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Abstract We construct finite time blow-up solutions to the 2-dimensional
harmonic map flow into the sphere S2,

ut = �u + |∇u|2u in � × (0, T )

u = ϕ on ∂� × (0, T )

u(·, 0) = u0 in �,

where� is a bounded, smooth domain inR2, u : �× (0, T ) → S2, u0 : �̄ →
S2 is smooth, and ϕ = u0

∣
∣
∂�

. Given any k points q1, . . . , qk in the domain, we
find initial and boundary data so that the solution blows-up precisely at those
points. The profile around each point is close to an asymptotically singular
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346 J. Dávila et al.

scaling of a 1-corotational harmonic map. We build a continuation after blow-
up as a H1-weak solution with a finite number of discontinuities in space–time
by “reverse bubbling”,which preserves the homotopy class of the solution after
blow-up. Furthermore, we prove the codimension one stability of the one point
blow-up phenomenon.

1 Introduction and main result

Let � be a bounded domain in R
2 with smooth boundary ∂�. We denote by

S2 the standard 2-sphere. We consider the harmonic map flow for maps from
� into S2, given by the semilinear parabolic equation

ut = �u + |∇u|2u in � × (0, T ) (1.1)

u = ϕ on ∂� × (0, T ) (1.2)

u(·, 0) = u0 in � (1.3)

for a function u : � × [0, T ) → S2. Here u0 : �̄ → S2 is a given smooth
map and ϕ = u0

∣
∣
∂�

. Local existence and uniqueness of a classical solution
follows from the works [3,10,26]. Equation (1.1) formally corresponds to the
negative L2-gradient flow for the Dirichlet energy

∫

�
|∇u|2dx . This energy is

decreasing along smooth solutions u(x, t):

∂

∂t

∫

�

|∇u(·, t)|2 = −
∫

�

|ut (·, t)|2.

Struwe [26] established the existence of an H1-weak solution, where just for
a finite number of points in space–time loss of regularity occurs. This solution
is unique within the class of weak solutions with decreasing energy, see Freire
[11] and also Lin-Wang [15] for another proof.

If T > 0 designates the first instant at which smoothness is lost, we must
have

‖∇u(·, t)‖∞ → +∞ as t ↑ T .

Several works have clarified the possible blow-up profiles as t ↑ T . The
following fact follows from results by Ding-Tian [9], Lin-Wang [13], Qing
[19], Qing-Tian [20], Struwe [26], Topping [27] and Wang [32]:

Along a sequence tn → T and points q1, . . . , qk ∈ �, not necessarily dis-
tinct, u(x, tn) blow-up occurs at exactly those k points in the form of bubbling.
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Singularity formation in the 2D harmonic map flow 347

More precisely, under some technical assumptions we have

u(x, tn) − u∗(x) −
k
∑

i=1

[

Ui

(
x − qni
λni

)

−Ui (∞)

]

→ 0 in H1(�) (1.4)

where u∗ ∈ H1(�), qni → qi , 0 < λni → 0, satisfy for i 	= j ,

λni

λnj
+ λnj

λni
+ |qni − qnj |2

λni λ
n
j

→ +∞.

TheUi ’s are entire, finite energy harmonic maps, namely solutionsU : R2 →
S2 of the equation

�U + |∇U |2U = 0 in R2,

∫

R2
|∇U |2 < +∞.

After stereographic projection,U lifts to a smooth map in S2, so that its value
U (∞) is well-defined. It is known thatU is in correspondence with a complex
rational function or its conjugate. Its energy corresponds to the absolute value
of the degree of that map times the area of the unit sphere, and hence

∫

R2
|∇U |2 = 4πm, m ∈ N, (1.5)

see Topping [27].
In particular, u(·, tn) ⇀ u∗ in H1(�) and for some positive integersmi , we

have

|∇u(·, tn)|2 ⇀ |∇u∗|2 +
k
∑

i=1

4πmi δqi (1.6)

in the measures sense, were δq denotes the unit Dirac mass at q.

Topping [28] estimated the blow-up rates as λni = o((T − tn)
1
2 ) (also valid

for more general targets), a fact that tells that the blow-up is of “type II”,
namely it does not occur at a self-similar rate.

A decomposition similar to (1.4) holds if blow-up occurs in infinite time,
T = +∞. In such a case one has the additional information that u∗ is a
harmonic map, and the convergence in (1.4) also holds uniformly in � (the
latter is called the “no-neck property”), seeQing andTian [20]. Finer properties
of the bubble-decomposition have been found by Topping [27].
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348 J. Dávila et al.

A least energy entire, non-trivial harmonic map is given by

W (x) = 1

1 + |x |2
(

2x
|x |2 − 1

)

, x ∈ R
2, (1.7)

which satisfies

∫

R2
|∇W |2 = 4π, W (∞) =

⎛

⎝

0
0
1

⎞

⎠ .

Very few examples are known of solutions, which exhibit the singularity for-
mation phenomenon (1.6), and all of them concern single-point blow-up in
radially symmetric corotational classes. When � is a disk or the entire space,
a 1-corotational solution of (1.1) is one of the form

u(x, t) =
(

eiθ sin v(r, t)
cos v(r, t)

)

, x = reiθ . (1.8)

Within this class, (1.1) reduces to the scalar, radially symmetric problem

vt = vrr + vr

r
− sin v cos v

r2
. (1.9)

We observe that the function

w(r) = π − 2 arctan(r)

is a steady state of (1.9) which corresponds precisely to the harmonic map W
in (1.7). Indeed,

W (x) =
(

eiθ sinw(r)
cosw(r)

)

.

Chang, Ding and Ye [4] found the first example of a blow-up solution of
problem (1.1)–(1.3) (which was previously conjectured not to exist). They
obtained the result in the 1-corotational class in a disk D by finding appro-
priate sub-super solutions to (1.9). Assuming that the initial energy satisfies
∫

D |∇u0|2 < 8π , the decomposition (1.4) implies that

u(x, t) = W
( x

λ(t)

)

+ u∗ + o(1), (1.10)

with u∗ ∈ H1, o(1) → 0 in H1-norm, and 0 < λ(t) → 0 as t → T . No
information on the precise blow-up rate λ(t) is obtained. Angenent, Hulshof
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Singularity formation in the 2D harmonic map flow 349

and Matano [1] estimated the blow-up rate of 1-corotational maps as λ(t) =
o(T − t). Using matched asymptotics formal analysis for problem (1.9), van
den Berg, Hulshof and King [30] demonstrated that this rate for 1-corotational
maps should generically be given by

λ(t) ≈ κ
T − t

| log(T − t)|2 , (1.11)

for some κ > 0. Raphael and Schweyer [23] succeeded to rigorously construct
an entire 1-corotational solution with this blow-up rate.

In this paper we deal with the general, nonsymmetric case in (1.1)–(1.3).
Our first result asserts that for any given finite set of points of � and suitable
initial and boundary values, a solution with a simultaneous blow-up at those
points exists, with a profile resembling a translation and rotation of that in
(1.10) around each bubbling point.

To state our result, we observe that the functions

Uλ,q,Q(x) := QW

(
x − q

λ

)

with λ > 0, q ∈ R
2 and Q an orthogonal matrix inR3 do solve problem (1.5),

and all share the least energy property:

∫

R2
|∇Uλ,q,Q |2 = 4π.

Let us consider the α-rotation matrix around the third axis given by

eJα =
⎡

⎣

cosα − sin α 0
sin α cosα 0
0 0 1

⎤

⎦ , J =
⎡

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎦ .

In all what follows, we consider problem (1.1)–(1.3) with the boundary
condition (1.2) given by the constant

ϕ(x) = e3. (1.12)

Here and in what follows we denote

e1 =
⎡

⎣

1
0
0

⎤

⎦ , e2 =
⎡

⎣

0
1
0

⎤

⎦ , e3 =
⎡

⎣

0
0
1

⎤

⎦ . (1.13)
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350 J. Dávila et al.

The constant boundary value e3 precisely corresponds to W (∞) where W
is the standard 1-corotational harmonic map (1.7). This choice is made for
convenience, in fact any sufficiently small perturbation of it is also admissible.
In the radial 1-corotational equation (1.9), this boundary condition in the disk
� = D(0, R) simply corresponds to v(R, t) = 0. All results below do apply
to a boundary condition which slightly perturbs (1.12), or in the case of entire
space R2 where this value is set as a condition at infinity.

Theorem 1 Given points q = (q1, . . . , qk) ∈ �k and any sufficiently small
T > 0, there exist u0 such the solution uq(x, t) of problem (1.1)–(1.3), for ϕ
given by (1.12), blows-up at exactly those k points as t ↑ T . More precisely,
there exist numbers κ∗

i > 0, α∗
i and a function u∗ ∈ H1(�)∩C(�̄) such that

uq(x, t) − u∗(x) −
k
∑

j=1

eJα
∗
i
[

W

(
x − qi
λi

)

− W (∞)
] → 0 as t ↑ T,

(1.14)
in the H1 and uniform senses in � where

λi (t) = κ∗
i

T − t

| log(T − t)|2
(

1 + o(1)
)

as t ↑ T . (1.15)

In particular, we have

|∇u(·, t)|2 ⇀ |∇u∗|2 + 4π
k
∑

j=1

δq j as t ↑ T .

The blow-up solution we constructed in Theorem 1 has no necks. By the
results of Qing-Tian [20], (see also Lin-Wang [13,14]), this follows from the
directly checked fact that the L2 norm of the tension field τ := ut is bounded
as t ↑ T . Our construction suggests that no necks should be present in planar
solutions with isolated least energy blow-up points.

In the next result we analyze the stability of the solutions constructed in
Theorem 1. We recall that in the 1-corotational class in a disc, Chang-Ding-
Ye [4] provided robust conditions on initial and boundary data that guarantee
finite time blow-up. Raphael-Schweyer [23] established stability within the
1-corotational class in entire space for a solution blowing-up with the rate
(1.11). Merle-Raphael-Rodnianski [18] and Raphael-Schweyer [23] conjec-
tured instability outside the 1-corotational class. Van der Berg and Williams
[31] provided formal and numerical evidence that blow-up may indeed be
destroyed by small non-radial perturbations of a 1-corotational singularity.
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Singularity formation in the 2D harmonic map flow 351

Our proof of Theorem 1 yields codimension-one stability of the predicted
blow-upphenomenon in the case of a single blow-uppointwhenno symmetries
are assumed. The meaning of this form of stability is as follows:

Theorem 2 Let u(x, t) be the solution predicted in Theorem 1 of the problem
(1.1)–(1.3) that blows-up at a point q ∈ � and a time T > 0. Then there exists
a C1 manifold M in C1(�̄, S2) with codimension one that contains u0 such
that for any ũ0 ∈ M close to u0, the solution ũ(x, t) of problem (1.1)–(1.3)
with initial datum ũ0 blows-up at a point q̃ ∈ � and a time T̃ which are close
respectively to q and T .

We discuss the general reason for the codimension-1 stability in Remark 2.1
in §2. The generalization of the previous theorem to the solution with k blow-
up points of Theorem 1 is that there is a manifold inC1 of codimension 2k−1
of initial data that leads to k simultaneous blow-up points at a time T .

The solutions in Theorems 1 are classical in [0, T ). Our next result concerns
the continuation of the solution after blow-up. As we have mentioned Struwe
[26] defined a global H1-weak solution of (1.1)–(1.3). Struwe’s solution is
obtained by just dropping the bubbles appearing at the blow-up time and then
restarting the flow. The energy has jumps at each blow-up time generated by
this procedure and it is decreasing. Decreasing energy suffices for uniqueness
of the weak solution, as proven in [11,15]. On the other hand the bubble-
dropping procedure modifies in time the topology of the image of the solution
map. Topping [28] showed a different way to construct a continuation after
blow up in the symmetric 1-corotational class. The solution in [4] is continued
after blow-up by attaching a bubble with opposite orientation, which unfolds
continuously the energy. The solution referred to is a reverse bubbling solu-
tion. As emphasized in [28], this continuation has the advantage that, unlike
Struwe’s solution, it preserves the homotopy class of the map after blow-up.
Formal asymptotic rates for 1-corotational reverse bubbling were found in
[30]. In [2] other forms of continuation of radial solutions were found.

We establish that Topping’s continuation can be made without symmetry
assumptions, with exact asymptotics, for the solution in Theorem 1.We define
the bubble w̄ with reverse orientation to that of W as

W̄ (x) = eJπW (x) = 1

1 + |x |2
( −2x

|x |2 − 1

)

=
(−eiθ sinw(r)

cosw(r)

)

. (1.16)

Theorem 3 Let uq(x, t) be the solution in Theorem 1. Then uq can be contin-
ued as an H1-weak solution in � × (0, T + δ), which is continuous except at
the points (qi , T ), with the property that, besides expansion (1.14), we have
uq(x, T ) = u∗(x)
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352 J. Dávila et al.

uq(x, t) − u∗(x) −
k
∑

j=1

eJα
∗
i
[

W̄

(
x − qi
λi (t)

)

− W̄ (∞)
] → 0 as t ↓ T,

in the H1 and uniform senses in �, where

λi (t) = κ∗
i

t − T

| log(t − T )|2 . (1.17)

We observe that the energy in this continuation fails to be decreasing: it has
a jump exactly at time T and it goes back to its previous level immediately
after.

We consider a question related to Theorem 3 treated in the 1-corotational
symmetric class in [28] and in [2]: the occurrence of perfectly smooth solutions
which spontaneously develop a singularity in finite time by the addition of an
infinitely concentrated bubble which instantaneously raises the energy in a
multiple of 4π . We find that the typical rate for this backward bubbling is λ̇(t)
of order t−T

| log(t−T )| rather than (1.17). This was formally derived in [30].

Theorem 4 Given points q1, . . . , qk in � and any sufficiently small T > 0
there exists an H1-weak solutionu(x, t)of problem (1.1)–(1.3) in�×(0, T+δ)

which is continuous except at the points (qi , T ), it is smooth in�× (0, T ] and
has spontaneous reverse bubbling at the points qi in the form

u(x, t) − u(x, T ) −
k
∑

j=1

[

W

(
x − qi
λi (t)

)

− W (∞)
] → 0 as t ↓ T,

in the H1 and uniform senses in �, where for some positive numbers κi

λi (t) = κi
t − T

| log(t − T )| . (1.18)

Before proceeding into the proof we make some further comments. It is
plausible that the solutions of the form described in Theorem 1 represent a
form of “generic” bubbling phenomena for the two-dimensional harmonic
map flow. For instance, it is reasonable to think that the limits along any
sequence should have the same elements in the bubble decomposition. On
the other hand, evidence in the literature suggests that typically only simple
blow-up is present, having as a profile scalings of the 1-corotational maps W
and W̄ . Higher degree maps are represented by the d-corotational symmetry
class, d ≥ 1,

u(x, t) =
(

ediθ sin v(r, t)
cos v(r, t)

)

, x = reiθ .
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Singularity formation in the 2D harmonic map flow 353

Steady states in this class correspond to scalings of v = wd(r) = π −
2 arctan(rd). It turns out that blow-up is not present in this class for d ≥ 4.
See Guan-Gustafson-Tsai [12]. It is conjectured that no blow-up exists also
for d = 2, 3. This essentially discards higher degree blow-up. On the other
hand, no multiple blow-up (bubble trees) in the 1-corotational class exists. See
Van der Hout [29]. Infinite time multiple bubbling was found by Topping [27]
in a target different from S2. Bubbling rates faster than (1.15) do exist in the
1-corotational case, but they are not stable, see Raphaël and Schweyer [24].
Many other results on bubbling phenomena, and regularity for harmonic maps
and the harmonic map flow are available in the literature, we refer the reader
to the book by Lin and Wang [16].

In bubbling phenomena in this and related problems very little is known
in nonradial situations. The method in [23,24], was successfully applied to
very related blow-up phenomena in dispersive equations in symmetric classes.
See for instance Rodnianski-Sterbenz [25], Merle-Raphaël-Rodnianski [18],
Raphaël[21], Raphaël-Rodnianski [22]. Our results share a flavor with finite
time multiple blow-up in the subcritical semilinear heat equation, as in the
results by Merle and Zaag [17]. Bubbling associated to the critical exponent
has been recently studied in [5,6]. Our approach is parabolic in nature. It
is based on the construction of a good approximation and then linearizing
inner and outer problems. An appropriate inverse for the inner equation is
then found (which works well if the parameters of the problems are suitably
adjusted)whichmakes it possible the application of fixed point arguments. The
general approach, which we call inner-outer gluing, has already been applied
to various singular perturbation elliptic problems, see for instance [7,8]. A
major difficulty we have to overcome is the coupled nonlocal ODE satisfied
by the scaling and rotation parameter. We now explain in more details below.

2 The 1-corotational harmonic maps and the ansatz for a blowing-up
solution

The harmonic map equation for functionsU : R2 → S2 is the elliptic problem

�U + |∇U |2U = 0 in R2, |U | = 1. (2.1)

For ξ ∈ R
2, ω ∈ R, λ > 0, we consider the family of solutions of (2.1) given

by the following 1-corotational harmonic maps

Uλ,ξ,ω(x) := Qω W (y), y = x − ξ

λ
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354 J. Dávila et al.

where W (y) is the canonical 1-corotational harmonic map

W (y) = 1

1 + |y|2
(

2y
|y|2 − 1

)

, y ∈ R
2,

and Qω is the ω-rotation matrix

Qω :=
⎡

⎣

cosω − sinω 0
sinω cosω 0
0 0 1

⎤

⎦ .

Our purpose is to build a smooth blowing-up solution u : �̄×[0, T ) → S2

of the problem

⎧

⎪⎨

⎪⎩

ut = �u + |∇u|2u in � × (0, T )

u = e3 on ∂� × (0, T )

u(·, 0) = u0 in �.

(2.2)

In order to keep the notation to a minimum, we shall do this in the case
k = 1 of a single given bubbling point q ∈ �. The changes needed for the
general case of Theorem 1 are minor. More precisely for any sufficiently small
number T > 0 we look for an initial datum u0 such that the solution u(x, t)
of problem (2.2) looks at main order like

U (x, t) := Uλ(t),ξ(t),ω(t)(x) = Qω(t) W (y), y = x − ξ(t)

λ(t)
, (2.3)

for certain functions ξ(t), λ(t) and ω(t) of class C1([0, T ]) such that
ξ(T ) = q, λ(T ) = 0.

We shall find values for these functions so that for a small remainder v(x, t)
we have that u = U + v solves (2.2). The condition |U + v| = 1 tells us that
u can be written as

u(x, t) = U + �U⊥ϕ + a(�U⊥ϕ)U, (2.4)

where ϕ is a small function with values into R3 and we denote

�U⊥ϕ := ϕ − (ϕ ·U )U, a(ζ ) :=
√

1 − |ζ |2 − 1.

The term a(�U⊥ϕ) has a quadratic size in ϕ so it is of smaller order.We choose
to decompose the remainder ϕ(x, t) in (2.4) as the addition of an “outer” part,
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Singularity formation in the 2D harmonic map flow 355

better expressed in the global variable x , and an “inner” part which supported
near the singularity and it is naturally expressed as function of the slow variable
y. More precisely, we let

ϕ(x, t) = ϕout (x, t) + ϕin(y, t), y = x − ξ(t)

λ(t)
(2.5)

where

ϕin(y, t) = ηR(t) (y) Qω(t)φ(y, t), φ(y, t) · W (y) ≡ 0

and ηR(y) := η
( |y|

R

)

with η(s) a smooth cut-off function so that

η(s) =
{

1 for s < 1,

0 for s > 2.

The function φ(y, t) is defined for |y| < 3R(t) where R(t) → +∞ and
λ(t)R(t) → 0 as t → T . With these definitions we see that �U⊥ϕin = ϕin .

We choose to the decompose the outer part ϕout (x, t) in (2.5) as

ϕout (x, t) = �0[ω, λ, ξ ] + Z∗(x, t) + ψ(x, t), (2.6)

where�0 and + Z∗(x, t) are explicit functions chosen as follows:�0[ω, λ, ξ ]
is a function (which will be precisely described in the next section) that at main
order eliminates the largest slow-decaying part of the error of approximation
Ut in (2.2). Writing p(t) := λ(t)eiω(t) and using polar coordinates x = ξ(t)+
reiθ , we require

∂t�
0 − �x�

0 ≈ 2

r

[

ṗ(t)eiθ

0

]

≈ Ut .

On the other hand, we let Z∗ : � × (0,∞) → R
3 satisfy

⎧

⎪⎨

⎪⎩

Z∗
t = �Z∗ in � × (0,∞),

Z∗(·, t) = 0 in ∂� × (0,∞),

Z∗(·, 0) = Z∗
0 in �,

(2.7)

where

Z∗
0(x) =

[

z∗0(x)
z∗03(x)

]

, z∗0(x) = z∗01(x) + i z∗02(x) (2.8)
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356 J. Dávila et al.

is a small, sufficiently regular function essentially satisfying

Z∗
0(q) = 0, div z∗0(q) + icurl z∗0(q) 	= 0.

In summary, we make the ansatz

u = U + v, v = �U⊥
(

�0[ω, λ, ξ ] + Z∗ + ψ
) + ηRQωφ + aU (2.9)

for a blowing-up solution u(x, t) of (2.2), where � and ψ are lower order
corrections. Our task is to find functions ω(t), λ(t), ξ(t), ψ(x, t) and φ(y, t)
as described above, such that the remainder v remains uniformly small.

We will define a system of equations that we call the inner-outer gluing
system, essentially of the form

{

λ2φt = LW [φ] + H [p, ξ, ψ, φ], φ · W = 0 in R2 × (0, T )

ψt = �xψ + G[p, ξ, ψ, φ] in � × (0, T )
(2.10)

where

LW [φ] = �yφ + |∇yW |2φ + 2(∇yφ · ∇yW )W, φ · W = 0

is the linearized operator for equation (2.1) around U = W , so that if the pair
of functions (φ(y, t), ψ(x, t)) solves it then u given by (2.9) is a solution of
(2.2). The point is to adjust the parameter functions ω, λ, ξ such that the inner
problem can be solved for φ(y, t) which decays as |y| → ∞. To fix the idea,
let us consider the approximate elliptic equation, where time is regarded just
as a parameter,

LW [φ] + H [p, ξ, 0, 0] = 0 in R2

As we will discuss, a space-decaying solution φ(y, t) to this problem exists if
a set of orthogonality conditions of the form

∫

R2
H [p, ξ, 0, 0](y, t) Z(y) dy = 0 for all Z ∈ Z (2.11)

whereZ is a 4-dimensional space constituted by decaying functions Z(y)with
LW [Z ] = 0. These solvability conditions lead to an essentially explicit system
of equations for the parameter functions which will tell us in particular that
for some small σ > 0
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Singularity formation in the 2D harmonic map flow 357

p(t) = −(div z∗0(q) + icurl z∗0(q))
| log T |(T − t)

log2(T − t)
(1 + O(| log T |−1+σ )),

ξ(t) = q + O((T − t)1+σ ), (2.12)

and we recall that we are consistently asking div z∗0(q) + icurl z∗0(q) 	= 0.

Remark 2.1 In the case of blow-up at a single point, our codimension-1 sta-
bility result is directly connected to the solvability conditions (2.11). Indeed,
the solution we construct depends at main order on four parameters functions:
a scaling λ(t) > 0, a rotation angle ω(t) ∈ R, and the concentration point
ξ(t) ∈ �, see formula (2.3). The presence of decaying functions in the ker-
nel of the operator LW limits the decay of solutions to the inner linearized
evolution. Too slow decay could make the contribution to the error in the
remote regime too large. Sufficient decay in the linearized evolution can only
be achieved if the right hand side satisfies four solvability conditions at all
times t ∈ [0, T ). These are conditions (2.11), which translate into a system
of integro-differential equations for λ(t), ω(t), ξ(t). For ξ(t) the equation
is almost a first order ODE, which imposes a constraint between ξ(0) and
ξ(T ). The equations for λ(t) and ω(t) are better expressed for the combined
quantity p(t) = λ(t)eiω(t). It is an integro-differential equation, whose solu-
tion has the expansion (2.12). This relation evaluated at time t = 0 says that
λ(0)eiω(0) = −(div z∗0(q)+ icurl z∗0(q))

T
| log T |(1+O(| log T |−1+σ )). Consid-

ering z∗0 as fixed, this equation links λ(0)with T and determinesω(0) uniquely
in [0, 2π). In other words in the initial condition we lose the freedom to choose
ω(0). We also loose the freedom of choosing λ(0) if T was fixed, but this is
recovered by letting T vary. In the 1-corotational case, the symmetries imply
that curl z∗0(0) = 0 and ω ≡ 0, and therefore there is no loss of stability in this
situation. The argument above considers z∗0 as fixed, but the analysis with all
variables taken into consideration is detailed in Sect. 10.

Remark 2.2 Let us explain why the numbers div z∗0(q) and curl z∗0(q) appear
in expression (2.12). Let us restrict the analysis to the 1-corotational ansatz
(1.8) so that the harmonicmap flow reduces to (1.9).We look for a solution that
approximately looks like the superposition of a bubble (2.3) with ξ(t) ≡ 0,
ω(t) ≡ 0 perturbed by (2.6) consisting only of a term Z∗ of the form

Z∗(r, t) =
[

eiθ f (r, t)
0

]

with f satisfying ∂t f = ∂rr f + 1
r ∂r f − 1

r2
f and f (0, t) = 0, namely we

propose an approximate solution v(r, t) = w( r
λ
) + f (r, t) of (1.9). With the

notation (2.8),wehave that div z∗0(0) = 2∂r f (0, 0), curl z∗0(0) = 0.Expanding
f (r, t) ≈ ∂r f (0, 0)r we get that
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−∂tv + �v − sin(2v)

2r2
≈ ρwρ

λ̇

λ
− 1

λ

wρ

ρ
∂r f (0, 0), ρ = r

λ
.

Imposing that the right hand side above is L2-orthogonal to the kernel of the
linearized equation in a ball of radius

√
T − t suggests that

| log(T − t)|λ̇(t) ≈ c fr (0, 0),

for a positive universal constant c. This derivation is not correct because sig-
nificant boundary terms appear in the integration. This issue is solved by the
addition of the nonlocal term �0. On the other hand, this suggests the role
played by div z∗0(0) in the expression for λ. The term curl z∗0(0) appears when
we introduce the rotation angle ω, which is needed outside the 1-corotational
regime.

