
Finite Elements in Analysis and Design 172 (2020) 103368

Contents lists available at ScienceDirect

Finite Elements in Analysis and Design

journal homepage: www.elsevier.com/locate/finel

A MINI element over star convex polytopes

Amrita Francis a, Alejandro Ortiz-Bernardin b,c, Stéphane PA. Bordas d,e,f,∗,
Sundararajan Natarajan a

a Integrated Modelling and Simulation Lab, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
b Department of Mechanical Engineering, Universidad de Chile, Av. Beauchef 851, Santiago, 8370456, Chile
c Computational and Applied Mechanics Laboratory, Center for Modern Computational Engineering, Facultad de Ciencias Físicas y Matemáticas, Universidad de
Chile, Av. Beauchef 851, Santiago, 8370456, Chile
d Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang, Viet Nam
e Institute of Computational Engineering, University of Luxembourg, Maison du Nombre, 6 Avenue de la Fonte, 4364 Esch-sur-Alzette, Luxembourg
f Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

A R T I C L E I N F O

Keywords:
VANP operator
Nearly-incompressible elasticity
Bubble basis functions
Strain smoothing (SFEM)
Arbitrary polytopes
Volumetric locking

A B S T R A C T

In this paper, we extend the concept of MINI element over triangles to star convex arbitrary polytopes. This is
achieved by employing the volume averaged nodal projection (VANP) method over polytopes in combination
with the strain smoothing technique. Within this framework, the dilatation strain is projected onto the linear
approximation space, thus resulting in a purely displacement based formulation. The stability is ensured by
enhancing the displacement field with bubble basis functions. The salient features of the proposed method are
two fold: the VANP alleviates the locking phenomenon and the strain smoothing suppresses the need to compute
the derivative of the basis functions, thus reducing the computational burden. Various benchmark problems in
two and three dimensions are numerically solved to demonstrate the robustness, accuracy and the convergence
properties of the proposed framework.

1. Introduction

The introduction of elements with arbitrary edges and faces in two
and three dimensions, respectively, has revolutionized and generalized
the finite element method (FEM) and has led to the development of
the polygonal FEM [1–4]. Some of the salient features of the PFEM
are: (a) relaxes the restriction on element topology; (b) can work with
non-conforming elements and quadtree/octree decomposition without
splitting into simplex elements or using constraint equations [5] and
(c) offers greater flexibility in meshing complex geometries [3,6,7] and
in fracture problems [8]. However, one of the challenges faced with
the PFEM is in evaluating the integral of the weak form exactly, which
affects the accuracy of the results. The issue is basically due to lack
of polynomial consistency of the discrete system causing a limit on the
convergence of the finite element solutions [9,10]. Thus, various efforts
have been put to develop the quadrature scheme for the PFEM [10–12].
Inspired by the nodal integration scheme proposed for the meshfree
methods [13–15] and later extended to the finite element method by
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Liu et al. [16], Francis and Natarajan [17–19] employed the cell-based
strain smoothing scheme for numerically integrating the terms in the
bilinear and linear form.

Due to aforementioned properties, in the recent past, considerable
effort has been made to develop methods with polygonal discretiza-
tions, viz., virtual element method [20–23], virtual node method [24],
smoothed finite element method [18,25], scaled boundary finite ele-
ment method [17,26,27] and the discontinuous Galerkin method [28].
Since its inception, the PFEM has been employed to solve problems
involving large deformations [29], contact problems [30] and fracture
mechanics [8]. However, to the best of author’s knowledge, only a
few papers have employed polygonal finite element method for nearly
incompressible elasticity [10,31] and fluid flow [11]. Talischi et al.
[11], employed a linearly complete barycentric coordinates with piece-
wise constant pressure interpolation over Voronoi type meshes. It was
shown that the formulation was unconditionally stable without any
additional treatment. In their formulation, pressure was treated as addi-
tional variable, moreover, the pressure is discontinuous across the ele-
ment boundaries.
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Fig. 1. Schematic representation of enhanced node set N+ for both the two dimensional and three dimensional formulation, respectively. The bubble node set Nb is
shown by the filled square inside the element, located at the geometric center of each arbitrary polytope.

The main objectives of the paper are: (a) to extend the recently pro-
posed ‘volume averaged nodal projection’ (VANP) method to arbitrary
polytopes (in both two and three dimensions) and (b) employ the cell-
based strain smoothing technique to integrate the terms in the bilin-
ear linear form. The VANP is a purely-displacement based formulation
introduced by Ortiz et al., [32–34]. Unlike the previous work, herein
we present a pure displacement formulation using the VANP technique
and consider both polygonal and polyhedral finite elements. Within this
framework, the displacement field is approximated over the enhanced
nodes with bubble basis function ensuring stability and the linearly
complete pressure field is approximated over the standard nodes using
Wachspress basis functions. The locking-free behavior of the VANP

approach is rendered by projecting the dilatation strain onto the lin-
ear approximation space. Few other approaches of stabilized mixed for-
mulation with lower-order elements and equal order interpolants using
local L2 projection for pressure are discussed in Refs. [35,36] and the
projection of the pressure field onto a lower space through a least-
squares based projection technique are given in Refs. [37,38]. The effi-
cacy and robustness of the arbitrary polytopes in nearly incompressible
regime are presented by solving few benchmark problems. The salient
features of the work are:

