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Abstract
We provide some necessary and sufficient conditions for a proper lower semicon-
tinuous convex function, defined on a real Banach space, to be locally or globally
Lipschitz continuous. Our criteria rely on the existence of a bounded selection of the
subdifferential mapping and the intersections of the subdifferential mapping and the
normal cone operator to the domain of the given function. Moreover, we also point
out that the Lipschitz continuity of the given function on an open and bounded (not
necessarily convex) set can be characterized via the existence of a bounded selection
of the subdifferential mapping on the boundary of the given set and as a consequence
it is equivalent to the local Lipschitz continuity at every point on the boundary of that
set. Our results are applied to extend a Lipschitz and convex function to the whole
space and to study the Lipschitz continuity of its Moreau envelope functions.

Keywords Convex function · Lipschitz continuity · Calmness · Subdifferential ·
Normal cone · Moreau envelope function

Mathematics Subject Classification 26A16 · 46N10 · 52A41

1 Introduction

Lipschitz continuous and convex functions play a significant role in convex and nons-
mooth analysis. It is well-known that if the domain of a proper lower semicontinuous
convex function defined on a real Banach space has a nonempty interior then the
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function is continuous over the interior of its domain [3, Proposition 2.111] and as a
consequence, it is subdifferentiable (its subdifferential is a nonempty set) and locally
Lipschitz continuous at every point in the interior of its domain [3, Proposition 2.107].
Moreover, by the Hahn–Banach principle, at every interior point of the domain, the
subdifferential of the given function is bounded by the corresponding Lipschitz con-
stant. Howerver, on the boundary of the domain, the subdifferential may be an empty
set or unbounded one, and so the function may be not locally Lipschitz continuous.

For a convex function, the nonemptiness of its subdifferential at some point in its
domain is equivalent to its calmness at that point [12, Proposition 3.29]. Calmness
(see [12, p. 200] or [16, p. 322]) is a property like local Lipschitz continuity but it
involves comparisons only between a fixed point and nearby points, not between all
possible pairs of points in some neighborhood of that fixed point. Therefore, for the
calmness of a convex function, we can deal with boundary points of its domain. In
light of this view, in this paper, we consider the notions of local and global Lipschitz
continuity for a function with respect to its domain. Here, our points of Lipschitz
continuity may not be in the interior of the domain of the given function. Thanks to
[12, Exercise 3, p. 212] (see also [11, Proposition 5.1]), the local Lipschitz continuity of
a proper convex function can be characterized by the boundedness of a selection of its
subdifferential. As a by product, we show that local Lipschitz continuity is equivalent
to the calmness on the corresponding neighborhoodwith the samemodulus.Moreover,
by using the Zagrodny mean value theorem for convex functions [17, Theorem 4.3]
and the extension of a Lipschitz convex function to the whole space [8, Theorem 1], we
could establish some new characterizations for the local Lipschitz continuity of a lower
semicontinuous convex function in terms of the intersections of its subdifferential and
the normal cone to its domain. Some necessary and sufficient conditions for the global
Lipschitz continuity are also deduced from the criteria of the local case.

Since a proper lower semicontinuous convex function is subdifferentiable at every
interior point of its domain, it follows that its Lipschitz continuity over an open set is
equivalent to the boundedness of its subdifferential on that set (see Lemma 3.1 below).
If the given open set is bounded then its boundary is a nonempty set and so we hope
that the Lipschitz continuity of the given function on that set can be checked by its
information on that nonempty boundary. In this paper, by using the maximal mono-
tonicity of the subdifferential operators [15, TheoremA], we can deduce the necessary
and sufficient conditions for the Lipschitz continuity of a lower semicontinuous con-
vex function on an open bounded set from the boundedness of some selection of its
subdifferential on the boundary of that set. This characterization allows us to show
that the Lipschitz continuity on an open bounded set is equivalent to local Lipschitz
continuity on the boundary of that set. We also use this characterization to estimate
the values of the function on an open bounded set from the diameter of the given set
and to deduce a criterion for the global Lipschitz continuity from the boundedness of
the distance function from the origin to the subdifferential operator at infinity.

Our obtained results are used to study two classical problems in convex analysis:
the extension of a Lipschitz and convex function to the whole space and the justi-
fication of Lipschitz continuity of its Moreau envelope functions [10]. For the first
problem, Hiriart-Urruty [8] gave an explicit formula for the extension by performing
the infimal convolution of two functions associated with the data of the problem. We
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propose here an alternative extension obtained by taking the supremum of all pos-
sible linear approximations of the given function. This extension is geometric and
the subdifferential of the extending function is the biggest among all other extend-
ing ones. For the second problem, we first recall some basic propeties of Moreau
envelope functions in Banach spaces. Then, we show that the Lipschitz continuity
of the Moreau envelope functions can be inherited from the Lipschitz continuity of
the original function. It is interesting that all the regularized functions share the same
Lipschitz constant of the original function. The proof for reflexive Banach spaces is
rather simple (see Remark 5.1 below) while in non-reflexive Banach spaces, we have
to employ Brøndsted–Rockafellar approximation Theorem [7] and the Rockafellar’s
subdifferential sum rule [14, Theorem 3].

The rest of the paper is structured as follows. Section 2 recalls some basic notations
and preliminary results in convex analysis. Characterizations for the local and global
Lipschitz continuity of a proper lower semicontinuous convex function are presented
in Sect. 3. In Sect. 4, necessary and sufficient conditions for the Lipschitz continuity on
an open bounded set are investigated. The last section applies the obtained character-
izations to the extension of a Lipschitz convex function and to establish the Lipschitz
continuity of its Moreau envelope functions.

