
the type absent, low, moderate, high, or the
corresponding numerical values 0, 1, 2 and 3.

Continuous variables take values with an arbi-
trary precision, defined by the number of digits and
decimal places, within a continuous range. They may
be unbounded, but are most often bounded, e.g.,
positive. Furthermore, some continuous variables
are labeled as compositional, when they are part of a
multivariate observation and each represents a rel-
ative part of a whole. Typical examples of compo-
sitional variables are mineral proportions, relative
weight in a particle size distribution or geochemistry.
The main complication associated with composi-
tional variables is that their pairwise correlations
depend on the other variables considered in the
whole.

Although not formally a variable type, it is
important to distinguish between continuous vari-
ables sampled abundantly, typically grades of valu-
able or detrimental elements, some geotechnical
parameters such as rock quality designation, fracture
frequency or uniaxial compressive strength, and
those sampled scarcely, typically the case for
geometallurgical variables such as grindability, acid
consumption, flotation kinetics, to name a few.

From a geometallurgical perspective, there are
also two types of variables. Variables that are
intrinsic rock properties, termed primary variables,
and variables that reflect a response to a specific
process, termed response variables (Coward et al.
2009). Primary variables are among others, grade,
alteration, mineralization styles and density,
whereas examples of response variables are grind-
ability indices, e.g., Bond work index (BWI), semi-
autogenous grinding (SAG) power index and
recoveries, e.g., flotation recovery and consumption
of acid in leaching. In general, response variables are
not additive, which complicates the way in that these
variables can be propagated in the GMBM (Car-
rasco et al. 2008).

We carried out a case study to show the appli-
cation of the proposed methodology. The database
consists of (1) geological information (logging of
mineral zones and alterations, categorical variables)
to define and simulate the geometallurgical units or
domains (GMU), (2) geochemistry (percentage of
total copper by analysis X ray fluorescence or in-
duced plasm coupled), (3) mineral characterization
(percentage of most important minerals by infrared
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spectroscopy, continuous variables) to simulate with
compositional geostatistics, and (4) geometallurgical
responses (BWI test and rougher recovery test) to
cosimulate with conventional geostatistics, e.g.,
sequential Gaussian simulation.

Generation of a Consolidated Database

The available information must be formatted
for processing by the different modeling methods.
This apparently trivial task may consume a signifi-
cant amount of time, so it should not be minimized.
The main objective is to prepare the database for the
application of conventional geostatistical tools. This
requires that every piece of information must be
attached to spatial coordinates. This allows the cal-
culation of spatial correlations, and also the cross
correlations between variables, which are necessary
for the application of estimation and simulation
techniques (Isaaks and Srivastava 1989; Goovaerts
1997; Deutsch and Journel 1998);

For most multivariate statistical techniques, it is
also required that the data be homotopic, that is, all
variables must be available at the same location for
cokriging or cosimulation, and they must be mea-
sured at a consistent volumetric support (Carrasco
et al. 2008; Chiles and Delfiner 2012; Garrido et al.
2016). Imputation is necessary to replace missing
data by values that are statistically consistent with
the non-missing data, both in a statistical and spatial
sense (Munoz et al. 2010; Barnett et al. 2013). These
values should reproduce the variability expected at
their location and honor the spatial relationship with
neighboring samples. There are several imputation
methods, among the most used are (a) impute
missing values by Gibbs sampling methods, (b)
multiple imputation from predictive distribution, (c)
impute with regressions or (d) optimization ap-
proach.

Regarding the issue of the volumetric support,
the idea is to bring all the available data to the same
support. For example, geochemistry analyses, geo-
logical logging, structural information, geometallur-

Figure 1. Global methodology and tools for each stage.
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gical samples should be considered to enrich the
model, but their volumetric supports may be differ-
ent by orders of magnitude. Geochemical samples
may be taken over diamond drill holes samples at
1 m support, while geometallurgical samples may be
taken over bulk volumes representing 15 or 30 m of
a reverse circulation hole. Upscaling by compositing
is common practice (Chiles and Delfiner 2012).
Down-scaling techniques are sometimes required to
bring the data to the smallest support where more
abundant information exists. This can be achieved
by using geostatistical cosimulation and applying
constraints to the simulated values to impose
reproduction of the sample value at the larger sup-
port (Tran et al. 1999; Pardo-Iguzguiza et al. 2006;
Deutsch et al. 2016; Garrido et al. 2018a).