• the VANP method alleviates locking phenomenon and is purely a
displacement based formulation. The pressure is continuous across

Fig. 2. Construction for the Wachspress basis function.
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the element boundaries and computed in the post-processing step.
• the strain smoothing suppresses the need for isoparametric mapping

and hence the computation of the Jacobian is eliminated.

The rest of the manuscript is organized as follows: Section 2 sum-
marizes the formulation consisting of the strong form for the incom-
pressible linear elastic isotropic material, the u-p mixed weak form,
the construction of Wachspress basis functions and bubble basis func-
tions and the VANP method. Section 4 consists of the two dimensional
and three dimensional numerical examples to prove the efficiency and
the convergence properties of the proposed framework, followed by the
conclusions and future work.

2. Formulation

2.1. Strong form

Consider an elastic body in d = {2,3} dimensional space defined by
an open domain Ω ⊂ ℝd, bounded by the d - 1 dimensional surface Γ
such that Γ = Γu ∪ Γt and Γu ∩ Γt = ∅. The governing equation with
boundary conditions using mixed formulation for both incompressible
and nearly-incompressible linear elastic isotropic material is described

below:

∇ · 𝝈 + b = 0 in Ω (1a)

∇ · u + p
𝜆
= 0 in Ω (1b)

u = u on Γu (1c)

𝝈.n = t on Γt (1d)

where u describes the nodal displacement of the elastic body subjected
to external tractions t and body force b. The Γu is the Dirichlet bound-
ary and Γt is the Neumann boundary. The Cauchy stress tensor 𝝈 is
related to the small strain tensor 𝜺 and the pressure parameter p by the
following constitutive relation:

𝝈(u, p) = −pI + 2𝜇∇u (2)

where 𝜆 and 𝜇 are the Lame’s constant which are defined as:

𝜆 = E𝜈
(1 + 𝜈)(1 − 2𝜈) (3)

𝜇 = E
2(1 + 𝜈) (4)

Fig. 3. Wachspress basis function: (a) standard node of a pentagon, (b) enhanced/bubble node of a pentagon, (c) standard node of a polyhedra and (d) bubble node
of a polyhedra.
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where 𝜈 is the Poisson’s ratio and E is the Young’s modulus of the mate-
rial. The kinematic relation between the small strain tensor 𝜺 and the
displacement vector u is:

𝜺 = ∇u = 1
2
(
∇u +∇uT) (5)

For nearly-incompressible linear elastic body, as 𝜈 tends to 0.5, the
volumetric strain is zero, therefore we can say ∇.u = 𝜺

vol = tr(𝜺) ≈ 0
Thus, the hydrostatic pressure field p can be approximate as:

p = −𝜆∇.u = −𝜆tr(𝜺) = −𝜆𝜺vol (6)

2.2. Weak form

Let u and V be the trial and the test spaces for the displacement
field, respectively, such that

U ≔ {u ∶ u ∈ H1(Ω),u = u on Γu}

V ≔ {𝛿u ∶ 𝛿u ∈ H1(Ω), 𝛿u = 0 on Γu}

where H1(Ω) denotes the Sobolev space of order one. Since, only nodal
variable pressure is required, let p and 𝛿p be the trial and the test
functions for the pressure variable, respectively. Such that p ∈ P and
𝛿p ∈ P, we define P by

P ≔ {p ∶ p ∈ L2(Ω),∫
Ω

p dΩ = 0}

where L2(Ω) denotes the Sobolev space of order zero. The u − p mixed
weak form is given by

2𝜇∫
Ω

∇u ∶ ∇𝛿u dΩ− ∫
Ω

p∇.𝛿u dΩ = ∫
Ω

b.𝛿u dΩ + ∫
Γt

t.𝛿u dΓ ∀𝛿u ∈ V

(7a)

∫
Ω

𝛿p (∇.u + p
𝜆
) dΩ = 0 ∀𝛿p ∈ P (7b)

The discretization of the weak form leads to a system of linear equa-
tions. In the standard u − p mixed formulation both the displacement
and the pressure are independent nodal variables. The pressure and the
displacement field in Equation (2.2) is discretized using

ph(x) =
Ns∑
I=1

𝜙I(x)pI (8a)

𝛿ph(x) =
Ns∑
I=1

𝜙I(x)𝛿pI (8b)

uh(x) =
N+∑
I=1

𝜙I (x)uI (9a)

𝛿uh(x) =
N+∑
I=1

𝜙I (x)𝛿uI (9b)

where p is the nodal pressure, u is the nodal displacement and 𝜙I are
the associated basis functions. In order to ensure the stability of the
method, the displacement field is enhanced with bubble basis functions
by adding an additional bubble node (denoted by Nb) at the geometric
center of each element as shown in Fig. 1. The resulting enhanced node
set is denoted by N+ and the standard node set is denoted by Ns, such
that N+ = Ns ∪ Nb. From Equations (2.2)-(2.2), we can observe that the
pressure field is approximated over the standard node set Ns, whereas,
the displacement field is approximated over the enhanced node set N+.

