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ABSTRACT

Homogeneously driven dynamical systems exhibit multistability. Depending on the initial conditions, fronts present a rich dynamical behav-
ior between equilibria. Qualitatively, this phenomenology is persistent under spatially modulated forcing. However, the understanding of
equilibria and front dynamics organization is not fully established. Here, we investigate these phenomena in the high-wavenumber limit.
Based on a model that describes the reorientation transition of a liquid crystal light valve with spatially modulated optical forcing and the
homogenization method, equilibria and fronts as a function of forcing parameters are studied. The forcing induces patterns coexisting with the
uniform state in regions where the system without forcing is monostable. The front dynamics is characterized theoretically and numerically.
Experimental results verify these phenomena and the law describing bistability, showing quite good agreement.
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Systems driven by homogeneous energy injection are character-
ized by exhibiting dissipative equilibria, i.e., attractors. Inho-
mogeneous initial conditions lead to the formation of different
domains. Walls or fronts separate these domains. These fronts
show a rich complex spatiotemporal dynamics such as those
observed in the spread of fires, crystal growth, disease propa-
gation, and explosions. These phenomena are persistent when
the systems are forced with spatially modulated energy injec-
tion. In this context, patterns replace the homogeneous states.
The front dynamics between patterns and homogeneous states are
characterized by a hopping dynamics, viz., fronts are propagated
by means of abrupt jumps. Analytical understanding of equi-
libria organization and the front dynamics is an open question.
To address this issue, the high-wavenumber modulation limit
and homogenization method are considered. Then, equations
with inhomogeneous coefficients are transformed into effective
equations with homogeneous coefficients. Hence, analytical anal-
yses are accessible. Here, we consider a liquid crystal light valve
with optically modulated forcing, which exhibits multistability
and fronts between these states. Due to the competition between

electrical and elastic force, the liquid crystals present a transition.
Close to this instability, an amplitude equation allows us to elu-
cidate that the forcing induces coexistence between patterns and
a uniform state in regions where the system without forcing is
monostable. Likewise, this model allows front dynamics charac-
terization. Experimental observations are in good agreement with
theoretical findings.

I. INTRODUCTION

Out of equilibrium systems are characterized by a permanent
injection of energy, momentum, or particles.1–4 Changing the phys-
ical parameters, these systems exhibit coexistence between different
equilibria as a result of spontaneous breaking symmetries. Due
to the inherent fluctuations of macroscopic systems, these transi-
tions are characterized by the emergence of different domains.3,4

A domain corresponds to a spatial region where an equilibrium
manifests itself. Different states are separated by domain walls.
Depending on the context, these domain walls are usually called
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interfaces, grain borders, and fronts, among others.5–16 Interfaces
can be observed in different spatial dimensions, even in one spa-
tial dimension.14,16 From dynamical systems point of view, fronts
correspond to heteroclinic curves in a co-mobile system.17 Indeed,
domain walls are solutions connecting two equilibria of a given
system.

These fronts dynamics depend on the relative stability between
equilibria. In variational or gradient systems, the speed of front
propagation between two uniform stable states, bistable fronts, is
proportional to the energy difference,6 where a lower energy state
invades an upper energy state. Even if the state of lower energy is
unstable (half-stable), it can invade a stable state of higher energy.18

Hence, bistable fronts are characterized by being motionless for a
single value of a parameter, the Maxwell point.4 The above descrip-
tion remains valid for the non-variational systems.19 The main
difference is that the front propagation mechanism in the non-
variational case is still an open question. Even when the front
connects two symmetric states, it can propagate as a result of sponta-
neous parity symmetry breaking. This phenomenon is well-known
as non-variational Ising–Bloch mechanism.20–22