In the next sections we will carry out in detail the program for the construc-
tion sketched above. In Sect. 3 we will set up several facts about the elliptic
linearized operator that will be needed in all subsequent computations. In
Sect. 4 we will compute in precise way the error of approximation and define
the function �0 mentioned. We also introduce the precise terms appearing in
the inner-outer gluing system (2.10). In Sect. 5 we will perform the compu-
tations of the orthogonality conditions which lead to expressions (2.12). In
Sect. 6 we will carry out the full construction setting up the system as a fixed
point problem. We make precise statements of the necessary (major) steps
needed, in particular a subtle linear theory for the parabolic inner problem that
mimics the Fredholm alternative for the elliptic equation mentioned above,
which is developed in Sect. 7. Related Lipschitz estimates and linear bounds
for the outer problem are performed in Sect. 7.6 and § A. The adjustment of
the parameters to solve the full system is the purpose of Sect. 8. The stabil-
ity statement is proved in Sect. 10. Finally, we discuss the continuation and
reverse bubbling results in Sect. 11.

3 The linearized operator around the bubble

The linearized operator for (2.1) around U = Uλ,ξ,ω is the elliptic operator

LU [ϕ] = �ϕ + |∇U |2ϕ + 2(∇ϕ · ∇U )U.

Differentiating U with respect to each of its parameters we obtain functions
that annihilate this operator, namely solutions of LU [ϕ] = 0. Setting y = x−ξ

λ
,

these functions are

∂λUλ,ξ,ω(x) =1

λ
Qω∇W (y) · y,

123



Singularity formation in the 2D harmonic map flow 359

∂ωUλ,ξ,ω(x) =(∂ωQω)W (y),

∂ξ j Uλ,ξ,ω(x) =1

λ
Qω∂y j W (y).

We observe that

(∂ωQω) = Qω J0, where J0 =
⎡

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎦ .

We can represent W (y) in polar coordinates,

W (y) =
(

eiθ sinw(ρ)

cosw(ρ)

)

, w(ρ) = π − 2 arctan(ρ), y = ρeiθ .

We notice that

wρ = − 2

1 + ρ2 , sinw = −ρwρ = 2ρ

1 + ρ2 , cosw = ρ2 − 1

1 + ρ2 ,

and derive the alternative expressions

∂λUλ,ξ,ω(x) = 1

λ
QωZ01(y), Z01(y) = ρwρ(ρ) E1(y),

∂ωUλ,ξ,ω(x) = QωZ02(y), Z02(y) = ρwρ(ρ) E2(y),

∂ξ j Uλ,ξ,ω(x) = 1

λ
QωZ11(y), Z11(y) = wρ(ρ) [cos θ E1(y) + sin θ E2(y)],

∂ξ j Uλ,ξ,ω(x) = 1

λ
QωZ12(y), Z12(y) = wρ(ρ) [sin θ E1(y) − cos θ E2(y)],

(3.1)

where

E1(y) =
(

eiθ cosw(ρ)

− sinw(ρ)

)

, E2(y) =
(

ieiθ

0

)

.

The relation |Uλ,ξ,ω| = 1 implies that all the functions Zi j are pointwise
orthogonal to Uλ,ξ,ω. In fact the vectors E1(y), E2(y) constitute an orthonor-
mal basis of the tangent space to S2 at the point W (y).

We have LW [Zl j ] = 0 where for a function φ(y) we define

LW [φ] = �yφ + |∇W (y)|2φ + 2(∇W (y) · ∇φ)W (y).
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In addition to the elements (3.1) in the kernel of LW there are also two other
relevant functions in the kernel, namely

Z−1,1 = ρ2wρ(ρ)(cos θE1−sin θE2), Z−1,2 = ρ2wρ(ρ)(sin θE1+cos θE2).

(3.2)
It is worth noticing the connection between this operator and LU which is

given by

LU [ϕ] = 1

λ2
QωLW [φ], ϕ(x) = φ(y), y = x − ξ

λ
.

The linearized operator at functions orthogonal to U

It will be especially significant to compute the action of LU on functions with
values pointwise orthogonal to U . In what remains of this section we will
derive various formulas that will be very useful later on.

For an arbitrary function �(x) with values in R3 we denote the projection

�U⊥� := � − (� ·U )U.

A direct computation shows the validity of the following:

LU [�U⊥�] = �U⊥�� + L̃U [�]

where

L̃U [�] := |∇U |2�U⊥� − 2∇(� ·U )∇U,

and

∇(� ·U )∇U = ∂x j (� ·U ) ∂x jU.

A very convenient expression for L̃U [�] is obtained if we use polar coordi-
nates. Writing in complex notation

�(x) = �(r, θ), x = ξ + reiθ ,

we find

L̃U [�] = −2

λ
wρ(ρ)

[

(�r ·U )QωE1 − 1

r
(�θ ·U )QωE2

]

, ρ = r

λ
.

(3.3)
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We single out two consequences of formula (3.3) which will be crucial for
later purposes. Let us assume that �(x) is a C1 function � : � → C × R,
which we express in the form

�(x) =
(

ϕ1(x) + iϕ2(x)
ϕ3(x)

)

. (3.4)

We also denote

ϕ = ϕ1 + iϕ2, ϕ̄ = ϕ1 − iϕ2

and define the operators

div ϕ = ∂x1ϕ1 + ∂x2ϕ2, curl ϕ = ∂x1ϕ2 − ∂x2ϕ1.

We have the validity of the following formula

L̃U [�] = L̃U [�]0 + L̃U [�]1 + L̃U [�]2 , (3.5)

where
⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L̃U [�]0 = λ−1ρw2
ρ

[

div (e−iωϕ) QωE1 + curl (e−iωϕ) QωE2
]

L̃U [�]1 = −2λ−1wρ cosw
[

(∂x1ϕ3) cos θ + (∂x2ϕ3) sin θ
]

QωE1

− 2λ−1wρ cosw
[

(∂x1ϕ3) sin θ − (∂x2ϕ3) cos θ
]

QωE2 ,

L̃U [�]2 = λ−1ρw2
ρ

[

div (eiωϕ̄) cos 2θ − curl (eiωϕ̄) sin 2θ
]

QωE1

+ λ−1ρw2
ρ

[

div (eiωϕ̄) sin 2θ + curl (eiωϕ̄) cos 2θ
]

QωE2.

(3.6)

Another corollary of formula (3.3) that we single out is the following:
assume that

�(x) =
(

φ(r)eiθ

0

)

, x = ξ + reiθ , ρ = r

λ

where φ(r) is complex valued. Then

L̃U [�] = 2

λ
wρ(ρ)

2
[

Re (e−iω∂rφ(r))QωE1 + 1

r
Im (e−iωφ(r))QωE2

]

.

(3.7)
A final result in this section is a computation (in polar coordinates) of the

operator LU acting on a function of the form

�(x) = ϕ1(ρ, θ)QωE1 + ϕ2(ρ, θ)QωE2, x = ξ + λρeiθ .
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We have:

LU [�] = λ−2

(

∂2ρϕ1 + ∂ρϕ1

ρ
+ ∂2θ ϕ1

ρ2 +
(

2w2
ρ − 1

ρ2

)

ϕ1 − 2

ρ2 ∂θϕ2 cosw

)

QωE1

+ λ−2

(

∂2ρϕ2 + ∂ρϕ2

ρ
+ ∂2θ ϕ2

ρ2 +
(

2w2
ρ − 1

ρ2

)

ϕ2 + 2

ρ2 ∂θϕ1 cosw

)

QωE2.

4 The error and the inner-outer gluing system

The linearized operator for (2.1) around U = Uλ,ξ,ω is the elliptic operator

LU [ϕ] = �xϕ + |∇xU |2ϕ + 2(∇xϕ · ∇xU )U,

where ϕ = ϕ(x, t). Consistently we denote for a function φ = φ(y, t). Let us
denote

S(u) := −ut + �u + |∇u|2u

A useful observation that we make is that as long as the constraint |u| = 1 is
kept at all times and u = U + v with |v| ≤ 1

2 uniformly, then for u to solve
equation (2.2) it suffices that

S(U + v) = b(x, t)U (4.1)

for some scalar function b. Indeed, we observe that since |u| ≡ 1 we have

b (U · u) = S(u) · u = −1

2

d

dt
|u|2 + 1

2
�|u|2 = 0,

and since U · u ≥ 1
2 , we find that b ≡ 0.

Using that

�U + |∇U |2U = 0

we find the following expansion for S(U + v) with v given by (2.4):

S(U + �U⊥ϕ + aU ) = −Ut − ∂t�U⊥ϕ + LU (�U⊥ϕ) + NU (�U⊥ϕ)

+c(�U⊥ϕ)U

where for ζ = �U⊥ϕ, a = a(ζ ),

LU (ζ ) = �ζ + |∇U |2ζ + 2(∇U · ζ )U
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NU (ζ ) = [

2∇(aU ) · ∇(U + ζ ) + 2∇U · ∇ζ + |∇ζ |2 + |∇(aU )|2 ]ζ − aUt

+ 2∇a∇U,

c(ζ ) = �a − at + (|∇(U + ζ + aU )|2 − |∇U |2)(1 + a) − 2∇U · ∇ζ

Since we just need to have an equation of the form (4.1) satisfied, we find that

u = U + �U⊥ϕ + a(�U⊥ϕ)U

solves (2.2) if and only if ϕ satisfies

0 = −Ut − ∂t�U⊥ϕ + LU (�U⊥ϕ) + NU (�U⊥ϕ) + b(x, t)U, (4.2)

for some scalar function b. The logic of the construction goes like this: We
decompose ϕ into the sum of two functions ϕ = ϕi + ϕo, the “inner” and
“outer” solutions and reduce equation (4.2) to solving a system of two equa-
tions in (ϕi , ϕo) that we call the inner and outer problems.

The inner function ϕi (x, t) will be assumed supported only near x = ξ(t)
and better read as a function of the scaled space variable y = x−ξ(t)

λ(t) with zero

initial condition and such that ϕi · U = 0, so that �U⊥ϕi = ϕi . The outer
function ϕo(x, t) will be made out of several pieces and its role is essentially
to satisfy (4.2) far away from the concentration point x = ξ(t).

We write equation (4.2) in the following way:

0 = −∂tϕ
i + LU [ϕi ] + L̃U [ϕo] − �U⊥[∂tϕo − �ϕo +Ut ] (4.3)

+ NU (ϕi + �U⊥ϕo) + (ϕo ·U )Ut + bU.

For the outer problem, we consider a function �0 that depends explicitly on
the parameter functions chosen in such a way that �U⊥[∂t�0 − ��0 + Ut ]
gets concentrated near x = ξ(t) by elimination of the terms in the first error
Ut associated to dilation and rotation. Then we write

ϕo(x, t) = �0(x, t) + �∗(x, t). (4.4)

For the inner solution, we consider a smooth smooth cut-off function η0(s)
with η0(s) = 1 for s < 1 and= 0 for s > 3

2 . We also consider a positive, large
smooth function R(t) → +∞ as t → T that we will later specify. We define

η(x, t) := η0
(

R(t)−1|y|) , y = x − ξ(t)

λ(t)
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and let

ϕi (x, t) = η(x, t)Qωφ(y, t), y = x − ξ(t)

λ(t)

for a function φ(y, t) with initial condition φ(·, 0) = 0 that satisfies φ(·, t) ·
W ≡ 0, defined for |y| ≤ 2R(t) and that vanishes as t → T . Then we have

Q−ωLU [ϕi ] = λ−2ηLW [φ] + (�xη)φ + 2λ−1∇xη∇yφ

Q−ωϕ
i
t = η

(

φt − λ−1λ̇y · ∇yφ − λ−1ξ̇ · ∇yφ + ω̇Q−ω∂ωQωφ
)+ ηtφ.

Equation (4.3) then becomes

0 = λ−2ηQω[−λ2φt + LW [φ] + λ2Q−ω L̃U [�∗]] (4.5)

+ ηQω(λ
−1λ̇y · ∇yφ + λ−1ξ̇ · ∇yφ − ω̇Jφ)

+ L̃U [�0] + �U⊥[∂t�0 − �x�
0 +Ut ]

− ∂t�
∗ + ��∗ + (1 − η)L̃U [�∗] + Qω[(�xη)φ + 2∇xη∇xφ − ηtφ]

+ NU (ηQωφ + �U⊥(�0 + �∗)) + ((�∗ + �0) ·U )Ut + bU.

Next we will define precisely the operator �0 and estimate the quantity

L̃U [�0] + �U⊥[∂t�0 − �x�
0 +Ut ]. (4.6)

The idea is to choose�0 such that ∂t�0−�x�
0+Ut ≈ 0 whenever |x−ξ | �

λ, so that in particular the last error term in the outer equation (4.4) is of smaller
order.

Invoking formulas (3.1) to compute Ut we get

Ut = λ̇∂λUλ,ξ,ω + ω̇∂ωUλ,ξ,ω + ∂ξUλ,ξ,ω · ξ̇ = E0 + E1,

where, setting y = x−ξ
λ

= ρeiθ , we have

E0(x, t) = −Qω

[
λ̇

λ
ρwρ(ρ) E1(y) + ω̇ρwρ(ρ) E2(y)

]

E1(x, t) = − ξ̇1

λ
wρ(ρ) Qω[ cos θ E1(y) + sin θ E2(y)]

− ξ̇2

λ
wρ(ρ) Qω[sin θ E1(y) − cos θ E2(y) ].

123



Singularity formation in the 2D harmonic map flow 365

Since E1 has faster space decay in ρ than E0 we will choose �0 to be an
approximate solution of

�0
t − �x�

0 + E0 = 0. (4.7)

For x = ξ + reiθ and r � λ we have

E0(x, t) = − 2r

r2 + λ2

[

λ̇QωE1 + λω̇QωE2
]

≈ − 2r

r2 + λ2

[

(λ̇ + iλω̇)ei(θ+ω)

0

]

.

Here and in what follows we let

p(t) = λ(t)eiω(t).

Then

− 2r

r2 + λ2

[

(λ̇ + iλω̇)ei(θ+ω)

0

]

= − 2r

r2 + λ2

[

ṗ(t)eiθ

0

]

=: Ẽ0(x, t).

With the aid of Duhamel’s formula for the standard heat equation, we find that
the following function is a good approximate solution of�0

t −�x�
0+ Ẽ0 = 0

and hence of (4.7). We define

�0[ω, λ, ξ ] :=
[

ϕ0(r, t)eiθ

0

]

ϕ0(r, t) = −
∫ t

−T
ṗ(s)rk(z(r), t − s) ds

z(r) =
√

r2 + λ2, k(z, t) = 2
1 − e− z2

4t

z2
,

where for technical reasons that will be made clear later on, p(t) is also
assumed to be defined for negative values of t .

A direct computation yields

�0
t + �x�

0 + Ẽ0 = R̃0 + R̃1, R̃0 =
(

R0
0

)

, R̃1 =
(

R1
0

)

where

R0 := −reiθ
λ2

z4

∫ t

−T
ṗ(s)(zkz − z2kzz)(z(r), t − s) ds
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and

R1 := −eiθRe (e−iθ ξ̇ (t))
∫ t

−T
ṗ(s) k(z(r), t − s) ds

+ r

z2
eiθ (λλ̇(t) − Re (reiθ ξ̇ (t)))

∫ t

−T
ṗ(s) zkz(z(r), t − s) ds.

We observe that R1 is actually a term of smaller order. Using formulas (3.5),
(3.7) and the facts

λ2r

z4
= 1

4λ
ρw2

ρ,
r

z2
(1 − cosw) = 1

2λ
ρw2

ρ,

we derive an expression for the quantity (4.6):

L̃U [�0] + �U⊥[−Ut + ��0 − �0
t ]

= L̃U [�0] − E1 + �U⊥[Ẽ0] − E0 + �U⊥[R̃0] + �U⊥[R̃1]
= K0[p, ξ ] + K1[p, ξ ] + �U⊥[R̃1]

where

K0[p, ξ ] = K01[p, ξ ] + K02[p, ξ ]
with

K01[p, ξ ] := −2

λ
ρw2

ρ

∫ t

−T

[

Re ( ṗ(s)e−iω(t))QωE1 + Im ( ṗ(s)e−iω(t))QωE2

]

· k(z, t − s) ds (4.8)

K02[p, ξ ] := 1

λ
ρw2

ρ

[

λ̇ −
∫ t

−T
Re ( ṗ(s)e−iω(t))rkz(z, t − s)zr ds

]

QωE1

− 1

4λ
ρw2

ρ cosw

[∫ t

−T
Re ( ṗ(s)e−iω(t)) (zkz − z2kzz)(z, t − s) ds

]

QωE1

− 1

4λ
ρw2

ρ

[∫ t

−T
Im ( ṗ(s)e−iω(t)) (zkz − z2kzz)(z, t − s) ds

]

QωE2, (4.9)

K1[p, ξ ] := 1

λ
wρ

[

Re
(

(ξ̇1 − i ξ̇2)e
iθ )QωE1 + Im

(

(ξ̇1 − i ξ̇2)e
iθ )QωE2

]

. (4.10)

We insert this decomposition in equation (4.5) and see that we will have a
solution to the equation if the pair (φ,�∗) solves the inner-outer gluing system
⎧

⎪⎪⎨

⎪⎪⎩

λ2φt = LW [φ] + λ2Q−ω

[

L̃U [�∗] + K0[p, ξ ] + K1[p, ξ ]
]

in D2R

φ · W = 0 in D2R

φ(·, 0) = 0 = φ(·, T ),

(4.11)
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�∗
t = �x�

∗ + g[p, ξ,�∗, φ] in � × (0, T ) (4.12)

where

g[p, ξ,�∗, φ] := (1 − η)L̃U [�∗] + (�∗ ·U )Ut

+ Qω

(

(�xη)φ + 2∇xη∇xφ − ηtφ
)

+ ηQω

(−ω̇Jφ + λ−1λ̇y · ∇yφ + λ−1ξ̇ · ∇yφ
)

+ (1 − η)[K0[p, ξ ] + K1[p, ξ ]] + �U⊥[R̃1] + (�0 ·U )Ut

+ NU (ηQωφ + �U⊥(�0 + �∗)), (4.13)

and we denote

Dγ R = {(y, t) ∈ R
2 × (0, T ) / |y| < γ R(t)}.

Indeed if (φ,�∗) solves this system, then we have that

u(x, t) = U + �U⊥[�0 + �∗ + ηQωφ] + a(�U⊥[�0 + �∗ + ηQωφ])U
(4.14)

solves equation (2.2). The boundary condition u = e3 amounts to

�U⊥[�0 + �∗] + a(�U⊥[U + �0 + �∗])U = (e3 −U )

and then it suffices that we take the boundary condition for (4.12)

�∗∣∣
∂�

= e3 −U − �0. (4.15)

Since we want u(x, t) to be a small perturbation of U (x, t) when we stand
close to (q, T ), it is natural to require that �∗ satisfies the final condition

�∗(q, T ) = 0.

This constraint amounts to three Lagrangemultipliers whenwe solve the prob-
lem, which we choose to put in the initial condition. Then we assume

�∗(x, 0) = Z∗
0(x) + c1e1 + c2e2 + c3e3,

where c1, c2, c3 are undetermined constants and Z∗
0(x) is a small function for

which specific assumptions will later be made.
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5 The reduced equations

In this section we will informally discuss the procedure to achieve our purpose
in particular deriving the order of vanishing of the scaling parameter λ(t) as
t → T .

The main term that couples equations (4.11) and (4.12) inside the second
equation is the linear expression

Qω[(�xη)φ + 2∇xη∇xφ + ηtφ],
which is supported in |y| = O(R). This motivates the fact that we want φ to
exhibit some type of space decay in |y| since in that way�∗ will eventually be
smaller and in turn thatwouldmake the two equations atmain order uncoupled.
Equation (4.11) has the form

λ2φt = LW [φ] + h[p, ξ,�∗](y, t) in D2R

φ · W = 0 in D2R

φ(·, 0) = 0 in B2R(0),

where, for convenience we assume that h(y, t) is defined for all y ∈ R
2

extending outside D2R as

h[p, ξ,�∗] = λ2Q−ω L̃U [�∗]χD2R + λ2Q−ωK0[p, ξ ]
+ λ2Q−ωK1[p, ξ ]χD2R , (5.1)

where χA designates characteristic function of a set A, K0 is defined in (4.8),
(4.9) and K1 in (4.10). If λ(t) has a relatively smooth vanishing as t → T it
seems natural that the term λ2φt be of smaller order and then the equation is
approximately represented by the elliptic problem

LW [φ] + h[p, ξ,�∗] = 0, φ · W = 0 in R2. (5.2)

Let us consider the decaying functions Zl j (y) defined in formula (3.1),
which satisfy LW [Zl j ] = 0. If φ(y, t) is a solution of (5.2) with sufficient
decay, then necessarily

∫

R2
h[p, ξ,�∗](y, t) · Zl j (y) dy = 0 for all t ∈ (0, T ), (5.3)

for l = 0, 1, j = 1, 2. These relations amount to an integro-differential system
of equations for p(t), ξ(t), which, as a matter of fact, detemine the correct val-
ues of the parameters so that the solution (φ,�∗)with appropriate asymptotics
exists.

123



Singularity formation in the 2D harmonic map flow 369

We derive next useful expressions for relations (5.3). Let us first compute
the quantities

B0 j [p](t) := λ

2π

∫

R2
Q−ω[K0[p, ξ ] + K1[p, ξ ]] · Z0 j (y) dy. (5.4)

Using (4.8), (4.9) the following expressions for B01, B02 are readily obtained:

B01[p](t) =
∫ t

−T
Re ( ṗ(s)e−iω(t)) �1

(
λ(t)2

t − s

)
ds

t − s
− 2λ̇(t)

B02[p](t) =
∫ t

−T
Im ( ṗ(s)e−iω(t)) �2

(
λ(t)2

t − s

)
ds

t − s

where � j (τ ), j = 1, 2 are the smooth functions defined as follows:

�1(τ ) = −
∫ ∞

0
ρ3w3

ρ

[

K (ζ ) + 2ζKζ (ζ )
ρ2

1 + ρ2

−4 cos(w)ζ 2Kζ ζ (ζ )

]

ζ=τ(1+ρ2)

dρ

�2(τ ) = −
∫ ∞

0
ρ3w3

ρ

[

K (ζ ) − ζ 2Kζ ζ (ζ )
]

ζ=τ(1+ρ2)
dρ

where

K (ζ ) = 2
1 − e− ζ

4

ζ
,

and we have used that
∫∞
0 ρ3w3

ρdρ = −2. Using these expressions we find
that

|�l(τ ) − 1| ≤ Cτ(1 + | log τ |) for τ < 1, (5.5)

|�l(τ )| ≤ C

τ
for τ > 1, l = 1, 2.

Let us define

B0[p] := 1

2
eiω(t) (B01[p] + iB02[p]) (5.6)

and

a0 j [p, ξ,�∗] := − λ

2π

∫

B2R
Q−ω L̃U [�∗] · Z0 j (y) dy, j = 1, 2,

a0[p, ξ,�∗] := 1

2
eiω(t) (a01[p, ξ,�∗] + ia02[p, ξ,�∗]) . (5.7)
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Similarly, we let

B1 j [ξ ](t) := λ

2π

∫

R2
Q−ω[K0[p, ξ ] + K1[p, ξ ]] · Z1 j (y) dy, j = 1, 2,

B1[ξ ](t) := B11[ξ ](t) + iB12[ξ ](t).

Using (4.10), (3.1) and the fact that
∫∞
0 ρw2

ρdρ = 2 we get

B1[ξ ](t) = 2[ ξ̇1(t) + i ξ̇2(t) ].

At last, we set

a1 j [p, ξ,�∗] := λ

2π

∫

B2R
Q−ω L̃U [�∗] · Z1 j (y) dy, j = 1, 2,

a1[p, ξ,�∗] := −eiω(t)(a11[p, ξ,�∗] + ia12[p, ξ,�∗]).

We get that the four conditions (5.3) reduce to the system of two complex
equations

B0[p] = a0[p, ξ,�∗], (5.8)

B1[ξ ] = a1[p, ξ,�∗]. (5.9)

At this point we will make some preliminary considerations on this system
that will allow us to find a first guess of the parameters p(t) and ξ(t). First,
we observe that

B0[p] =
∫ t−λ2

−T

ṗ(s)

t − s
ds + O

(‖ ṗ‖∞
)

.

To get an approximation for a0, we analyze the operator L̃U in a0. For this
let us write

�∗ =
[

ψ∗
ψ∗
3

]

, ψ∗ = ψ∗
1 + iψ∗

2 .

From formula (3.5) we find that

L̃U [�∗](y) = [L̃U ]0[�∗] + [L̃U ]1[�∗] + [L̃U ]2[�∗],

where

λQ−ω[L̃U ]0[�∗] = ρw2
ρ

[

div (e−iωψ∗) E1 + curl (e−iωψ∗) E2
]
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λQ−ω[L̃U ]1[�∗] = − 2wρ cosw
[

(∂x1ψ
∗
3 ) cos θ + (∂x2ψ

∗
3 ) sin θ

]

E1

− 2wρ cosw
[

(∂x1ψ
∗
3 ) sin θ − (∂x2ψ

∗
3 ) cos θ

]

E2 ,

λQ−ω[L̃U ]2[�∗] = ρw2
ρ

[

div (eiωψ̄∗) cos 2θ − curl (eiωψ̄∗) sin 2θ
]

E1

+ ρw2
ρ

[

div (eiωψ̄∗) sin 2θ + curl (eiωψ̄∗) cos 2θ
]

E2,

and the differential operators in �∗ on the right hand sides are evaluated at
(x, t) with x = ξ(t) + λ(t)y, y = ρeiθ while El = El(y), l = 1, 2.