In this paper, we discretize the domain with arbitrary polygons and
polyhedra in two and three dimensions, respectively. While there are
different ways to represent the basis functions over arbitrary polytopes
[2], we choose the Wachspress interpolants to describe the unknown
fields [39]. These functions are rational polynomials and the construc-
tion of the Wachspress basis function is given as: Let P ⊂ I R3 be a sim-
ple convex polyhedron with facets F and vertices V as shown in Fig. 2.
For each facet f ∈ F, let nf be the unit outward normal and for any
x ∈ P, let hf (x) denote the perpendicular distance of x to f, which is
given by

hf (x) = (v − x) · nf (10)

Fig. 4. Schematic representation of two and three dimensional integration cell Ωc, used for the computation of the VANP operator over a current node ‘c’.
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Fig. 5. Schematic representation of the integration points within the domain shown by the centroid of the smoothing cell and on the edges/faces of the subcell Ωs
shown by the cross for constant smoothing, where the filled square node (i.e the centroid of the element) is to discretize the element into the smoothing cells.

for any vertex v ∈ V that belongs to f. For each vertex v ∈ V, let
f1, f2, f3 be the three faces incident to v and for x ∈ P, let

wv(x) = det(pf1 ,pf2 ,pf3 ) (11)

where, pf ≔ nf∕hf (x) is the scaled normal vector, f1, f2,… , fd are the
d faces adjacent to v listed in an counter-clockwise ordering around v
as seen from outside P (see Fig. 2) and det denotes the regular vector
determinant in ℝd. The shape functions for x ∈ P is then given by

𝜙v(x) =
wv(x)∑

u∈V
wu(x)

. (12)

The Wachspress basis functions are the lowest order shape functions
that satisfy boundedness, Kronecker delta property, linearity and linear
consistency over arbitrary convex polytopes as shown in Fig. 3. The
bubble basis functions denoted by 𝜙b are zero along the boundaries of
the element and at the standard nodes Ns and one at the bubble node
Nb of the element as shown in Fig. 3. Mathematically, the bubble basis
functions is given by;

𝜙be
= (Ns

e)
2

Ns
e∏

I=1
𝜙I (13)

where, Ns
e, 𝜙be

are the standard node set and bubble node of an element
Ωe as shown in Fig. 3.

2.3. Volume-average nodal projection (VANP) operator

The VANP method inspired by the B-bar method [40], was intro-
duced by Ortiz et al. [32–34], to alleviate volumetric locking for nearly
incompressible media in the meshfree methods. The key advantage of
the proposed method is that the displacement field and the pressure
field are coupled. Such that, the classical u − p mixed formulation
can be translated into a purely displacement based formulation using
the VANP method. Such that, the classical u − p mixed formulation
can be translated into a purely displacement based formulation using
the VANP method, which was originally proposed in the finite element
pressure projection [37] and RKPM meshfree pressure projection [38]
for nearly incompressible hyperelasticity. This implies that the displace-
ment field is the only nodal solution and the pressure field is obtained
as post processing.

In this technique, for each current node ‘c’ of an element (n-sided
polygon or polyhedron) an integration cell denoted by Ωc is created,
as shown in Fig. 4. All the elements attached to the current node ‘c’
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Fig. 6. Square domain: the sample meshes showing domain discretization with polygonal element.

Table 1
Relative error in the L2 norm and H1 seminorm for the two-dimensional linear patch
test.

Mesh PFEM VANP-CS

L2 H1 L2 H1

(a) 1.24 × 10−06 6.20 × 10−06 4.67 × 10−15 1.89 × 10−14

(b) 1.94 × 10−06 7.26 × 10−06 1.62 × 10−14 2.95 × 10−14

(c) 1.54 × 10−05 7.71 × 10−05 2.61 × 10−14 7.81 × 10−14

(d) 3.47 × 10−05 1.10 × 10−04 2.91 × 10−14 1.10 × 10−13

becomes the part of the integration cell Ωc as shown in Fig. 4. The
integration cell Ωc created is used to evaluate the projection opera-
tor denoted by 𝜋, which is later used to calculate the modified strain
denoted by 𝜺h(uh) to alleviate locking phenomenon. In this process, an
additive decomposition is applied to the standard total strain, which
leads to:

𝜺h(uh) = 𝜺
dev
h (uh) + 𝜺

vol
h (uh)

=
(
𝜺h(uh) −

1
3

tr 𝜺h(uh)I
)
+ 1

3
tr 𝜺h(uh)I (14)

In the present method, the dilatational part is projected onto the
another space which helps to alleviate the volumetric locking. The
projection operator denoted by 𝜋 operates over the dilatational strain
𝜺

vol
h (uh). Thus, the projected dilatational strain is denoted by 𝜺

vol
h (uh).