2 Preliminaries

Let X be a real Banach space with norm ‖ · ‖ and X∗ its continuous dual. The value
of a functional x∗ ∈ X∗ at x ∈ X is denoted by 〈x∗, x〉. The closed unit balls on X
and X∗ are denoted, respectively, by B and B

∗. For every x ∈ X and r > 0 the open
ball with center x and radius r is given by

B(x; r) := {y ∈ X : ‖x − y‖ < r}.

The (effective) domain dom f of an extended real-valued function
f : X → R := R ∪ {+∞} is the set of points x where f (x) ∈ R. The epigraph
of f is defined by

epi f := {(x, r) ∈ X × R : f (x) ≤ r}.

Recall that f is proper if its effective domain is nonempty and convex if epi f is convex
in X ×R. Clearly, if f is a proper convex function then dom f is a nonempty convex
set. It is said that f is lower semicontinuous (l.s.c.) if epi f is closed in X ×R. Given
a nonempty set S of X and a real number � ≥ 0, f is said to be Lipschitz continuous
on S with modulus � or �−Lipschitz on S if f is finite on S and

| f (x) − f (y)| ≤ �‖x − y‖ for all x, y in S.

The function f is said to be locally Lipschitz at x̄ ∈ dom f with the modulus � ≥ 0
if there exists r > 0 such that f is �−Lipschitz on dom f ∩ B(x̄; r). Local Lipschitz
continuity is related to the concept of calmness. Recall that f is calm at x̄ ∈ dom f
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with the modulus � ≥ 0 (see [12, p. 200] or [16, p. 322]) if there is a neighborhood V
of x̄ such that

f (x) ≥ f (x̄) − �‖x − x̄‖ for all x ∈ V .

Clearly, if f is locally Lipschitz continuous at x̄ then f is calm at x̄ while the reverse
is not true.

Lipschitz continuity of a function can be extended on the whole space with the
same modulus (see [8, Theorem 1]).

Theorem 2.1 Let f : X → R be a �−Lipschitz on a nonempty set S ⊂ X. Consider
the function fS,� : X → R given by

fS,�(x) := inf
u∈S{ f (u) + �‖x − u‖} for all x ∈ X .

Then, fS,� is �−Lipschitz on X and coincides with f on S. Moreover, if S is a convex
set and f is convex then fS,� is convex.

Suppose now that f is a proper convex function. A functional x∗ ∈ X∗ is said to be a
subgradient of f at x ∈ X , if f (x) is finite and

f (y) − f (x) ≥ 〈x∗, y − x〉, ∀y ∈ X .

The collection of all subgradients of f at x is called the subdifferential of f at x , that
is,

∂ f (x) := {x∗ ∈ X∗ : f (y) − f (x) ≥ 〈x∗, y − x〉, ∀y ∈ X}.

The function f is said to be subdifferentiable at x if f (x) is finite and ∂ f (x) �= ∅.
The set of subdifferentiable points of f , denoted by dom ∂ f , is called the domain of
∂ f . By [3, Proposition 2.126 (iv)], if f is continuous at x ∈ dom f then x ∈ dom ∂ f .
Clearly, the mapping ∂ f is monotone, i.e., for every x, y ∈ dom ∂ f we have

〈x∗ − y∗, x − y〉 ≥ 0 (1)

for all x∗ ∈ ∂ f (x) and y∗ ∈ ∂ f (y). Moreover, by [15, Theorem A], if f is l.s.c. then
∂ f is maximal monotone, i.e., if (x, x∗) ∈ X × X∗ satisfies the monotone relationship
(1) for all (y, y∗) ∈ X × X∗ with y∗ ∈ ∂ f (y) then x∗ ∈ ∂ f (x). Basic theory of
maximal monotone operators in Banach spaces is presented in [2, Chap. 2].

The following theorem (see [14, Theorem 3]) gives a subdifferential sum rule for
proper convex functions.

Theorem 2.2 Let f1 and f2 be proper convex functions on X. Suppose that there exists
a point at which both functions are finite and at least one is continuous. Then, for all
x ∈ X,

∂( f1 + f2)(x) = ∂ f1(x) + ∂ f2(x).
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We recall the Zagrodnymean value theorem [17, Theorem 4.3] for proper l.s.c. convex
functions.

Theorem 2.3 Let f : X → R be a proper l.s.c. convex function. For every
a, b ∈ dom f with a �= b, there are sequences xn → c in semi-closed segment
[a, b[ and x∗

n ∈ ∂ f (xn) satisfying

(a) f (b) − f (a) ≤ lim inf
n→∞ 〈x∗

n , b − a〉,
(b)

‖b − c‖
‖b − a‖ ( f (b) − f (a)) ≤ lim inf

n→∞ 〈x∗
n , b − xn〉.

Given a nonempty set� ⊂ X , int(�) is the interior of �,� is the closure of � and
bd(�) is the boundary of � with respect to norm topology on X . Suppose now that �
is nonempty and convex. For every x ∈ � and ε ≥ 0, we define the set of ε−normals
to � at x (see, e.g., [9, Definition 1.1 and Proposition 1.3]) by

Nε(x;�) := {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ ε‖y − x‖ whenever y ∈ �}, (2)

When ε = 0, elements of (2) are called normals and their collection, denoted by
N (x;�), is the normal cone to� at x . Clearly, for every r > 0,�∩ B(x; r) is convex
and

N (x;�) = N (x;� ∩ B(x; r)). (3)

The function δ� : X → R defined by

δ�(x) :=
{
0 if x ∈ �,

+∞ otherwise,

is called the indicator function of �. Clearly, δ� is a proper convex function and for
every x ∈ � we have ∂δ�(x) = N (x;�). Finally, by using the subdifferential sum
rule for the functions f1(x) = δ�(x) and f2(x) = ε‖x − x̄‖ at x̄ , we get the following
relationship

Nε(x̄;�) = N (x̄;�) + εB∗. (4)

3 Local and Global Lipschitz Continuity

We start with a necessary condition and a sufficient one for the Lipschitz continuity of
a proper convex function on a nonempty subset of its domain. The following lemma
is simple but it is useful in the sequel.