The previous scenario changes drastically when the front con-
nects a stable state with an unstable one.8,11,23–30 These types of fronts
are usually called FKPP fronts, in honor of the pioneering works
of Fisher23 and Kolmogorov et al.24 The speed of front propaga-
tion into an unstable state depends on the initial conditions. As a
matter of fact, if one considers a bounded disturbance of the unsta-
ble state, it always spreads with minimum speed. This speed either
depends on the linearization around the unstable state (pulled front)
or on the nonlinear dynamics (pushed front).11 FKPP fronts have
been reported in fluid dynamics,25,26 phase transitions,27 liquid crys-
tal light valves with optical feedback,28–30 fiber optics resonators,31–33

and population dynamics.8

Likewise, when one considers a front between a homogeneous
state and a periodic structure or between pattern states in one spatial
dimension, the propagation speed exhibits utterly different behav-
ior. As a result of the spatial translation breaking symmetry induced
by the pattern state, the front is motionless in a range of parameters
independent of the relative stability between equilibria.6 This phe-
nomenon is known in the literature as the pinning effect. The origin
of this effect is the induction of a nucleation barrier in the front posi-
tion dynamics.34 Experimental verification of this phenomenon has
been achieved in liquid crystal light valves with spatially modulated
optical feedback14 and in a delayed bistable semiconductor laser with
optoelectronic feedback.35 Reference 14 shows that a bistable regime
with spatially modulated forcing exhibits coexistence of patterns.
Close to the reorientation instability of the liquid crystal, the system
exhibits bistability between a uniform state and an induced pattern.29

The wavelength of the pattern is imposed by the spatial forcing. The
characteristic scale of fronts connecting two homogeneous states is
the length of the transition region between equilibria, which is usu-
ally called the front core. Figure 1 depicts the front core by symbol l.
Based on the separation of spatial scales theory, homogenization,36–39

one expects the fronts dynamics to be analytically accessible and
understandable.

This paper aims to investigate fronts dynamics steered by a
with high-wavenumber forcing. Theoretically, a model describing
the reorientation instability of a liquid crystal light valve subjected

to a spatially modulated optical forcing, which corresponds to
a scalar spatial forcing model with cubic-quintic nonlinearity, is
considered. Based on spatial homogenization methods valid at the
high-wavenumber limit, the equilibria as a function of forcing
parameters are studied. Spatial forcing induces patterns coexist-
ing with the uniform state in regions where the unforced sys-
tem is monostable, namely, the spatial forcing causes bistability.
Analytically, we establish the bistability regions as a function of
the wavenumber. The proposed law has been experimentally ver-
ified finding quite good agreement with theoretical predictions.
Fronts connecting uniform and pattern states have been observed
in a bistable region. Also, a continuous transition from bistable to
FKPP fronts is observed as a function of the bifurcation parame-
ter. First corrections in the fast scale of the homogenized equation
allow the characterization of fronts and their propagation speed.
Pinning region and front speed can be predicted due to these
corrections. All described phenomena have been experimentally
observed, presenting qualitatively good agreement with the theoret-
ical findings.

II. BISTABLE MODEL WITH SPATIAL MODULATION
FORCING

Liquid crystal cells with photosensitive walls and spatial mod-
ulated optical feedback exhibit a subcritical transition, which is
described by the dimensionless bistable model (see Refs. 10 and 29
for details),

∂tu(x, t) = [µ + γ sin(kx)]u + βu2 + αu3 − u5 + ∂xxu, (1)

where u(x, t) accounts for the critical elastic mode amplitude of a
planar liquid crystal cell molecular reorientation subjected to an
orthogonal electric field. x and t account for the transverse coor-
dinate and time. µ is the bifurcation parameter which is propor-
tional to the difference between the applied voltage and Fréedericksz
voltage. Indeed, µ = 0 corresponds to the reorientational transi-
tion point. γ and k account for the strength amplitude and the
wavenumber of the spatial optical forcing, respectively. β is a phe-
nomenological parameter which stands for the pretilt generated by
the anchoring condition in the sample walls. The cubic and quin-
tic terms account for the nonlinear elastic and electric response of
the liquid crystal light valve with optical feedback.10 The nonlinear
response is controlled by the α parameter, which is a function of
the elastic constants, dielectric susceptibility, and the intensity of the
electric field. The last term accounts for the elastic coupling of the
liquid crystal. Physically, the amplitude should be a positive defined
quantity, i.e., u(x, t) ! 0.