The total modified strain is called as a discrete modified strain denoted
by 𝜺h(uh) is evaluated as:

𝜺h(uh) = 𝜺
dev
h (uh) + 𝜋

[
𝜺

vol
h (uh)

]
= 𝜺

dev
h (uh) + 𝜺

vol
h (uh) (15)

The pressure constraint is obtained by substituting Equations
(2.2)-(2.2) into Equation (2.2). It can be shown that after relying on
the arbitrariness of the nodal pressure test functions the discrete pres-
sure term leads to the following:

∫
Ω

Ns∑
I=1

𝜙I(x)𝛿pI

{
∇.uh +

1
𝜆

Ns∑
I=1

𝜙I(x)pI

}
dΩ = 0 ∀𝛿p ∈ P (16a)

∫
Ω

𝜙I(x)∇.uh dΩ+ 1
𝜆

Ns∑
I=1

∫
Ω

𝜙I(x)𝜙I(x)pI dΩ = 0 (16b)

The above integration is performed over an integration cell Ωc to eval-
uate pressure field at any node for example say node ‘c’ (see Fig. 4) is
given by

pc(x) = −𝜆
Ns∑
I=1

𝜙I(x)
∫
Ωc

𝜙c(x)∇.uh dΩ

∫
Ωc

𝜙c(x) dΩ

6
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Fig. 7. Cantilever beam: (a) geometry and boundary conditions, (b–c) representative triangular (901 elements) and polygonal mesh (320 elements), respectively.

Fig. 8. Cantilever beam: Convergence rate for the L2 norm and H1 seminorm
using polygonal element is optimal and accurate with VANP-CS for different
Poisson’s ratio i.e for both the compressible and nearly-incompressible problem.

= −𝜆
Ns∑
I=1

𝜙I(x)
∫
Ωc

𝜙c(x)𝜺vol
h dΩ

∫
Ωc

𝜙c(x) dΩ (16c)

which is called the volume − averaged nodal pressure. The nodal pres-
sure is evaluated as post processing using only the standard node set
Ns. From Equation (2.2), the bar operator (𝜋c) is given by

𝜋c[.] =
∫
Ωc

𝜙c(x)[.] dΩ

∫
Ωc

𝜙c(x) dΩ (17)

The VANP operator denoted 𝜋[.] is evaluated by the linear combination
over the bar operator given as:

𝜋[.] =
Ns∑
I=1

𝜙I (x)𝜋c[.] (18)

Thus, the projected dilatational strain 𝝐
vol
h is computed as follows:

𝜺
vol
h = 𝜋

[
𝜺

vol
h
]
=

Ns∑
I=1

𝜙I(x)𝜋c
[
𝜺

vol
h
]
=

Ns∑
I=1

𝜙I(x)
⎧⎪⎨⎪⎩
∫
Ωc

𝜙c(x)𝜺vol
h dΩ

∫
Ωc

𝜙c(x) dΩ

⎫⎪⎬⎪⎭ (19)

2.4. Discrete equations

The domain Ω is partitioned into nel non-overlapping polygonal ele-
ments with straight edges and polyhedral elements with planar/non-
planar faces in two dimensions and three dimensions, respectively. The
proposed method is purely the displacement based method as the pres-
sure field is derived in terms of the volumetric strain. In order to ensure

7
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stability of the solution, the displacement field is computed over the
enhanced node set N+. As in finite element the discrete strain relation
is given by:

𝜺h(uh) =
N+∑
I=1

BI (x)uI (20a)

𝜺h(𝛿uh) =
N+∑
I=1

BI(x)uI (20b)

𝜺
vol
h (uh) =

Ns∑
I=1

𝜙I(x)𝜋c

⎡⎢⎢⎣mT
N+∑
I=1

BI

⎤⎥⎥⎦uI (20c)

𝜺
vol
h (𝛿uh) =

Ns∑
I=1

𝜙I(x)𝜋c

⎡⎢⎢⎣mT
N+∑
I=1

BI

⎤⎥⎥⎦ 𝛿uI (20d)

where m is the linear operator and BI(x) is the strain displacement
matrix for enhanced node N+, given by:

m = [1 1 0]T (21a)

BI =
⎡⎢⎢⎢⎣
𝜙I,x 0

0 𝜙I,y

𝜙I,y 𝜙I,x

⎤⎥⎥⎥⎦ (21b)

for two dimensions and in three dimensions

m = [1 1 1 0 0 0]T (22a)