Variables can be dropped if deemed irrelevant
for the model, by using statistical techniques for
variable selection or machine learning, and
accounting for domain knowledge, that is under-
standing of the geological setting (Carmona and
Ortiz 2010). They can also be merged, to reduce the

dimensionality in the modeling process, using data
integration such as cokriging (Babak and Deutsch
2009), or dimensionality reduction techniques, such
as principal components analysis (Davis 1986;
Webster and Oliver 1990; Goovaerts 1997). In this
case study application, the consolidated database is
used to learn the geometallurgical relationships re-
quired to generate realistic simulations.

Simulation of Primary Geological Variables

Definition of Geometallurgical Domains

Hydrothermal ore deposits, in general, present
zoning of different mineral associations (Sillitoe
2010), which correspond to GMU and, within these
domains, there is also variability in the composition
of rock. The concept of ore type provides a frame-
work to form a common perspective around the
performance of material, to make decisions (Jackson
and Young 2016). This implies that, depending on

Table 1. Summary of references by each stage of the methodology

Stage of the

methodology

References Comments

Consolidate data-

base

Tran et al. (1999), Pardo-Iguzguiza et al. (2006), Car-

rasco et al. (2008), Munoz et al. (2010), Chiles and

Delfiner (2012), Barnett et al. (2013), Garrido et al.

(2016), Deutsch et al. (2016), Garrido et al. (2018a)

Discussion on the problem of multivariate simulation of

heterotopic attributes, imputation of missing data,

upscaling and down-scaling problems

Simulation of geo-

logical domains

Isaaks and Srivastava (1989), Goovaerts (1997), Deutsch

and Journel (1998), Armstrong et al. (2003), Deutsch

(2006), Maksaev et al. (2007), Carmona and Ortiz

(2010), Sillitoe (2010), Mariethoz and Caers (2015),

Beucher and Renard (2016), Jackson and Young

(2016), Sepúlveda et al. (2017)

Discussion on ore type concept, clustering and the

importance of understanding geological setting to

simulate geological domains. References to conven-

tional geostatistics methods to simulate ore body de-

posits, such as sequential indicator simulation,

truncated Gaussian, pluri-Gaussian, multi-point sim-

ulation algorithms

Simulation of geo-

logical continuous

attributes

Davis (1986), Webster and Oliver (1990), Goovaerts

(1997), Desbarats and Dimitrakopoulos (2000), Paw-

lowsky-Glahn and Olea (2004), Babak and Deutsch

(2009), Manchuk and Deutsch (2012), Mueller and

Ferreira (2012), Barnett et al. (2013), Boluwade and

Madramootoo (2014), Bolgkoranou and Ortiz 2019)

Tools for dimensionality reduction in the modeling

process, such as principal components analysis, mini-

mum/maximum autocorrelation factors, independent

component analysis, uniformly—weighted exhaustive

diagonalization with gauss iterations and projection-

pursuit multivariate transform. Log ratio transforma-

tion to simulate mineralogical attributes and use of

geostatistical simulation in continuous attributes

Simulation of

geometallurgical

industrial re-

sponses

King 2001), Suthers et al. (2004), Coleman et al. 2007),

Vann et al. 2011)

To support industrial simulation of geometallurgical

variables. Use of industrial processing or prediction of

plant process performance, upscaling of laboratory to

industrial scale, use of JKSim and mathematical

models

Mine planning Gholamnejad and Osanloo (2007), Suazo et al. (2010),

Lamghari and Dimitrakopoulos (2012), Kumral

(2013), Silva et al. (2015), Garrido et al. (2017)

Incorporation of geometallurgical models in mine

planning and quantification of the uncertainty of the

inputs to mine planning optimization problems
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the perspective, the definition of GMU is given
through the orebody knowledge, rock characteristics
and performance engineering. For example, from a
blasting perspective, the performance type is the
fragmentation distribution (target to optimize pro-
cess), and this depends on the geological domains
(joint characteristics, rock strength, rock density and
rock mass description rating) and the blast design
(operational factor). However, from a mill perspec-
tive, the performance target is the throughput that
depends on the fragmentation distribution, impact
resistance and grinding hardness (material type and
geological domains) and the milling circuit (opera-
tional factor).