A. Unforced reorientational transition

When the optical forcing is homogeneous, the system is not
spatially forced, γ = 0. Figure 1(a) shows the bifurcation diagram
of an unforced system, the total intensity of amplitude ||u(x, t)||
=

∫

u(x, t)dx vs the bifurcation parameter µ. The trivial state of
this system corresponds to the planar state u = 0. This state is sta-
ble (unstable) for µ " 0 (µ > 0). The other homogeneous states us

satisfy the relationship µ + βus + αu2
s − u4

s = 0. Continuous and
dashed non-horizontal curves account for the stationary solutions
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FIG. 1. Front solutions of unforced bistable model equation (1) by β = 0.5, α = 0.8, and γ = 0. (a) Bifurcation diagram of unforced bistable model equation (1), the total
intensity of amplitude ||u(x, t)|| =

∫

u(x, t) dx vs bifurcation parameterµ. Continuous and dashed curves account for stable and unstable states, respectively. Points account
for homogeneous states obtained by numerical simulations of Eq. (1). The left (white), middle (blue), and right (yellow) painted areas show, respectively, the monostable,
bistable, and coexistence regions. The symbols A = 102.4 and B = 118.2 account for some typical values of the total intensity of amplitude. µT , µSN , and µM account
for the bifurcation, bistable, and Maxwell point, respectively. (b) Profile and spatiotemporal diagram of fronts between planar (u = 0) and reorientation state (u > 0), in the
region of bistability and coexistence. The value of the reorientation state is represented by uA = 1.024 and uB = 1.182, respectively. l accounts for the size of the front core.
(c) Front speed V as a function of the bifurcation parameter µ. The points stand for the front speed obtained by numerical simulations.

in Fig. 1. Experimentally, the β parameter is very small; in this
limit, the stable and unstable states have the explicit expressions

us
s = (α +

√

α2 + 4µ)/2 and uu
s = (α −

√

α2 + 4µ)/2, respectively.
Hence, the system exhibits bistability for −α2/4 " µ " 0 and is
monostable for µ > 0. The previous bifurcation corresponds to
a subcritical bifurcation, which is characterized by three critical
points, the transition (µT = 0), the emergence of bistability (µSN),
and the Maxwell point (µM). Indeed, the critical points µSN and µT

characterize the limits of the bistability region. The Maxwell point
µM corresponds to the location in the parameter space, where the
relative stability of the equilibria is the same.

The left (white), middle (blue), and right (yellow) areas show,
respectively, the monostable, bistable, and coexistence regions in

Fig. 1(a). In both regions (blue and yellow areas), the system presents
coexistence between the planar (u = 0) and the reoriented state
(us

s). Hence, it is expected to observe bistable and FKPP fronts.
Figure 1(b) illustrates the typical front profile and spatiotemporal
evolution. Note that the front spreads rigidly with a well-defined
propagation speed. In fact, in the spatiotemporal diagram, one can
draw a perfectly straight line of propagation. Figure 1(c) summa-
rizes the front speed in the different regions. The front speed grows
monotonously with the bifurcation parameter; for µSN < µ < µM,
the planar state invades the reoriented one. The above scenario is
reversed when µ > µM. The front is motionless at µ = µM. For µ >
µT, the front propagates into an unstable state and experimentally
was studied in Ref. 29.
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B. Reorientational transition with spatial modulation
forcing

When the optical modulation forcing is considered (γ "= 0),
the system dynamics changes radically. As a result of spatial forcing,
the uniform reoriented state becomes a spatially modulated state,
i.e., a pattern (cf. Fig. 2). Hence, the system presents coexistence
between a uniform equilibrium (planar state) and a pattern (reori-
ented state). Figure 2(a) shows the bifurcation diagram of the forced
system. Note that the bistability region moves to the left flank.
Therefore, the forcing induces that the spatially modulated state
exists in the region that was initially monostable. Note that the
bistable and transition point move a % and δ distance, respectively.