BI =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜙I,x 0 0

0 𝜙I,y 0

0 0 𝜙I,z

𝜙I,y 𝜙I,x 0

𝜙I,z 0 𝜙I,x

0 𝜙I,z 𝜙I,y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22b)

where 𝜙I,j(j = x, y, z) is the derivative of shape functions. The above
strain is computed over the displacement degrees of freedom i.e. over
the enhanced node set. These discrete quantities are substituted into
weak form which leads to the following system of equations:(

Kdev + Kvol
)

u = f (23)

where u is the column vector of nodal coefficients. The external force
vector, f and the stiffness matrix are given by:

Kdev = ∫
Ω

BTC𝜇B dΩ (24a)

Kvol = 𝜆∫
Ω

BTm
Ns∑
I=1

𝜙I𝜋c
[
mTB

]
dΩ (24b)

f = ∫
Ω

𝜙Ib dΩ+ ∫
Γt

𝜙It dΓ (24c)

and the constitutive matrix is given by:

C𝜇 =
⎡⎢⎢⎢⎣
2𝜇 0 0

0 2𝜇 0

0 0 𝜇

⎤⎥⎥⎥⎦ (25)

in two dimensions, and

C𝜇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝜇 0 0 0 0 0

0 2𝜇 0 0 0 0

0 0 2𝜇 0 0 0

0 0 0 𝜇 0 0

0 0 0 0 𝜇 0

0 0 0 0 0 𝜇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)

in three dimensions. The nodal coefficients i.e. nodal displacements are
obtained by solving Equation (2.2).

3. Constant smoothing

In this paper, the constant smoothing method is used for comput-
ing the terms in Equation (2.2). For the purpose of numerical integra-
tion, the elements are divided into subcells denoted by Ωs as shown in
Fig. 5. In this study, we use triangular subcells in the two dimensional
space and tetrahedral subcells in the three dimensional space as shown
in Fig. 5. The strain smoothing technique is then applied within each
subcell to evaluate the modified strain. For simplicity of the notation,
the derivation of the smoothing scheme is given in detail only for the
two-dimensions. The Cartesian coordinate system is chosen, where for
convenience x ≡ x1 and y ≡ x2. In addition, nj (j = 1,2) is the j-th
component of the unit outward normal to a cell edge in the Cartesian
coordinate system. The discrete strain field 𝜀h

ij that yields the modified

strain-displacement matrix B̃ that is used to build the stiffness matrix is
computed by a weighted average of the standard strain field 𝜀h

ij in each

subcell Ωh
s , as follows:

𝜀h
ij = ∫Ωh

s

𝜀h
ij(x)f (x)dΩ, (27)

where f(x) is a smoothing function. On writing Equation (2.2) at the
basis functions derivatives level, its right-hand side can be expressed in
terms of the divergence theorem, as follows:

∫Ωh
s

𝜙I,jf (x) dΩ = ∫Γh
s

𝜙I f (x)nj dΓ − ∫Ωh
s

𝜙I f,j(x) dΩ. (28)

where Ωs is the domain of the smoothing cell bounded by Γs and nj are
the outward normals. The 𝜙I are the Wachspress shape functions at the
cartesian coordinates and 𝜙I,j are the modified derivative to be evalu-
ated for the element. The above Equation (2.2) was coined as divergence
consistency in Duan et al. [41], where it was introduced to correct inte-
gration errors in second- and third-order meshfree approximations. This
divergence consistency was later used to correct integration errors in
the meshfree method [42,43]. The above Equation (2.2), originated by
the so called “integration constraint” in Chen et al. [13] in the form of

Table 2
The convergence of the VANP-CS method with mesh refinement for different Poisson’s ratio.

Element size h L2 norm H1 seminorm

𝜈 = 0.3 𝜈 = 0.45 𝜈 = 0.4999999 𝜈 = 0.3 𝜈 = 0.45 𝜈 = 0.4999999

0.1030 0.0144 0.0120 0.0087 0.0412 0.0309 0.0270
0.0668 0.0069 0.0058 0.0043 0.0295 0.0223 0.0198
0.0554 0.0037 0.0034 0.0028 0.0219 0.0168 0.0152
0.0347 0.0017 0.0014 0.0011 0.0149 0.0118 0.0108
0.0261 0.0008 0.0006 0.0005 0.0101 0.0082 0.0075
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Fig. 9. Cantilever beam: (a) Relative error in the L2

norm for different Poisson’s ratio using polygonal ele-
ments (PFEM, VANP, VANP-CS) (160 polygonal ele-
ments with 638◦ of freedom) and triangular elements
(MINI) (217 triangular elements with 678◦ of free-
dom). (b) Convergence rate for the relative error in
L2 norm and H1 seminorm for 𝜈 = 0.4999999 using
different methods.

divergence condition, was coined as divergence consistency in Duan et al.
[41]. The extension of integration constraint to higher order meshfree
approximation has been introduced in Refs. [14,42,43].In the constant

smoothing method, the smoothing function is chosen to be a constant,
that is,

f (x) = 1 (29)

9
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Fig. 10. Cantilever beam discretized with triangular and polygonal elements with 11274◦ of freedom for both the elements: (a) nodal pressure for 1890 polygonal
elements (b) nodal pressure for 3724 triangular elements (c) nodal pressure (Pa) values along a section at x = 4 m using VANP and MINI over the given discretization.