Lemma 3.1 Let f : X → R be a proper convex function, � ≥ 0 and S ⊂ dom f a
nonempty set. If

∂ f (x) ∩ �B∗ �= ∅ for all x ∈ S (5)

then f is �−Lipschitz on S. Conversely, if S is open and f is �−Lipschitz on S then

∅ �= ∂ f (x) ⊂ �B∗ for all x ∈ S. (6)
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Proof Assume that (5) is satisfied. We will prove f is �−Lipschitz on S. It follows
from (5) that S ⊂ dom ∂ f ⊂ dom f . Let x, y be two points in S. Again, by (5), there
exists x∗ ∈ ∂ f (x) such that ‖x∗‖ ≤ �. Employing the definition of subdifferential,
we get

f (y) − f (x) ≥ 〈x∗, y − x〉 ≥ −‖x∗‖‖y − x‖ ≥ −�‖y − x‖.

Changing the role of x and y, we immediately obtain

| f (y) − f (x)| ≤ �‖y − x‖.

Suppose now that S is open and f is �−Lipschitz on S. Clearly, f is continuous on S
and so (6) is satisfied by [3, Proposition 2.126 (v)]. ��
Remark 3.1 It follows from Lemma 3.1 that if S is open then f is �−Lipschitz on S
if and only if either (5) or (6) is satisfied. However, �−Lipschitz continuity of f on
an arbitrary set S can not imply (5). For example, for S = {1} ⊂ R and f (x) = x , f
is a proper convex and 0−Lipschitz function on S while ∂ f (1) ∩ 0B∗ = ∅.

Characterization for the calmness at one point and Lemma 3.1 allow us to find
a necessary and sufficient condition for the local Lipschitz continuity of a proper
convex function and to establish the equivalence of its local Lipschitz continuity and
its calmness at every point in the corresponding neighborhood.

Theorem 3.1 Let f : X → R be a proper convex function, x̄ ∈ dom f and r > 0,
� ≥ 0. Then, f is �−Lipschitz on dom f ∩ B(x̄; r) if and only if one of the following
conditions holds

(a) f is calm at every point in dom f ∩ B(x̄; r) with the same modulus �.
(b) ∂ f (x) ∩ �B∗ �= ∅ for all x ∈ dom f ∩ B(x̄; r).
Proof Clearly, if f is �−Lipschitz on dom f ∩ B(x̄; r) then f is calm at every point
in the latter set with the same modulus �. Moreover, (a) implies (b) by [12, Exercise
3, page 212] (see also [11, Proposition 5.1]). By Lemma 3.1, (b) implies that f is
�−Lipschitz on dom f ∩ B(x̄; r). ��

As a direct application of Theorem 3.1, we get the criteria for the global Lipschitz
continuity of a proper convex function.

Corollary 3.1 Let f : X → R be a proper convex function and � ≥ 0. Then, f is
�−Lipschitz on dom f if and only if one of the following conditions holds

(a) f is locally Lipschitz at every point in dom f with the same modulus �.
(b) f is calm at every point in dom f with the same modulus �.
(c) ∂ f (x) ∩ �B∗ �= ∅ for all x ∈ dom f .

Remark 3.2 Since the subdifferential of a proper convex function may be unbounded
at boundary points of its domain, the �−Lipschitz continuity of f on dom f can not
imply

∂ f (x) ⊂ �B∗, ∀x ∈ dom f .
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Indeed, the function f (x) = δ[0,1](x) is proper convex and 0−Lipschitz function on
dom f = [0, 1] and its subdifferential is given by

∂ f (x) =

⎧⎪⎨
⎪⎩

{0} if x ∈ (0, 1),

(−∞, 0] if x = 0,

[0,+∞) if x = 1.

Clearly, ∂ f (x) ⊂ 0B∗ when x ∈ (0, 1) while ∂ f (x) �⊂ 0B∗ when x ∈ {0, 1}.
We come to characterizations of the local Lipschitz continuity of a proper l.s.c.

convex function in terms of the intersections of its subdifferential and the normal cone
to its domain.

Theorem 3.2 Let f : X → R be a proper l.s.c. convex function, x̄ ∈ dom f , and
r > 0, � ≥ 0. Then, f is �−Lipschitz on dom f ∩ B(x̄; r) if and only if one of the
following conditions holds

(a) ∅ �= ∂ f (x) ⊂ N�(x; dom f ) for all x ∈ dom f ∩ B(x̄; r).
(b) ∂ f (x) ∩ N�(x; dom f ) �= ∅ for all x ∈ dom f ∩ B(x̄; r) .
Proof Since f is proper and convex, dom f is a nonempty convex set. Suppose that
f is �−Lipschitz on dom f ∩ B(x̄; r). By Theorem 3.1, f is subdifferentiable on
dom f ∩ B(x̄; r). Invoking Theorem 2.1, we can construct an �−Lipschitz convex
function f̃ : X → R such that

f̃ (x) = f (x), ∀x ∈ dom f ∩ B(x̄; r).