To shed light on the origin of the adaptation phenomenon
between the bistability region and the front dynamics, the high-
wavenumber modulation limit (k → ∞) will be considered. In this
limit, the rapid x ∼ k−1 and slow Z & k−1 variation scales should be
introduced. Considering the following ansatz for the amplitude of
the critical mode:36–39

u = φ(t, Z) + y(t, x, Z), (2)

where the scalar field φ(t, Z) accounts for the slow dynamics of crit-
ical amplitude when one averages over the rapid spatial oscillation,
homogenized field, that is,

φ(t, Z) ≡ lim
k→∞

k

2π

∫ Z+2π/k

Z

u(x, t) dx. (3)

The scalar field y(t, x, Z) stands for small corrections of the homoge-
nized field associated with rapid dynamics, that is, y ( 1 and ∂xxy &
l∂xy & l2y, where l is the size of the front core. Introducing the
previous ansatz in Eq. (1) and taking the dominant terms, we get

∂tφ + ∂ty ≈ [µ + γ sin(kx)](φ + y) + βφ2 + αφ3

− φ5 + ∂xxφ + ∂xxy. (4)

Due to the separation of scales, the dominant term of the
rapid dynamics is ∂xxy + γ sin(kx)φ = 0. Integrating the previous
equation, we have

y =
γ

k2
sin(kx)φ + O

(

k−3
)

. (5)

Replacing this expression in Eq. (4) and integrating it over a 2π/k
period, after straightforward calculations, we obtain (the homoge-
nized bistable model)

∂tφ =
[

µ +
γ 2

2k2

]

φ + βφ2 + αφ3 − φ5 + ∂ZZφ. (6)

Hence, in the limit of the high-wavenumber modulation, the
homogenized field dynamics is derived, satisfying the unforced
bistable equation (1) with a renormalized bifurcation parameter
µF ≡ µ + γ 2/2k2. Then, the bifurcation diagram of this model is
similar to the unforced model but shifted in δ ≡ −γ 2/2k2. Indeed,
the reorientation transition from planar to spatially modulated state
occurs at µT = −γ 2/2k2. The critical amplitude mode is related

FIG. 2. Front solutions of the forced bistable model equation (1) for β = 0.5 and
α = 0.8. (a) Bifurcation diagram of the forced bistable model equation (1), the
total intensity of amplitude ||u(x, t)|| vs bifurcation parameterµ for γ = {0, 1, 2}
andmodulation wavenumber k = 4.7. Continuous and dashed curves account for
stable and unstable states, respectively. Points account for homogeneous states
(patterns and uniform solution) obtained by numerical simulations of Eq. (1). The
crosses (×) are obtained analytically from model equation (6). δ and % account
for the displacement of the transition and bistable point, respectively. (b) Profile
and spatiotemporal diagram of fronts between planar and spatial modulated reori-
entation state in the region of bistability. (c) Average front speed as a function of
the bifurcation parameter. The blue (•) and red (◦) dots stand for the front speed
obtained by numerical simulations of model equations (1) and (6), respectively.
The pinning region is given by µ− < µ < µ+.
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with homogenized field by

u ≈
(

1 +
γ

k2
sin(kx)

)

φ. (7)