To support the definitions of GMU, supervised
and unsupervised algorithms can be used. For
example, Sepúlveda et al. (2018a) give a methodol-
ogy to clustering with spatial corrections to define
GMU. It is important that the definition has geo-
logical foundation that validates the behavior of an
ore type. Another common option is to combine
different criteria to define the GMU through several
iterations: geological knowledge, statistical analysis,
multivariate iso-grades and spatial modeling. Fi-
nally, the GMU can be validated through geosta-
tistical tools, such as spatial data analysis,
cumulative probability plots and boxplot by cate-
gory, among others, to discriminate the different
statistical population. This is a subjective process
requiring many iterations, and, in this context, there
may be many valid interpretations of GMU for the
same deposit.

In the case study, five GMUs have been mod-
eled. These are associated with the copper mineral
zones of the deposit:

� GMU1: Oxidized copper ores with evidence
of leaching on the groundwater level of the
deposit;

� GMU2: Sulfides such chalcocite and digenite
(enrichment sulfides layer);

� GMU3: Primary hypogene sulfides with high
chalcopyrite—pyrite ratio;

� GMU4: Primary hypogene sulfides with low
chalcopyrite—pyrite ratio; and

� GMU5: Waste and gravel without economic
content associated with copper.

Simulation of Domains

Simulation of categorical variables can be car-
ried out with many different algorithms. In the
geostatistical toolbox, the following methods are
widely known and could be used for this stage: pluri-
Gaussian simulation (Armstrong et al. 2003),
sequential indicator simulation (Deutsch 2006),
multiple-point simulation (Mariethoz and Caers
2015) and truncated Gaussian simulation (Beucher
and Renard 2016). Most of these methods aim at
reproducing the indicator variograms between the
different categories. This entails reproducing the
number of transitions from one category to different
categories. Control over the transition�s changes
with different methods; therefore, some methods
work well under mostly unstructured (mosaic type)
categorical models (indicator simulation), while
others aim at preserving specific features such as
hierarchies (truncated Gaussian and pluri-Gaussian
simulation) or even curvilinear features and trends
(multiple-point statistical simulation).

In this research, we simulate categorical GMU
and calculate the probability of occurrence. Figure 2
shows a plan view with (left) the expected GMU and
the iso-curves with probability of GMU contacts,
and (right) the confidence level of model (40% to
100% of confidence).

GMU are simulated in the deposit by indicator
simulation. The actual implementation used here is
the block sequential indicators simulations algo-
rithm (Deutsch 2006), which implements the map-
ping pixel smoothing algorithm—maximum a
posteriori selection (Deutsch 1998) to improve the
contact among categories and preserve their im-
posed proportions.

Compositional Geostatistical Simulation of Minerals

Compositional variables are modeled after a so-
called log ratio transformation (Pawlowsky-Glahn
and Olea 2004). A full review of this approach is
given by Tolosana-Delgado et al. (2019). There are
several ways to approach this transformation, but
the simplest is presented here. Assume p� 1ð Þ
variables are available and form a composition, for
example, a set of mineralogical proportions. Since
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these variables form part of a whole, a filler variable
is calculated to complete the set. For example, if
proportions are reported in percent, this filler vari-
able can be:

R uað Þ ¼ 100% �
Xp

i¼1

Xi uað Þ

The additive log ratio transforms (Aitchison
1982) can be computed:

Zi uð Þ ¼ log
Xi uð Þ
R uð Þ

� �

These new variables are unbounded, that is, they can
take values between �1 and þ1, but are also
spatially correlated. Therefore, simulation can be
done by applying a decorrelation transformation and
simulating independently each component, or jointly
simulating all the log ratio transformed variables
using conventional geostatistical methods.