The divergence consistency equation reduces to,

∫Ωh
s

𝜙I,j dΩ = ∫Γh
s

𝜙Inj dΓ (30)

The above equation is the strain smoothing of the stabilized conforming
nodal integration (SCNI) [13] and can be used to obtain the modified
derivative, 𝜙I,j. On numerical integration of the above equation over
Ωs. We get,

mg∑
m=1

Wm𝜙I,j(xm) =
sl∑

s=1

gl∑
g=1

𝜙I(xg)nL
j Wg (31)

where mg and Wm are number of Gauss points and corresponding
weights per smoothing cell, respectively. Only one Gauss point (mg) is
required for the numerical integration of the smoothing cell as shown
in Fig. 5. Following the sub-domain stabilized conforming nodal inte-
gration originally proposed in Ref. [15], only one Gauss point (mg) is
required for the numerical integration of the smoothing cell as shown
in Fig. 5. Similarly, gl and Wg are Gauss points and corresponding
weights along the boundary (edges) of the subcell, respectively. The
Gauss points required for the numerical integration along the bound-
aries of the smoothing cell are: two (i.e. gl = 2) for two dimensions
and three (i.e. gl = 3) for the three dimensions, as shown in Fig. 5.

While sl represents the number of edges/faces. The modified deriva-
tives of the shape functions thus obtained using cell based smoothing
technique are used to compute the strain displacement matrix i.e BI as
shown in Equations (2.2) and (2.4), respectively.

4. Numerical examples

In this section, we demonstrate the accuracy and the convergence
properties of the proposed VANP method with constant smoothing over
arbitrary polytopes for nearly-incompressible problems in two and three
dimensions. The discretization is based on centroid Voronoi tessella-
tion. The two dimensional region is discretized with polygons using
Polymesher [3], a MATLAB based meshing tool. For three dimensional
problems, we employ the approach proposed in Ref. [19] to generate
polyhedral meshes. The results from the proposed method are compared
with MINI [44] and analytical solutions where available. The relative
error in L2 norm and H1 seminorm is used to assess the accuracy and
the convergence rates of the proposed framework. Whilst discussing the
results, the following convention is adopted:

• VANP–CS– for the proposed VANP method with constant smoothing
over arbitrary polytopes.

• VANP- for the VANP method over arbitrary polytopes.

10
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Fig. 11. Poiseuille flow:(a) Geometry and boundary condition (b) representative mesh of 640 polygonal elements.

Fig. 12. Poiseuille flow: Relative error in the displacement (u) and pressure (p)
converges well with the mesh refinement with an optimal convergence rate for
𝜈 = 0.4999999.

• PFEM- for the conventional polygonal finite element method.
• MINI- for the triangular and tetrahedral finite element.

4.1. Applications to two dimensional problems

We first study the convergence and the accuracy properties of the
proposed VANP-CS over arbitrary polytopes in two dimensions. Three
problems are considered: (a) patch test, (b) cantilever beam with end
shear load and (c) driven cavity flow.

Patch test. In the first example, the convergence and the accuracy
properties are demonstrated with a linear patch test and the results
are compared with the classical PFEM. For this, consider a unit square,

Ω ∈ (0,1)2 subjected to the following conditions on the boundary, Γu:(
u(x, y)
v(x, y)

)
=
(

x

x + y

)
(32)

Fig. 6 shows four different polygonal meshes employed for this
study. A state of plane strain condition is assumed with the following
material properties: Young’s modulus E = 3 × 107 MPa and Poisson’s
ratio 𝜈 = 0.499 [45]. The relative error in the L2 norm and H1 semi-
norm are given in Table 1. It can be inferred from the results that the
patch test is satisfied up-to machine precision for the nearly incom-
pressible material behavior with the proposed VANP-CS method over
the arbitrary polygons in two dimensions.