Consequently, the zero state of φ corresponds to the planar state of
the scalar field u. However, the non-zero homogeneous states corre-
spond to spatial periodic wavelength solutions. Figure 2(a) shows
the bifurcation diagram of the forced equation (1). This bifurca-
tion diagram has quite good agreement with the induced by the
homogenized field, which simply corresponds to a rigid translation
of the bifurcation diagram. Therefore, the forcing induces patterns,
which coexist with the planar state in a region where the unforced
system is monostable. That is, the spatial forcing causes bistabil-
ity, and when the wavenumber is increased, this region shrinks.
Besides, when the strength γ increases, the bistability region grows.
Figure 3 summarizes how the bistability region is modified when
the forcing parameters are changed. Numerical simulations find
excellent agreement using the formula µF = µ + γ 2/2k2 = 0 and
δ ≡ −γ 2/2k2. Note that the displacement of the critical transition
and bistable point depends on the square of the optical modula-
tion strength γ , this law is not valid for large γ . Furthermore, the

numerical fitting of the critical point µT(k) as a function of the
wavenumber shows excellent agreement [see Fig. 3(c)] with
the theoretical prediction.

From the homogenized bistable model equation (6), is infered
that the system has bistability and coexistence of equilibria. Thus,
front solutions between the spatial modulated and planar state
are expected. Figure 2(b) shows the profile and spatiotemporal
evolution of the fronts between the zero state and the pattern in the
bistability region. Note that as a consequence of the periodic spa-
tial state, the front exhibits abrupt jumps, hopping dynamics.34 The
envelope of this oscillatory behavior is well defined by an average
speed 〈V〉. Figure 2(c) displays the average front speed as a function
of the bifurcation parameter µ. For negative and large bifurcation
parameter, the planar state invades the reoriented one. Increasing
this parameter results in a decrease in the average propagation rate.
For a critical value µ = µ−, the front becomes motionless. This
dynamical behavior remains, while the bifurcation parameter satis-
fies µ− < µ < µ+, the pinning region. For µ > µ+, the front begins
to spread so that the reoriented state invade the planar one. By
increasing the bifurcation parameter, the front increases its average
speed of propagation.

FIG. 3. Modification of the critical points
as a function of forcing parameters. Mod-
ification of the bistability point % (a) and
transition point δ (b) as a function of the
optical modulated forcing strength γ for
a fixed wavenumber k. The points are
obtained by numerical simulation of the
forced equation (1). (c) Transition point as
a function of the wavenumber. The painted
regions account for the region of bistability,
coexistence, and monostability. The fitting
curve considers a = −0.51, b = 0.076,
c = −2, and d = −0.1.
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III. FRONT PROPAGATION DYNAMICS IN SPATIALLY
MODULATED FORCING SYSTEM

The limit of high-wavenumber modulation allows us to explain
the equilibria organization and the possibility of having different
front solutions. Indeed, in this limit, either spatially modulated
uniform states are represented by uniform equilibria in the homog-
enized model [cf. Eq. (6)]. The front propagation is a consequence
of the lower energy stable state invades the higher energy stable one.

The front is motionless only in the Maxwell point (cf. Fig. 1).
Notwithstanding, Fig. 2(b) shows the front spatiotemporal evolution
of spatially modulated model equation (1), which is characterized by
a hopping dynamics. In addition, fronts are motionless in a range of
bifurcation parameter [see Fig. 2(c)].

In brief, the homogenization approach does not account for the
dynamics of fronts between the planar and the modulated reoriented
state. Note that in this limit of separation of scales, it is well-known
that the averaged equations do not correctly give the observed front
dynamics, phenomenon known as a non-resonant effect.6 To prop-
erly account for the dynamics, the amplitude equation must be
amended.14,34 Namely, the terms that have been neglected in the
homogenization procedure must be considered, accounting the cou-
pling between different scales. Calculating more precisely the inte-
grals using the Laplace integral or stationary phase approximation,40

one obtains the following averaged equation (k & 1):

∂tφ =
[

µ +
γ 2

2k2

]

φ + βφ2 + αφ3 − φ5 + ∂ZZφ

−
γ cos(kz)∂zφ

k3

[

µ + 4βφ + 9αφ2 + 25φ4 + γ sin(kz)
]

.