Decorrelation can be done by using a collocated
factorization such as principal component analysis,
which does not impose decorrelation of the variables
in space, but most of the time significantly reduces
the spatial cross-correlation of the principal com-

ponents (Bolgkoranou and Ortiz 2019). Other
methods for decorrelation are maximum autocorre-
lation factors (Desbarats and Dimitrakopoulos
2000), uniformly—weighted exhaustive diagonaliza-
tion with gauss iterations (Mueller and Ferreira
2012) and independent component analysis (Bolu-
wade and Madramootoo 2014). Projection-pursuit
multivariate transform (Barnett et al. 2013) finds
successively directions where the projection has the
maximum univariate non-Gaussian index and per-
forms the normal score transformation to that
specific direction.

In this step, we relate mineralogy with geology.
Mineralogy is often determined by mineralogical
test work, such as quantitative evaluation of mate-
rials by scanning electron microscopy (Fennel et al.
2015), which provides mineralogical proportions.
For each geological domain, a multivariate spatial
lineal model of coregionalization (LMC) is imposed,
if a correlation between variables exists. This LMC
is determined according to the relationships between
minerals in each geological domain, for example,
cuprite and chalcocite should be found in the mixed
or secondary enriched zone. The relationship can be
determined by correlation matrices. The simulation

Figure 2. (Left) Plan view with the expected GMU and (right) the confidence level of model.
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within each geologic domain is performed by the
ultimate sequential Gaussian simulation algorithm
(Manchuk and Deutsch 2012).

In this case study, compositional mineralogical
simulation was performed over each realization of
geological simulation (cascade approach), in order
for the geological uncertainty be propagated to the
simulation of mineralogical proportions. Figure 3
shows the E-Type (average of 50 realizations) of
chalcopyrite and chalcocite simulated over the same
plan view shown previously.

Correlations found in the exploratory data
analysis were replicated in the compositional simu-
lation. The relative proportions of minerals are
preserved, which are different for each GMU. Fig-
ure 4 shows that GMU2 has a higher proportion of
chalcocite�s sulfides and GMU3 has a higher pro-
portion of primary hypogene sulfides with high
chalcopyrite-pyrite ratio, which is congruent with
simulated GMUs.

Geochemistry

As minerals contain the chemical elements of
interest, simulating the geochemistry could signifi-
cantly improve the simulation of responses at the
plant, which will be dependent on the mineral

occurrence of these elements. In geometallurgy, the
elements of interest should not only be those of
economic interest, such as copper, gold, molybde-
num, silver and iron, but also deleterious elements,
such as sulfur, fluorine or arsenic. From the
geometallurgical perspective, deleterious elements
could be crucial in the beneficiation process and in
minimizing contaminants that affect the quality and
economic value of the final product (Lane 1988). A
geometallurgical block model should include both
kinds of elements.

There are two approaches to have elements and
minerals in the GMBM: (1) predicting mineralogy
from grades and (2) predicting grades from miner-
alogy. Some researchers have linked chemistry
composition to mineralogy to predict the mineral
proportions from element concentrations (Lamberg
2011; Townley et al. 2018; Abildin et al. 2019).

The other approach is deducing element con-
centrations from mineral proportions. The grade of
each element is a function of the minerals present:

ge ¼ f m1;m2; . . . ;mMð Þ

The ge function is derived from the chemical com-
position of the M minerals. For example, if there are
three minerals hosting copper: bornite, chalcopyrite
and chalcocite; we have:

Figure 3. (Left) simulated proportions of chalcopyrite. (Right) simulated proportions of chalcocite in percent.
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Bornite � Cu5FeS4 ! 63:31%Cu

Chalcopyrite � CuFeS2 ! 34:63%Cu

Chalcocite � Cu2S ! 79:85%Cu

gCu m1;m2;m3ð Þ ¼ m163:31%þm234:63%þm379:85%

where m1, m2 and m3 are the percentage of bornite,
chalcopyrite and chalcocite, respectively. The limi-
tation of this methodology is that mineral propor-
tions are most commonly derived from qualitative or
semi-qualitative estimates, usually with high degrees
of uncertainty. In addition, mineral proportions
estimates would only account for the theoretical
copper present but exclude trace elements such as
gold or silver that may be present.