From the above decomposition, assuming that �∗ is of class C1 in space
variable, we find that

a0[p, ξ,�∗] = [divψ∗ + icurlψ∗](ξ, t) + o(1),

where o(1) → 0 as t → T .
Similarly, we have that

a1(p, ξ) = 2(∂x1ψ
∗
3 + i∂x2ψ

∗
3 )(ξ, t)

∫ ∞

0
cosww2

ρρ dρ + o(1)

= o(1) as t → T,

since
∫∞
0 w2

ρ coswρ dρ = 0.
Let us discuss informally how to handle (5.8)–(5.9). For this we simplify

this system in the form

∫ t−λ2

−T

ṗ(s)

t − s
ds = [divψ∗ + icurlψ∗](ξ(t), t) + o(1) + O(‖ ṗ‖∞)

ξ̇ (t) = o(1) as t → T . (5.10)

We assume for the moment that the function �∗(x, t) is fixed, sufficiently
regular, and we regard T as a parameter that will always be taken smaller
if necessary. We recall that we want ξ(T ) = q where q ∈ � is given, and
λ(T ) = 0. Equation (5.10) immediately suggests us to take ξ(t) ≡ q as a
first approximation. Neglecting lower order terms, we arrive at the “clean”
equation for p(t) = λ(t)eiω(t),

∫ t−λ(t)2

−T

ṗ(s)

t − s
ds = divψ∗(q, 0) + icurlψ∗(q, 0) =: a∗

0 (5.11)

At this point we make the following assumption:

divψ∗(q, 0) < 0. (5.12)
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This implies that a∗
0 = −|a∗

0 |eiω0 for a unique ω0 ∈ (−π
2 ,

π
2 ). Let us take

ω(t) ≡ ω0. Then equation (5.11) becomes

∫ t−λ2

−T

λ̇(s)

t − s
ds = −|a∗

0 |. (5.13)

We claim that a good approximate solution of (5.13) as t → T is given by

λ̇(t) = − κ

log2(T − t)

for a suitable κ > 0. In fact, substituting, we have

∫ t−λ2

−T

λ̇(s)

t − s
ds =

∫ t−(T−t)

−T

λ̇(s)

t − s
ds + λ̇(t)

[

log(T − t) − 2 log(λ(t))
]

+
∫ t−λ(t)2

t−(T−t)

λ̇(s) − λ̇(t)

t − s
ds

≈
∫ t

−T

λ̇(s)

T − s
ds − λ̇(t) log(T − t) =: β(t) (5.14)

as t → T . We see that

log(T − t)
dβ

dt
(t) = d

dt
(log2(T − t) λ̇(t)) = 0

from the explicit form of λ̇(t). Hence β(t) is constant. As a conclusion, equa-
tion (5.13) is approximately satisfied if κ is such that

κ

∫ T

−T

λ̇(s)

T − s
= −|a∗

0 |.

And this finally gives us the approximate expression

λ̇(t) = −|divψ∗(q, 0) + icurlψ∗(q, 0)| λ̇∗(t),

where

λ̇∗(t) = − | log T |
log2(T − t)

.

Naturally imposing λ∗(T ) = 0 we then have

λ∗(t) = | log T |
log2(T − t)

(T − t) (1 + o(1)) as t → T .
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6 Solving the inner-outer gluing system

Our purpose is to determine, for a given q ∈ � and a sufficiently small T > 0,
a solution (φ,�∗) of system (4.11)–(4.12) with a boundary condition of the
form (4.15) such that u(x, t) given by (4.14) blows up withU (x, t) as its main
order profile. This will only be possible for adequate choices of the parameter
functions ξ(t) and p(t) = λ(t)eiω(t). These functions will eventually be found
by fixed point arguments, but a priori we need to make some assumptions
regarding their behavior. For some positive numbers a1, a2, σ independent of
T we will assume that

a1|λ̇∗(t)| ≤ | ṗ(t)| ≤ a2|λ̇∗(t)| for all t ∈ (0, T ), (6.1)

|ξ̇ (t)| ≤ λ∗(t)σ for all t ∈ (0, T ). (6.2)

We also take

R(t) = λ∗(t)−β, (6.3)

where β ∈ (0, 1
2 ).

To solve the outer equation (4.12) we will decompose �∗ in the form

�∗ = Z∗ + ψ

where we let Z∗ : � × (0,∞) → R
3 satisfy (2.7) with Z∗

0(x) a function
satisfying certain conditions to be described below. Since we would like that
u(x, t) given by (4.14) has a blow-up behavior given at main order by that of
U (x, t), we will require

�∗(q, T ) = 0.

This constraint has three parameters. Therefore we need three “Lagrange mul-
tipliers” which we include in the initial datum.

6.1 Assumptions on Z∗
0

To describe the assumptions on Z∗
0 , let us write

Z∗
0(x) =

[

z∗0(x)
z∗03(x)

]

, z∗0(x) = z∗01(x) + i z∗02(x).

A first condition that we require, consistent with (5.12), is div z∗0(q) < 0. In
addition we require that Z∗

0(q) ≈ 0 in a non-degenerate way.
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We want also Z∗ to be sufficiently small, but independently of T , so that
the heat equation (2.7) is a good approximation of the linearized harmonic
map flow far from the singularity. In order to achieve later the desired stability
property, it is convenient to split Z∗

0 into two parts

Z∗
0 = Z∗0

0 + Z∗1
0 ,

where Z∗0
0 is sufficiently smooth and Z∗1

0 allows more irregular perturbations.
More precisely, for Z∗0

0 we assume that for some α0 > 0 small and some
α1, α2 > 0, all independent of T , we have

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖Z∗0
0 ‖C3(�) ≤ α0,

|Z∗0
0 (q)| ≤ 5T,

|(Dz∗00 (q))−1| ≤ α1,

−α1 ≤ div z∗00 (q) ≤ −α2.

(6.4)

(The notation here is analogous to (2.8)).
To describe Z∗1

0 we introduce the following norm

‖Z∗1
0 ‖∗ = sup

�

|Z∗1
0 (x)| + 1

| log ε∗| sup� |∇x Z
∗1
0 (x)| (6.5)

+ 1

| log ε∗|1/2 sup� (|x − q0| + ε∗) |D2
x Z

∗1
0 (x)|,

where

ε∗ = λ∗(0). (6.6)

Then we assume that for some σ > 0 fixed we have

‖Z∗1
0 ‖∗ ≤ T σ . (6.7)

In summary, the conditions on Z∗
0 are the following:

Z∗
0 = Z∗0

0 + Z∗1
0 with Z∗0

0 , Z∗1
0 satisfying (6.4) and (6.7). (6.8)

6.2 Linear theory for the inner problem

The inner problem (4.11) is written as
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⎧

⎪⎨

⎪⎩

λ2∂tφ = LW [φ] + h[p, ξ,�∗] in D2R

φ · W = 0 in D2R

φ(·, 0) = 0 in B2R(0)

where h[p, ξ,�∗] is given by (5.1). To find a good solution to this problem
we would like that h[p, ξ,�∗] satisfies the orthogonality conditions (5.3).

We split the right hand side h[p, ξ,�∗] and the inner solution into compo-
nents with different roles regarding these orthogonality conditions.

Recall that

h[p, ξ,�∗] = λ2Q−ω L̃U [�∗]χD2R+λ2Q−ωK0[p, ξ ]+λ2Q−ωK1[p, ξ ]χD2R ,

the decomposition of L̃U given in (3.5):

L̃U [�∗] = L̃U [�∗]0 + L̃U [�∗]1 + L̃U [�∗]2 ,

with L̃U [�] j defined in (3.6). Using the notation (3.4), we then define

L̃U [�](0)1 = − 2λ−1wρ cosw
[

(∂x1ϕ3(ξ(t), t)) cos θ

+ (∂x2ϕ3(ξ(t), t))) sin θ
]

QωE1

− 2λ−1wρ cosw
[

(∂x1ϕ3(ξ(t), t))) sin θ

− (∂x2ϕ3(ξ(t), t))) cos θ
]

QωE2 .

We then decompose

h = h1 + h2 + h3

where

h1[p, ξ,�∗] = λ2Q−ω(L̃U [�∗]0 + L̃U [�∗]2)χD2R + λ2Q−ωK0[p, ξ ],
h2[p, ξ,�∗] = λ2Q−ω L̃U [�∗](0)1 χD2R + λ2Q−ωK1[p, ξ ]χD2R ,

h3[p, ξ,�∗] = λ2Q−ω(L̃U [�∗]1 − L̃U [�∗](0)1 )χD2R .

Next we decompose φ = φ1 +φ2 +φ3 +φ4. The function φ1 will solve the
inner problem with right hand side h1[p, ξ,�∗] projected so that it satisfies
essentially (5.3). The advantage of doing this is that h1 has faster spatial decay,
which gives better bounds for the solution. For this we let, for any function
h(y, t) defined in R2 × (0, T ) with sufficient decay,

cl j [h](t) := 1
∫

R2 w2
ρ |Zl j |2

∫

R2
h(y, t) · Zl j (y) dy. (6.9)
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Note that h[p, ξ,�∗] is defined in R
2 × (0, T ), and for simplicity we will

assume that the right hand sides appearing in the different linear equations are
always defined in R2 × (0, T ).

We would like that φ1 solves

λ2∂tφ1 = LW [φ1] + h1[p, ξ,�∗]

−
1
∑

l=−1

2
∑

j=1

cl j [h1(p, ξ,�∗)]w2
ρZl j in D2R,

but the estimates for φ1 are better if the projections c0 j [h(p, ξ,�∗)] are mod-
ified slightly.

Here is the precise result that we will use later. We define the norms

‖h‖ν,a = sup
R2×(0,T )

|h(y, t)|
λν∗(1 + |y|)−a

, (6.10)

and

‖φ‖∗,ν,a,δ = sup
D2R

|φ(y, t)| + (1 + |y|)|∇yφ(y, t)|
λν∗ max

(
Rδ(5−a)

(1+|y|)3 ,
1

(1+|y|)a−2

) . (6.11)

Proposition 6.1 Let a ∈ (2, 3), δ ∈ (0, 1), ν > 0. Assume ‖h‖ν,a < ∞. Then
there is a solution φ = Tλ,1[h], c̃0 j [h] of
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ2∂tφ = LW [φ] + h −
∑

j=1,2

c̃0 j [h]Z0 jχB1 −
∑

l=−1,1
j=1,2

cl j [h]Zl jχB1 in D2R

φ · W = 0 in D2R

φ(·, 0) = 0 in B2R(0)

where cl j is defined in (6.9), which is linear in h, such that

‖φ‖∗,ν,a,δ ≤ C‖h‖ν,a
and such that

|c0 j [h] − c̃0 j [h]| ≤ Cλν∗R− 1
2 δ(a−2)‖h‖ν,a.

The functionφ2 solves the equationwith right hand side h2[p, ξ,�∗], which
is in mode 1, a notion that we define next (this is basically motivated by the
analysis of Sect. 7, where we consider the linearized parabolic equation and
use a Fourier decomposition of the right hand side and the solution).
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Let h(y, t) ∈ R
3, be defined in R2 × (0, T ) orD2R with h ·W = 0. We say

that h is a mode k ∈ Z if h has the form

h(y, t) = Re(h̃k(|y|, t)eikθ )E1 + Re(h̃k(|y|, t)eikθ )E2,

for some complex valued function h̃k(ρ, t).
Consider then

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

λ2∂tφ = LW [φ] + h −
∑

j=1,2

c1 j [h]w2
ρZ1 j in D2R

φ · W = 0 in D2R

φ(·, 0) = 0 in B2R(0)

(6.12)

Proposition 6.2 Let a ∈ (2, 3), δ ∈ (0, 1), ν > 0. Assume that h is in mode
1 and ‖h‖ν,a < ∞. Then there is a solution φ = Tλ,2[h] of (6.12), which is
linear in h, such that

‖φ‖ν,a−2 ≤ C‖h‖ν,a .
In the above statemen the norm ‖φ‖ν,a−2 analogous to the one in (6.10),

but the supremum is taken in D2R .
Another piece of the inner solution, φ3, will handle h3[p, ξ,�∗], which

does not satisfy orthogonality conditions in mode 0. We will still project it
to satisfy the orthogonality condition in mode 1. Let us consider then (6.12)
without any orthogonality conditions on h in mode 0. We define

‖φ‖∗∗,ν = sup
D2R

|φ(y, t)| + (1 + |y|) ∣∣∇yφ(y, t)
∣
∣

λ∗(t)νR(t)2(1 + |y|)−1 . (6.13)

Proposition 6.3 Let 1 < a < 3 and ν > 0. There exists a C > 0 such that if
‖h‖a,ν < +∞ there is a solution φ = Tλ,3[h] of (6.12), which is linear in h
and satisfies the estimate

‖φ‖∗∗,ν ≤ C‖h‖a,ν .
Note that we allow a to be less than 2 in the previous proposition.
Next we have a variant of Proposition 6.3 when h is in mode -1.

Proposition 6.4 Let 2 < a < 3 and ν > 0. There exists a C > 0 such that
for any h in mode -1 with ‖h‖a,ν < +∞, there is a solution φ = Tλ,4[h] of
problem (6.12), which is linear in h and satisfies the estimate

‖φ‖∗∗∗,ν ≤ C‖h‖a,ν,
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where

‖φ‖∗∗∗,ν = sup
D2R

|φ(y, t)| + (1 + |y|) ∣∣∇yφ(y, t)
∣
∣

λ∗(t)ν log(R(t))
.

All propositions stated here are corollaries of Proposition 7.1 and proved in
Sect. 7.

6.3 The equations for p = λeiω

We need to choose the free parameters p, ξ so that cl j [h(p, ξ,�∗)] = 0 for
l = −1, 0, 1, j = 1, 2. This will be easy to do for l = 1 (mode 1), but mode
l = 0 is more complicated.

To handle c0 j we note that by definitions (5.1), (5.4), (5.7)

c0, j [h(p, ξ,�∗)] = 2πλ
∫

R2 w2
ρ |Z0 j |2

(

B0 j [p] − a0 j [p, ξ,�∗])

where B0, a0 are defined in (5.6), (5.7) and we recall that p = λeiω.
So to achieve c0 j [h(p, ξ,�∗)] = 0 we should solve

B0[p](t) = a0[p, ξ,�∗](t), t ∈ [0, T ], (6.14)

adjusting the parameters λ(t) and ω(t). This equation is delicate and we will
instead impose amodified version of this condition. Themodification of (6.14)
consists in introducing another term in the equation, essentially modifying the
operator B0.

To make this precise we define the following norms. Let I denote either the
interval [0, T ] or [−T, T ]. For � ∈ (0, 1), l ∈ R and a continuous function
g : I → C we let

‖g‖�,l = sup
t∈I

(T − t)−�| log(T − t)|l |g(t)|, (6.15)

and for γ ∈ (0, 1), m ∈ (0,∞), and l ∈ R we let

[g]γ,m,l = sup (T − t)−m | log(T − t)|l |g(t) − g(s)|
(t − s)γ

, (6.16)

where the supremum is taken over s ≤ t in I such that t − s ≤ 1
10 (T − t).

We have then the following result, whose proof is in Sect. 8.
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Proposition 6.5 Let α, γ ∈ (0, 1
2 ), l ∈ R, C1 > 1. There is α0 > 0 such that

if � ∈ (0, α0) and m ≤ � − γ , then for a : [0, T ] → C is such that

⎧

⎨

⎩

1

C1
≤ |a(T )| ≤ C1,

T�| log T |1+σ−l‖a(·) − a(T )‖�,l−1 + [a]γ,m,l−1 ≤ C1,

(6.17)

for some σ > 0, then, for T > 0 small enough there are two operators P and
R0 so that p = P[a] : [−T, T ] → C satisfies

B0[p](t) = a(t) + R0[a](t), t ∈ [0, T ], (6.18)

with

|R0[a](t)|
≤ C

(

T σ + T� log | log T |
| log T | ‖a(·) − a(T )‖�,l−1 + [a]γ,m,l−1

)

(T − t)m+(1+α)γ

| log(T − t)|l , (6.19)

for some σ > 0.

We have additional properties of the solution to this problem.

Proposition 6.6 Let usmake the same assumptions as in Proposition 6.5. Then
P[a] can be written as

P[a] = p0,κ[a] + P1[a] + P2[a]
where p0,κ is defined in (8.2) and each term

κ = κ[a], p1 = P1[a], p2 = P2[a],
has the following bounds:

κ = |a(T )|
(

1 + O

(
1

| log T |
)

,

| ṗ1(t) − ṗ0,κ (t)| ≤ C
| log T |1−σ log(| log T |)2

| log(T − t)|3−σ
,

| p̈1(t)| ≤ C
| log T |

| log(T − t)|3(T − t)
,

‖ ṗ2‖�,l ≤ C
(

T
1
2+σ−� + ‖a(·) − a(T )‖�,l−1),
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[ ṗ2]γ,m,l ≤ C

(

| log T |l−3T α0−m−γ + T� log | log T |
| log T | ‖a(·)

− a(T )‖�,l−1 + [a]γ,m,l−1),

where α0 > 0 is some fixed some constant and σ > 0 is arbitrary (with C
depending on σ ).

Roughly speaking, to obtain the modified equation (6.18) we notice that the
main term in p in B0[p] is the integral operator

∫ t−λ∗(t)2

−T

ṗ(s)

t − s
ds.

Thus we define

B̃0[p] = B0[p] −
∫ t−λ∗(t)2

−T

ṗ(s)

t − s
ds.

It will be sufficient to solve approximately equations (5.3) replacing in part
this integral operator by a “regularized” version of it following the logic of the
formal derivation of the rate (5.14). For α > 0 let us write

∫ t−λ∗(t)2

−T

ṗ(s)

t − s
ds = Sα[ ṗ] + Rα[ ṗ]

where

Sα[g] := g(t)[−2 log λ∗(t) + (1 + α) log(T − t)]

+
∫ t−(T−t)1+α

−T

g(s)

t − s
ds, (6.20)

Rα[g] := −
∫ t−λ2∗

t−(T−t)1+α

g(t) − g(s)

t − s
ds. (6.21)

Thus equation (6.14) can be written in the form

Sα[ ṗ] + Rα[ ṗ] + B̃0[p] = a(t), in [0, T ],

for some function a(t). The modified equation is

Sα[ ṗ] + B̃0[p] = a(t) in [0, T ],
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and the remainderR0 is essentially Rα[ ṗ]. This is a sketch of how we obtain
the modified equation and remainder. For more details see Sect. 8.

Another modification to equations (6.14) that we introduce is to replace
a0[p, ξ,�∗] by its main term. To do this we write

a0[p, ξ,�] = a(0)
0 [p, ξ,�] + a(1)

0 [p, ξ,�] + a(2)
0 [p, ξ,�]

where

a(l)
0 [p, ξ,�] = − λ

4π
eiω

∫

B2R

(

Q−ω L̃U [�]l · Z01 + i Q−ω L̃U [�]l · Z02

)

dy

for l = 0, 1, 2.
We define

c∗
0[p, ξ,�∗](t)
:= 4πλ

∫

R2 w2
ρ |Z01|2 e

−iω
(

R0

[

a(0)
0 [p, ξ,�∗]

]

(t) + a(1)
0 [p, ξ,�∗](t)

+ a(2)
0 [p, ξ,�∗](t)

)

− (c0[h[p, ξ,�∗]] − c̃0[h1[p, ξ,�∗]]),

and

c∗
01 := Re(c∗

0), c∗
02 := Im(c∗

0),

where R0 is the operator given Proposition 6.5 and c̃0 = c̃01 + i c̃02 are the
operators defined in Proposition 6.1.

6.4 The system of equations

We transform the system (4.11)–(4.12) in the problem of finding functions
ψ(x, t),φ1, . . . , φ4, parameters p(t) = λ(t)eiω(t), ξ(t) and constants c1, c2, c3
such that the following system is satisfied:

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψt = �xψ + g(p, ξ, Z∗ + ψ, φ1 + φ2 + φ3 + φ4) in � × (0, T )

ψ = (e3 −U ) − �0 on ∂� × (0, T )

ψ(·, 0) = (c1 e1 + c2 e2 + c3 e3)χ + (1 − χ)(e3 −U − �0) in �

ψ(q, T ) = −Z∗(q, T )

(6.22)
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⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2∂tφ1 = LW [φ1] + h1[p, ξ,�∗] −
∑

j=1,2

c̃0 j [h1[p, ξ,�∗]]w2
ρZ0 j

−
∑

l=−1,1
j=1,2

cl j [h1[p, ξ,�∗]]w2
ρZl j in D2R

φ1 · W = 0 in D2R

φ1(·, 0) = 0 in B2R(0)

(6.23)
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

λ2∂tφ2 = LW [φ2] + h2[p, ξ,�∗] −
∑

j=1,2

c1 j [h2[p, ξ,�∗]]w2
ρZ1 j in D2R

φ2 · W = 0 in D2R

φ2(·, 0) = 0 in B2R(0)

(6.24)
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2∂tφ3 = LW [φ3] + h3 −
∑

j=1,2

c1 j [h3[p, ξ,�∗]]w2
ρZ1 j

+
∑

j=1,2

c∗
0 j [p, ξ,�∗]w2

ρZ0 j in D2R

φ3 · W = 0 in D2R

φ3(·, 0) = 0 in B2R(0)

(6.25)

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ2∂tφ4 = LW [φ4] +
∑

j=1,2

c−1, j [h1[p, ξ,�∗]]w2
ρZ−1 j

φ4 · W = 0 in D2R

φ4(·, t) = 0 on ∂B2R(t)

φ4(·, 0) = 0 in B2R(0)

(6.26)

c0 j [h(p, ξ,�∗)](t) − c̃0 j [p, ξ,�∗](t) = 0 for all t ∈ (0, T ), j = 1, 2,
(6.27)

c1 j [h(p, ξ,�∗)](t) = 0 for all t ∈ (0, T ), j = 1, 2. (6.28)

In (6.22) χ is a smooth cut-off function with compact support in � which is
identically 1 on a fixed neighborhood of q independent of T and the function
g(p, ξ,�∗, φ) is given by (4.13).

We see that if (φ1, φ2, φ3, φ4, ψ, p, ξ) satisfies system (6.22)–(6.28) then
the functions

φ = φ1 + φ2 + φ3 + φ4, �∗ = Z∗ + ψ

solve the outer-inner gluing system (4.11)–(4.12).
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The way in which we will proceed to solve the full problem (6.22)–(6.28)
is the following. For given functions φ1, . . . , φ4 and parameters p, ξ in a
suitable class, we solve first the outer problem (6.22) in the form of an operator
ψ = �[φ1 + φ2 + φ3 + φ4, p, ξ ] and denote �∗[φ1 + φ2 + φ3, p, ξ ] =
Z∗+�[φ1+φ2+φ3+φ4, p, ξ ]. Thenwe substitute�∗[φ1+φ2+φ3+φ4, p, ξ ]
in (6.23)–(6.26) and solve for φ1, φ2, φ3, φ4 as operators of the pair (p, ξ).
Finally, we solve for p and ξ the remaining equations. All this will be done by
suitable control on the linear parts of the equation and contraction mapping
principle.

6.5 Choice of constants

We state here the constraints we impose in the parameters involved in the
different norms. The values assumed will be sufficient for the inner-outer
gluing scheme to work.

• β ∈ (0, 1
2 ) is so that R(t) = λ∗(t)−β .

• α ∈ (0, 1
2 ) appears in Proposition 6.5. It is the parameter used to define the

remainderRα in (6.21).
• We use the norm ‖ ‖∗,ν1,a1,δ (6.11) to measure the solution φ1 in (6.23).
Here we will ask that ν1 ∈ (0, 1), a1 ∈ (2, 3), and δ > 0 small and fixed.

• We use the norm ‖ ‖ν2,a2−2 (6.10) to measure the solution φ2 in (6.24),
with ν2 ∈ (0, 1), a2 ∈ (2, 3).

• We use the norm ‖ ‖∗∗,ν3 (6.13) for the solution φ3 of (6.25), with ν3 > 0.
• We use the norm ‖ ‖∗∗∗,ν4 for the solution φ4 of (6.26), with ν4 > 0.
• We are going to use the norm ‖ ‖ ,�,γ with a parameters �, γ satisfying
some restrictions given below.

• We have parameters m, l in Proposition 6.5. We work with m given by

m = � − 2γ (1 − β).

and l satisfying l < 1 + 2m.

We will assume that

α − 1 + 2β > 0

which ensures that m + (1 + α)γ > �.
To get the estimates for the outer problem (6.22), we need (A.1) and

� < min
(

β,
1

2
− β, ν1 − 1 + β(a1 − 1), ν2 − 1

+ β(a2 − 1), ν3 − 1, ν4 − 1 + β
)
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� < min
(

ν1 − δβ(5 − a1) − β, ν2 − β, ν3 − 3β, ν4 − β
)

and

� > 0.

Also to control the nonlinear terms in (6.22) we need δ > 0 in ‖ ‖∗,ν1,a1,δ to
be small.

To find � in the range above we need

ν1 > max
(

1 − β(a1 − 1), δβ(5 − a1) − β
)

ν2 > max
(

1 − β(a2 − 1), β
)

ν3 > max(1, 3β)

ν4 > max(1 − β, β).

To solve the inner system given by equations (6.23), (6.24), (6.25), and
(6.26) we will need

ν1 < 1,

ν2 < 1 − β(a2 − 2),

ν3 < min
(

1 + � + σ1, 1 + � + 2γβ, ν1 + 1

2
δβ(a1 − 2)

)

,

ν4 < 1,

where σ1 ∈ (0, γ (α − 1 + 2β)).

6.6 The outer problem

Our main result for problem (6.22) is the existence of a small solution for all
small T , with certain precise absolute and Lipschitz estimates satisfied. To
obtain this result we need a suitable norm that we define next.

Given � > 0, γ ∈ (0, 1
2 ) we define

‖ψ‖ ,�,γ := λ∗(0)−� 1

| log T |λ∗(0)R(0)
‖ψ‖L∞(�×(0,T ))

+ λ∗(0)−�‖∇xψ‖L∞(�×(0,T ))

+ sup
�×(0,T )

λ∗(t)−�−1R(t)−1 1

| log(T − t)| |ψ(x, t) − ψ(x, T )|
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+ sup
�×(0,T )

λ∗(t)−�|∇xψ(x, t) − ∇xψ(x, T )|

+ sup λ∗(t)−�(λ∗(t)R(t))2γ
|∇xψ(x, t) − ∇xψ(x ′, t ′)|
(|x − x ′|2 + |t − t ′|)γ ,

(6.29)

where the last supremum in taken in the region

x, x ′ ∈ �, t, t ′ ∈ (0, T ), |x − x ′| ≤ 2λ∗R(t), |t − t ′| < 1

4
(T − t).