Since f̃ is �−Lipschitz continuous on X , we have ∂ f̃ (x) ⊂ �B∗ for all x ∈ X . Hence,
for every x ∈ dom f ∩ B(x̄; r), applying Theorem 2.2 for the convex functions f̃ and
δdom f ∩B(x̄;r) and using (3) and (4), we get the following inclusions

∂ f (x) ⊂ ∂
(
f̃ + δdom f ∩B(x̄;r)

)
(x)

= ∂ f̃ (x) + N (x; dom f ∩ B(x̄; r))
⊂ �B∗ + N (x; dom f )

= N�(x; dom f ).

The implication (a) ⇒ (b) is trivial.
Suppose now that (b) holds, i.e., for every x ∈ dom f ∩ B(x̄; r) we have

∂ f (x) ∩ N�(x; dom f ) �= ∅. Let x, y ∈ dom f ∩ B(x̄; r) be such that x �= y and
let z be any point in open segment ]x, y[. Applying Theorem 2.3 for the l.s.c. proper
convex function f and two distinct points x, z, we can find sequences xn → v ∈ [x, z[
and x∗

n ∈ ∂ f (xn) such that

‖z − v‖
‖z − x‖ ( f (z) − f (x)) ≤ lim inf

n→∞ 〈x∗
n , z − xn〉. (7)

123



Applied Mathematics & Optimization

Let z∗ be any point in ∂ f (z) ∩ N�(z; dom f ). By the monotonicity of ∂ f , for every
n ∈ N, we have

〈x∗
n , z − xn〉 ≤ 〈z∗, z − xn〉

= 〈z∗, z − v〉 + 〈z∗, v − xn〉
= ‖z − v‖

‖y − z‖〈z∗, y − z〉 + 〈z∗, v − xn〉

≤ ‖z − v‖
‖y − z‖�‖y − z‖ + 〈z∗, v − xn〉

= �‖z − v‖ + 〈z∗, v − xn〉.

It follows from (7) that

f (z) − f (x) ≤ �‖z − x‖.

Taking z → y in the above inequality and using the lower semicontinuity of f , we
get

f (y) − f (x) ≤ �‖y − x‖

and so f is �−Lipschitz on dom f . ��
Employing Theorem 3.2, we derive the necessary and sufficient conditions for the

global Lipschitz continuity of a proper l.s.c. convex function.

Corollary 3.2 Let f : X → R be a proper l.s.c. convex function and � ≥ 0. Then, f is
�−Lipschitz on dom f if and only if one of the following conditions holds

(a) ∅ �= ∂ f (x) ⊂ N�(x; dom f ) for all x ∈ dom f .
(b) ∂ f (x) ∩ N�(x; dom f ) �= ∅ for all x ∈ dom f .

4 Lipschitz Continuity on Bounded and Open Subsets

In this section we obtain characterizations of Lipschitz continuity of a proper l.s.c.
convex function on an open and bounded (not necerrarily convex) set in term of the
information on the boundary of the given set. We begin with a criterion based on the
existence of a bounded selection of the subdifferential operator.

Theorem 4.1 Let f : X → R be a proper l.s.c. convex function, � ≥ 0 and S a
nonempty set such that S ⊂ dom f . Consider the following statements

(a) ∂ f (x) ∩ �B∗ �= ∅ for all x ∈ bd(S).
(b) f is �−Lipschitz on S.

If S is bounded then (a)⇒(b). Conversely, if S is open then (b)⇒(a).
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Proof Suppose that S is bounded and (a) holds. Let x, y be two distinct points in S.
We will show that

f (x) − f (y) ≥ −�‖x − y‖ (8)

and so f is �−Lipschitz on S. Indeed, if y ∈ bd(S) then, by (a), there exists y∗ ∈ ∂ f (y)
such that ‖y∗‖ ≤ �. By the definition of subdifferential we have

f (x) − f (y) ≥ 〈y∗, y − x〉 ≥ −‖y∗‖‖x − y‖ ≥ −�‖x − y‖

and so (8) is satisfied. If y ∈ int(S) then y is an interior point of dom f and
thus ∂ f (y) �= ∅. By the boundedness of S, there exists α > 0 such that
z := y + α(y − x) ∈ bd(S). Again, by (a), we can find z∗ ∈ ∂ f (z) such that
‖z∗‖ ≤ �. Picking y∗ ∈ ∂ f (y) and using the monotonicity of ∂ f , we have

〈y∗, x − y〉 = (1/α)〈y∗, y − z〉 ≥ (1/α)〈z∗, y − z〉 = 〈z∗, x − y〉 (9)

Furthermore, since ‖z∗‖ ≤ �, we have

〈z∗, x − y〉 ≥ −‖z∗‖‖x − y‖ ≥ −�‖x − y‖. (10)

From the inequalities (9) and (10), we get (8) by the following estimates

f (x) − f (y) ≥ 〈y∗, x − y〉 ≥ 〈z∗, x − y〉 ≥ −�‖x − y‖.

Suppose now that S is open and f is �−Lipschitz on S. Let x ∈ bd(S) and {xn} ⊂ S
be a sequence such that xn → x . Since S is open and f is �−Lipschitz on S, by
Lemma 3.1, there exists a sequence {x∗

n } ⊂ X∗ such that x∗
n ∈ ∂ f (xn) and x∗

n ∈ �B∗
for all n ∈ N. By the Banach–Alaoglu theorem, there exist x∗ ∈ X∗ and subnet
{x∗

i }i∈I of {x∗
n } such that {x∗

i }i∈I is weakly-star convergent to x∗ and ‖x∗‖ ≤ �. By
the maximal monotonicity of ∂ f , we have x∗ ∈ ∂ f (x) (see [5, Fact 3.5] or [4, Sect. 2,
p. 539]) and so (a) holds. ��
Remark 4.1 The boundedness and the openness of S are necessary in Theorem 4.1.
Indeed, we consider X = R, f (x) = x2 and two sets S1 = [0,+∞), S2 = {−1, 1}.
Cleary, bd(S1) = {0} and for all � ≥ 0, we have

∂ f (x) ∩ �B∗ = {0} �= ∅, ∀x ∈ bd(S1),

but f is not Lipschitz on S1. Although f is 0-Lipschitz on S2, ∂ f (x) ∩ 0B∗ = ∅ for
every x in bd(S2) = {−1, 1}.