(8)

Note that Eqs. (1) and (8) are forced bistable systems. However, in
the limit of large wavenumber, the forcing terms of Eq. (8) are of
a perturbative nature. Numerical simulations of model equation (8)
show that the front speed has a similar behavior of the forced sys-
tem equation (1). Thus, depending on the parameters, fronts can
propagate with hopping dynamics or be motionless.

Close to the Maxwell point, µM = −3α2/16 − γ 2/2k2, the
amended model equation (8) has a motionless front solutions of the
form

φF(z, z0) =

√

3/4

1 + e±
√

3/4α(z−z0)
, (9)

where z0 parametrizes the front position. Note that this station-
ary solution connects the planar state (φ = 0) with the reoriented
one (φ =

√
3/4). In order to determine the effect of the amended

terms, we can consider the following ansatz for the front (method of
parameter variations):

φ = φF(z − z0(t)) + w(z, z0), (10)

where the front position z0(t) is promoted to a function of time,
which we assume it satisfies ż0 ∼ γ /k3. w(z, z0) is a small correction
function (w ( 1) which carry out w ∼ γ /k3. Introducing the ansatz
(10) in Eq. (8), linearizing in w and applying a solvability condition,

after straightforward calculation, we obtain

ż0 = ) + A sin(kz0 + θ), (11)

where ) ≡ −
√

4/3%µ +β/2
√

3α3, θ ≡ arctan(25/[36α3 − 75/2]),

and A = πk3/[72α6 sinh(2kπ/
√

3)(1296α6 − 2700α3 + 1875)
1/2

].
A detailed analysis of the method to obtain the above equation

is presented in Ref. 34. Therefore, the front position fulfills the
dynamics of a particle in a washing board potential.34 Namely, for
)/A < 1, the front position has a family of stationary equilibria, sep-
arated by one or more wavelengths. This parameter region describes
the pinning region. When )/A > 1, the front begins to propagate in
a way that its speed is oscillatory, hopping dynamics. Analytically,
one can determine the expression for the average speed 〈żo〉, which
reads41

〈żo〉 =
{ √

)2 − A2, |)/A| > 1,
0, |)/A| < 1.

(12)

Then, in the pinning region, the front does not move. Outside this
region, as µ increases, the speed grows with the square root (〈żo〉 ∝√

) − A) and then grows linearly (〈żo〉 ∝ ) − A). Therefore, this
model allows us to understand the numerical observations shown
in Fig. 2.

In brief, the amended model in the high-frequency limit reveals
how the equilibria are organized and the front features between
these states. In Sec. IV, based on liquid crystal light valve with
modulated optical forcing, the equilibria organization and the front
connecting them will be experimentally studied.