We define the spaces

E1 = {φ1 ∈ L∞(D2R) : ∇yφ1 ∈ L∞(D2R), ‖φ1‖∗,ν1,a1,δ < ∞}
E2 = {φ2 ∈ L∞(D2R) : ∇yφ2 ∈ L∞(D2R), ‖φ2‖ν2,a2 < ∞}
E3 = {φ3 ∈ L∞(D2R) : ∇yφ3 ∈ L∞(D2R), ‖φ3‖∗∗,ν3 < ∞}
E4 = {φ4 ∈ L∞(D2R) : ∇yφ4 ∈ L∞(D2R), ‖φ4‖∗∗∗,ν4 < ∞}

and use the notation

E = E1 × E2 × E3 × E4,

� = (φ1, φ2, φ3, φ4) ∈ E

‖�‖E = ‖φ1‖∗,ν1,a1,δ + ‖φ2‖ν2,a2−2 + ‖φ3‖∗∗,ν3 + ‖φ4‖∗∗∗,ν4

We define the closed ball

B = {� ∈ E : ‖�‖E ≤ 1}.

Proposition 6.7 Assume Z∗
0 satisfies (6.8). Let p(t) = λ(t)eiω(t) and ξ(t)

satisfy estimates (6.1), (6.2), � ∈ B. Then there exists C > 0 such that if
T > 0 is sufficiently small then there exists a solution ψ = �(p, ξ,�, Z∗

0) to
equation (6.22) such that

‖�(p, ξ,�, Z∗
0)‖ ,�,γ

≤ CT σ (‖�‖E + ‖ ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T ) + ‖Z∗
0‖∗).

(6.30)

Proof Theproof consists inwriting problem (6.22) in afixedpoint form involv-
ing an inverse for the inhomogeneous linear heat equation
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⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ψt = �xψ + f (x, t) in � × (0, T )

ψ = 0 on ∂� × (0, T )

ψ(q, T ) = 0

ψ(x, 0) = (c1 e1 + c2 e2 + c3 e3)η1 in �

(6.31)

for suitable constants c1, c2, c3, where e1, e1, e1 are defined in (1.13), and
q ∈ � and T > 0 is sufficiently small. The fixed smooth cut-off η1 has
compact support in � and is such that η1 ≡ 1 in a neighborhood of q. The
right hand side is assumed to satisfy ‖ f ‖∗∗ < ∞ where

‖ f ‖∗∗ := sup
�×(0,T )

(

1 +
3
∑

i=1

!i (x, t)
)−1| f (x, t)|.

and the weights are defined by

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

!1 := λ�∗ (λ∗R)−1χ{r≤3Rλ∗}

!2 := T−σ0
λ
1−σ0∗
r2

χ{r≥Rλ∗}

!3 := T−σ0,

where r = |x − q|, � > 0 and σ0 > 0 is small. (The factor T σ0 in front of !2
and !3 is a simple way to have parts of the error small in the outer problem.)
These weights naturally adapt to the form of the outer error g in (4.13). In
Proposition A.1 a solution of Problem (6.31) is built as a linear operator of f
with the estimate

‖ψ‖ ,�,γ + λ∗(0)−�(λ∗(0)R(0))−1

| log T | (|c1| + |c2| + |c3|) ≤ C‖ f ‖∗∗,

This fact and direct estimates for the outer error make the the contraction
mapping principle applicable in a suitable region, producing an operator as in
(6.30). To illustrate some of these estimates, let us write g = g1+g2+g3+g4
where

g1 = Qω

(

(�xη)φ + 2∇xη∇xφ − ηtφ
)

+ ηQω

(−ω̇Jφ + λ−1λ̇y · ∇yφ + λ−1ξ̇ · ∇yφ
)

g2 = (1 − η)L̃U [�∗] + (�∗ ·U )Ut

g3 = (1 − η)[K0[p, ξ ] + K1[p, ξ ]] + �U⊥[R̃1] + (�0 ·U )Ut ,

g4 = NU (ηQωφ + �U⊥(�0 + �)∗).

123



Singularity formation in the 2D harmonic map flow 387

We claim that

‖g1‖∗∗ ≤ CT σ‖�‖E ,
for some σ > 0. Indeed, we have

|�xηφ1| ≤ Cλν1−2∗ R−a1χ[|x−q|≤3λ∗R]‖φ1‖∗,ν1,a1,δ
|�xηφ2| ≤ Cλν2−2∗ R−a2χ[|x−q|≤3λ∗R]‖φ2‖ν2,a2−2

|�xηφ3| ≤ Cλν3−2∗ R−1χ[|x−q|≤3λ∗R]‖φ3‖∗∗,ν3
|�xηφ4| ≤ Cλν4−2∗ R−2 log Rχ[|x−q|≤3λ∗R]‖φ4‖∗∗∗,ν4 .

The norm ‖ ‖∗∗ is actually motivated by the weights appearing above. If

� < min(ν1 − 1 + β(a1 − 1), ν2 − 1 + β(a2 − 1), ν3 − 1, ν4 − 1 + β),

we find that for any j = 1, 2, 3, 4:

|�xηφ j | ≤ CT σ λ
�−1+β∗ χ[|x−q|≤3λ∗R]‖�‖E ,

for some σ > 0. Then we have

‖Qω(�xη)φ‖∗∗ ≤ CT σ‖�‖E
and similarly

‖(∂tη)Qωφ‖∗∗ + ‖Qωλ
−1∇xη∇yφ‖∗∗ ≤ CT σ‖�‖E .

The other terms g2, g3, g4 can be estimated in the same way. In the estimate
for g2 it is important to have the property that�∗ = Z∗+ψ vanishes at (q, T ).
Lipschitz properties are proved using similar calculations. ��

The operator �(p, ξ,�, Z∗
0) satisfies Lipschitz properties with respect to

its arguments, which are consequence of its construction. See Corollaries C.1
and C.2 in the appendix.

What we do next is to take � ∈ E with ‖�‖E ≤ 1 and substitute
�∗(p, ξ,�, Z∗

0) = Z∗ + �(p, ξ,�, Z∗
0) into (6.23)–(6.26). We can then

write equations (6.22)–(6.26) as the fixed point problem

� = F(�) (6.32)

where

F(�) = (F1(�),F2(�),F3(�),F4(�)), F : B̄1 ⊂ E → E
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wiith

F1(�) = Tλ,1(h1[p, ξ,�∗(p, ξ,�, Z∗
0)])

F2(�) = Tλ,2(h2[p, ξ,�∗(p, ξ,�, Z∗
0)])

F3(�) = Tλ,3
(

h3[p, ξ,�∗(p, ξ,�, Z∗
0)]

+
2
∑

j=1

c∗
0 j [p, ξ,�∗(p, ξ,�, Z∗

0)]w2
ρZ0 j

)

F4(�) = Tλ,4
( 2
∑

j=1

c−1, j [h1[p, ξ,�∗(p, ξ,�, Z∗
0)]]w2

ρZ−1, j

)

.

Although F also depends on p, ξ , Z∗
0 we will omit this dependence from the

notation for the moment.
Our next step is to solve problem (6.32).

6.7 The inner problem

Proposition 6.8 Assume that p and ξ satisfy estimates (6.1) and that Z∗
0 sat-

isfies (6.8). Then the system of equations (6.32) for � = (φ1, φ2, φ3, φ4) has
a solution �(p, ξ, Z∗

0) in B̄1 ⊂ E.

Proof We estimate in detail the operator F1. The others are handled similarly.
We recall that we have decomposed Z∗

0 = Z∗0
0 + Z∗1

0 (c.f. 6.8). We claim that
for ‖�‖E ≤ 1 we have

‖F1(�)‖∗,a,1,ν1 ≤ Cλ∗(0)�T σ (‖�‖E + ‖ ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T ))

+ CT σ‖Z∗0
0 ‖∗, (6.33)

and for ‖�1‖E , ‖�2‖E ≤ 1

‖F1(�1) − F1(�2)‖∗,a1,ν1 ≤ CT σ λ∗(0)�‖�1 − �2‖E . (6.34)

To prove (6.33), we recall that by Proposition 6.1 we have

‖F1(�)‖∗,ν1,a1,δ ≤ C‖h1[p, ξ,�∗(p, ξ,�, Z∗
0)]‖ν1,a1 .

From the definition of h1 and recalling that �∗(p, ξ,�, Z∗
0) = Z∗ +

�(p, ξ,�, Z∗
0) we get
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‖h1[p, ξ,�∗(p, ξ,�, Z∗
0)]‖ν1,a1

≤ ‖λ2Q−ω(L̃U [�(p, ξ,�, Z∗
0)]0 + L̃U [�(p, ξ,�, Z∗

0)]2)χD2R‖ν1,a1
+ ‖λ2Q−ω(L̃U [Z∗]0 + L̃U [Z∗]2)χD2R‖ν1,a1 + ‖λ2Q−ωK0[p, ξ ]‖ν1,a1 .

We claim that for j = 0 and j = 2:

‖λ2Q−ω L̃U [�(p, ξ,�, Z∗
0)] j χD2R‖ν1,a1

≤ CT σ λ∗(0)�(‖�‖E + ‖ ṗ‖L∞(−T,T )

+ ‖ξ̇‖L∞(0,T ) + ‖Z∗
0‖∗). (6.35)

Indeed, let ψ = �(p, ξ,�, Z∗
0). From (3.6) we get, for j = 0 and j = 2:

|λ2Q−ω L̃U [ψ] j | ≤ C
λ∗

(1 + |y|)3 ‖∇xψ‖L∞ .

We use ν1 < 1 and a1 < 3 to estimate for |y| ≤ 2R

λ∗
(1 + |y|)3 ≤ λ

ν1∗
(1 + |y|)a1 λ∗(0)1−ν1 .

Then for |y| ≤ 2R and j = 0, 2:

|λ2Q−ω L̃U [ψ] j | ≤ C
λ
ν1∗

(1 + |y|)a1 λ∗(0)1−ν1‖∇xψ‖L∞ .

By the definition of the norm ‖ ‖ ,�,γ (c.f. (6.29)) and Proposition 6.7 we have

‖∇xψ‖L∞ ≤ Cλ∗(0)�‖�(p, ξ,�, Z∗
0)‖ ,�,γ

≤ Cλ∗(0)�T σ (‖�‖E + ‖ ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T ) + ‖Z∗
0‖∗).

Hence for j = 0, 2

|λ2Q−ω L̃U [ψ] j |
≤ C

λ
ν1∗

(1 + |y|)a1 T
σ λ∗(0)�(‖�‖E + ‖ ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T )

+ ‖Z∗
0‖∗),

and therefore we see that (6.35) is valid. Next we claim that

‖λ2Q−ω L̃U [Z∗] jχD2R‖ν1,a1 ≤ CT σ‖Z0‖∗, (6.36)
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for j = 0, 2 and some σ > 0. Indeed, we use estimate (10.8) of Lemma 10.2
to obtain for j = 0, 2:

|λ2Q−ω L̃U [Z∗] j χD2R | ≤ C
λ∗

(1 + ρ)3
| log ε|‖Z0‖∗,

where ε > 0 is given by (6.6). Since ν1 < 1, we get

‖λ2Q−ω L̃U [Z∗] j χD2R‖ν1,a1 ≤ Cλ∗(0)1−ν1 | log λ∗(0)|‖Z0‖∗.

This implies (6.36). Next we estimate λ2Q−ωK0[p, ξ ]. We claim that

‖λ2Q−ωK0[p, ξ ]‖ν1,a1 ≤ CT σ‖ ṗ‖L∞(−T,T ). (6.37)

Indeed, consider K01 given in (4.8). We have

|λ2Q−ωK01[p, ξ ]| ≤ C
λ∗

(1 + ρ)3

∫ t

−T
| ṗ(s)k(z, t − s)| ds.

A direct computation shows that

‖λ2Q−ω L̃U [K01[p, ξ ]]χD2R‖ν1,a1 ≤ Cλ∗(0)1−ν1‖ ṗ‖L∞(−T,T )

≤ CT σ‖ ṗ‖L∞(−T,T ),

for some σ > 0. The estimate for K02 is similar, and we obtain (6.37). Com-
bining (6.35), (6.36), and (6.37) we finally obtain

‖h1[p, ξ,�∗(p, ξ,�, Z∗
0)]‖ν1,a1 ≤ CT σ (‖�‖E + ‖ ṗ‖L∞(−T,T ) + ‖Z∗

0‖∗).

Then thanks to Proposition 6.1 we get (6.33). The proof of estimate (6.34) is
similar. ��

Let �(p, ξ, Z∗
0) be the solution of (6.32) constructed in Proposition 6.8.

As a consequence of the construction above and the Lipschitz estimates for
the inner problem in Sect. 7.6� is Lipschitz in the parameters p, ξ, Z∗

0 in the
following sense.

Corollary 6.1 Assume that p1, p2 and ξ1, ξ2 satisfy estimates (6.1) and that
Z∗
0,1, Z

∗
0,2 have the form

Z∗
0,l = Z∗0

0 + Z∗1
0,l, l = 1, 2,
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with Z∗0
0 satisfying (6.4) and ‖Z∗1

0,l‖∗ ≤ T σ . Let us write p j = λ j eiω j for
j = 1, 2. for some σ > 0. Then

‖�(p1, ξ1, Z
∗
0,1) − �(p2, ξ2, Z

∗
0,2)‖E

≤ λ∗(0)σ
[

‖λ∗(ω̇1 − ω̇2)‖∞ +
∥
∥
∥
λ1 − λ2

λ∗

∥
∥
∥
L∞

+ ‖λ̇1 − λ̇2‖L∞ +
∥
∥
∥
ξ1 − ξ2

λ∗R

∥
∥
∥
L∞ +

∥
∥
∥
ξ̇1 − ξ̇2

R

∥
∥
∥
L∞

+ ‖Z∗1
0,1 − Z∗1

0,2‖∗
]

,

for some possibly smaller σ > 0.

With this we can now state the following result. Let�(p, ξ, Z∗
0) denote the

solution of (6.32) constructed in Proposition 6.8.

Proposition 6.9 Given Z∗
0 of the form (6.8) there exists p = λeiω and ξ such

that (6.27) and (6.28) are satisfied.

The proposition above yields the existence of a blow-up solution. The proof
is given in Sect. 9.

7 Linear theory for the inner problem

At the very heart of capturing the bubbling structure is the construction of an
inverse for the linearized heat operator around the basic harmonic map. We
consider the linear equation

λ2∂tφ = LW [φ] + h(y, t) in D2R (7.1)

φ(·, 0) = 0 in B2R(0)

φ · W = 0 in D2R

where

D2R = {(y, t) / t ∈ (0, T ), y ∈ B2R(t)(0)}.
We assume that h(y, t) is defined for all (y, t) ∈ R

2 × (0, T ) and satisfies

h · W = 0, |h(y, t)| ≤ C
λν∗

(1 + |y|)a ,

where ν > 0 and a ∈ (2, 3) [so that ‖h‖a,ν < ∞ with the norm defined in
(6.10)].
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The parameter R is given by (6.3), that is R(t) = λ∗(t)−β , β ∈ (14 ,
1
2 ).

Also, we assume that the parameter function λ(t) satisfies we have that

aλ∗(t) ≤ λ(t) ≤ bλ∗(t) for all t ∈ (0, T )

for some positive numbers a, b, c independent of T .
Weobserve that a prioriwe are not imposingboundary conditions in problem

(7.1). Our purpose is to construct a solution φ that defines a linear operator of
h and satisfies uniform bounds in terms of suitable norms. In some sense this
is an extension of ”Fredholm” theory for linear parabolic problem (7.1).

All functions h(y, t)with h(y, t) ·W (y) ≡ 0 can be expressed in polar form
as

h(y, t) = h1(ρ, θ, t)E1(y) + h2(ρ, θ, t)E2(y), y = ρeiθ . (7.2)

We can also expand in Fourier series

h̃(ρ, θ, t) := h1 + ih2 =
∞
∑

k=−∞
h̃k(ρ, t)e

ikθ , h̃k = h̃k1 + i h̃k2 (7.3)

so that

h(y, t) =
∞
∑

k=−∞
hk(y, t) =: h0(y, t)+h1(y, t)+h−1(y, t)+h⊥(y, t), (7.4)

where
hk(y, t) = Re (h̃k(ρ, t)e

ikθ ) E1 + Im (h̃k(ρ, t)e
ikθ ) E2. (7.5)

We consider the functions Zkj (y) defined in (3.1) and (3.2) and define for
k = −1, 0, 1,

h̄k(y, t) :=
2
∑

j=1

χ Zkj (y)
∫

R2 χ |Zkj |2
∫

R2
h(x, t) · Zkj (z) dz,

where

χ(y, t) =
{

w2
ρ(|y|) if |y| < 2R(t),

0 if |y| ≥ 2R(t).

The main result in this section is the following, where we use the norm ‖h‖a,ν
defined in (6.10).
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Proposition 7.1 Let 2 < a < 3, ν > 0 and let h with ‖h‖a,ν < +∞. Let
us write h = h0 + h1 + h−1 + h⊥ with h⊥ = ∑

k 	=0,±1 hk. Then there exists
a solution φ[h] of problem (7.1), which defines a linear operator of h, and
satisfies the following estimate in D2R:

(1 + |y|) ∣∣∇yφ(y, t)
∣
∣+ |φ(y, t)|

� λ∗(t)νR(t)
5−a
2

1 + |y| min{1, R 5−a
2 |y|−2} ‖h0 − h̄0‖a,ν + λ∗(t)νR(t)2

1 + |y| ‖h̄0‖a,ν

+ λ∗(t)ν

1 + |y|a−2

∥
∥h1 − h̄1

∥
∥
a,ν + λ∗(t)νR(t)4

1 + |y|2
∥
∥h̄1

∥
∥
a,ν

+ λ∗(t)νR(t)
5−a
2

1 + |y| min{1, R 5−a
2 |y|−2} ‖h−1 − h̄−1‖a,ν

+ λ∗(t)ν log R(t) ‖h̄−1‖a,ν
+ λ∗(t)ν

1 + |y|a−2 ‖h⊥‖a,ν .

The construction of the operator φ[h] as stated in the proposition will be
carried out mode by mode in the Fourier series expansion. We shall use the
convention that h(y, t) = 0 for |y| > 2R(t). Let us write

φ =
∞
∑

k=−∞
φk, φk(y, t) = Re (ϕk(ρ, t)e

ikθ ) E1 + Im (ϕk(ρ, t)e
ikθ ) E2.

We shall build a solution of (7.1) by solving separately each of the equations

λ2∂tφk = LW [φk] + hk(y, t) = 0 in D4R, (7.6)

φk(y, 0) = 0 in B4R(0)(0),

which, are equivalent to the problems

λ2∂tϕk = Lk[ϕk] + h̃k(ρ, t) in D̃4R,

ϕk(ρ, 0) = 0 in (0, 4R(0))

with

D̃4R = {(ρ, t) / t ∈ (0, T ), ρ ∈ (0, 4R(t))}
and we recall

Lk[ϕk] := ∂2ρϕk + ∂ρϕk

ρ
− (k2 + 2k cosw + cos(2w))

ϕk

ρ2 .
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We have the validity of the following result.

Lemma 7.1 Let ν > 0 and 0 < a < 3, a 	= 1, 2. Assume that

‖hk(y, t)‖a,ν < +∞.

Then problem (7.6) has a unique bounded solution φk(y, t) of the form

φk(y, t) = Re (ϕk(ρ, t)e
ikθ ) E1 + Im (ϕk(ρ, t)e

ikθ ) E2

which in addition satisfies the boundary condition

φk(y, t) = 0 for all t ∈ (0, T ), y ∈ ∂BR(t)(0). (7.7)

These solutions satisfy the estimates

|φk(y, t)| ≤ C‖h‖a,ν λν∗k−2
{

R2−a if a < 2,
(1 + ρ)2−a if a > 2,

if k ≥ 2.

|φ−1(y, t)| ≤ C‖h‖a,ν λν∗
{

R2−a if a < 2,
log R if a > 2,

|φ0(y, t)| ≤ C‖h‖a,νλν∗(1 + ρ)−1
{

R2 if a > 1,
R3−a if a < 1,

|φ1(y, t)| ≤ C‖h‖a,νλν∗(1 + ρ)−2R4

with C independent of R and k.

Proof Standard parabolic theory yields existence of a unique solution to equa-
tion (7.6) that satisfies the boundary condition (7.7), for each k. Equivalently,
the problem

λ2∂tϕk = Lk[ϕk] + h̃k(ρ, t) in D̃4R, (7.8)

ϕk(t, 4R) = 0 for all t ∈ (0, T )

ϕk(0, ρ) = 0 in (0, 4R(0)),

Lk[ϕk] = ∂2ρϕk + ∂ρϕk

ρ
− (k2 + 2k cosw + cos(2w))

ϕk

ρ2

has a unique solution ϕk(ρ, t) which is bounded in ρ for each t .
We use barriers to derive the desired estimates. A first observation we make

is that for mode k = −1 the elliptic equation L−1[ϕ] + g(ρ) = 0 in (0, 4R)
with ϕ(4R) = 0 has a unique bounded solution given by the variation of
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parameters formula

ϕ(ρ) := Z−1(ρ)

∫ 4R

ρ

dr

ρZ−1(r)2

∫ r

0
g(s)Z−1(s)s ds, (7.9)

Z−1(ρ) = −ρ2wρ = 2ρ2

ρ2 + 1
.

Here we have used that L−1[Z−1] = 0. Let us call ϕ0(ρ) the function in (7.9)
with g(ρ) := 2(1 + ρ)−a . We readily estimate

|ϕ0(ρ)| ≤
{

R2−a if a < 2,

(1 + ρ)2−a if a > 2.

Let us call ϕ̄(ρ, t) = λ∗(t)νϕ0(ρ). Then we see that

− λ2ϕ̄t (ρ, t) + L−1[ϕ̄(ρ, t)] + λν∗
(1 + ρ)a

≤ c λν+1∗ |λ̇∗|ϕ0(ρ) − λν∗
(1 + ρ)a

≤ −λν∗(1 + ρ)−a [1 − Cλ∗R2−a(1 + ρ)a
]

< 0

in D̃4R . Indeed, since R(t) � λ
− 1

2∗ , the inequality holds provided that T
was chosen sufficiently small. Thus for k = −1 the barrier ‖h‖a,ν ϕ̄(ρ, t)
dominates both, real and imaginary parts of ϕ−1(ρ, t). As a conclusion, we
find

|φ−1(y, t)| ≤ C‖h‖a,νλν∗

{

R2−a if a < 2,

(1 + ρ)2−a if a > 2,
in D4R .

The cases k = 0, 1,−2 can be dealt with in exactly the same manner, by
replacing Z−1 in Formula (7.9) respectively by the functions

Z0(ρ) = ρ

ρ2 + 1
, Z1(ρ) = 1

ρ2 + 1
, Z−2(ρ) = ρ3

ρ2 + 1
. (7.10)

The estimates for φk predicted in the lemma then readily follow for k =
−2,−1, 0, 1. Finally, let us now consider k with |k| ≥ 2 and k 	= −2 and the
function ϕ̄(ρ, t) as above. Now we find
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−λ2ϕ̄t (ρ, t) + Lk[ϕ̄(ρ, t)] ≤ (Lk − L−1)[ϕ̄(ρ, t)]
≤ −Cλν∗(k2 − 1 + 2(k − 1))

1

ρ2 (1 + ρ)2−a

< −C(k2 − 1 + 2(k − 1))
λν∗

(1 + ρ)a
in D̃4R.

The latter quantity is negative provided that |k| ≥ 2 and k 	= −2 and hence
we get the estimate

|φk(y, t)| ≤ C

k2
‖h‖a,νλ−ν∗

{

R2−a if a < 2,

(1 + ρ)2−a if a > 2,
in D4R.

The proof is concluded. ��
We can get gradient estimates for the solutions built in the above lemma by

means of the following result.

Lemma 7.2 Let φ be a solution of the equation

λ2∂tφ = LW [φ] + h(y, t) in D4γ R (7.11)

φ(·, 0) = 0 in B4γ R(0).

Given numbers a, b, γ , there exists a C such that if for some M > 0 we have

|φ(y, t)| + (1 + |y|)2|h(y, t)| ≤ M λ∗(t)b(1 + |y|)−a in D4γ R, (7.12)

then

(1 + |y|)|∇yφ(y, t)| ≤ C Mλ∗(t)b(1 + |y|)−a in D3γ R (7.13)

and we recall

Dγ R = {(y, t) / |y| < γ R(t), t ∈ (0, T )}.

If in addition we know that φ satisfies the boundary condition φ(·, t) = 0
on ∂B4γ R(t) for all t ∈ (0, T ) then estimate (7.13) holds in the entire region
D4γ R.

Proof To prove the gradient estimates, we change the time variable, defining

τ(t) =
∫ t

0

ds

λ(s)2
, (7.14)
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so that (7.11) becomes in the variables (y, τ )

∂τφ = LW [φ] + h(y, τ ) in D4γ R

φ(·, 0) = 0 in B4R(0)

Let τ1 > 0 and y1 ∈ B3γ R(τ1)(0). Let ρ = |y1|
5 + 1 so that Bρ(y1) ⊂

B4γ R(τ1)(0). Let us define

φ̃(z, t) := φ(y1 + ρz, τ1 + ρ2s), z ∈ B1(0), s > − τ1

ρ2 .

We distinguish two cases. First, when τ1 ≥ ρ2, we use interior estimates
for parabolic equations, while for the case τ1 < ρ2, we use estimates for a
parabolic equation with initial condition.

Assume τ1 ≥ ρ2. Then φ̃(z, s) satisfies an equation of the form

φ̃s = �zφ̃ + A∇zφ̃ + Bφ̃ + h̃(z, s) in B1(0) × (−1, 0]

with coefficients A(z, s) and B(z, s) uniformly bounded by O((1 + ρ)−2) in
B1(0) × (−1, 0] and

h̃(z, s) = ρ2h(y1 + ρz, τ1 + ρ2s).

Since ρ ≤ CR(τ1) and R(τ1)2 � τ1 for τ1 large we get

λ∗(τ1)b � λ∗(τ1 + ρ2s)b � λ∗(τ1)b, s ∈ (−1, 0].

Standard parabolic estimates and assumption (7.12) yield

‖∇zφ̃‖L∞(B 1
4
(0)×(1,2)) � ‖φ̃‖L∞B 1

2
(0)×(0,2) + ‖h̃‖L∞(B 1

2
(0)×(0,2))

� M λ∗(τ1)bρ2−a,

so that in particular

ρ|∇yφ(y1, τ1)| = |∇zφ̃(0, 1)| � M λ∗(τ1)bρ2−a.