With the help of Theorem 4.1, we will show that the Lipschitz continuity on an
open bounded set is equivalent to local Lipschitz continuity on the boundary of the
corresponding set.

Theorem 4.2 Let f : X → R be a proper l.s.c. convex function, � ≥ 0 and S be a
nonempty open and bounded set such that S ⊂ dom f . Then, f is �−Lipschitz on S if
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and only if f is locally �−Lipschitz with respect to S at every point in bd(S), i.e., for
every x ∈ bd(S), there exists r > 0 such that f is �−Lipschitz on S ∩ B(x; r).
Proof Since S is open and bounded, by Theorem 4.1 and Lemma 3.1, Lipschitz con-
tinuity on S implies Lipschitz continuity on S with the same modulus. Therefore, we
only need to show local Lipschitz continuity on bd(S) with the same modulus implies
Lipschitz continuity on S. Suppose now that f is locally �−Lipschitz with respect to
S at every point in bd(S). We will use Theorem 4.1 to show that f is �−Lipschitz on
S. Let x be any point in bd(S). Then, there exists r > 0 such that f is �−Lipschitz
on nonempty open set S ∩ B(x; r) ⊂ dom f . Therefore, by Lemma 3.1, we have

∂ f (y) �= ∅, ∂ f (y) ⊂ �B∗, ∀y ∈ S ∩ B(x; r).

Let {xn}⊂ S and {x∗
n } ⊂ X∗ be sequences such that xn → x and x∗

n ∈ ∂ f (xn), ‖x∗
n‖≤�

for all n ∈ N. By the Banach-Alaoglu theorem, there exist x∗ ∈ X∗ and subnet {x∗
i }i∈I

of {x∗
n } such that {x∗

i }i∈I is weakly-star convergent to x∗ and ‖x∗‖ ≤ �. By the maxi-
mal monotonicity of ∂ f , we have x∗ ∈ ∂ f (x) (see [5, Fact 3.5] or [4, Sect. 2, p. 539])
and so ∂ f (x) ∩ �B∗ �= ∅. By Theorem 4.1, f is �−Lipschitz on S. ��

The following corollary is a direct application of Theorem 4.1. It gives the upper
bound for the difference of the supremum and the infimum of a proper l.s.c. convex
function on an open bounded set in terms of the Lipschitz constant and diameter of
the given set.

Corollary 4.1 Let f : X → R be a proper l.s.c. convex function, � ≥ 0 and S
a nonempty bounded set such that S ⊂ dom f . If there exists � ≥ 0 such that
∂ f (x) ∩ �B∗ �= ∅ for all x ∈ bd(S) then

sup
x∈S

f (x) ≤ inf
x∈S f (x) + � diam(S), (11)

where diam(S) := sup{‖s1 − s2‖ : s1, s2 ∈ S} is the diameter of S.
Proof According to Theorem 4.1, f is �−Lipschitz on S. It follows that, for every
x, y ∈ S,

f (x) ≤ f (y) + �‖x − y‖ ≤ f (y) + � diam(S).

Taking the supremum in the variable x of the left hand side and infimum in the variable
y of the right hand side of the above inequality, we get (11). ��

We end this section by using Theorem 4.1 to deduce a criterion of the global
Lipschitz continuity from the boundedness of the distance function from the origin to
the subdifferential operator at infinity.

Corollary 4.2 Let f : X → R be a l.s.c. convex function and � ≥ 0. Then, f is
�−Lipschitz continuous on X if and only if

lim sup
‖x‖→+∞

d(0, ∂ f (x)) ≤ �, (12)
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where d(0, ∂ f (x)) := inf{‖x∗‖ : x∗ ∈ ∂ f (x)}.
Proof If f is �−Lipschitz continuous on X then for every x ∈ X , ∂ f (x) �= ∅ and
∂ f (x) ⊂ �B∗, and so (12) holds. Conversely, suppose that (12) holds. Let x, y be
two any points in X . By (12), for every ε > 0 there exists r > 0 (sufficiently large)
such that x, y ∈ rB and ∂ f (z) ∩ (� + ε)B∗ �= ∅ for all z ∈ X such that ‖z‖ = r . By
Theorem 4.1, f is (� + ε)−Lipschitz on rB and so

| f (x) − f (y)| ≤ (� + ε)‖x − y‖.

Taking ε ↓ 0 in the latter inequality, we get the conclusion. ��

5 Applications

Twoclassical problems in convex analysis are investigated in this section: the extension
of a Lipschitz and convex function to the whole space and the justification of Lipschitz
continuity of its Moreau envelope functions.

5.1 Extension of Lipschitz and Convex Functions

Let � ≥ 0 and f : X → R be a proper convex and �−Lipschitz function on dom f .
We say that f̃ : X → R is an extension of f if f̃ is convex, �−Lipschitz continuous
and satisfies

f̃ (x) = f (x) for all x ∈ dom f . (13)

Observe that if f̃ is an extension of f then

∂ f̃ (x) ⊂ ∂ f (x) ∩ �B∗ for all x ∈ dom f . (14)

Indeed, since f̃ is �−Lipschitz continuous on X , ∂ f̃ (x) ⊂ �B∗ for all x ∈ X . More-
over, by (13), we have ∂ f̃ (x) ⊂ ∂ f (x) for all x ∈ dom f . The inclusion (14) may
be strict. Indeed, consider the function f (x) = δ[0,1](x)+ x . Clearly, f is convex and
1−Lipschitz on dom f = [0, 1]. The function f̃ (x) = x is an extension of f with
∂ f̃ (0) = {1}. However, ∂ f (0) ∩ 1B∗ = [−1, 1].