Mineralogy also helps establishing the rela-
tionship of grade and mineralization zones. For
illustration, in a porphyry copper deposit, we could

find the following relationships of copper grade in
different mineralization zones: the total copper
content in secondary enrichment, which is charac-
terized by minerals with high copper content such as
chalcocite and covellite, is in general higher than the
total copper in primary rocks characterized by sulfur
with high content of chalcopyrite.

In the case study, mineral proportions were
used to calculate geochemical composition of total
copper, molybdenum (commodities) and arsenic
(pollutant). For example, the sum of copper in
chalcopyrite, bornite, covellite and oxides minerals
represents the total copper in minerals. The original
database contains total copper (in samples), and it
was compared through quantile–quantile plot with
the Total copper in minerals (Fig. 5). In addition,
spatial continuity was validated for total copper in
minerals, at a range of 70 m approx.

Figure 4. Radial map of mineral percentage for two samples of different GMU, validating the definition

based on mineralogical approach.
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Simulation of Geometallurgical Response from Drill
Core Samples

Metallurgical batch tests are performed on drill
core samples to generate mineral processing pre-
dictive models. However, such tests are not enough
to predict industrial performance as these do not
necessarily account for ore rock blending of feed
through the process and scale-up factors from batch
to industrial scale are not always known, especially
in exploration projects. Batch laboratory tests are a
useful tool to identify, through geometallurgical
modeling, trends and optimal conditions that are
proposed to be implemented later in the plant. In
this work, two instances of geometallurgical model-
ing are presented: comminution and flotation pro-
cesses.

Simulation of Comminution Process

There are roughly two kinds of models: power-
based models, which are based on grinding param-
eters that allow estimating the energy consumption
associated with a given size reduction, and popula-
tion mass balance models that can also be used to
predict the behavior of the rocks, from a particulate
system perspective, and how the particle size distri-
bution evolves during grinding. In each case, the
product particle size, characterized by P80, e.g., the
80% passing size is an important variable since it is
directly related to the liberation degree.

The following is a list of common comminution
tests: Bond work index for ball mill: the grindability
test determines the hardness of the ore rock. The
work index is used when determining the size of the
mill and grinding power required in producing the
required ore throughput in a ball mill. SAG power
index or Starkey test for SAG mill: provides the time
(minutes) required to perform a specific milling
work, from a feed size to an output size. SAG mill
comminution (Morrell 2006): it is a function be-
tween the specific energy applied and the percentage
of product generated in the impact fracture of a
specific particle size.

From these comminution tests, the specific en-
ergy consumption can be calculated, and later used
to optimize the process at industrial scale. When
simulating these variables, the use of multivariate
tools is recommended as it allows improving the
models� robustness.

Simulation of Flotation Process Performance

Flotation is a selective separation process that is
based on the difference in hydrophobicity of min-
erals at given physical–chemical conditions. In this
case, unlike comminution tests, the flotation tests are
not standardized, and, in general, the flotation re-
sults correspond to a combination of ore character-
istics and the way the flotation tests were performed,
expressed in operational variables such as pH, P80,
solid weight and aeration conditions. In the case of

Figure 5. Validation of statistical distribution and spatial variability for total copper grade in minerals.
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flotation modeling, the performance depends on the
head grade, rate constant, mineralogy and liberation
degree, which determines the maximum recovery.
All these variables can be simulated using multi-
variate tools to improve models� robustness without
increasing unnecessarily the number of tests.

The flotation test can have many variants, for
example, the most common is the open cycle test: (1)
rougher primary flotation, (2) secondary flotation
optional cleaner, (3) optional scavenger tertiary
flotation, (4) optional re-grinding before the flota-
tion cleaner. Combinations of these tests can be
performed to replicate the industrial flotation cell to
maximize the recovered ore and its concentration.
The following information is usually obtained from
these tests: kinetics of flotation k Klimpel, maximum
recovery with prolonged flotation time or ‘‘infinity’’,
mineral characterization and head geochemistry
(feed), mineral and geochemical characterization of
concentrate, at 1.5 min, 3 min, 6 min, 12 min and
15 min of flotation, mineral and geochemical char-
acterization of tailings, at 1.5 min, 3 min, 6 min,
12 min and 15 min of flotation, among others.