In the case τ1 ≥ ρ2 the argument is similar, but the equation for φ̃ holds
in B1(0) × (− τ1

ρ2 , 0] and has initial condition 0 at s = − τ1
ρ2 . Finally, for the

last assertion we argue in similar way but using boundary rather that interior
gradient estimates. ��
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In addition to estimate (7.13) we have a Hölder gradient estimate which is
more natural to express using the variable τ defined in (7.14) as follows. We
denote

B"(y, τ ) = {(y′, τ ′) / |y − y′|2 + |τ ′ − τ | < "2}.
For a function g(y, τ ), a number 0 < α < 1, and a set A we let

[g]α,A := sup

{ | f (y, τ ) − f (y′, τ ′)|
(|y − y′|2 + |τ ′ − τ |) α

2
/ (y, τ ), (y′, τ ′) ∈ A

}

.

Corollary 7.1 Let φ be a solution of the equation (7.11) with h(y, τ ) =
div H(y, τ ). Given α ∈ (0, 1) and constants a, b, γ there is C such that
if

|φ(y, τ )| + (1 + |y|)|H(y, τ )| + (1 + |y|)1+α[H ]B"(y)(y,τ )∩D4γ R

≤ M λ∗(τ )b(1 + |y|)−a

in D4γ R, where "(y) = 1 + |y|
4 , then

(1 + |y|)|∇yφ(y, τ )| + (1 + |y|)1+α[∇yφ]B"(y)(y,τ )∩D4γ R

≤ C Mλ∗(t)b(1 + |y|)−a (7.15)

in D3γ R. If in addition we know that φ satisfies the boundary condition
φ(·, t) = 0 on ∂B4γ R(t) for all t ∈ (0, T ) then estimate (7.15) holds in the
entire region D4γ R.

Our next goal is to construct an inverse for modes k = −1, 0, 1 with a better
control when subject to a certain solvability condition.

7.1 Mode k = 0

Let us consider again equation (7.6) for k = 0 and the functions Z0 j (y) defined
in (3.1) . We have the following result.

Lemma 7.3 Let assume that 2 < a < 3, k = 0 and
∫

R2
h0(y, t) · Z0 j (y) dy = 0 for all t ∈ [0, T ) (7.16)

for j = 1, 2. Then there exist a solution φ0 to equation (7.6) for k = 0 that
defines a linear operator of h0 and satisfies the estimate in D3R,

|φ0(y, t)| � ‖h0‖a,νR 5−a
2 λν∗(1 + |y|)−1 min{1, R 5−a

2 |y|−2} . (7.17)
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A central feature of estimate (7.17) is that it matches the size of the solutions
obtained in Lemma 7.1 for k 	= 0, 1 when |y| ∼ R.

Proof We observe that conditions (7.16) can be written as

∫ 2R

0
h̃0(ρ, t) Z0(ρ)ρ dρ = 0 for all τ ∈ (0, T ). (7.18)

Let us consider the complex valued functions

H̃0(ρ, t) := −Z0(ρ)

∫ ∞

ρ

1

sZ0(s)2

∫ ∞

s
h̃0(ζ, t)Z0(ζ )ζ dζ, k = 0, 1.

They are well-defined thanks to (7.18). Then the function

H0(y, t) := Re (H̃0(ρ, τ ))E1(y) + Re (H̃0(ρ, t))E2(y)

solves

LW [H0(y, τ )] = h0(y, τ ) in D4R

and satisfies

|H0(y, t)| � λ∗(t)ν(1 + |y|)2−a‖h0‖a,ν in D4R .

Moreover, elliptic gradient estimates yield

|∇y H0(y, τ )| � λ∗(t)ν(1 + |y|)1−a‖h0‖a,ν in D3R .

Let us consider the problem

λ2�t = LW [�] + H0(y, t) in D4R, (7.19)

�(y, 0) = 0 in B4R(0)

�(y, t) = 0 for all t ∈ (0, T ), y ∈ ∂B4R(0)(0)

According to Lemma 7.1, this problem has unique solution � = �0 that
satisfies the estimates

|�0(y, t)| ≤ C‖H0‖a−2,νλ∗(τ )ν(1 + |y|)−1 R5−a in D4R .

Applying Lemma 7.2 we deduce that, also,

|∇y�0(y, t)| � ‖H0‖a−2,νλ∗(τ )ν(1 + |y|)−2 R5−a in D3R
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Let us write

�0 j := ∂y j�0, H0 j := ∂y j H0

Then we have

λ2∂t�0 j = LW [�0 j ] + ∂y j |∇W |2�0 + 2∇∂y j W∇�0 + H0 j (y, τ )

+ 2(∇�0∂y j∇W )W + 2(∇�0∇W )∂y j W in D3R,

�0 j (y, 0) = 0 for all y ∈ B3R(0)(0)

According to Lemma 7.2 and the above estimates we obtain that

(1 + |y|)|∇�0 j (y, t)| � ‖h0‖a,νλ∗(t)ν(1 + |y|)−2R5−a

+ ‖h0‖a,νλ∗(t)ν(1 + |y|)4−a in D3R .

Then we define

φ0 := LW [�0]
so that φ = φ0 solves

λ2φt = LW [φ] + h0(y, t) in D3R,

φ(y, 0) = 0 for all y ∈ B3R(0)(0)

and defines a linear operator of the function h0. Moreover, observing that

|LW [�0]| �
∣
∣
∣D2

y�0

∣
∣
∣+ O(ρ−4) |�0| + O(ρ−2)

∣
∣Dy�0

∣
∣

we then get the estimate

|φ0(y, t)| � ‖h0‖a,νR5−aλ∗(t)ν(1 + |y|)−3 . (7.20)

To complete the proof of estimate (7.17), we let ϕ0 be the complex valued
function defined as

φ0(y, t) = Re (ϕ0(ρ, t)) E1 + Im (ϕ0(ρ, t)) E2

so that letting R′ = R
5−a
4 � R, using the notation in (7.8), ϕ0 satisfies the

equation

λ2∂tϕ0 = L0[ϕ0] + h̃0(ρ, t) in D̃R′, (7.21)

ϕ0(0, ρ) = 0 in (0, R′),
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and from (7.20),we canfind an explicit supersolution for the real and imaginary
parts of equation (7.21), which also dominates their boundary values at R′,
which yields

|ϕ0(y, t)| � ‖h0‖a,νλν∗ |R′|2(1 + |y|)−1 , |y| < R′.

Combining this estimate and (7.20) yields the validity of (7.17). ��
Wemention next a variant of Lemma7.3, inwhichweweaken the hypothesis

on the right hand side, allowing it to be a divergence of Hölder continuous
function. This will be needed when analyzing estimates of the derivative with
respect to λ of operator Tλ,2 (Proposition 6.3).

Lemma 7.4 Let assume that 2 < a < 3, ν > 0, and k = 0. Let h0 have the
form

h0(y, τ ) = div H0(y, τ )

such that

(1 + |y|)|H0(y, τ )| + (1 + |y|)1+α[H0]B"(y)(y,τ )∩D4R ≤ λ∗(τ )ν(1 + |y|)−a,

in D4R, where α ∈ (0, 1) and "(y) = 1 + |y|
4 . Assume also that

∫

R2
h0(y, t) · Z0 j (y) dy = 0 for all t ∈ [0, T )

for j = 1, 2. Then there exist a solution φ0 to equation (7.6) for k = 0 that
defines a linear operator of h0 and satisfies

|φ0(y, t)| � ‖h0‖a,νR 5−a
2 λν

0(1 + |y|)−1 min{1, R 5−a
2 |y|−2},

in D3R.

7.2 Mode k = −1

Let us consider equation (7.6) for k = −1 and the functions Z−1 j (y) defined
in (3.2) . We have the following result.

Lemma 7.5 Let assume that 2 < a < 3, k = 0 and
∫

R2
h−1(y, t) · Z−1 j (y) dy = 0 for all t ∈ [0, T )
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for j = 1, 2. Then there exist a solution φ−1 to equation (7.6) for k = −1 that
defines a linear operator of h0 and satisfies the estimate in D3R,

|φ−1(y, t)| � ‖h−1‖a,νλν∗ min{log R, R4−a|y|−2}.
Proof The proof is essentially the same as that of Lemma 7.3. ��

7.3 Mode k = 1

Now we deal with (7.6) for k = 1. For convenience we give the result for a
right hand side more general than strictly need for the proof of Proposition 7.1.
Let us assume that h1 is defined in entire R2 × (0, T ) and that

h1(y, t) = divy G(y, t) (7.22)

where

|G(y, t)| ≤ λ∗(t)ν

1 + |y|a−1 , y ∈ R
2, t ∈ (0, T ), (7.23)

for some ν > 0, a ∈ (2, 3). Then the following result holds.

Lemma 7.6 Let assume that 2 < a < 3, k = 1, h1 has the form (7.22) so that
(7.23) holds and

∫

R2
h1(y, t) · Z j

1 (y) dy = 0 for all t ∈ (0, T )

for j = 1, 2. Then there exist a solution φ1 to equation (7.6) for k = 1 that
defines a linear operator of h1 and satisfies the estimate in D3R,

|φ1(y, t)| � λ∗(t)ν(1 + |y|)2−a.

From this we get directly the next result.

Corollary 7.2 Let assume that 2 < a < 3, k = 1 and

∫

B2R
h1(y, t) · Z j

1 (y) dy = 0 for all t ∈ (0, T )

for j = 1, 2. Then there exist a solution φ1 to equation (7.6) for k = 1 that
defines a linear operator of h1 and satisfies the estimate in D3R,

|φ1(y, t)| � ‖h1‖a,νλ∗(t)ν(1 + |y|)2−a .
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Let us do the same change of the time variable as in (7.14) so that (7.6) for
k = 1 in entire R2 becomes in the variables (y, τ )

∂τφ = LW [φ] + h in R2 × (0,∞), (7.24)

φ(·, 0) = 0 in R2.

Thus, we consider a function h(y, τ ) defined in entire R2 × (0,+∞) of the
form

h = Re (h̃eiθ ) E1 + Im (h̃eiθ ) E2, (7.25)

that satisfies the orthogonality conditions for j = 1, 2

∫

R2
h(·, τ ) · Z1 j = 0 for all τ ∈ (0,∞) (7.26)

and such that h(y, τ ) = 0 for |y| ≥ 2R(τ ).
By standard parabolic theory, this problem has a unique solution, which is

therefore of the form

φ = Re (ϕeiθ ) E1 + Im (ϕeiθ ) E2, (7.27)

where the complex valued function ϕ(ρ, τ) solves the initial value problem

∂τϕ = L1[ϕ] + h̃(ρ, τ ) in (0,∞) × (0,∞), (7.28)

ϕ(ρ, 0) = 0 in (0,∞),

L1[ϕ] = ∂2ρϕ + ∂ρϕ

ρ
− (1 + 2 cosw + cos(2w))

ϕ

ρ2 .

We have the validity of the following result.

Lemma 7.7 Let 0 < σ < 1, ν > 0. Assume that h is mode 1, that is, has the
form (7.25), satisfies the orthogonality conditions (7.26), and can be written
as in (7.22) with g j satisfying (7.23) where b = 1 + σ . Then there exists a
constant C > 0 such that the solution φ of problem (7.24) satisfies the estimate

|φ(y, t)| ≤ C
λ∗(t)ν

1 + |y|σ . (7.29)

For the proof of this result we will use the following Liouville type result.

Lemma 7.8 Let 0 < σ < 1. Suppose φ̃ satisfies

φ̃τ = LW [φ̃] in R2 × (−∞, 0],
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∫

R2
φ̃(·, τ ) · Z1 j = 0 for all τ ∈ (−∞, 0],

|φ̃(y, τ )| ≤ 1

1 + |y|σ in R2 × (−∞, 0], j = 1, 2,

φ̃(y, τ ) = Re (ϕ̃(ρ, τ )eiθ ) E1 + Im (ϕ̃(ρ, τ )eiθ ) E2.

Then φ̃ = 0.

Proof By standard parabolic regularity φ̃(y, τ ) is a smooth function. A scaling
argument shows that

(1 + |y|)−1|Dyφ̃| + |φ̃τ | + |D2
yφ̃| ≤ C(1 + |y|)−2−σ .

Differentiating the equation in τ , we also get ∂τφτ = LW [φτ ] and we find the
estimates

(1 + |y|)−1|Dyφ̃τ | + |φ̃ττ | + |D2
yφ̃τ | ≤ C(1 + |y|)−3−σ .

Testing suitably the equations (taking into account the asymptotic behaviors
in y in integrations by parts) we find

1

2
∂τ

∫

R2
|φ̃τ |2 + B(φ̃τ , φ̃τ ) = 0,

where

B(φ̃, φ̃) = −
∫

R2
LW [φ̃] · φ̃ =

∫

R2
|∇φ̃|2 − |∇W |2|φ̃|2.

It is useful to observe the following: since

φ̃(y, τ ) = Re (ϕ̃(ρ, τ )eiθ ) E1 + Im (ϕ̃(ρ, τ )eiθ ) E2

then we compute, using that L1[wρ] = 0,

B(φ̃, φ̃) = −
∫ ∞

0
L1[ϕ]ϕ̄ρdρ =

∫ ∞

0
|(w−1

ρ ϕ̃)ρ |2w2
ρρ dρ ≥ 0.

We also get

∫

R2
|φ̃τ |2 = −1

2
∂τ B(φ̃, φ̃).
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From these relations we find

∂τ

∫

R2
|φ̃τ |2 ≤ 0,

∫ 0

−∞
dτ
∫

R2
|φ̃τ |2 < +∞

and hence φ̃τ = 0.Thus φ̃ is independent of τ and therefore LW [φ̃] = 0. Since
φ̃ is at mode 1, this implies that φ̃ is a linear combination of Z1 j , j = 1, 2.
Since

∫

R2 φ̃ · Z1 j = 0, j = 1, 2 we conclude that φ̃ = 0, a contradiction. ��
Proof of Lemma 7.7 Let us write

‖φ‖b,τ1 := sup
τ∈(0,τ1)

λ∗(τ )−ν‖(1 + |y|b)φ‖L∞(R2).

We claim that for any τ1 > 0 we have that

‖φ‖2+σ,τ1 < +∞. (7.30)

Let us recall that with the transformations (7.27) we have that the complex
valued function ϕ(y, τ ) is radial in y and solves the initial value problem

∂τϕ = �R2ϕ − (1 + 2 cosw + cos(2w))
ϕ

ρ2 + h̃(ρ, τ ) in R2 × (0,∞),

ϕ(·, 0) = 0 in R2

where ρ = |y|, y ∈ R
2 and h̃ is related to h by (7.25). Let us write ϕ = ϕa+ϕb

where ϕa is the unique solution to

∂τϕa = �R2ϕa + h̃(ρ, τ ) in R2 × (0,∞),

ϕa(·, 0) = 0 in R2

given by Duhamel’s formula. Using the heat kernel in R
2 one readily shows

that ‖ϕa‖2+σ,τ1 < +∞. Let

∂τϕb = �R2ϕb − (1 + 2 cosw + cos(2w))
1

ρ2 (ϕa + ϕb) in R2 × (0,∞),

ϕb(·, 0) = 0 in R2.

By standard linear parabolic theory φb(y, τ ) is locally bounded in time and
space. More precisely, given R > 0 there is a K = K (R, τ1) such that

|φb(y, τ )| ≤ K in BR(0) × (0, τ1].
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If we fix R large and take K1 sufficiently large, we see that K1ρ
−σ is a

supersolution for the real and imaginary parts of the equivalent complex valued
equation (7.28) in the region ρ > R. As a conclusion, we find that |φb| ≤
2K1ρ

−σ , and therefore ‖φb‖σ,τ1 < +∞ for any τ1 > 0. This proves (7.30).
Next we claim that

∫

R2
φ(·, τ ) · Z1 j = 0 for all τ ∈ (1, τ1), j = 1, 2. (7.31)

Indeed, let us test the equation against

Z1 jη, η(y) = η0(R
−1|y|)

where η0 is a smooth cut-off function with η0(r) = 1 for r < 1 and = 0 for
r > 2 and R is an arbitrary large constant. We find that

∫

R2
φ(·, τ ) · Z1 jη =

∫ τ

0
ds
∫

R2
φ(·, s) · (LW [ηZ1 j ] + h · Z1 jη). (7.32)

On the other hand,

∫

R2
φ · (LW [ηZ1 j ] + h · Z1 jηR)

=
∫

R2
φ · (Z1 j�η + 2∇η · ∇Z1 j ) − h · Z1 j (1 − ηR)

= O(R−2−σ )

uniformly on τ ∈ (0, τ1). Letting R → +∞ in (7.32) we get that (7.31) holds.
Now we claim that there exists a constant C such that for all τ1 > 0 we

have the validity of the estimate

‖φ‖σ,τ1 ≤ C, (7.33)

so that in particular estimate (7.29) holds.
To prove (7.33) we assume by contradiction the existence of sequences

τ n1 → +∞ and φn , hn of the form (7.25), (7.27) satisfying

∂τφn = LW [φn] + hn in R2 × (1, τ n1 ),
∫

R2
φn(·, τ ) · Z1 j = 0 for all τ ∈ (1, τ n1 ),

φn(·, 1) = 0 in R2,
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so that

‖φn‖σ,τ n1 = 1 (7.34)

but

hn =
2
∑

j=1

∂y j g j,n, ‖g j,n‖1+σ,τ n1
→ 0, as n → ∞.

We claim first that

sup
1<τ<τ n1

τ ν |φn(y, τ )| → 0 (7.35)

uniformly on compact subsets of y ∈ R
2. If not, for some M > 0 there are

|yn| ≤ M and 1 < τ n2 < τ n1 so that

(τ n2 )
ν(1 + |yn|σ )|φ(yn, τ

n
2 )| ≥ 1

2
.

Clearly we must have τ n2 → +∞. Let us define

φ̃n(y, τ ) = (τ n2 )
νφn(y, τ

n
2 + τ).

Then

∂τ φ̃n = LW [φ̃n] + h̃n in R2 × (1 − τ n2 , 0]

where h̃n → 0 has the form

h̃n =
2
∑

j=1

∂y j g̃ j,n, |g̃ j,n(y, τ )| ≤ o(1)
(τ n2 )

ν

(τ n2 + τ)ν

1

1 + |y|1+σ

and

|φ̃n(y, τ )| ≤ 1

1 + |y|σ in R2 × (1 − τ n2 , 0].

From standard parabolic estimates, we find that passing to a subsequence,
φ̃n → φ̃ uniformly on compact subsets of R2 × (−∞, 0] where φ̃ 	= 0 and

φ̃τ = LW [φ̃] in R2 × (−∞, 0],
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∫

R2
φ̃(·, τ ) · Z1 j = 0 for all τ ∈ (−∞, 0],

|φ̃(y, τ )| ≤ 1

1 + |y|σ in R2 × (−∞, 0], j = 1, 2,

φ̃(y, τ ) = Re (ϕ̃(ρ, τ )eiθ ) E1 + Im (ϕ̃(ρ, τ )eiθ ) E2.

But then Lemma 7.8 implies that φ̃ ≡ 0, which is a contradiction, and we
conclude that (7.35) indeed holds.

From (7.34), we have that for a certain yn with |yn| → ∞ and τ n2 > 0,

(τ n2 )
ν |yn|σ |φn(yn, τ n2 )| ≥ 1

2
.

Now we let

φ̃n(z, τ ) := (τ n2 )
ν |yn|σ φn(|yn|−1z, |yn|−2τ + τ n2 )

so that

∂τ φ̃n = �zφ̃n + an · ∇zφ̃n + bnφ̃n + h̃n(z, τ )

where

h̃n(z, τ ) = (τ n2 )
ν |yn|2+σ hn(|yn|−1z, |yn|−2τ + τ n2 ),

and |an| + |bn| → 0 uniformly on compact sets of R2 \ {0}.
Note that

h̃n =
2
∑

j=1

∂z j g̃ j,n

where

g̃ j,n(z, τ ) = (τ n2 )
ν |yn|1+σ g j,n (|yn|−1z, |yn|−2τ + τ n2 ),

By assumption on g j,n we find that g̃ j,n → 0 uniformly on compact sets of
(R2 \ {0}) × (−∞, 0]. Besides |φ̃n( yn

|yn | , 0)| ≥ 1
2 and

|φ̃n(z, τ )| ≤ |z|−σ ((τ n2 )
−1|yn|−2τ + 1)−ν.

As a conclusion, we may assume that φ̃n → φ̃ 	= 0 uniformly over compact
subsets of R2 \ {0} × (−∞, 0] where
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φ̃τ = �zφ̃ in R2 \ {0} × (−∞, 0].
and

|φ̃(z, τ )| ≤ |z|−σ in R2 \ {0} × (−∞, 0].
Moreover, the mode 1 assumption for φn translates for φ̃ into

φ̃(z, τ ) =
[

ϕ(ρ, τ)e2iθ

0

]

, z = ρeiθ

for a complex valued function ϕ that solves

ϕτ = ϕρρ + ϕρ

ρ
− 4ϕ

ρ2 in (0,∞) × (−∞, 0], (7.36)

|ϕ(ρ, τ)| ≤ ρ−σ in (0,∞) × (−∞, 0].
Let us set

u(ρ, t) = (ρ2 + t)−σ/2 + ε

ρ2

Then

−ut + �u − 4u

r2
< (ρ2 + t)−σ/2−1

[

σ(σ + 2) − 4 + σ

2

]

< 0.

It follows that the function u(x, τ + M) is a positive supersolution for the real
and imaginary parts of equation (7.36) in (0,∞)×[−M, 0]. We find then that
|ϕ(ρ, τ)| ≤ 2u(ρ, τ + M). Letting M → +∞ we find

|ϕ(ρ, τ)| ≤ 2ε

ρ2

and since ε is arbitrary we conclude ϕ = 0. Hence φ̃ = 0, a contradiction that
concludes the proof of the lemma. ��
Proof of Lemma 7.6 We take h to be the extension as zero of the function h1
as in the statement of the lemma. Then we let φ be the unique solution of
the initial value problem (7.24), which clearly defines a linear operator of h1.
From Lemma 7.7, expressing the resulting estimate in the variables (y, t), we
have that for any t1 ∈ (0, T )

|φ(y, t)| ≤ Cλ∗(t)ν(1 + |y|)−σ‖h‖2+σ,t1 for all t ∈ (0, t1), y ∈ R
2.

Then letting φ1 := φ
∣
∣
D3R

and letting t1 ↑ T the result follows. ��
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7.4 Proof of Proposition 7.1

We let h be defined in D2R with ‖h‖a,ν < +∞, with a ∈ (2, 3), ν > 0. We
consider the problem

λ2∂tφ = LW [φ] + h in D4Rφ(·, 0) in B4R(0),

(recall that h is assumed to be defined in R
2 × (0, T ). Let φk be the solution

estimated in Lemma 7.1 of

λ2∂tφk = LW [φk] + hk in D4R

φ(·, t) = 0 on ∂B4R for all t ∈ (0, T ),

φ(·, 0) = 0 in B4R(0).

In addition we let φ01, φ11, φ−11 solve

λ2∂tφk1 = LW [φk1] + h̄k in D4R

φk1(·, t) = 0 on ∂B4R for all t ∈ (0, T ),

φk1(·, 0) = 0 in B4R(0)

for k = 0, 1,−1. Let us consider the functions φ02 constructed in Lemma 7.3,
φ−1,2 constructed in Lemma 7.5, and φ12 constructed in Lemma 7.6, that solve
for k = 0, 1,−1

λ2∂tφk2 = LW [φk2] + hk − h̄k in D3R

φk2(·, 0) = 0 in B3R(0).

We define

φ :=
∑

k=0,1,−1

(φk1 + φk2) +
∑

k 	=0,1,−1

φk

which is a bounded solution of the equation

λ2φt = LW [φ] + h(y, t) in D3R

that defines a linear operator of h. Applying the estimates for the components
in Lemmas 7.1, 7.3, 7.5, and 7.6 we obtain

|φ(y, t)| � λ∗(t)ν log R(t)
1 + |y|a−2 ‖h⊥‖a,ν

+ λ∗(t)ν

1 + |y|a−2

∥
∥h1 − h̄1

∥
∥
a,ν + λ∗(t)νR4

1 + |y|2
∥
∥h̄1

∥
∥
ν,a
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+ λ∗(t)νR
5−a
2

1 + |y| min{1, R 5−a
2 |y|−2} ‖h0 − h̄0‖a,ν + λ∗(t)νR2

1 + |y| ‖h̄0‖a,ν
+ λν∗ min{log R, R4−a |y|−2} ‖h−1 − h̄−1‖a,ν + λ∗(t)ν log R‖h̄−1‖a,ν ,

in D3R . Finally, Lemma 7.2 yields that the same bound is valid for (1 +
|y|)|∇yφ| inD2R . The function φ

∣
∣
D2R

solves (7.1), it defines a linear operator
of h and satisfies the required estimates. ��

7.5 Modified theory for mode 0

Let us consider the problem

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ2ϕt = LWϕ + h(y, t) +
∑

j=1,2

c̃0 j Z0 jw
2
ρ in D2R

ϕ · W = 0 in D2R

ϕ = 0 on ∂B2R × (0, T )

ϕ(·, 0) = 0 in B2R(0),

(7.37)

in mode 0. The result here is the following.

Proposition 7.2 Let σ ∈ (0, 1), δ ∈ (0, 1), ν > 0. Assume ‖h‖ν,2+σ < ∞.
Then there is a solution φ, c̃0 j of (7.37), which is linear in h, such that

|ϕ(y, t)| + (1 + |y|)|∇yϕ(y, t)| ≤ Cλν∗‖h‖ν,2+σ

{
Rδ(3−σ)

(1+|y|)3 |y| ≤ 2Rδ

1
(1+|y|)σ 2Rδ ≤ |y| ≤ R,

and such that

c̃0 j [h] = −
∫

B
R2

h · Z0 j
∫

R2 w2
ρ |Z0 j |2 − G[h]

where G is a linear operator of h satisfying the estimate

|G[h]| ≤ Cλν∗R−δσ ′‖h‖ν,2+σ , (7.38)

with 0 < σ ′ < σ .

We are using the terminology mode 0 from §7, which means that ϕ has the
form

ϕ = Re(ϕ̃eiθ )E1 + Im(ϕ̃eiθ )E2
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where ϕ̃ is a complex valued function of ρ and t . The equation λ2ϕt = LWϕ+
h(y, t) (wit h also in mode 0) becomes

λ2∂t ϕ̃ = L0ϕ̃ + h̃, where L0[ϕ̃] := ∂2ρϕ̃ + 1

ρ
∂ρϕ̃ − cos(2w)

ρ2 ϕ̃,

and we have a similar definition for h̃. Note that the operator L0 at ρ = 0 and
ρ = ∞ is given by ∂2ρϕ̃ + 1

ρ
∂ρϕ̃ − 1

ρ2 ϕ̃. The last equation can be written as a

regular parabolic PDE by setting ϕ̂(y, t) = ϕ̃(ρ, t)e−iθ , y = ρeiθ ,

λ2∂t φ̂ = �y ϕ̂ + 16ϕ̂

(1 + |y|2)2 + ĥ(y, t).