The next theorem constructs an extension of f such that the inclusion (14) becomes
an equality.

Theorem 5.1 Let � ≥ 0 and f : X → R be a proper convex and �−Lipschitz function
on dom f . Consider the function f̃ : X → R given by

f̃ (x) := sup
y∈dom f

y∗∈∂ f (y)∩�B∗

{〈y∗, x − y〉 + f (y)
}
, ∀x ∈ X . (15)

Then, dom f̃ = X and f̃ is a convex and �−Lipschitz function on X and for every
x ∈ dom f

f̃ (x) = f (x), ∂ f̃ (x) = ∂ f (x) ∩ �B∗. (16)

123



Applied Mathematics & Optimization

Proof By Corollary 3.1, for every x ∈ dom f , ∂ f (x)∩�B∗ �= ∅ and so f (x) ≤ f̃ (x).
Let

S := {(y, y∗) ∈ dom f × X∗ : y∗ ∈ ∂ f (y) ∩ �B∗}.

Clearly, S �= ∅ and f̃ is given by

f̃ (x) = sup
(y,y∗)∈S

{〈y∗, x − y〉 + f (y)
}
, ∀x ∈ X .

Since f̃ is the pointwise supremum of linear functionals, f̃ is convex. Let x, u be two
points in X . For every (y, y∗) ∈ S, by the definition of subdifferential

〈y∗, x − y〉 + f (y) ≤ f (x), (17)

and by the inequality ‖y∗‖ ≤ �, we have

〈y∗, x − y〉 + f (y) = 〈y∗, x − u〉 + 〈y∗, u − y〉 + f (y)

≤ ‖y∗‖‖x − u‖ + 〈y∗, u − y〉 + f (y)

≤ �‖x − u‖ + 〈y∗, u − y〉 + f (y).

(18)

Taking the supremum to all (y, y∗) ∈ S both sides of (17) and (18), we get

f̃ (x) ≤ f (x), f̃ (x) ≤ �‖x − u‖ + f̃ (u). (19)

The first inequality in (19) implies that f (x) = f̃ (x) for every x ∈ dom f . Hence,
the second inequality in (19) implies that dom f̃ = X and f̃ is �−Lipschitz on X . By
(14), to get (16), it suffices to show that ∂ f (x) ∩ �B∗ ⊂ ∂ f̃ (x) for all x ∈ dom f .
Indeed, let x ∈ dom f and x∗ ∈ ∂ f (x) ∩ �B∗. Then, f (x) = f̃ (x) and by (15), for
every z ∈ X , we have

f̃ (z) ≥ f (x) + 〈x∗, z − x〉
= f̃ (x) + 〈x∗, z − x〉.

and so x∗ ∈ ∂ f̃ (x). Hence, ∂ f (x) ∩ �B∗ ⊂ ∂ f̃ (x). ��
When the domain of the function has a nonempty interior and the original function

is lower semicontinuous, the extended function can be refined.

Corollary 5.1 Let � ≥ 0 and f : X → R be a proper l.s.c. convex and �−Lipschitz
function on dom f . If dom f has a non-empty interior, then the function f̃ : X → R

given by (15) can be expressed as

f̃ (x) =

⎧⎪⎨
⎪⎩

f (x) if x ∈ dom f ,

sup
y∈bd(dom f )
y∗∈∂ f (y)∩�B∗

{〈y∗, x − y〉 + f (y)} otherwise. (20)
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Proof Observe that dom f is closed. Indeed, suppose that {xn} ⊂ dom f and xn → x .
By the Lipschitz continuity of f , for every n ∈ N,

f (xn) ≤ | f (xn) − f (x1)| + | f (x1)|
≤ �‖xn − x1‖ + | f (x1)|.

By the lower semicontinuity of f , we have

f (x) ≤ lim inf
n→∞ f (xn) ≤ �‖x − x1‖ + | f (x1)|

and so x ∈ dom f . Hence, dom f is closed. According to Theorem 5.1, it suffices
show that for any x /∈ dom f and z ∈ dom f , z∗ ∈ ∂ f (z) ∩ �B∗, then

〈z∗, x − z〉 + f (z) ≤ sup
y∈bd(dom f )
y∗∈∂ f (y)∩�B∗

{〈y∗, x − y〉 + f (y)
}
. (21)

The inequality automatically holds if z ∈ bd(dom f ). Now we assume that z ∈
int(dom f ). Since dom f is closed, there exists α ∈ (0, 1) such that

y := z + α(x − z) ∈ bd(dom f ) ⊂ dom f .