Cantilever beam. In this two dimensional problem, consider a can-
tilever beam of length L = 8 m and height D = 4 m, subjected
to a parabolic shear load, P = 250 N at the free end as shown in
Fig. 7(a).The exact solution for this problem is given by Ref. [46]:

u(x, y) = Py
6EI

[
(6L − 3x)x + (2 + 𝜈)

(
y2 − D2

4

)]
v(x, y) = − P

6EI

[
3𝜈y2(L − x) + (4 + 5𝜈)D2x

4
+ (3L − x)x2

]
(33)

where I = D3

12 is the moment of inertia, E = E∕(1 − 𝜈2), 𝜈 = 𝜈∕(1− 𝜈) for
plane strain condition. Fig. 7(c) shows a representative polygonal mesh
employed in this example. The convergence of the relative error in the
L2 norm and H1 seminorm with mesh refinement with the proposed
framework is shown in Fig. 8 and the values are tabulated in Table 2.
The influence of different Poisson’s ratio (𝜈 = 0.3, 0.45, 0.4999999)
is also shown. It can be inferred that the proposed framework yields
accurate results for all values of Poisson’s ratio and converges at the
optimal convergence rate. It can be further opined that the VANP-CS
suppresses the volumetric locking.

Next, the convergence and the accuracy of the proposed VANP-CS is
demonstrated by comparing the results with conventional PFEM1 and
with MINI element. For comparison with the MINI element, the domain
is discretized with triangular elements (see Fig. 7(b) for a representative

1 without nodal projection (i.e. PFEM) and without strain smoothing (i.e.,
VANP) to compute the terms in the bilinear/lienar form.
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Fig. 13. Poiseuille flow: (a) Displacement in x direction contour plot, (b) Nodal pressure (Pa) profile using polygonal elements, (c) Displacement in x direction along
section B-B, for different polygonal discretization and (d) Pressure along section A-A, for different polygonal discretization.

mesh). Fig. 9(a) shows the relative error in the L2 norm as a function
of Poisson’s ratio for different approaches for a mesh of 160 polyg-
onal elements and 217 triangular elements. For comparison, the dofs
are kept almost the same for comparison. It is clear that the conven-
tional PFEM suffers from volumetric locking in the near incompressibil-
ity limit, whilst all other approaches are free from locking. Note that
VANP over polygons and VANP-CS both alleviate locking syndrome,
however, VANP over polygons requires ‘many’ integration points to
compute the bilinear and linear form. The strain smoothing on the other
hand, reduces the computational burden. The convergenece of the rel-
ative error in the L2 norm and H1 seminorm with mesh refinement for
different approaches for the Poisson’s ratio 𝜈 = 0.4999999 is shown in
Fig. 9. It can be opined that the proposed framework VANP with and
without strain smoothing alleviates volumetric locking, yields accurate
results and converges at optimal convergence rate.

Fig. 10 shows the pressure contour for the cantilever beam when
meshed with triangular and poylgonal elements. From Fig. 10(a)-10(b),
it can be seen that the nodal pressure solution does not show any oscial-

Table 3
Values of 𝛾h in the numerical inf-sup tests. The
domain is discretized with arbitrary polytopes.

Number of elements h 𝛾h

40 0.25 0.4087
80 0.18 0.4214
160 0.12 0.4192
320 0.08 0.4222

lation. Fig. 10(c) shows the pressure profile through the thickness of the
beam at x = 4 for conventional PFEM, MINI and VANP-CS. The con-
ventional PFEM shows pressure oscillations, whilst MINI and VANP-CS
does not show any pressure oscillations for same degrees of freedom,
as expected. Moreover, we can observe that the performance of coarser
polygonal meshes is similar to the performance of the simplest finite
element (i.e. triangular elements).
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Fig. 14. Cooks membrane: (a) geometry and boundary conditions (b) a sample polyhedral mesh.

Poiseuille flow problem. Next, we consider Poiseuille flow prob-
lem. For this example, we consider a two dimensional unit square
domain under plane strain condition with a nearly incompressible limit.
Fig. 11(a) shows the geometry and the boundary conditions employed
in this study. The analytical solution for the displacement and the pres-
sure is given by:

u = 4y(1 − y); v = 0; P = 8(1 − x). (34)

The analytical displacements are prescribed on the boundary of the
domain and the left bottom corner is subjected to zero pressure con-
dition (see Fig. 11(a). A representative polygonal mesh used is shown
in Fig. 11(b). Fig. 12 shows the convergence of the relative error in the
displacement and the pressure with mesh refinement. It can be inferred
that the method yields accurate results and converges at optimal con-
vergence rate in both the displacement and pressure. Fig. 13 shows the
displacement contours along the x direction and displacement profile
along section B-B. It is seen that the proposed method is accurate even
on a coarser grid.

The pressure profile for this problem is shown in Fig. 13(b) for the
finest mesh. This shows the stability of pressure within the domain for
nearly incompressibility limit of 𝜈 = 0.4999999. The stability in the
pressure is also examined by evaluating pressure at section A-A for
different mesh discretization, see Fig. 11(a). Fig. 13(d) illustrates the
stability in the pressure with mesh refinement along a section A-A. Fur-
ther, the numerical inf-sup value evaluated with mesh refinement is
presented in Table 3, where, 𝛾h =

√
𝜆k and 𝜆k is the smallest non-zero

eigenvalue. The details of the numerical inf-sup can be found in Ref.
[47]. It can be inferred from Table 3 that the numerical inf-sup test
value converges to a value that is bounded away from zero with mesh
refinement. Therefore, the VANP method passes the numerical inf-sup
test and is stable.