Thus, instead of (7.37) we will construct a solution to (changing the notation
to ϕ and h)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

λ2ϕt = �yϕ + 16

(1 + |y|2)2ϕ + h(y, t) + c̃0ρw
3
ρ in D2R

ϕ = 0 on ∂B2R × (0, T )

ϕ(·, 0) = 0 in B2R(0),

(7.39)

with ϕ complex valued of the form ϕ(y) = eiθ ϕ̃(ρ, t) (and the same for h).
Here c̃0 is complex and related to c̃0 j in (7.37) by c̃0 = c̃01 + i c̃02.

We will construct ϕ solving (7.39) of the form

ϕ = ηφ + ψ

where η(y, t) = η1

( |y|
R1

)

and η1(r) = 1 for r ≤ 1, η1(r) = 0 for r ≥ 2. Here

R1 = Rδ. We find a solution to (7.39) if we get φ, ψ solving the system

{

λ2∂tφ = �φ + Bφ + Bψ + h(y, t) + c0ρw
3
ρ in D2R1

φ(·, 0) = 0 in B2R1(0),
(7.40)

⎧

⎪⎨

⎪⎩

λ2∂tψ = �ψ + (1 − η)Bψ + Aφ + (1 − η)h(y, t) in D2R

ψ = 0 on ∂B2R × (0, T )

ψ(·, 0) = 0 on B2R(0),

(7.41)

where

B = 16

(1 + |y|2)2 , Aφ = φ�η + 2∇φ∇η − φηt .
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Consider
⎧

⎪⎨

⎪⎩

λ2∂tψ = �ψ + (1 − η)Bψ + h(y, t) in D2R

ψ = 0 on ∂B2R × (0, T ),

ψ(y, 0) = 0 ∀y ∈ B2R(0),

(7.42)

with ψ and h of the form ψ = ψ̃(ρ, t)eiθ . Let

‖ψ‖(1)ν,σ = sup
D2R

{

λ−ν∗ (t)(1 + |y|)σ [ |ψ(y, t)| + (1 + |y|)|∇yψ(y, t)| ]}.

Lemma 7.9 Let σ ∈ (0, 1), ν > 0 and let ψ solve (7.42). If R1 is sufficiently
large, then

‖ψ‖(1)ν,σ ≤ C‖h‖ν,2+σ . (7.43)

If in (7.42) h is replaced by (1 − η)h we get the additional estimate

|ψ(y, t)| + R1|∇ψ(y, t)| ≤ Cλν∗
1

Rσ
1
, |y| ≤ 2R1.

Proof To prove this lemma, we first claim that for the equation

⎧

⎪⎨

⎪⎩

λ2∂tψ = �ψ + h(y, t) in D2R

ψ = 0 on ∂B2R × (0, T ),

ψ(y, 0) = 0 ∀y ∈ B2R(0),

with ψ and h of the form ψ = ψ̃(ρ, t)eiθ . we have

‖ψ‖(1)ν,σ ≤ C‖h‖ν,2+σ . (7.44)

This is obtained using a barrier for the real and imaginary parts of ψ̃ , which
satisfies

λ2∂t ψ̃ = ∂ρρψ̃ + 1

ρ
∂ρψ̃ − 1

ρ2 ψ̃ + h̃.

To find the estimate for the solution of (7.42) we need to estimate ‖(1 −
η)Bψ‖ν,2+σ . We have that

(1 − η)B |ψ | ≤ (1 − η)λν∗(1 + |y|)−4−σ‖ψ‖(1)ν,σ

≤ R1(0)
−2λν∗(1 + |y|)−2−σ‖ψ‖(1)ν,σ ,
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and therefore

‖(1 − η)Bψ‖ν,2+σ ≤ CR1(0)
−2‖ψ‖(1)ν,σ .

Then, if ψ satisfies (7.42), using (7.44) we get

‖ψ‖(1)ν,σ ≤ C‖(1 − η)Bψ + h‖ν,2+σ ≤ CR1(0)
−1‖ψ‖(1)ν,σ + C‖h‖ν,2+σ .

If R1(0) is large enough, we obtain (7.43). ��
Proof of Proposition 7.2 We use Lemma 7.9 to find a solution ψ[φ] of (7.42)
with h replaced by Aφ, and a solution ψ[h] of (7.42) with h replaced by
(1 − η)h, so that ψ[φ] + ψ[h] is the solution of (7.41).

Let σ1 ∈ (0, 1). We also get the estimate

‖ψ[φ]‖(1)ν,σ1
≤ C‖Aφ‖ν,2+σ1 . (7.45)

We take R1 = Rδ and construct a solution of the system (7.40), (7.41). For
this it suffices to find φ such that

{

λ2∂tφ = �φ + Bφ + Bψ[φ] + Bψ[h] + h(y, t) + c0ρw
3
ρ in D2R1

φ(·, 0) = 0 in B2R1(0).

(7.46)

Let T denote the linear operator given by Lemma 7.3, Applied in D2R1 . Then
to solve (7.46) we consider the fixed point problem

φ = T [Bψ[φ] + Bψ[h] + h].

Let σ ∈ (0, 1). By Lemma 7.3,

‖T [g]‖∗,ν,2+σ ≤ ‖g‖ν,2+σ , (7.47)

where

‖φ‖∗,ν,σ = sup
λ−ν∗ (1 + |y|)3

R3−σ
1

[|φ(y, t)| + (1 + |y|)|∇yφ(y, t)|] .

We claim that if σ1 < σ then

‖Aφ‖ν,2+σ1 ≤ CR1(0)
σ1−σ‖φ‖∗,ν,σ . (7.48)
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Indeed, we have

|φ�η| ≤ 1

R2
1

λν∗
R3−σ
1

(1 + |y|)3 |�η1|‖φ‖∗,ν,σ ≤ Cλν∗
Rσ1−σ
1

(1 + |y|)2+σ1
‖φ‖∗,ν,σ

≤ CR1(0)
σ1−σ λν∗

1

(1 + |y|)2+σ1
‖φ‖∗,ν,σ .

Similarly

|∇φ∇η| ≤ 1

R1
λν∗

R3−σ
1

(1 + |y|)4 |∇η1|‖φ‖∗,ν,σ ≤ Cλν∗
Rσ1−σ
1

(1 + |y|)2+σ1
‖φ‖∗,ν,σ .

Similar estimates for the remaining terms in A prove (7.48).
From (7.45) and (7.48) we find

‖ψ[φ]‖(1)ν,σ1
≤ CR1(0)

σ1−σ‖φ‖∗,ν,σ . (7.49)

Now we claim that

‖Bψ‖ν,2+σ ≤ C‖ψ‖(1)ν,σ1
. (7.50)

Indeed,

B |ψ | ≤ C
λν∗

(1 + |y|)4+σ1
‖ψ‖(1)ν,σ1

≤ C
λν∗

(1 + |y|)2+σ
‖ψ‖(1)ν,σ1

so (7.50) follows. Combining (7.50) and (7.49) we get

‖Bψ[φ‖ν,2+σ ≤ C‖ψ[φ]‖(1)ν,σ1
≤ CR1(0)

σ1−σ‖φ‖∗,ν,σ .

From the above inequality and (7.47) we then get

‖T [Bψ[φ]]‖∗,ν,σ ≤ CR1(0)
σ1−σ‖φ‖∗,ν,σ ,

which shows that the operator φ �→ T [Bψ[φ] + Bψ[h] + h] is a contraction
if R1(0) is sufficiently large, and we find a unique fixed point, which satisfies
the estimate

‖φ‖∗,ν,σ ≤ C‖T [Bψ[h] + h]‖∗,ν,σ .

Next we estimate ‖T [Bψ[h] + h]‖∗,ν,σ . We have by (7.47)

‖T [Bψ[h] + h]‖∗,ν,σ ≤ C‖Bψ[h] + h‖ν,2+σ

≤ C‖ψ[h]‖(1)ν,σ + ‖h‖ν,2+σ ≤ C‖h‖ν,2+σ ,
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and hence

‖φ‖∗,ν,σ ≤ C‖h‖ν,2+σ . (7.51)

Similar to (7.49) we have

‖ψ[φ]‖(1)ν,σ ≤ C‖φ‖∗,ν,σ ≤ C‖h‖ν,2+σ

and

‖ψ[h]‖(1)ν,σ ≤ C‖h‖ν,2+σ .

Recalling that ϕ = ηφ + ψ and R1 = Rδ , we get

|ϕ(y, t)| + (1 + |y|)|∇yϕ(y, t)| ≤ Cλν∗‖h‖ν,2+σ

{
Rδ(3−σ)

(1+|y|)3 |y| ≤ 2Rδ

1
(1+|y|)σ 2Rδ ≤ |y| ≤ R.

Finally, thanks to Lemma 7.3, we have that

c0 j [h] = − 1
∫

B1
|Z0 j |2

[
∫

B2R1

hρwρ +
∫

B2R1

(Bψ[φ] + Bψ[h])ρwρ

]

The last term is a linear operator of h, which we estimate next. A similar
computation as in (7.48) shows that

‖Aφ‖ν+δ(σ−σ1),2+σ1 ≤ C‖φ‖∗,ν,σ .

This implies

‖ψ[φ]‖ν+δ(σ−σ1),σ1 ≤ C‖φ‖∗,ν,σ

and therefore
∣
∣
∣
∣
∣

∫

B2R1

Bψ[φ] · Z0 j

∣
∣
∣
∣
∣
≤ Cλν∗Rσ1−σ‖φ‖∗,ν,σ

and using (7.51)

∣
∣
∣
∣
∣

∫

B2R1

Bψ[φ] · Z0 j

∣
∣
∣
∣
∣
Cλν∗Rσ1−σ‖h‖ν,2+σ .
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We have for |y| ≤ 2Rδ

|ψ[h](y, t)| + (1 + |y|)|∇yψ[h](y, t)| ≤ CR−σ
1 ‖h‖ν,2+σ .

Then for |y| ≤ 2Rδ we have

|B |ψ[h]| ≤ Cλν∗(1 + |y|)−4R−σ
1 ‖h‖ν,2+σ ,

and hence
∣
∣
∣
∣
∣

∫

B2R1

Bψ[h]ρwρ

∣
∣
∣
∣
∣
≤ Cλν∗R−σ

1 ‖h‖ν,2+σ .

We would like to have the orthogonality condition defined as an integral in
R
2. Note that

∣
∣
∣
∣
∣

∫

(B2Rδ )
c
hρwρ

∣
∣
∣
∣
∣
≤ C‖h‖ν,2+σ λ

ν∗
∫

(B2Rδ )
c

1

(1 + |y|)3+σ
dy

≤ C‖h‖ν,2+σ λ
ν∗R−δ(1+σ).

Then, going back to the original notation, we get

c0 j [h] = −
∫

R2 h · Z0 j
∫

R2 w2
ρ |Z0 j |2 − G[h]

where G satisfies (7.38). ��

7.6 Lipschitz bounds with respect to λ

Let us consider the linear operator we constructed in Proposition 7.1 as a
solution φ[h] = Tλ,1[h] of problem (7.1),

λ2∂tφ = LW [φ] + h(y, t) in D2R

φ(·, 0) = 0 in B2R(0)

φ · W = 0 in D2R

where D2R = {(y, t) / t ∈ (0, T ), y ∈ B2R(t)(0)}, and we assume h · W = 0
inD2R . The purpose in this section is find estimates for directional derivatives
of the operator Tλ,1[h]with respect to the parameter function λ. Examining the
construction of Tλ,1[h] as the superposition of the unique solutions of different
problems, it is not hard to see that the directional derivative
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φλ := (∂λTλ,1)[h][λ1] = d

ds
Tλ+sλ1,1[h]∣∣s=0

satisfies the equation

λ2∂tφλ = LW [φλ] − 2
λ1

λ
(LW [φ] + h(y, t)) in D2R

φλ(·, 0) = 0 in B2R(0)

with φ = Tλ,1[h]. We will find estimates for this quantity inherited from those
we have already established for φ. We assume that for some positive numbers
a, b, c independent of T we have that

aλ∗(t) ≤ λ(t) ≤ bλ∗(t), |λ1(t)| ≤ cλ∗(t) for all t ∈ (0, T ).

The following estimate holds.

Proposition 7.3 The function φλ is well defined and satisfies the estimate

(1 + |y|) ∣∣∇yφλ(y, t)
∣
∣+ |φλ(y, t)|

� λν∗
R1+ 5−a

2 log R

1 + |y| min
{ R1+ 5−a

2

|y|2 , 1
}

‖h‖a,ν
∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

in D2R.

Proof of Proposition 7.3 We recall that φ[h] = Tλ,1[h]was constructed mode
by mode. According to the decomposition (7.2), (7.3), (7.4), (7.5), we can
write

φ = φ0 + φ1 + φ−1 + φ⊥, h = h0 + h1 + h−1 + h⊥,

where we can assume for k = 0, 1, j = 1, 2,

∫

B2R
hk(y, t) · Zkj (y)dy = 0.

We will give the estimates for φλ in each mode separately, writing

φλ = φ0λ + φ1λ + φ−1λ + φ⊥
λ .

We will estimate each of the terms φ0λ, φ1λ, φ−1λ, φ⊥
λ separately. ��

First we give some estimates for the equation in entire space with some
suitable right hand side.
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Lemma 7.10 Let φ be the solution of

∂τφ = �yφ + g(y, τ ) in R2 × (0,∞)

φ(·, 0) = 0 in R2

given by Duhamel’s formula. The following holds: let ν ∈ (0, 1), a ∈ (2, 3).
Assume that g(y, τ ) = divyG(y, τ ) where |G(y, τ )| ≤ 1

(1+τν)(1+|y|a−1)
. Then

|φ(y, τ )| ≤ C(1 + log+ τ))

(1 + τ ν)(1 + |y|a−2)

where log+ τ = max(0, log τ). If instead, g satisfies |g(y, τ )| ≤ 1
(1+τν)(1+|y|a) ,

then

|φ(y, τ )| ≤ C(1 + log+ τ))

1 + τ ν
.

Proof The proof of the first estimate directly follows from the representation
formula

φ(y, τ ) = 1

4π

∫ τ

0

1

τ − s

∫

R2
e− |y−z|2

4(τ−s) divzG(z, s) dz ds

= C
∫ τ

0

1

τ − s

∫

R2
e− |y−z|2

4(τ−s)
y − z

τ − s
· G(z, s) dz ds

The second estimate is treated similarly. ��

7.7 Mode 0: estimate of φ0λ

We claim that

(1 + |y|)|∇φ0λ(y, t)| + |φ0λ(y, t)| (7.52)

� λν∗
∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

‖h0‖a,ν R
1+ 5−a

2 log R

|y| + 1

{

1 if |y| < R
1
2

R
|y|2 if |y| > R

1
2 .

Proof We refer to the notation in the proof of Lemma 7.3 on the construction
of φ0. We recall that φ0 = LW [�0] where �0 is the unique solution of the
problem (7.19),

λ2�t = LW [�] + H0(y, t) in D4R,

�(y, 0) = 0 in B4R(0)
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�(y, τ ) = 0 for all t ∈ (0, T ), y ∈ ∂B4R(0)(0).

Then φ0λ = LW [�0λ] where �0λ solves

λ2∂t�0λ = LW [�0λ] − 2
λ1

λ
(φ0 + H0(y, t)) in D4R, (7.53)

�0λ(y, 0) = 0 in B4R(0)

�0λ(y, τ ) = 0 for all t ∈ (0, T ), y ∈ ∂B4R(0)(0).

We recall that we obtained

|φ0(y, t)| � ‖h0‖a,νR5−aλ∗(t)ν(1 + |y|)−3,

and a posteriori the better estimate

|φ0(y, t)| � ‖h0‖a,ν R
5−a
2 λν∗

1 + |y|

⎧

⎨

⎩

1 if |y| ≤ R
5−a
4 ,

R
5−a
2

|y|2 if |y| > R
5−a
4 .

The use of an explicit barrier in (7.53) then yields

|�0λ| � λν∗‖h0‖a,ν
∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

R
5−a
2 +2 log R

1 + |y|

and then, arguing similarly as in the construction of φ0 we obtain the estimate
for φ0λ = LW [�0λ],

|φ0λ(y, t)| � λν∗‖h0‖a,ν
∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

R
5−a
2 +2 log R

1 + |y|3 . (7.54)

Next we want to improve this estimate, as was done in Lemma 7.3. We have
that φ0λ satisfies the equation

λ2∂tφ0λ = LW [φ0λ] + g(y, t)

where

g = −2
λ1

λ
(LW [φ0] + h0(y, t)). (7.55)
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We have that g(y, t) = divy G0(y, t) + G1(y, t) in D4R , where

(1 + |y|)|G1(y, t)| + (1 + |y|)α[G0]B"(y,τ )∩D4R + |G0(y, t)|

�
∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

‖h0‖a,ν R
5−a
2 λν∗

1 + |y|2

⎧

⎨

⎩

1 if |y| ≤ R
5−a
4 ,

R
5−a
2

|y|2 if |y| > R
5−a
4 .

(7.56)

We write

φ0λ = φb + φc

where φb is given by the Duhamel formula

φb(y, t) =
∫ τ

0

1

4π(τ − s)
ds
∫

R2
e− |y−z|2

4(τ−s) g(z, tλ(s)) dz

with g given by (7.55) and τ by (7.14), and let φc solve

⎧

⎪⎨

⎪⎩

λ2∂tφc = LW [φc] + |∇W |2φb + 2(∇W · ∇φb)W in D4R

φc(·, t) = −φb on ∂B4R for all t ∈ (0, T ),

φc(·, 0) = 0 in B4R(0).

Using Lemma 7.10 we find that

|φb(y, t)| + (1 + |y|)|∇φb(y, t)| �
∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

‖h0‖a,ν λν∗R
5−a
2 log R (7.57)

for |y| ≤ 5R. The above estimate implies that

|∇W |2|φb| + 2 |(∇W · ∇φb)W | �
∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

‖h0‖a,ν λν∗R
5−a
2 log R(1 + |y|)−3

(7.58)
Let ϕc be the complex valued function defined by

φc(y, t) = Re (ϕc(ρ, t)) E1 + Im (ϕc(ρ, t)) E2

so that using the notation in (7.8), ϕc satisfies the equation

{

λ2∂tϕc = L0[ϕc] + g̃c(ρ, t) in D̃4R,

ϕc(0, ρ) = 0 in (0, 4R),
(7.59)
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where by (7.58) g̃c satisfies

|g̃c| �
∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

‖h0‖a,ν λν∗R
5−a
2 log R(1 + |y|)−3.

We can find an explicit supersolution for the real and imaginary parts of equa-
tion (7.59) in D̃R1/2 of the form

ϕ̄c = d(t)Z0(ρ)

∫ 2R1/2

ρ

1

Z0(r)2r

∫ r

0
Z0(s)(1 + s)−3s dsdr

where d(t) =
∥
∥
∥
λ1
λ

∥
∥
∥∞ ‖h0‖a,ν λν∗R

5−a
2 log R and Z0 is defined in (7.10). We

note that at ρ = R1/2 the value of φc satisfies, by (7.54) and (7.57)

|φc(R1/2, t)| ≤ |φ0λ(R1/2, t)| + |φb(R1/2, t)|
� λν∗‖h0‖a,ν

∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

R
6−a
2 log R

and on the other hand

|φ̄c(R1/2, t)| ≥ c

∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

‖h0‖a,ν λν∗R
5−a
2 log RR1/2

for some c > 0. This yields

|φc(y, t)| �
∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

‖h0‖a,ν λν∗R
5−a
2 +1 log R(1 + |y|)−1 |y| < R1/2.

and combining with (7.57) we get

|φ0λ(y, t)| �
∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

‖h0‖a,ν λν∗R
5−a
2 +1 log R(1 + |y|)−1 |y| < R1/2.

Using Schauder estimates together with (7.56) we obtain (7.52). ��

7.8 Mode 1: estimate of φ1λ

From a similar argument we obtain the following estimate.

(1 + |y|)|∇yφ1λ(y, t)| + |φ1λ(y, t)|
≤ Cλ∗(t)ν(1 + |y|)2−a‖h‖a,ν

∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

in DR .

123



Singularity formation in the 2D harmonic map flow 423

7.9 Estimate of φ⊥
λ and φ−1λ

We claim that for any σ ∈ (0, 1) we have

(1 + |y|)|∇φ⊥
λ (y, t)| + |φ⊥

λ (y, t)|
� λ∗(t)νRa−2 log R(1 + |y|)2−a‖h⊥‖a,ν

∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

(1 + |y|)|∇φ−1λ(y, t)| + |φ⊥−1λ(y, t)|
� λ∗(t)νRa−2+σ (1 + |y|)2−a‖h−1‖a,ν

∥
∥
∥
∥

λ1

λ

∥
∥
∥
∥∞

.

8 The λ-ω system

In this section we prove Proposition 6.5, on approximate solvability of the
equation

B0[p](t) = a(t), t ∈ [0, T ),

where B0 is the operator defined in (5.6) and a : [0, T ] → C is a given
continuous function.Wewill also deriveLipschitz estimates thatwill be crucial
in solving for the final adjustment of parameters p, ξ by a fixed point argument
in the next section.

Consistently with the discussion in Sect. 5, we assume that 1
C1

≤ |a(T )| ≤
C1 for some C1 independent of T . We will construct an operator P that to a
function a in a suitable class assigns p = P[a] such that

B0[p](t) = a(t) + R0[a](t), in [0, T ). (8.1)

so thatR0[a](t) is a suitably small.
We construct the function p in Proposition 6.5 by linearization, and the first

approximation is a function pκ that deals with the case of constant a.
First we introduce some notation. We work with κ ∈ C and let p0,κ be the

function

p0,κ (t) = κ| log T |
∫ T

t

1

| log(T − s)|2 ds, t ≤ T, (8.2)

so that

ṗ0,κ (t) = − κ| log T |
| log(T − t)|2 . (8.3)
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We will always assume that for a large, fixed constant C1 we have

1

C1
≤ |κ| ≤ C1, (8.4)

so that we also have C̃−1λ∗ ≤ |p0,κ | ≤ C̃λ∗. The first term in the function p
constructed in Proposition 6.5 is a function close to p0,κ that actually more or
less solves (8.1) in the case that a is constant.

Lemma 8.1 Given κ ∈ C satisfying (8.4), there is a function pκ : [−T, T ] →
C, a constant c(κ) ∈ C, and R1(κ)(t) such that

B0[pκ ](t) = c(κ) + R1(κ)(t) (8.5)

for t ∈ [0, T ], where R1(κ)(t) satisfies

|R1(κ)(t)| ≤ Cλα0∗ (8.6)

for some α0 > 0 .

We have additional estimates for pκ and the remainder R1(κ) constructed
above. The function pκ can be decomposed as

pκ = p0,κ + p1,κ .

Here p0,κ is defined in (8.2). The function p1,κ satisfies: given k ∈ (1, 2) there
is C such that

‖p1,κ‖∗,k+1 ≤ C | log T |k−1 log2(| log T |) (8.7)

and
‖p1,κ1 − p1,κ2‖∗,k+1 ≤ C | log T |k−1 log2(| log T |)|κ1 − κ2| (8.8)

for κ1, κ2 satisfying (8.4), where the norm ‖ ‖∗,k is defined for g ∈
C([−T, T ];C) ∩ C1([−T, T );C) with

g(T ) = 0

and k > 0 by

‖g‖∗,k = sup
t∈[−T,T ]

| log(T − t)|k |ġ(t)|, (8.9)

(here ġ = d
dt g).

The remainder, satisfies together with (8.6) the estimate for the derivative
in t :
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∣
∣
∣
∣

d

dt
R1(κ)(t)

∣
∣
∣
∣
≤ Cλα0−1∗ (8.10)

and Lipschitz estimates

|R1(κ1)(t) − R1(κ2)(t)| ≤ Cλα0∗ |κ1 − κ2| (8.11)
∣
∣
∣
∣

d

dt
R1(κ1)(t) − d

dt
R1(κ2)(t)

∣
∣
∣
∣
≤ Cλα0−1∗ |κ1 − κ2|, (8.12)

for κ1, κ2 satisfying (8.4). The proof of Lemma 8.1 and estimates (8.7), (8.8),
(8.10), (8.11), and (8.12) are in Sect. 8.3.

For the proof of Proposition 6.5 andLemma 8.1 it will be useful to isolate the
main part of the operator B0, defined in (5.6). Given the asymptotic expansion
of �l in (5.5) we write

B0[p] = I[p] + B̃[p],

where

I[p] :=
∫ t−λ∗(t)2

−T

ṗ(s)

t − s
ds, B̃[p] := B̃1[p] + B̃2[p] − Re( ṗ(t)),

(8.13)

where

B̃1[p](t) = eiω(t)

[
∫ t−λ∗(t)2

−T

Re( ṗ(s)e−iω(t))

t − s

(

�1

(
λ(t)2

t − s

)

− 1

)

ds

+
∫ t

t−λ∗(t)2
Re( ṗ(s)e−iω(t))

t − s
�1

(
λ(t)2

t − s

)

ds

]

B̃2[p](t) = ieiω(t)

[
∫ t−λ∗(t)2

−T

Im( ṗ(s)e−iω(t))

t − s

(

�2

(
λ(t)2

t − s

)

− 1

)

ds

+
∫ t

t−λ∗(t)2
Im( ṗ(s)e−iω(t))

t − s
�2

(
λ(t)2

t − s

)

ds

]

and we use the notation p(t) = λ(t)eiω(t). To prove Proposition 6.5, we take
p of the form

p = pκ + p2,
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where pκ is the function constructed in Lemma 8.1, for some κ ∈ C to be
determined. The function p2(t) will have the property p2(t) = o(pκ(t)), as
t → T . We would like that

I[pκ ](t) + I[p2](t) + B̃[pκ + p2](t) ≈ a(t). (8.14)

Given α > 0, let us decompose I[p] = Sα[ ṗ] + Rα[ ṗ] where Sα , Rα are
defined as in (6.20), (6.21), that is The idea is to replace I[p2] by Sα[ ṗ2] in
(8.14) to make this equation more manageable, that is, we consider Sα[ ṗ2] +
B̃[pκ + p2] − B̃[pκ ] +R1(κ) = a(t), t ∈ [0, T ], where we have used (8.5).
We introduce one more modification, so as to have a more convenient problem
to treat. Let us split Sα[g] = L0[g] + L1[g] where

L0[g] = (1 − α)| log(T − t)|g(t)
L1[g] = (4 log(| log(T − t)|) − 2 log(κ) − 2 log(| log(T )|))g(t)

+
∫ t−(T−t)1+α

−T

g(s)

t − s
ds.