By Corollary 3.1, ∂ f (y) ∩ �B∗ �= ∅. Pick y∗ ∈ ∂ f (y) ∩ �B∗. By the definition and
the monotonicity of ∂ f , we have

f (y) + 〈y∗, x − y〉 ≥ f (z) + 〈z∗, y − z〉 + 〈y∗, x − y〉
≥ f (z) + 〈z∗, y − z〉 + 1 − α

α
〈y∗, y − z〉

≥ f (z) + 〈z∗, y − z〉 + 1 − α

α
〈z∗, y − z〉

= f (z) + 〈z∗, x − z〉,

which implies that (21) is satisfied. ��

5.2 Moreau Envelopes of the Convex Functions

Let us recall the notion of Moreau envelope of a function (see [10] and [1, Defini-
tion 2.63]) and its properties on Banach spaces. A collection of useful properties of the
Moreau envelope for finite-dimensional, proper, lower semicontinuous, convex func-
tions is given in [13]. For any λ > 0 the Moreau envenlope of index λ of a function
f : X → R is defined by

fλ(x) := inf

{
f (y) + ‖x − y‖2

2λ
: y ∈ X

}
, ∀x ∈ X .
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Suppose now that f is a proper l.s.c. convex function. In this setting, the envelopes
of f are also called Moreau–Yosida regularizations. By [6, Proposition 1.10], f is
bounded below by an affine continuous functional, i.e., there exist x∗ ∈ X∗ and α ∈ R

such that
f (y) ≥ 〈x∗, y〉 + α, ∀y ∈ X . (22)

The envelopes of f have some remarkable properties:

• Since fλ is the infimum convolution of two convex functions f and
y �→ (1/2λ)‖y‖2, fλ is also convex by [18, Theorem 2.1.3(ix)].

• Clearly, by the properness of f and (22), fλ has real values on X , or equivalently,
dom fλ = X . Moreover, since fλ is bounded from above on a neighborhoood of
every point in dom f and int(dom fλ) = X �= ∅, it is locally Lipschitz continuous
on X by [3, Proposition 2.107].

• From (22), we can choose x0 ∈ dom f and r > 0 such that

f (y) + r(‖y − x0‖2 + 1) ≥ 0, ∀y ∈ X .

Therefore, by [1, Theorem 2.64], for every x ∈ X , the sequence { fλ(x)}λ>0
increases to f (x) as λ decreases to zero and

f (x) = lim
λ↓0 fλ(x) = sup

λ>0
fλ(x). (23)

Moreover, if f is �−Lipschitz on dom f then { fλ} uniformly converges to f on
dom f . Indeed, for any x, y ∈ dom f , we have

f (y) + 1

2λ
‖x − y‖2 ≥ f (x) − �‖x − y‖ + 1

2λ
‖x − y‖2

= f (x) + 1

2λ
(‖x − y‖ − λ�)2 − λ�2

2

≥ f (x) − λ�2

2
.

Taking the infimum in the variable y both sides of the latter inequality, we get

f (x) ≥ fλ(x) ≥ f (x) − λ�2

2
. (24)

The latter inequalities show that { fλ} uniformly converges to f on dom f . Note
that (24) was established in [13, Proposition 3.4] in finite-dimensional setting. In
comparison with the proof of [13, Proposition 3.4], our proof does not need the
existence of proximal points.

• Consider the function g : X → R given by

g(y) := f (y) + ‖x − y‖2
2λ

, ∀y ∈ X . (25)
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Since f is a proper l.s.c. convex function, so is g. By (22), g is coercive, i.e.,

lim‖y‖→+∞ g(y) = +∞.

Hence, if X is reflexive then g attains its minimum on X by [6, Corollary 3.23].
This implies that, for every x ∈ X and λ > 0, there exists xλ ∈ dom f such that

fλ(x) = min
y∈X

[
f (y) + 1

2λ
‖x − y‖2

]
= f (xλ) + ‖x − xλ‖2

2λ
. (26)

Moreover, by (26), applying the subdifferential rule for the infimum convolution
[18, Corollary 2.4.7] of two convex functions f and y �→ (1/2λ)‖y‖2, we obtain

∂ fλ(x) = ∂ f (xλ) ∩ (1/λ)J (x − xλ), (27)

where J is the subdifferential of the convex function x �→ (1/2)‖x‖2 given by

J (x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖2 = ‖x‖2}. (28)

It follows from (23) that if fλ is �−Lipschitz on dom f for all sufficiently small λ > 0
then f is also �−Lipschitz on its domain. Our aim is to prove the reverse result. We
first establish the upper bound for the values of the Moreau envelope of f at points of
subdifferentiability.

Lemma 5.1 Let f : X → R be a proper l.s.c. convex function and λ > 0. If
x ∈ dom(∂ f ) and x∗ ∈ ∂ f (x) then

fλ(x) ≤ fλ(y) + ‖x∗‖ ‖y − x‖ , ∀y ∈ X . (29)

Proof Suppose that x ∈ dom(∂ f ) and x∗ ∈ ∂ f (x). Let ε > 0 be arbitrary and
xε ∈ dom f be such that

f (xε) + 1

2λ
‖xε − x‖2 ≤ f (y) + 1

2λ
‖y − x‖2 + ε2, ∀y ∈ X .

By Brøndsted–Rockafellar theorem [7], there exist yε ∈ X and y∗
ε ∈ X∗ such that

‖y∗
ε ‖ ≤ ε and y∗

ε ∈ ∂g(yε) where g : X → R is given by (25). By Theorem 2.2,
y∗
ε ∈ ∂ f (yε)+(1/λ)J (yε−x). Let z∗ε ∈ ∂ f (yε) be such that y∗

ε −z∗ε ∈ (1/λ)J (yε−x).
By (28), the monotonicity of ∂ f and the inequality ‖y∗

ε ‖ ≤ ε, we have

‖yε − x‖2 = λ〈y∗
ε − z∗ε , yε − x〉

= λ〈y∗
ε − x∗, yε − x〉 − λ〈x∗ − z∗ε , x − yε〉

≤ λ〈y∗
ε − x∗, yε − x〉

≤ λ‖y∗
ε − x∗‖‖yε − x‖

≤ λ(‖y∗
ε ‖ + ‖x∗‖)‖yε − x‖

≤ λ(ε + ‖x∗‖)‖yε − x‖.
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It follows that
‖yε − x‖ ≤ λε + λ‖x∗‖. (30)