4.2. Applications to three dimensional problems

Next, we study the convergence properties of the proposed frame-
work over star convex polytopes in three dimensions. Two problems are

considered: (a) Cook’s membrane problem and (b) the short cantilever
problem. As both these problems do not have analytical solutions, an
overkill finite element solution is used as a reference solution. The finite
element solution is computed using the commercial software Abaqus,
with the domain discretized with tetrahedral elements (C3D10H) or
hexahedral elements (C3D8H).

Cook’s membrane. Consider the standard bending dominated Cook’s
membrane. The geometry and the boundary conditions are shown in
Fig. 14(a). The right end of the membrane is subjected to an in-plane
shear load, P = 1 N and the left end is fixed in all the three directions,
resulting in a deformation that is dominated by bending. A sample mesh
used in the study is shown in Fig. 14(b). The material properties are:
Young’s modulus E = 1 Pa and Poisson ratio 𝜈 = 0.4999999. The refer-
ence solution is obtained with a mesh consisting of 12,500 hexahedral
elements and the vertical tip displacement at point ‘A’ is 24.213 mm
and the total strain energy is 12.12 Pa.

The convergence of the vertical displacement at point ‘A’ and the
convergence of the total strain energy solution is shown in Fig. 15(a)
and (b), respectively. The results from the present formulation is also
compared with tetrahedral elements. It can be inferred that the both
polyhedral elements and tetrahedral elements yield accurate result and
converges to the reference solution asymptotically. The nodal pressure
solution is shown in Fig. 16(a) for polyhedral elements using VANP-CS
and Fig. 16(b) for tetrahedral elements using MINI, respectively. It is
observed that the nodal pressure is stable within the domain for both
the MINI and the proposed method.

Short cantilever. As a last example, consider a three dimensional
short cantilever subjected to a uniform pressure on its upper face. The
displacements (in all three directions) on the adjacent vertical face
(hatched region in Fig. 17(a) is constrained. The geometry and the
boundary conditions of the problem are shown in Fig. 17(a). A rep-
resentative polyhedral mesh used in the study is shown in Fig. 17(b).
As approximate strain energy of 0.950930 MPa is taken as the reference
solution, as reported in Ref. [48] and the reference solution for the ver-
tical displacement at point ‘A’ (see Fig. 17(a)) is taken as 3.312 mm
as reported in Ref. [49]. This is for a Poisson’s ratio 𝜈 = 0.25 and
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Fig. 15. 3D Cooks membrane - convergence of the (a) vertical displacement (uy) at point A and (b) total strain energy with mesh refinement for Poisson’s ratio
𝜈 = 0.4999999 to the reference solution.
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Fig. 16. Cooks membrane discretized with tetrahedral and polyhedral elements, respectively (a) nodal pressure for 224 polyhedral elements with 306◦ of freedom
(b) nodal pressure for 554 tetrahedral elements with 669◦ of freedom.

Fig. 17. Short cantilever: (a) Geometry and boundary conditions (b) a sample polyhedral mesh.

Young’s modulus, E = 1 MPa. The vertical displacement at point ‘A’ is
estimated using Abaqus with 20,675 tetrahedral elements as 3.3 mm,
3.513 mm and 3.32 mm for different Poisson’s ratio (i.e 𝜈 = 0.25, 0.45,
0.4999999). Similarly, the strain energy is estimated as 0.9438 MPa,
1.0031 MPa and 0.9518 MPa for different Poisson’s ratio. The con-
vergence of the vertical displacement at point ‘A’ and the total strain
energy is shown in Fig. 18. It can be seen that the proposed framework
converges to the reference solution asymptotically.

5. Concluding remarks

In this work, we extended the MINI element over triangles to arbi-
trary polytopes by employing the VANP method. The computational
burden is reduced by using the strain smoothing technique. It is noted
that both were originally proposed for meshfree methods. The frame-
work presented alleviates volumetric locking and leads to a purely dis-
placement based formulation with the nodal pressure computed at the
post-processing stage. The constant strain smoothing technique is used
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Fig. 18. Short cantilever: (a) Convergence of the vertical deflection (uy) at point ‘A’ and (b) convergence of the total strain energy with the mesh refinement for
different Poisson’s ratio i.e 𝜈 = 0.25, 0.45 and 0.4999999.

to compute the terms in the bilinear and linear form, which significantly
reduces the computational burden, without compromising accuracy. It
is noted that the VANP over classical simplex element is the well known

MINI element. From the numerical study, it can be inferred that the pro-
posed framework does not suffer from volumetric locking phenomenon.
The proposed method also preserves optimal convergence rates in both
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the L2 norm and in the H1 seminorm for both two and three dimensional
problems.
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