We actually introduce one more modification to (8.14). For this, it is con-
venient that a is defined in [−T, T ]. So, given a function a : [0, T ] → C

satisfying the hypotheses of Proposition 6.5, we extend a continuously by
constant for t ≤ 0.

Let η be a smooth cut-off function such that η(s) = 1 for s ≥ 0, η(s) =
0 for s ≤ −1

4 . The equation that we are going to solve is the following one:

L0[ ṗ2] + η

(
t

T

)

L1[ ṗ2] + B̃[pκ + p2] − B̃[pκ ]
= a(t) − R1(κ) + c in [−T, T ] (8.15)

for some constant c. Later on we shall show that it is possible to adjust κ so
that c = 0.

8.1 Construction of a solution to (8.15)

Since in (8.15) the terms a(t) and R1(κ) have similar behavior, we will con-
sider just

L0[ ṗ2] + η

(
t

T

)

L1[ ṗ2] + B̃[pκ + p2] − B̃[pκ ] = a(t) + c in [−T, T ]
(8.16)

Consider the norm ‖ ‖μ,l defined in (6.15).
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Lemma 8.2 Letμ, α ∈ (0, 1
2 ) and l ∈ R. Assume that 1

C1
≤ |a(T )| ≤ C1 and

Tμ| log T |1+σ−l‖a(·) − a(T )‖μ,l−1 ≤ C1, (8.17)

for some σ > 0 fixed. Then if T > 0 is small there is a solution p2 to (8.16)
for some c ∈ C. Moreover this solution satisfies

‖ ṗ2‖μ,l ≤ C‖a(·) − a(T )‖μ,l−1. (8.18)

For the proof of this lemma we consider the linear equation

L0[g] + η

(
t

T

)

L1[g] = f + c in [−T, T ]. (8.19)

We will assume that f (T ) = 0, and hence c = L1[g](T ) because all other
terms in the equation vanish at T . Thanks to the cut-off function η( t

T ), we need
only to consider the values of L1[g](t) for t ≥ −T

4 . Then in the definition of
L1[g], t − (T − t)1+α ≥ t − 1

2 (T − t) ≥ −T of T > 0 is small.
For the right hand side of (8.19) we take the space C([−T, T ];C) with

f (T ) = 0 and the norm ‖ f ‖μ,l−1.
The next lemma asserts the solvability of (8.19) in the weighted spaces

introduced above.

Lemma 8.3 Let α ∈ (0, 1
2 ) and T > 0 be sufficiently small. Assume

‖ f ‖μ,l−1 < ∞ where μ ∈ (0, 1), l ∈ R. Then for T > 0 small there is
a solution S[ f ] of (8.19) that defines a linear operator of f and such that

‖S[ f ]‖μ,l ≤ C‖ f ‖μ,l−1. (8.20)

Proof We consider (8.19) as a fixed point problem of the form

g = L−1
0

[

f − η

(
t

T

)

(L1[g](t) − L1[g](T ))

]

,

where L−1
0 is defined the formula

L−1
0 [ f ](t) = 1

(1 − α)

f (t)

| log(T − t)| .

It is clear that

‖L−1
0 [ f ]‖μ,l ≤ 1

1 − α
‖ f ‖μ,l−1. (8.21)
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and a calculation shows that

‖L1[g](·) − L1[g](T )‖μ,l−1 ≤
(

α + C log | log T |
| log T |

)

‖g‖μ,l . (8.22)

To estimate the integral term we decompose

∫ t−(T−t)1+α

−T

g(s)

t − s
ds −

∫ T

−T

g(s)

T − s
ds = I1 + I2 + I3

where

I1 =
∫ t−(T−t)1+α

t−(T−t)/2

g(s)

t − s
ds, I2 =

∫ t−(T−t)/2

−T
g(s)

(
1

t − s
− 1

T − s

)

ds,

I3 =
∫ T

t−(T−t)/2

g(s)

T − s
ds.

Then

|I1| ≤ ‖g‖μ,l

∫ t−(T−t)1+α

t−(T−t)/2

(T − s)μ

| log(T − s)|l(t − s)
ds

≤ ‖g‖μ,l
(T − t)μ

| log(T − t)|l (α| log(T − t)| + C).

and similarly

|I2| ≤ C‖g‖μ,l
(T − t)μ

| log(T − t)|l , |I3| ≤ C‖g‖μ,l
(T − t)μ

| log(T − t)|l .

These estimates imply (8.22). Then this inequality combinedwith (8.21) shows
that

∥
∥
∥
∥
L−1
0

[

η

(
t

T

)

(L1[g](t) − L1[g](T ))

]∥
∥
∥
∥
μ,l

≤ 1

1 − α

(

α + C log | log T |
| log T |

)

‖g‖μ,l .

Then for α ∈ (0, 1
2 ) and T > 0 sufficiently small this operator is a contraction

and we obtain the conclusion of the lemma. ��
Proof of Lemma 8.2 Let S denote the linear operator constructed inLemma8.3.
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Then to find a solution to (8.16) it is sufficient to find a solution p2 of the
fixed point problem

p2 = A[p2] (8.23)

where p̃ = A[p2] is defined by p̃(T ) = 0 and

d p̃

dt
= S

[

−(B̃[pκ + p2] − B̃[pκ ]
)+ a(t) − a(T )

]

.

Let M1 = C0‖a(·) − a(T )‖μ,l−1, where C0 is a sufficiently large fixed
constant. We claim that if T > 0 is sufficiently small then A is a contraction
in ball BM1 of the space of complex valued functions p2 ∈ C1([−T, T ]) with
p2(T ) = 0 and with the norm ‖ ṗ2‖μ,l . Note that with this norm we have

|p2(t)| ≤ C‖ ṗ2‖μ,l
(T − t)μ+1

| log(T − t)|l .

In particular, thanks to (8.17), if ‖ ṗ2‖μ,l ≤ M1, then

∣
∣
∣
∣

p2
λ∗

∣
∣
∣
∣
+
∣
∣
∣
∣

ṗ2
λ̇∗

∣
∣
∣
∣
� 1

for T > 0 small.
Let us verify thatAmaps BM1 into itself. Let p2 ∈ BM1 . By (8.20) we have

‖A[p2]‖μ,l ≤ C
(

‖B̃[pκ + p2] − B̃[pκ ]‖μ,l−1 + ‖a(·) − a(T )‖μ,l−1

)

.

(8.24)

After some computations, we can check the validity of the following esti-
mate: for p1, p2 ∈ BM1 we have

‖B̃[pκ + p1] − B̃[pκ + p2]‖μ,l−1 ≤ C
1

| log T |‖ ṗ1 − ṗ2‖μ,l . (8.25)

Assuming for now this estimate let us continue with proving that A maps
BM1 into itself. Let p1 ∈ BM1 . By (8.24) and (8.25)

‖A[p2]‖μ,l ≤ C
M1

| log T | + C‖a(·) − a(T )‖μ,l−1 ≤ M1,

if T > 0 is small. Also thanks to (8.20) and (8.25)we see thatA is a contraction
in BM1 . This finishes the proof of the lemma. ��
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We also have a Lipschitz property of the solution constructed in Lemma 8.2.

Lemma 8.4 Letμ, α ∈ (0, 1
2 ) and l ∈ R. Assume that for j = 1, 2, a j satisfies

1
C1

≤ |a j (T )| ≤ C1 and (8.17), and let κ1, κ2 satisfy (8.4). Then for T > 0 is
small the solution p2[a, κ] to (8.16) constructed in Lemma 8.2 satisfies

‖ ṗ2[a1, κ1] − ṗ2[a2, κ1]‖μ,l ≤ C‖a1(·) − a1(T ) − (a2(·) − a2(T ))‖μ,l−1

‖ ṗ2[a1, κ1] − ṗ2[a1, κ2]‖μ,l ≤ C‖a1(·) − a1(T )‖μ,l−1|κ1 − κ2|. (8.26)

8.2 Hölder estimate of the solution

We will show in this section that the solution constructed in Lemma 8.2 has
some Hölder regularity inherited from the one of a.

We then have the following result, where the Hölder semi norm [ ]γ,m,l is
defined in (6.16).

Lemma 8.5 Let α ∈ (0, 1
2 ), μ, γ ∈ (0, 1), m ≤ μ − γ , l ∈ R. Assume that

1
C1

≤ |a(T )| ≤ C1 and

Tμ| log T |1+σ−l‖a(·) − a(T )‖μ,l−1 + [a]γ,m,l−1 ≤ C1,

for some σ > 0. Then the solution p2 constructed in Lemma 8.2 satisfies

[ ṗ2]γ,m,l � Tμ

| log T |
(

T−γ−m + log | log T |) ‖a(·) − a(T )‖μ,l−1

+ [a(·) − a(T )]γ,m,l−1.

The proof follows from the fixed point representation (8.23) and estimates
in the weighted Hölder norms for the operators involved there.

We will also need a Lipschitz estimate of p2 as a function of κ and a(t) in
the semi norm [ ]γ,m,l .

Lemma 8.6 Let α ∈ (0, 1
2 ), μ, γ ∈ (0, 1), m ≤ μ − γ , l ∈ R. Assume that

for j = 1, 2, we have 1
C1

≤ |a j (T )| ≤ C1 and

Tμ| log T |1+σ−l‖a j (·) − a j (T )‖μ,l−1 + [a j ]γ,m,l−1 ≤ C1,

for some σ > 0, and that κ1, κ2 satisfy (8.4). Then the solution p2 = p2[a, κ]
constructed in Lemma 8.2 satisfies
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[ ṗ2[a1, κ1] − ṗ2[a2, κ1]]γ,m,l

� [a1 − a2]γ,m,l−1

+ Tμ−m−γ log | log T |
| log T | ‖a1(·) − a1(T ) − (a2(·) − a2(T ))‖μ,l−1,

and

[ ṗ2[a1, κ1] − ṗ2[a1, κ2]]γ,m,l ≤ C
Tμ−γ−m

| log T | ‖a1(·) − a1(T )‖μ,l−1|κ1 − κ2|.

Proof of Proposition 6.5 By Lemma 8.2 there is p2 satisfying (8.15), where
we have used this lemma with a replaced by a−R1(κ), withR1(κ) being the
remainder appearing in (8.5).

Note that by (8.6) and using the assumption � < α0, we have

‖R1(κ)‖�,l−1 ≤ T α0−�| log T |l−1. (8.27)

Therefore from (8.18) we find

‖ ṗ2‖�,l ≤ C
(

T α0−�| log T |l−1 + ‖a(·) − a(T )‖�,l−1).

In equation (8.15) the constant c depends on κ andwe claim that it is possible
to choose κ satisfying (8.4) such that c = 0. Evaluating (8.15) at t = T we
find

∫ T

−T

ṗκ(s) + ṗ2(s)

T − s
ds = a(T ) + c.

We consider then the equation c = 0 with κ as an un known, that is, we
look for κ satisfying

∫ T

−T

ṗκ(s) + ṗ2(s)

T − s
ds = a(T ). (8.28)

Using (8.2), (8.8) and (8.26) we see that

∫ T

−T

ṗκ(s) + ṗ2(s)

T − s
ds = κ + f̃ (κ)

where f̃ satisfies

| f̃ (κ1) − f̃ (κ2)| ≤ C

| log T | |κ1 − κ2|
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for κ1, κ2 satisfying (8.4). It follows that there exists a unique κ so that (8.28)
holds. Moreover

κ = a(T )

(

1 + O

(
1

| log T |
))

as T → 0.
Now let us prove the estimate (6.19). For this we note that what we left out

in (8.15) is Rα[ ṗ2]. In other words, the remainder R0[a] is just Rα[ ṗ2]. By
Lemma 8.5 we have

[ ṗ2]γ,m,l ≤ C
T�

| log T |
(

T−γ−m + log | log T |) ‖a(·) − a(T )‖�,l−1

+ C
T�

| log T |
(

T−γ−m + log | log T |) ‖R1(κ)‖�,l−1

+ C[a(·) − a(T )]γ,m,l−1 + C[R1(κ)]γ,m,l−1.

Using (8.10) we see that for s ≤ t in [0, T ] such that t − s ≤ 1
10 (T − t) we

have

|R1(t) − R1(s)|
(t − s)γ

≤ λ∗(t)α0−γ

and since m ≤ � − γ , � < α0 by hypothesis we get

[R1(κ)]γ,m,l−1 ≤ Cλ∗(0)σ

for some σ > 0. From this and (8.27) we obtain

[ ṗ2]γ,m,l � T σ + C
T�

| log T |
(

T−γ−m + log | log T |) ‖a(·) − a(T )‖�,l−1

+ [a]γ,m,l−1,

for some σ > 0. Then

|Rα[ ṗ2]| ≤
∫ t−λ∗(t)2

t−(T−t)1+α

| ṗ2(t) − ṗ2(s)|
t − s

ds

≤ C
(

T σ + C
T�

| log T |
(

T−γ−m + log | log T |) ‖a(·) − a(T )‖�,l−1

+ [a]γ,m,l−1

)

· (T − t)m+(1+α)γ

| log(T − t)|l .

��
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8.3 Proof of Lemma 8.1

To do this we look for pκ of the form

pκ = p0,κ + p1,

where p0,κ is defined in (8.2), and we would like

I[p0,κ ] + I[p1] + B̃[p0,κ + p1](t) − c(κ) = O((T − t)α0) for t ∈ [0, T ].
(8.29)

The idea is to replace in (8.29) the operator I[p1] by Sα0[ ṗ1] defined in (6.20)
and try to solve the corresponding equation. We claim that if α0 > 0 is small,
then we can find p1 such that

I[p0,κ ] + Sα0[ ṗ1] + B̃[p0,κ + p1](t) − c(κ) = 0 in [0, T ], (8.30)

for some c(κ). This means that instead of (8.29) we have obtained

B0[p0,,κ + p1] − c(κ) = Rα0[ ṗ1] in [0, T ].

The second step is to prove that there is κ such that c(κ) = A. The final
step is to show that

|Rα0[ ṗ1]| ≤ C(T − t)α0,

and this implies (8.29).

Construction of a solution to (8.30)

To obtain a function p satisfying (8.30) we formulate a fixed point problem as
follows.

We decompose

Sα0[g] = L̃0[g] + L̃1[g]

where

L̃0[g](t) = (1 − α0)| log(T − t)|g(t) +
∫ t

−T

g(s)

T − s
ds
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and L̃1 contains all other terms, that is,

L̃1[g](t) =
∫ t−(T−t)1+α0

t−(T−t)

g(s)

t − s
ds −

∫ t

t−(T−t)

g

T − s
ds

+
∫ t−(T−t)

−T
g(s)

(
1

t − s
− 1

T − s

)

ds

+ (4 log(| log(T − t)|) − 2 log(| log(T )|))g(t).

Given a continuous function f in [−T, T ] with a certain modulus of conti-
nuity at T , we would like to find g such that

Sα0[ġ] = f in [−T, T ].

We will not quite obtain this, but we will solve a modified version of this
equation. Let η be a smooth cut-off function such that

η(s) = 1 for s ≥ 0, η(s) = 0 for s ≤ −1

4
. (8.31)

We will be able to find a function g such that

L̃0[ġ] + η

(
t

T

)

L̃1[ġ] = f + c in [−T, T ]. (8.32)

We use the norm ‖ ‖∗,k defined in (8.9) for the solution g of the above
equation. For the right hand side of (8.32) we take the space C([−T, T ];C)

with f (T ) = 0 and the norm

‖ f ‖∗∗,k = sup
t∈[−T,T ]

| log(T − t)|k | f (t)|. (8.33)

Note that in (8.32) the expression η( t
T )L̃1[ġ](t) is well defined for g of

class C1 in [−T, T ). Indeed, because of the cut-off function, L̃1[ġ](t) needs
to be computed only for t ≥ −T

4 , and for t ≥ −T
4 the integrals appearing

in L1[ġ] are well defined, since they start at either at −T or t − 1
2 (T − t) =

3
2 t − 1

2T ≥ −T .
The next lemma gives the solvability of (8.32) in the weighted spaces intro-

duced above. Let

ϒ = 2 − α0

1 − α0
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Lemma 8.7 LetC2 > 1befixed,κ satisfying (8.4), andassume that k > ϒ−1.
Then, there is ᾱ0 > 0, so that for 0 < α0 ≤ ᾱ0, and T > 0 small, there is
a linear operator T1 such that g = T1[ f ] satisfies (8.32) for some constant c
and

‖g‖∗,k+1 + |c| ≤ C

k + 1 − ϒ
‖ f ‖∗∗,k . (8.34)

The constant C is independent of T , α0.

Let

E(t) := I[p0,κ ](t), (8.35)

Ẽ(t) = E(t) − E(T ),

where I is given by (8.13), and consider the fixed point problem

p1 = A[p1] (8.36)

where

A[p1] = T1
[−ηẼ − B̃[p0,κ + p1]

]

, (8.37)

where η is the cut-off function defined in (8.31).
Note that if p1 is a solution of (8.36) then p1 satisfies

L̃0[ ṗ1] + η

(
t

T

)

L̃1[ ṗ1] = ηẼ − B̃[p0,κ + p1](t) + c

in [−T, T ] for some constant c. This implies that p1 satisfies

Sα0[ ṗ1] + B̃[p0,κ + p1] − E = c

in [0, T ] for some possibly different constant c. This is precisely the equation
(8.30).

Proposition 8.1 Let k > 0, k < 2 close to 2 and α0 > 0 small. Then for
T > 0 small there is a function p1 satisfying (8.36) and moreover

‖p1‖∗,k+1 ≤ M

where

M = C0| log(T )|k−1 log(| log(T )|)2, (8.38)

with C0 a fixed large constant.
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Moreover, if we denote by p1(κ) the solution just constructed, we have, for
κ1, κ2 satisfying (8.4)

‖p1(κ1) − p1(κ2)‖∗,k+1 ≤ C | log T |k−1 log(| log T |)2 |κ1 − κ2|. (8.39)

The rest of the subsection is devoted to the proof of Proposition 8.1.
We start with the construction of the linear operator T1 in Lemma 8.7. We

want to find an inverse for L̃0, namely given f find g such that L̃0[ġ] = f .
To do this, we differentiate this equation and we get

g̈(t) + 2 − α0

1 − α0

ġ(t)

(T − t)| log(T − t)| = 1

1 − α0

ḟ (t)

| log(T − t)| . (8.40)

Then we can write a particular solution for ġ to (8.40) as

ġ(t) = f (t)

(1 − α0)| log(T − t)|
+ ϒ − 1

1 − α0
| log(T − t)|−ϒ

∫ T

t

| log(T − s)|ϒ−2

T − s
f (s) ds, (8.41)

where ϒ = 2−α0
1−α0

and where we have assumed that | log(T−s)|ϒ−2

T−s f (s) is inte-

grable near T (for example f (s) = O(| log(T − s)|−k) with k > ϒ − 1
suffices).

Define the operator

T0[ f ] = g, (8.42)

where g is such that ġ is given by (8.41) and g(T ) = 0. Note that g = T0[ f ]
solves (8.40) and therefore

L̃0[ġ] = f + c,

for some constant c.

Lemma 8.8 Assume k > ϒ−1. Then for f ∈ C([−T, T ];C)with f (T ) = 0

‖T0[ f ]‖∗,k+1 ≤ C

k + 1 − ϒ
‖ f ‖∗∗,k .

The constant is independent of ϒ (if ϒ is bounded), k, T .

Proof This is direct from (8.41). ��
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Proof of Lemma 8.7 We construct g as a solution of the fixed point problem

g = T0

[

f − η

(
t

T

)

L̃1[g]
]

.

where T0 is the operator constructed in (8.42) and η is the cut-off function
(8.31).

By Lemma 8.8

‖T0[L̃1[g]]‖∗,k+1 ≤ C

k + 1 − ϒ
‖L̃1[g]‖∗∗,k .

A computations shows that

‖T0[L̃1[g]]‖∗,k+1 ≤ C

k + 1 − ϒ

(

α0 + 1

| log T | + log | log T |
| log T |

)

‖g‖∗,k+1.

we get a contraction if α0 > 0 is fixed small and then T > 0 is sufficiently
small. ��

Next we need an estimate for the error E defined in (8.35).

Lemma 8.9 Let p0,κ be given by (8.2) and assume κ ∈ C satisfies (8.4). Then

|E(t) − E(T )| ≤ C
| log T | log | log(T − t)|

| log(T − t)|2 , −T

4
≤ t ≤ T . (8.43)

Proof By definition we have

E(t) =
∫ t−λ∗(t)2

−T

ṗ0,κ (s)

t − s
ds.

Let t ∈ [−T
4 , T ] and let us write

E(t) =
∫ t

−T

ṗ0,κ (s)

T − s
ds −

∫ t

t−(T−t)/5

ṗ0,κ (s)

T − s
ds

+
∫ t−(T−t)/5

−T
ṗ0,κ (s)

(
1

t − s
− 1

T − s

)

ds

+
∫ t−λ∗(t)2

t−(T−t)/5

ṗ0,κ (s)

t − s
ds.
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We estimate

∣
∣
∣
∣

∫ t

t−(T−t)/5

ṗ0,κ (s)

T − s
ds

∣
∣
∣
∣
≤ Cκ| log T |

| log(T − t)|2 ,

and

∣
∣
∣
∣
∣

∫ t−(T−t)/5

−T
ṗ0,κ (s)

(
1

t − s
− 1

T − s

)

ds

∣
∣
∣
∣
∣
≤ Cκ| log(T )|

| log(T − t)|2 .

With the fourth term in E we proceed as follows

∫ t−λ∗(t)2

t−(T−t)/5

ṗ0,κ (s)

t − s
ds = ṗ0,κ (t)(log(T − t) − 2 log(λ∗))

−
∫ t−λ∗(t)2

t−(T−t)/5

ṗ0,κ (t) − ṗ0,κ (s)

t − s
ds.

But

∣
∣
∣
∣
∣

∫ t−λ∗(t)2

t−(T−t)/5

ṗ0,κ (t) − ṗ0,κ (s)

t − s
ds

∣
∣
∣
∣
∣
≤ Cκ| log(T )|

| log(T − t)|3 ,

and therefore

E =
∫ t

−T

ṗ0,κ (s)

T − s
ds + ṗ0,κ (t)(log(T − t) − 2 log(λ∗))

+ O

(
κ| log(T )|

| log(T − t)|2
)

.

We note that

ṗ0,κ (t)| log(T − t)| +
∫ t

0

ṗ0,κ (s)

T − s
ds = c

for some constant c. Indeed, by (8.3)

d

dt

(

ṗ0,κ (t)| log(T − t)| +
∫ t

0

ṗ0,κ (s)

T − s
ds

)

=
d
dt ( ṗ0,κ (t)| log(T − t)|2)

| log(T − t)|
= 0.
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This shows that

E(t) = E(T ) + O

( | log T |[log(| log T |) + log(| log(T − t)|)]
| log(T − t)|2

)

,

which implies the estimate (8.43). ��
Proof of Proposition 8.1 Let T1 be the operator constructed in Lemma 8.7 for
T > 0, α0 > 0 small and A defined in (8.37).

We will apply inequality (8.34) with k < 2 close to 2. The constant in
this inequality remains bounded as α0 → 0+, because ϒ = 2−α0

1−α0
→ 2 as

α0 → 0+.
For the poof we use the norm (8.33) with k < 2, k close to 2 so k +

1 < 3 is close to 3. We work with p1 in the space X = C([−T, T ];C) ∩
C1([−T, T );C) with the norm ‖ · ‖∗,k+1 defined in (8.9). By Lemma 8.7

‖A[p1]‖∗,k+1 ≤ C
(

‖ηẼ‖∗∗,k + ‖B̃[p0,κ + p1](t) − B̃[p0,κ + p1](T )‖∗∗,k
)

,

(8.44)

and by Lemma 8.9

‖ηẼ‖∗∗,k ≤ CE | log T |k−1 log(| log T |), (8.45)

for some CE > 0. We take in X the closed ball BM(0) of center 0 and radius
M given by (8.38) with C0 > 0 suitably large. The proof of Proposition 8.1
consists in showing thatA : BM(0) → BM(0) is a contraction. The estimates
required for this are the following: for ‖p1‖∗,k+1 ≤ M we have

‖B̃[p0,κ + p1]‖∗∗,k ≤ C | log(T )|k−1, (8.46)

and for ‖pi‖∗,k+1 ≤ M , i = 1, 2 we have

‖B̃[p0,κ + p1] − B̃[p0,κ + p2]‖∗∗,k ≤ C

| log T |‖p1 − p2‖∗,k+1. (8.47)

These inequalities are proved in a straightforward way. We omit the details
Form these estimates we see thatA is a contraction in the ball BM . Indeed,

from (8.44), (8.45) and (8.46) we have

‖A[p1]‖∗,k+1 ≤ C · CE | log T |k−1 log(| log T |) + C | log(T )|k−1

≤ C0| log T |k−1 log(| log T |)2

by fixing C0 large. Therefore A : BM(0) → BM(0).
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Next, for ‖pi‖∗,k+1 ≤ M , i = 1, 2, by Lemma 8.7 and (8.47) we get

‖A[p1] − A[p2]‖∗,k+1 ≤ C‖B̃[p0,κ + p1] − B̃[p0,κ + p2]‖∗∗,k

≤ C

| log T |‖p1 − p2‖∗,k+1.

The proof of (8.39) will be given in Corollary 8.1 below. ��
We also have the following estimates

Lemma 8.10 Let p1 be the solution constructed in Proposition 8.1. Then

| p̈1(t)| ≤ C
| log T |

| log(T − t)|3(T − t)
∣
∣
∣
d3

dt3
p1(t)

∣
∣
∣ ≤ C

| log T |
| log(T − t)|3(T − t)2

.

The proof is done by formally differentiating the equation and using suitable
estimates on the operators involved. We omit the details.