Let y, z be arbitrary in X . Then, by (28) and (30), we have

〈z∗ε − y∗
ε , z − x〉 ≤ ‖z∗ε − y∗

ε ‖‖z − x‖
= (1/λ)‖yε − x‖‖z − x‖
≤ (1/λ)‖yε − x‖‖z − y‖ + (1/λ)‖yε − x‖‖y − x‖
≤ (1/λ)‖yε − x‖‖z − y‖ + (ε + ‖x∗‖)‖y − x‖,

〈y∗
ε , z − yε〉 ≤ ‖y∗

ε ‖‖z − yε‖
≤ ε(‖z − x‖ + ‖x − yε‖)
≤ ε(‖z − x‖ + λε + λ‖x∗‖).

Since z∗ε ∈ ∂ f (yε), using (30) again and the latter inequalities, we get

f (z) ≥ f (yε) + 〈z∗ε , z − yε〉
= f (yε) + 〈z∗ε − y∗

ε , x − yε〉 + 〈z∗ε − y∗
ε , z − x〉 + 〈y∗

ε , z − yε〉
≥ f (yε) + 1

λ
‖x − yε‖2 − 1

λ
‖yε − x‖‖z − y‖

− (ε + ‖x∗‖)‖y − x‖ − ε(‖z − x‖ + λε + λ‖x∗‖)
=

[
f (yε) + 1

2λ
‖x − yε‖2

]
+

[
1

2λ
‖x − yε‖2 − 1

λ
‖yε − x‖‖z − y‖

]
−‖x∗‖‖y − x‖ − ε(‖y − x‖ + ‖z − x‖ + λε + λ‖x∗‖).

On the other hand, by the definition of theMoreau envelope and the Cauchy inequality,
we have

f (yε) + 1

2λ
‖x − yε‖2 ≥ fλ(x),

1

2λ
‖x − yε‖2 − 1

λ
‖yε − x‖‖z − y‖ ≥ − 1

2λ
‖y − z‖2.

Therefore,

f (z) + 1

2λ
‖y − z‖2 ≥ fλ(x) − ‖x∗‖‖y − x‖ − ε(‖y − x‖ + ‖z − x‖ + λε + λ‖x∗‖).

Letting ε ↓ 0 in the above inequality, we get

f (z) + 1

2λ
‖y − z‖2 ≥ fλ(x) − ‖x∗‖‖y − x‖.
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It follows that

fλ(y) = inf
z∈X

[
f (z) + 1

2λ
‖y − z‖2

]
≥ fλ(x) − ‖x∗‖‖y − x‖

and so (29) is satisfied. ��
Theorem 5.2 Let f : X → R be a proper l.s.c. convex function and λ > 0. If f is
�−Lipschitz on dom f then fλ is �−Lipschitz on dom f .

Proof Let x, y be arbitrary in dom f . Since f is �−Lipschitz on dom f , by Corol-
lary 3.1, dom f = dom ∂ f and there exist x∗ ∈ ∂ f (x), y∗ ∈ ∂ f (y) such that
‖x∗‖ ≤ � and ‖y∗‖ ≤ �. Applying Lemma 5.1, we get

fλ(x) ≤ fλ(y) + ‖x∗‖ ‖y − x‖ ≤ fλ(y) + �‖y − x‖,
fλ(y) ≤ fλ(x) + ‖y∗‖ ‖x − y‖ ≤ fλ(x) + �‖x − y‖.

Therefore,

| fλ(x) − fλ(y)| ≤ �‖x − y‖,

and so fλ is �−Lipschitz on dom f . ��
Remark 5.1 When X is reflexive we can give a simple proof of Theorem 5.2 with-
out using Lemma 5.1. Indeed, let λ > 0 and x ∈ dom f . Since X is reflexive,
there exists xλ ∈ dom f satisfying (27). Moreover, since fλ is convex and locally
Lipschitz on X , we have ∂ fλ(x) �= ∅. Let x∗

λ ∈ ∂ fλ(x). By (27), we have
x∗
λ ∈ ∂ f (xλ) ∩ (1/λ)J (x − xλ). Since f is �−Lipschitz on dom f , by Corollary 3.2,
x∗
λ ∈ ∂ f (xλ) ⊂ N�(xλ; dom f ) and so

〈x∗
λ, x − xλ〉 ≤ �‖x − xλ‖. (31)

On the other hand, x∗
λ ∈ (1/λ)J (x − xλ) implies that

〈x∗
λ, x − xλ〉 = (1/λ)‖x − xλ‖2 = λ‖x∗

λ‖2. (32)

Combining (31) and (32), we get

‖x∗
λ‖ = (1/λ)‖x − xλ‖ ≤ �.

Hence, ∂ fλ(x) �= ∅ and ∂ fλ(x) ⊂ �B∗ for all λ > 0 and x ∈ dom f . By Lemma 3.1,
fλ is �−Lipschitz on dom f for all λ > 0.

6 Conclusions

Characterizations of Lipschitz continuity of a proper l.s.c. convex function on a real
Banach space are investigated in this paper. Our criteria are expressed in terms of the
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boundedness of some selection of the subdifferential operator and the intersections of
the subdifferential operator and the normal cone operator to domain of the function in
question. On an open and bounded (not necessarily convex) set, we also characterize
the Lipschitz continuity of the given function via the boundedness of a selection of the
subdifferential operator on the boundary of the given set. Applications to two classical
problems in convex analysis are given: the extension of aLipschitz and convex function
to the whole space and the justification of Lipschitz continuity of its Moreau envelope
functions.
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