The mineral characterization consists of bri-
quette preparation, quantitative mineralogy, mineral
association identifications, granulometric distribu-
tion, among others. From these tests, a database is

obtained with many variables that are used to opti-
mize the flotation process performance at an indus-
trial scale (Jackson et al. 2011).

The metallurgical process is related with the
industrial processing or prediction of plant process
performance (Suthers et al. 2004) of the ore that has
been removed from the in situ ore deposit. The ore
is processed continuously at industrial scale, through
a process of crushing, conveyor belt, grinding,
flotation, thickening and filtration, among others,
and this can be modeled and simulated (King 2001).
Many industrial simulators are used for this purpose,
for example the JKTech simulators: JKSimMet for
comminution and classification circuits, or JKSim-
Float (Vann et al. 2011) for simulation for steady
state performance in flotation plants. The software
can simulate operational parameters (e.g., flowsheet
of the processing plant) and tests its performance
(metal recovery and concentrate grade, water
recovery, residence time, gas holdup, froth recovery,
mass balance on a size by assay basis) to achieve the
best consistent data set and simulate the effect of
changes in the flowsheet to predict flows, size dis-
tributions and element distribution, among others.

Predictive models can be implemented by dif-
ferent mathematical adjustment models, such as
Australian minerals industry research association to

Figure 6. (Left) Bond Work Index BWI simulated (kwh/tc). (Right) Rougher recovery simulated (%).
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floatability component (Coleman et al. 2007). The
most important limitation of these simulators is that
they allow varying the configuration of industrial
machines (and other operational factors) consider-
ing a constant mineral feed, neglecting the geologi-
cal variability associated with the deposit and
blending factors. Another limitation of these simu-
lators is that the simulation of geometallurgical at-
tributes generates many possible processing
scenarios, which are not directly used in these sim-
ulators (industrial simulators receive a deterministic
input, not a stochastic geological input). Metallur-
gical response can be estimated by regression mod-
els calibrated from test work or reconciliation data,
which is the approach used in this paper.

In this case study, cosimulation for BWI and
rougher recovery was performed for each GMU
(Fig. 6). Rougher recovery was calculated as a sum
of individual mineral recoveries, assuming there is
no cross-interference that affects the flotation pro-
cess. Rougher recovery has a negative correlation
with chalcocite, consistent with laboratory perfor-
mance of assays to flotation.

Finally, the block model has been simulated
with geological variables, mineralogical variables,
geochemical variables and geometallurgical re-
sponse. Each simulation was simplified for research
purposes, but the methodology is flexible and can be
implemented to other more sophistically types of
simulations (see ‘‘Simulation of Spatial Drill Holes’’
section).

Simulation of Spatial Drill Holes

To generate a database that looks realistic,
different conditions must be simulated for explo-
ration campaigns. In this context, simulations of
topographical area, density of information and sur-
vey of drill holes are simulated.

Topographic Simulation

To simulate elevation, non-conditional simula-
tion was performed. Smooth simulations are appro-
priate for realistic surface modeling. Z-elevation
collar position of drill holes is a known function of x-
east and y-north coordinates. Figure 7 shows an
exploration target area (estimated with geochem-
istry, petrological, geophysics and geochronology
knowledge). This area can be simulated with cate-
gorical simulation of boundary and synthetic pseu-
do-drill holes. This is the first campaign whose
objective is to find deep mineralized bodies.

Simulation of Density of Drill Holes

If the ore body is found in the first campaign, a
second campaign is performed with different objec-
tives: define the prospect dimensions, develop the
first estimation of ore grades and improve the geo-
logical knowledge for interpretation.