IV. EXPERIMENTAL DESCRIPTION AND RESULTS

Liquid Crystal Light Valve (LCLV) with optical feedback is
an experiment that exhibits a subcritical transition of molecular
reorientation.10 The LCLV corresponds to a nematic liquid crystal
cell between a glass and a photoconductor plate. Both plates are
coated with transparent electrodes (ITO), which allow applying an
external electric field V0 across the liquid crystal cell. Likewise, a
dielectric mirror is deposed over the photoconductor plate. The light
valve has a thickness of d = 15 µm and planar alignment. The liquid
crystal used in the cell is a nematic LC-654 (NIOPIK) and has a pos-
itive dielectric anisotropy εa = 10.7. A He–Ne laser (λ = 632.8 nm)
is used as the optical injection for the LCLV. To manipulate the
profile (uniform or modulated) and intensity of the light, the input
beam is sent through a spatial light modulator (SLM). The light
reaching the LCLV will experience a change in its phase, if the effec-
tive voltage applied is above the transition threshold, VT. Above this
threshold, the liquid crystal molecules, in average, are reoriented to
be aligned with the electric field. This molecular reorientation mod-
ifies the refractive index in the material. Hence, the light crossing
and then reflecting on the dielectric mirror of the LCLV will expe-
rience a change in its phase related to the molecular orientation on
the valve.42 The optical feedback in the experiment is accomplished
using an optical Fiber Bundle (FB) to guide the reflected beam to the
photoconductor plate on the back of the LCLV. Depending on the
illumination distribution on the photoconductor, the molecular ori-
entation will change locally and dynamically. Part of the laser beam
is sent to a charge-coupled device (CCD) camera, where the light
reflected by the liquid crystal light valve, Iw, is monitored. Figure 4(a)
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FIG. 4. Liquid crystal light valve (LCLV) without and with modulated optical forcing. (a) Schematic representation of the LCLV setup with optical feedback. SLM is the spatial
light modulator, PBS is the polarized beam splitter, BS is the beam splitter,M is a mirror, FB is the fiber bundle, V0 is the external voltage applied, f are lenses, and CCD is the
camera that captures and records images. The LCLV is illuminated by a He–Ne laser. (b) Experimental bifurcation diagram obtained in the LCLV with uniform optical forcing,
the unforced system. The total light intensity Iw at the LCLV is plotted as a function of the applied voltage V0. The purple squares account for the experimental observations.
The dashed line is a schematic representation of the unstable planar state. The inset corresponds to the typical observed reoriented state. Left and right painted areas
show the bistability and monostable regions, respectively. The bistability region is characterized by VSN < V0 < VT . (c) Experimental bifurcation diagram for the forced and
unforced case, represented by orange dots and purple squares, respectively. δ and % stand for the displacement of the transition and bistable point, respectively. The inset
corresponds to the typical reoriented pattern state in the forced system.

shows a schematic representation of the liquid crystal light valve
with optical feedback. Experimental studies are performed at room
temperature (26 ◦C).

The LCLV is illuminated with a quasi-one-dimensional chan-
nel (2.4 mm long by 0.24 mm wide) with homogeneous distribution
of light (unforced case), using the SLM. The input light power reach-
ing the LCLV was fixed at Iin = 18 µW. We use the voltage V0

applied to the optical valve as a control parameter. Figure 4(b) shows
the experimental transition for the LCLV with uniform optical injec-
tion. The light intensity reflected by the light valve Iw exhibits a
transition from a dark state (planar) to a bright state (reoriented).
In the diagram, a hysteresis region is observed, where the planar and
reoriented states coexist [intermediate painted region in Fig. 4(b)].
The limits of this region are characterized by VSN < V0 < VT, which
correspond to the bistability and transition voltage, respectively. In
this region, fronts between these states can be found. Figure 5(a)
shows the typical profile and spatiotemporal evolution of the fronts
observed in this bistability region. Note that the front spreads with a
constant speed, considering experimental imperfections. The exper-
imental protocol to observe these fronts is based on the fact that
initially the system is prepared onto a homogeneous state. Using

the spatial light modulator, we generate a local disturbance, which
induces the reoriented state to extend or contract. This propaga-
tion can be monitored through the CCD camera. The speed is
measured tracking the interface between dark and bright areas.
Figure 6(a) summarizes the experimental front speed. Note that the
front speed increases as a function of the applied voltage. Besides,
the Maxwell point is close to the left flank of the bistability region.
Indeed, the experimental observations are in good agreement with
those obtained by unforced model equation (1) [cf. Figs. 1, 4(b),
and 5(a)].

Using the spatial light modulator, we can generate a spatial
modulated input light with intensity, Iin(x) = Iin + Ia cos(kx), where
Ia and k are the strength and the wavenumber of the forcing, respec-
tively. Illuminating the LCLV, for sufficiently small voltage V0, no
significant changes are observed, the planar (dark) state remains
stable. As the voltage increases, a discontinuous transition to a spa-
tially modulated reoriented state begins to appear [see the inset in
Fig. 4(c)]. In comparison to the unforced case, we observe that this
reorientation transition is anticipated. Likewise, we observe that the
bistability region moves to the left flank. Figure 4(c) shows the bifur-
cation diagram. Similar bifurcation diagram is obtained from the
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FIG. 5. Experimental front propagation in a LCLV with uniform and modulated
optical forcing. (a) Panels account for a snapshot, profile, and spatiotemporal evo-
lution of the front in the unforced case. The illuminated region corresponds to the
reoriented state, and the dark region corresponds to the planar one. The dashed
red curve is the extracted region to obtain its profile and spatiotemporal evolution.
(b) Panels account for a snapshot, profile, and spatiotemporal evolution of the
front in the forced case. The modulated reoriented state is observed as a pattern
due to the forcing. The dashed red curve is the extracted region to obtain its profile
and spatiotemporal evolution.

FIG. 6. Experimental average front speed of the liquid crystal light valve with a
uniform and modulated optical forcing. Average front speed as a function of the
applied voltage V0 with uniform (a) and modulated (b) optical forcing. The color
painting regions account for bistable, pinning, and coexistence region. Continuous
curve is a fitting curve using formula (12).

forced model equation (1) [cf. Fig. 2]. With the same strategy, fronts
connecting a planar state with the reoriented modulated state can be
generated. Figure 5(b) shows the typical profile and spatiotemporal
evolution of these fronts. The evolution of the front is characterized
by exhibiting a hopping dynamic. Figure 6(b) displays the average
front speed as a function of the applied voltage V0. As one expects, at
low applied voltages, the planar state invades the spatially modulated
reoriented state. As the voltage increases, one observes that the front
becomes motionless in a large region of the space of parameters,
often called the pinning region. Out of this regime, one expects
that the modulated state invades the planar state. The front speed
in this region must be characterized by a square root of the differ-
ence of squares, formula (12). In Fig. 6, this type of fitting is used to
characterize the average speed, see the continuous curve. Hence, the
theoretical findings have excellent agreement with the experimental
observations.

One of the main results of the high-frequency theory is that the
critical transition point is modified with the inverse of the square
of the wavenumber. Experimentally, for different wavenumber of
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FIG. 7. Experimental modification of the critical transition voltage VT as a function
of the forcing wavenumber k. The orange dots correspond to the forced case
with different values of k and fixed value of forcing amplitude at Ia = 4µW. The
dashed blue line is the value for the transition voltage in the unforced case. The
solid red line corresponds to a fitting curve VT = −H/k2 + c with H = 2.7 and
c = 2.53.

the optical forcing, the critical voltage for the reorientation tran-
sition has been measured. Figure 7 summarizes the results found.
From these observations, we can conclude that the critical volt-
age VT decreases with the inverse of the square of the forcing
wavenumber.

V. CONCLUSION

Driven systems with temporal and spatial forcing present com-
plex spatiotemporal behaviors. An analytical strategy to achieve a
better understanding of these systems is to consider extreme lim-
its of parameters to obtain effective models. This strategy is what
we have used to understand spatially modulated systems. That is,
we have taken the limit of high-wavenumber forcing, the homog-
enization method. This method allows us to transform a spatially
modulated system into an effective homogeneous system with
renormalized parameters. In this context, it is more feasible to obtain
analytical results. Based on an amplitude equation that describes
the reorientation transition of a liquid crystal light valve with spa-
tially modulated optical forcing and the homogenization method,
we have characterized the organization of the equilibria. In partic-
ular, we have shown that the forcing induces patterns that coexist
with the uniform state in regions where the system without forcing is
monostable. We have analytically identified how the bistability
region moves and verified this prediction experimentally, find-
ing excellent agreement. However, the homogenized amplitude
equation does not account for the front dynamics. This is because,
in this limit, the interaction between the front core dynamics and
the rapid oscillation is decoupled. To address this dynamic, we
have amended the amplitude equation, that is, we have taken into
account the first corrective terms in the homogenization method.

Using perturbative theory, these terms allow us to describe the
experimentally observed dynamics.

Systems under spatiotemporal forcing exhibit complex behav-
iors. A strategy to better understand spatially modulated forced
systems could be led with a high-wavelength limit. Work in this
direction is in progress.
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