Figure 7. Topography area that is an exploration target with four drill holes.
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The geological interpretation of metallogenic
controls of mineralization is important at this stage
to design the next exploration plan. Geostatistical
tools can improve the geological knowledge to de-
fine domains, for example exploratory data analysis
may help showing distributions of different geolog-
ical properties (Figure 8 shows of the logging of drill
holes with 5 geological codes and the cumulative
probability plot of chalcopyrite in each unit), for the
purpose of identifying relevant economic domains
and quantifying the possible mining resources.

Depending on the exploration stage, a given
drilling spacing is targeted, in consideration of the
associated risks of finding the resources and bud-
getary constraints. The expected orebody geometry
determines the orientation and depth of the drill
holes. Figure 9 shows a regular mesh (collars of drill
holes, in surface) that depends of the geological
continuity of ore body.

Survey and Length Simulation

In depth, drill holes may be oriented in partic-
ular directions with the objective of intersecting
perpendicularly a tabular body, structural vein, etc.
At this stage, structural information is important to
define the orientation of the drill holes (azimuth and
dip). Structural zones must be identified through the
oriented drill holes. Figure 10 shows oriented drill
holes with an azimuth and dip calculated based on
structural information.

The lengths of the drill holes depend on the
depth of ore body and long-term scheduling (based
on feasibility studies). In regular deposits near to
surface, the length drill holes can range from 50 m to
500 m in depth. We use a normal distribution to
simulate the length of the drill holes, for example a
normal distribution with mean of 300 m and stan-
dard deviation of 100 m. Finally, a random subset of
the available drill holes samples is informed with
geometallurgical attributes, to represent the typical
scarcity of geometallurgical information. In our
example, 10% of all simulated samples contains
geometallurgical test values.

Application to Uncertainty in Mine Planning

Uncertainty in mine planning optimization
plays a critical role not only in finding the optimal
economic valuation through the maximization of net
present value, but also in risk assessment. Most of
the research focuses on incorporating grade uncer-
tainty in strategic mine planning, and medium- and
short-term scheduling optimization problems. Be-
cause scheduling transforms a three-dimensional
resource model into a temporal model, one cannot
assign a profit value at block scale (or selective
mining unit scale) before the decision on where,
when and what to mine is made by the optimizer.
Traditionally, this simplification is often done, but a
realistic schedule of the profit of a set of blocks in a
temporal interval should depend on geological

Figure 8. (Left) Plot of five geological codes in drill holes logging and (right) categorical cumulative probability plot of

chalcopyrite percent.
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properties and response properties of the complete
set of blocks, and to the specific plant conditions. In
case of early stages, design plant condition needs to
be used, whereas in productive stages, real plant
conditions need to be considered.

Any response attribute can be modeled as a
transfer function f with inputs: set of blocks B and
their attributes, a set of plant parameters P, and a
timeframe Dt.

q ¼ f B;P;Dtð Þ

Therefore, accounting for the uncertainty of pro-
cesses requires not only carrying the uncertainty of
inputs to the model, but also, the uncertainty of the
processes themselves. Incorporating the uncertainty
of the inputs to mine planning optimization prob-
lems is a very active research topic. Grade is the
main geological attribute that was incorporated to

Figure 9. Collars of drill holes in regular mesh in surface.

Figure 10. Oriented drill holes campaign with an azimuth and dip calculated based on structural information.
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many production planning optimization problems
(Gholamnejad and Osanloo 2007; Lamghari and
Dimitrakopoulos 2012; Kumral 2013; Silva et al.
2015; Goodfellow and Dimitrakopoulos 2016).
Nevertheless, accounting for geometallurgical
uncertainty is very limited. Kumral (2011) incorpo-
rated uncertainty of revenue and cost by many sce-
narios based on simulations. Sepúlveda et al. (2018b)
used several geometallurgical variables under
uncertainty to optimize production scheduling in a
block caving operation by a multi-objective ap-
proach. The uncertainty of geometallurgical attri-
butes was quantified by geostatistical simulations of
primary variables and nonlinear regression models
for response variables.

One approach, which is the most used and the
simplest, is defining transfer functions from stan-
dardized response variables to specific plant condi-
tions. The approach that reflects the responses to
processes of a set of blocks in a timeframe is by
simulating the processes, while the optimization is
being performed. Obviously, this approach is very
challenging because simulating the processes re-
quires large computing power. Populating any

geometallurgical resource model with response at-
tributes should be avoided because it implicitly as-
sumes (1) a block responds independently to the
other extracted blocks, which is not the case, and (2)
the throughput is constant. However, there is limited
research in this direction. Garrido et al. (2017) de-
fined the concept of geometallurgical dilution to
account for the impact of feeding blocks of different
geometallurgical domains to the plant, if different
geometallurgical domains have different responses.
They showed that geometallurgical attributes can be
effectively included as part of the optimization
process. More research needs to be done to incor-
porate the response simulation as part of the opti-
mization process.

In our case study, to transfer spatial variability
of geometallurgical variables to temporal variability,
a mining scheduling (life of mine) was calculated
with the Lerchs and Grossman algorithm (Lerchs
and Grossman 1965) for the E-Type of the gener-
ated simulations. Figure 11 shows the 20 phases of
the project, calculated with real economic and de-
sign parameters of a porphyry copper ore body open
pit.

Figure 11. Graphical scheduling of 20 phases of project, LOM.
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Figure 12. Re-dimensioned scaled recovery variability by blocks (for one realization) and by year (for all realizations).

Mean recovery by block with 95% confidence interval is shown.
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Geometallurgical variability can be measured
by period (in this case, by phase or year). Known
temporal behavior of mineral processing may allow
industrial metallurgical simulations. In this case, to
simplify the research application, a correction factor
of rougher recovery was applied to calculate indus-
trial recovery. This correction factor was calculated
for each GMU, as in the Collahuasi case study
(Suazo et al. 2010).

Figure 12 shows the rougher recovery variabil-
ity by year (E-Type vs. uncertainty in simulations).
It shows how geological variability is propagated to
metallurgical variability. The results show years with
low metallurgical variability (for example, phase 12)
and years with high metallurgical variability (phase
7) for one realization. This variability is fully at-
tributed to geological variability, and it does not
consider the operational variability. Case phase 7
shows low recovery because sulfides mineral zones
include secondary enrichment (GMU2), and chal-
cocite affects recovery negatively, increasing uncer-
tainty.

This application shows how geological uncer-
tainty is propagated to metallurgical responses.
Usually, conciliations show differences that can be
attributed to geological variability and operational
interferences.

CONCLUSIONS

We have presented a reproducible methodology
for the simulation of a synthetic geometallurgical
drill holes dataset, with special interest in preserving
the coherence between geology, mineralogy and
grades. Response attributes were included in the
drill hole database, comminution process and flota-
tion performance. Simulations can be self-explained,
any algorithm aligned with the generating method
will appear to work well—other algorithms will ap-
pear to have poor performance, and this condition is
a limitation to any method. One of the main con-
tributions of this article is the summary of geo-
statistics tools that can be used.

Starting with real or synthetic drill holes and
following the six steps in the proposed methodology,
a GMDB can be successfully simulated. All pro-
grams used in the methodology can be found in open
source software, free software or commercial soft-
ware.

The article discusses how we understand a
geometallurgical unit, which may depend on the

geological setting, the metallurgical process and
the implementation in the operation, unlike the
conventional geological domains that only depend
on geological characteristics associated with the
rock.

The geometallurgical variable (associated with
a rock process in situ) is differentiated from the
metallurgical variable (associated with a continuous
process in time). The geometallurgical variables
(such as BWI, rougher recovery, specific acid con-
sumption and soluble copper) can be simulated by
geostatistical tools in spatial block model, subject to
the correct definition of the GMU. The loss of pre-
dictive processing capacity generates problems in
mining reconciliation, increased uncertainty and in-
creased costs. With a correct and careful application
of this methodology, the geometallurgical uncer-
tainty can be evaluated by implementing preventive
protocols to reduce processing costs.

We have also included in the complementary
material the simulated inputs and GMDB of the
case study for academic and teaching purposes
which are also available for downloading in the
public repository https://github.com/exepulveda/geo
met_datasets.
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