Proposition 8.1 defines a function that to κ satisfying (8.4) associates p1(κ),
which is the unique fixed point of A in the ball {‖p1‖∗,k+1 ≤ M}, M =
C0| log(T )|k−1 log(| log(T )|)2.

The next result gives several Lipschitz estimates of this map.

Corollary 8.1 Let k ∈ (0, 2). For κ1, κ2 satisfying (8.4) we have

‖p1(κ1) − p1(κ2)‖∗,k+1 ≤ C | log T |k−1 log(| log T |)2 |κ1 − κ2|.

Wewill also need a Lipschitz estimate for p̈1 in the norm ‖ ‖−1,3 and d3

dt3
p1

in the norm ‖ ‖−2,3.

Lemma 8.11 For κ1, κ2 satisfying (8.4) we have

‖ p̈1(κ1) − p̈1(κ2)‖−1,3 ≤ C | log T | |κ1 − κ2|
∥
∥
∥
d3

dt3
p1(κ1) − d3

dt3
p1(κ2)

∥
∥
∥−2,3

≤ C | log T | |κ1 − κ2|

Next we use the previous results on p1 to obtain an estimate of Rα0[ ṗ1].
Lemma 8.12 Let p1 be the solution constructed in Proposition 8.1. Then

|Rα0[ ṗ1](t)| ≤ C
| log T |

| log(T − t)|3 (T − t)α0,
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and for κ1, κ2 satisfying (8.4) we have

|Rα0[ ṗ1(κ1)] − Rα0[ ṗ1(κ2)]| ≤ C
| log T |

| log(T − t)|3 (T − t)α0 |κ1 − κ2|.

Lemma 8.13 Let p1 be the solution constructed in Proposition 8.1. Then

∣
∣
∣
d

dt
Rα0[ ṗ1](t)

∣
∣
∣ ≤ C

| log T |
| log(T − t)|3 (T − t)α0−1,

∣
∣
∣
d

dt
Rα0[ ṗ1(κ1)](t) − d

dt
Rα0[ ṗ1(κ2)](t)

∣
∣
∣

≤ C
| log T |

| log(T − t)|3 (T − t)α0−1|κ1 − κ2|.

9 Final adjustment of the parameters p and ξ

In this section we prove that the last equations of the gluing system (6.22)–
(6.28) can be solved, by adjusting the parameter functions p = λeiω and ξ , as
stated in Proposition 6.9, thus concluding the proof of Theorem 1.

Proof of Proposition 6.9 Let�(p, ξ,�, Z∗
0) be the solution to equation (6.22)

constructed in Proposition 6.7. Let �(p, ξ, Z∗
0) denote the solution of

(6.32) constructed in Proposition 6.8. In (6.27)–(6.28) we replace �∗ by
�∗(p, ξ,�(p, ξ, Z∗

0), Z
∗
0). Then to find a solution of the full system (6.22)–

(6.28) it is sufficient to find p, ξ such that

c0 j [h(p, ξ,�∗(p, ξ,�(p, ξ, Z∗
0), Z

∗
0))](t)

− c∗
0 j [p, ξ,�∗(p, ξ,�(p, ξ, Z∗

0), Z
∗
0)](t) = 0 (9.1)

c1 j [h(p, ξ,�∗(p, ξ,�(p, ξ, Z∗
0), Z

∗
0))](t) = 0 (9.2)

for all t ∈ (0, T ), j = 1, 2.
We recall from Sect. 6 that (9.1) is equivalent to

B0[p] = a(0)
0 [p, ξ,�∗] + R0

[

a(0)
0 [p, ξ,�∗]

]

, t ∈ [0, T ] (9.3)

where �∗ = �∗(p, ξ,�(p, ξ, Z∗
0), Z

∗
0). We recall that B0 is the integral

operator defined in (5.6) which has the approximate form

B0[p] =
∫ t−λ2

−T

ṗ(s)

t − s
ds + O

(‖ ṗ‖∞
)

.
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In Proposition 6.5 we constructed an approximate inverse P of the operator
B0, so that given a satisfying (6.17), p := P [a], satisfies the equation

B0[p] = a + R0[a], in [0, T ],

for a small remainder R0[a]. The proof of that proposition gives the decom-
position

P[a] = p0,κ + P1[a],

where p0,κ is defined in (8.2), κ = κ[a] ∈ C and the function p1 = P1[a] has
the estimate

‖p1‖∗,3−σ ≤ C | log T |1−σ log2(| log T |),

where ‖ ‖∗,3−σ is defined in (8.9) and σ ∈ (0, 1). This leads us to define the
space X1 := C × X̃1 where

X̃1 := {p1 ∈ C([−T, T ;C]) ∩ C1([−T, T ;C]) | p1(T ) = 0,

‖p1‖∗,3−σ < ∞}.

Let us rewrite equation (9.2) as follows. By (6.9), (9.2) is equivalent to
∫

R2
h[p, ξ,�∗] · Z1 j (y) dy = 0, t ∈ (0, T ), j = 1, 2,

and recalling (5.1), this is equivalent to

λ

∫

B2R
Q−ω L̃U [�∗] · Z1 j + λ

∫

B2R
K1[p, ξ ] · Z1 j = 0,

which yields the following equation

ξ̇ j = 1

4π
(1 + (2R)−2)

∫

B2R
Q−ω L̃U [�∗] · Z1 j , j = 1, 2. (9.4)

We reformulate (9.3)–(9.4) as the fixed point problem

[p, ξ ] = A[p, ξ ] in B (9.5)

where the space B will be introduced below and the operator A = [A1,A2]
is defined by
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A1[p, ξ ] = P
[

a(0)
0 [p, ξ,�∗(p, ξ,�(p, ξ, Z∗

0), Z
∗
0)]
]

A2[p, ξ ] = q −
∫ T

t
b[p, ξ ](s) ds

with

b1 j [p, ξ ](t)
= 1

4π
(1 + (2R)−2)

∫

B2R
Q−ω L̃U [�∗(p, ξ,�(p, ξ, Z∗

0), Z
∗
0)] · Z1 j .

To define B consider the closed ball

B1 = Bl1(κ0) × Bl2(0) ⊂ X1,

where κ0 = div z∗00 (q) + icurl z∗00 (q) with z∗00 so that

Z∗0
0 (x) =

[

z∗00 (x)
z∗003(x)

]

, z∗00 (x) = z∗001(x) + i z∗002(x),

and Z∗
0 = Z∗0

0 + Z∗1
0 is the initial condition as described in (6.8). Here the

numbers l1, l2 are given by

l1 = T σ , l2 = C0| log T |1−σ log2(| log T |),

with σ > 0 small and and C0 > 0 is a fixed large constant. We consider ξ in
the space

X2 = {ξ ∈ C1([0, T ];R2) : ξ̇ (T ) = 0}

endowed with the norm

‖ξ‖X2 = ‖ξ‖L∞(0,T ) + sup
t∈(0,T )

λ∗(t)−σ |ξ̇ (t)|

where σ ∈ (0, 1) is fixed. In X2 we consider the closed ball B2 := B1(ξ
∗),

where ξ∗ ≡ q ∈ �. We consider the Banach space X := X1 × X2 and its
closed ball B := B1 × B2. We formulate the fixed point problem (9.5) in B.
We claim that A(B) ⊂ B and that A is a contraction mapping on B for the
norm ‖ ‖X . This is consequence of the various bounds and Lipschitz estimates
derived in Sect. 8 for the operator P and in Sect. 6 for the operators �∗ and
�. ��
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10 Stability of blow-up

In this section we discuss the stability of the blow-up phenomenon predicted
in Theorem 1 and prove Theorem 2. We consider the class of initial conditions
that lead to blow-up at a given point as described in Sect. 6.1. The solution has
the form

u(x, t) = Uλ(t),ω(t),ξ(t) + ϕ + a(|ϕ|2)Uλ(t),ω(t),ξ(t)

where a(s) = √
1 − s − 1 and

ϕ(x, t) = �U⊥
λ(t),ω(t),ξ(t)

[

Z̃∗(x, t) + �(λ, ω, ξ)(x, t) + ψ(x, t) + ηφ(x, t)
]

,

where the point ξ(T ) ∈ � is prescribed. Changing slightly the proof we can
achieve that the value ξ(0) = q be prescribed. Let us denote ε = λ(0). A
simple application of implicit function theorem to the system of equations
determining (λ, ω, ξ) leads to the fact that the blow-up time T and the final
point ξ(T ) can be regarded as functions of arbitrary small values ε > 0 and
points q ∈ �.

The functions (λ, ω, ξ) as well as ψ and φ have Lipschitz dependence in
p := (ε, q) and Z∗ in suitable topologies. We relabel

ω(p) := ω(0), Up := Uε,ω(p),q , �̃(p)(x) = �(λ, ω, ξ)(x, 0) + ψ(x, 0)

so that the initial condition of the solution above becomes

u0(p) = Up + �U⊥
p
[Z∗ + �̃(p)] + a(|�U⊥

p
[Z∗ + �̃(p)]|2)Up.

A generic initial condition close to

Up0 + �U⊥
p0

[Z∗
0 + �̃(p0)] + a(|�U⊥

p0
[Z∗

0 + �̃(p0)]|2)Up0

with values in S2 can be written in the form

v(x;ϕ1) := Up0 + �U⊥
p0

[Z∗
0 + �̃(p0) + ϕ1]

+a(|�U⊥
p0

[Z∗
0 + �̃(p0) + ϕ1]|2)Up0

where ϕ1 is a small function, otherwise arbitrary. We shall show that if ϕ1
is sufficiently small in C2-topology and it lies on a certain codimension-1
manifold, then problem (2.2) with initial condition u0(x) = v(x;ϕ1) has
blow-up as predicted. Thus what we need is that for suitable
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ζ = (ε, q, Z∗) = ζ0 + ζ1, ζ1 = (ε1, q1, Z
∗
1)

we have that
v(·;ϕ1) = u0(p). (10.1)

It is convenient to measure the size of ζ1 with respect to the norm (see 6.5),

‖p1‖ := |q1| + |ε1| + ‖Z∗
1‖∗.

We expand u0(p) around p = p0 and get

u0(ζ ) =Uζ0 + ϕ(ζ ) + a(|ϕ(ζ )|2))Uζ0,

where

ϕ(ζ ) =�U⊥
ζ0

[Z∗ + �̃(ζ ) + (Uζ −Uζ0)(1 − γ (ζ ) + a(p))],
γ (ζ ) =Up · (Z∗ + �̃(ζ ))

a(p) = a(|�U⊥
ζ
[Z∗ + �̃(ζ )]|2).

Therefore, equation (10.1) becomes

�U⊥
ζ0

[Z∗
0 + �̃(ζ0) + ϕ1] = �U⊥

ζ0
[Z∗ + �̃(ζ ) + (Uζ −Up0)(1 − γ + a)]

or, equivalently

�U⊥
ζ0

[Z∗
1 + �̃(ζ ) − �̃(ζ0) + (Uζ −Uζ0)(1 − γ (ζ ) + a(ζ )) − ϕ1] = 0.

We will get a solution to this equation if we find a constant c0 such that

Z∗
1 + �̃(ζ0 + ζ1) − �̃(ζ0) + (Uζ −Uζ0)(1 − γ (ζ ) + a(ζ )) = ϕ1 + c0Uζ0

Let us consider the functions Zl j (y) defined in (3.1), l = 0, 1, j = 1, 2, with
y = x−q

ε
. We introduce the following intermediate problem: we want to find

a function Z∗
1 and five constants c0, cl j such that

Z∗
1+�̃(ζ0+ p1)−�̃(ζ0)+(Uζ −Uζ0)(1−γ (ζ )+a(ζ )) = ϕ1+c0Uζ0 +cl j Zl j

(10.2)
and the following five real constraints hold for the function Z∗

1(x):

div z∗1(ζ0) = 0, curl Z∗
1(q0) = 0, Z∗

1(q0) = 0. (10.3)

Summation convention is used in (10.2).
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To make the argument more transparent, we consider a simplified linearized
version of (10.2)–(10.3), in which lower order terms are neglected, and only
the constants associated to mode 0 (associated to dilations and rotations) are
considered. Thus we consider the model equation for Z∗

1 ,

⎧

⎪⎪⎨

⎪⎪⎩

Z∗
1 + �0[Z∗

1 ] = ϕ1 +
2
∑

j=1

c0 j Z0 j ,

div z∗1(q0, 0) = 0, curl z∗1(q0, 0) = 0.

(10.4)

where

�0[Z∗
1 ](r) =

(

φ0[Z∗
1 ](r, t)
0

)

with

φ0[Z∗
1 ](r) = reiθ

∫ 0

−T
ṗ(s)k(r2 + ε2,−s) ds, k(ζ, t) = 2

1 − e− ζ
4t

ζ
,

(10.5)

where p(t) = λ(t)eiω(t), r = |x − q0|, ε = λ(0), and p = p[Z∗
1 ] is such that

the following equation is satisfied
⎧

⎪⎨

⎪⎩

ṗ(t)| log(T − t)| +
∫ t

−T

ṗ(s)

T − s
ds = div z̃1(q, t) + icurl z̃1(q, t), t ∈ [0, T ].

p(T ) = 0,
(10.6)

where
⎧

⎪⎨

⎪⎩

∂t Z̃1(x, t) = �Z̃1(x, t) in � × (0, T )

Z̃1(x, 0) = Z∗
1(x) x ∈ �

Z̃1(x, t) = 0 (x, t) ∈ ∂� × (0, T ),

(10.7)

and we use the notation

Z̃1 =
(

z̃1
z̃1,3

)

, Z∗
1 =

(
z∗1
z∗1,3

)

.

The main result here is the solvability of (10.4).

Proposition 10.1 Assume ‖ϕ1‖∗ is finite. Then for T > 0 sufficiently small
equation (10.4) has a unique solution Z∗

1 , c01, c0,2 and moreover
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‖Z∗
1‖∗ + |c01| + |c02| ≤ C‖ϕ1‖∗.

We can obtain a similar result if all constraints and constants are considered,
with essentially the same proof as that below. On the other hand, to derive the
corresponding result to the full problem (10.2)–(10.3), we need to use the
linearized version and contraction mapping principle. For that we need to
use the precise Lipschitz estimates of the solution of the inner-outer gluing
system on the parameters involved as done in Sect. 6 and Sect. 8. The C1

character of the manifold predicted in Theorem 2 follows from the fixed point
characterization and the implicit function theorem.

We devote the rest of this section to the proof of the proposition, whose
main step is the following estimate.

Lemma 10.1 Assume that

div z∗1(q0) = 0, curl z∗1(q0) = 0.

Then

‖�0[Z∗
1 ]‖∗ ≤ C

| log T |‖Z
∗
1‖∗.

To prove this we need a corollary of Lemma B.1 adapted to the norm ‖ ‖∗
defined in (6.5) is the following.

Lemma 10.2 Suppose Z∗
1 ∈ C2(�) satisfies

|∇x Z
∗
1(x)| ≤ | log ε|, x ∈ �

|D2
x Z

∗
1(x)| ≤ | log ε| 12

|x − q0| + ε
x ∈ �.

Then the solution Z̃1 of (10.7) satisfies

|∇x Z̃1(x, t)| ≤ | log ε|, t ≥ 0, (10.8)

and

|∇x Z̃1(x, t) − ∇x Z̃1(x, T )| ≤ C

{

| log ε| if 0 ≤ t ≤ ε2

| log ε| 12 T−t
T (1 + log(Tt ) ) if ε2 ≤ t ≤ T .

Proof As in LemmaB.1we consider the function given byDuhamel’s formula
inR2 and then decompose the solution as a sum of the one inR2 and a smooth
one in � with zero initial condition.
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From (B.2) and |∇x Z∗
1(x)| ≤ | log ε| we get (10.8).

For 0 ≤ t ≤ ε2 we get

|∇x Z̃1(x, t) − ∇x Z̃1(x, T )| ≤ C | log ε|
from (10.8). For ε2 ≤ t ≤ T from Lemma B.1 we obtain

|∇x Z̃1(x, t) − ∇x Z̃1(x, T )| ≤ C | log ε|1/2
√
T − √

t√
T

(

1 + log
(T

t

))

.

��
Proof of Lemma 10.1 Let f (t) = div z̃1(q, t)+ icurl z̃1(q, t). Differentiating
(10.6) we find

d

dt

(

ṗ(t)| log(T − t)|2) = | log(T − t)| ḟ (t).

This can be integrated explicitly and we get

ṗ(t) = − 1

| log(T − t)|2
∫ T

t
| log(T − s)| ḟ (s) ds + c| log T |

| log(T − t)|2

for some constant c to be determined. Integrating by parts we find that

ṗ(t) = f (t) − f (T )

| log(T − t)| + 1

| log(T − t)|2
∫ T

t

f (s) − f (T )

T − s
ds + c| log T |

| log(T − t)|2 .

This function is defined for t ∈ [0, T ] and we need to extend it to [−T, T ] to
make sense of (10.6). A possible extension is ṗ(t) = ṗ(0) for t ∈ [−T, 0] but
this makes this lemma too simple and not useful to adapt to the real situation.
For this reason we make the analysis with the following extension. Define

ṗ1(t) = f (t) − f (T )

| log(T − t)| + 1

| log(T − t)|2
∫ T

t

f (s) − f (T )

T − s
ds (10.9)

so that

ṗ(t) = ṗ1(t) + c| log T |
| log(T − t)|2 for t ∈ [0, T ]

Then define

ṗ(t) = ṗ1(0) + c| log T |
| log(T − t)|2 , t ∈ [−T, 0]. (10.10)
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We want to estimate

φ0[Z∗
1 ](r) = reiθ

∫ 0

−T
ṗ(s)k(r2 + ε2,−s) ds, k(ζ, t) = 2

1 − e− ζ
4t

ζ
,

which, thanks to (10.10) depends only on ṗ1(0) and c. Therefore we need to
estimate these quantities. We claim that

ṗ1(0) =
f (0) − f (T ) + O

(
log(| log T |)
| log T |1/2

)

‖Z∗
1‖∗

| log T |
(

1 + O

(
1

| log T |
))

(10.11)

c = f (T )

(

1 + O

(
1

| log T |
))

+ O

(
1

| log T |
)

f (0)

+ O

(
log(| log T |)
| log T |1/2

)

‖Z∗
1‖∗. (10.12)

To obtain these estimates we note that evaluating equation (10.6) at t = 0
we get

ṗ1(0)(| log T | + log 2) + c

(

1 + O

(
1

| log T |
))

= f (0) (10.13)

and evaluating equation (10.6) at t = T we get

∫ T

−T

ṗ1(s)

T − s
ds + c

(

1 + O

(
1

| log T |
))

= f (T ). (10.14)

Thus we need to estimate
∫ T
−T

ṗ1(s)
T−s ds where p1 is given (10.9). We have

∫ T

−T

ṗ1(s)

T − s
ds =

∫ 0

−T

ṗ1(s)

T − s
ds +

∫ T

0

ṗ1(s)

T − s
ds

= ṗ1(0) log 2 +
∫ T

0

ṗ1(s)

T − s
ds.

To estimate
∫ T
0

ṗ1(s)
T−s ds we write

ṗ1 = ṗ1a + ṗ1b
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with

ṗ1a(t) = f (t) − f (T )

| log(T − t)|
ṗ1b(t) = 1

| log(T − t)|2
∫ T

t

f (s) − f (T )

T − s
ds.

We compute

∫ T

0

ṗ1a(s)

T − s
ds =

∫ T
| log T |

0
... +

∫ T

T
| log T |

....

By Lemma 10.2 we have that

| f (t)− f (T )|≤C‖Z∗
1‖∗

⎧

⎪⎪⎨

⎪⎪⎩

log(| log T |)| log T |1/2 T − t

T
,

T

| log T |≤t ≤ T

| log T |, 0≤t ≤ T

| log T | .
(10.15)

which in particular implies

| ṗ1a(t)|≤C
‖Z∗

1‖∗
| log(T − t)|

⎧

⎪⎪⎨

⎪⎪⎩

log(| log T |)| log T |1/2 T − t

T
,

T

| log T | ≤ t ≤ T

| log T |, 0 ≤ t ≤ T

| log T | .

Therefore

∫ T
| log T |

0

| ṗ1a(s)|
T − s

ds ≤ C

| log T |‖Z
∗
1‖∗,

and

∫ T

T
| log T |

| ṗ1a(s)|
T − s

ds ≤ C
log(| log T |)| log T |1/2

| log T | ‖Z∗
1‖∗.

It follows that

∫ T

0

| ṗ1a(s)|
T − s

ds ≤ C
log(| log T |)
| log T |1/2 ‖Z∗

1‖∗. (10.16)
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By (10.15), we find that

| ṗ1b(t)| ≤ C‖Z∗
1‖∗

⎧

⎪⎪⎨

⎪⎪⎩

log(| log T |)| log T |1/2
| log(T − t)|2

T − t

T
,

T

| log T | ≤ t ≤ T

log(| log T |)
| log T |3/2 , 0 ≤ t ≤ T

| log T | .

This implies that

∫ T

0

| ṗ1b(s)|
T − s

ds ≤ log(| log T |)
| log T |3/2 ‖Z∗

1‖∗. (10.17)

From (10.16) and (10.17) we find that

∣
∣
∣
∣

∫ T

0

ṗ1(s)

T − s
ds

∣
∣
∣
∣
≤ log(| log T |)

| log T |1/2 ‖Z∗
1‖∗.

Therefore (10.14) gives

ṗ1(0) log 2 + O

(
log(| log T |)
| log T |1/2

)

‖Z∗
1‖∗ + c

(

1 + O(
1

| log T |)
)

= f (T ).

(10.18)

Equations (10.13) and (10.18) form a system

⎡

⎣
| log T | + log 2 1 + O

(
1

| log T |
)

log 2 1 + O
(

1
| log T |

)

⎤

⎦

[

ṗ1(0)
c

]

=
[

f (0)

f (T ) + O
(
log(| log T |)
| log T |1/2

)

‖Z∗
1‖∗

]

for ṗ1(0) and c, and solving we get (10.11), (10.12).
We use (10.11), (10.12) to estimate φ0 given by (10.5): and obtain

‖�0[Z∗
1 ]‖∗ ≤ C

| log T |‖Z
∗
1‖∗.

��
Proof of Proposition 10.1 We look for a solution of (10.4) in the space of
functions

Z = {Z∗
1 ∈ C2(�) : ‖Z∗

1‖∗ < ∞, div z∗1(q0) = 0, curl z∗1(q0) = 0}.
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To determinte c0 j we apply divergence and curl (10.4) at q0 to obtain

c01 = ε
(

div φ0[Z∗
1 ](q0, 0) − div ϕ1(q0)

)

,

c02 = ε
(

curl φ0[Z∗
1 ](q0, 0) − curl ϕ1(q0)

)

.

With this equation (10.4) becomes the fixed point problem

Z∗
1 = F[Z∗

1 ] + ϕ1 + div ϕ1(q0)εZ01 + curl ϕ1(q0)εZ02. (10.19)

where

F[Z∗
1 ] = −�0[Z∗

1 ] − divφ0[Z∗
1 ](q0, 0)εZ01 − curl φ0[Z∗

1 ](q0, 0)εZ02

By Lemma 10.1 we get

∣
∣ divφ0[Z∗

1 ](q0, 0) + icurl φ0[Z∗
1 ](q0, 0)

∣
∣ ≤ C | log ε|‖�0[Z∗

1 ]‖∗ ≤ C‖Z∗
1‖∗.

But

‖εZ0 j‖∗ ≤ C

| log T |1/2 .

This and Lemma 10.1 shows that

‖F[Z∗
1 ]‖∗ ≤ C

| log T |1/2 ‖Z∗
1‖∗.

By the contraction mapping principle, equation (10.19) has a unique fixed
point in Z . ��

11 Reverse bubbling

The proofs of Theorems 3 and 4 followvery similar lines to those of Theorem1,
with a “backwards” construction. In Theorem 3 we consider the exact ansatz
as in (4.14) for u(x, t) in (0, 2T ), extended for T < t < 2T in the form

u(x, t) = Ū + �Ū⊥[�0 + �∗ + ηQωφ] + a(�Ū⊥[�0 + �∗ + ηQωφ])Ū

where λ(t) is defined in the interval (−T, 2T ) and satisfies λ(T ) = 0, while

Ū (x, t) = Qω(t)(t)W̄

(
x − ξ(t)

λ(t)

)
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and W̄ (y) is the reverse bubble as in (1.16). A main point is that the linear
theory for the inner problem, corresponding to φ(y, t) has to be performed
for t > T for “ancient solutions”, which exactly mirror the forward theory
of Sect. 7. More precisely, we need to consider a problem of the form We
consider the linear equation

λ2∂tφ = LW [φ] + h(y, t) in D̃2R

φ(·, 0) = 0 in B2R(0)

φ · W = 0 in D2R

where

D̃2R = {(y, t) / t ∈ (T, 2T ), y ∈ B2R(t)(0)}.

We assume that h(y, t) is defined for all (y, t) ∈ R
2 × (0, T ) and satisfies

h · W = 0, |h(y, t)| ≤ C
λ̃∗(t)ν

(1 + |y|)a ,

where we extend the definition of λ∗(t) for t > T as λ∗(t) = | log T ||t−T |)
log2 |t−T | .

Inverses for the linear problem with right bounds (which vanish as t ↓ T ) are
found as before.

In the full construction amajor ingredient is the adjustment of the parameter
λ(t) for times t > T .

The main term in the error (the one due to the effect of dilations) has now
the extended form

{
λ̇
λ
ρwρ ∼ −2 λ̇

r if 0 ≤ t < T
λ̇
λ
ρw̃ρ ∼ 2 λ̇

r if T < t ≤ 2T .

Therefore we extend �0 by considering the function �0[ω, bλ, ξ ], where

b(s) =
{

1 s ≤ T

−1 s > T .

�∗(x, t) has Z∗(x, t) as its main term. Testing the error as before by the
generator of dilations, we get the approximate equation

∫ t−λ(t)2

0
b(s)

λ̇(s)

t − s
ds = −| [div�∗ + icurl�∗](q, t)|. (11.1)
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Wewould like to find a solution such that λ(T ) = 0, λ̇(t) < 0 if t < T, λ̇(t) >
0 if t > T . The solution for t < T is the one of the forward bubbling of
Theorem 1, which we recall is given at main order by

λ(t) = κ∗
| log T |(T − t)

| log(T − t)|2 , t < T,

For t > T the approximate equation reads

∫ t−λ2

−T
b(s)

λ̇(s)

t − s
ds = −|[divψ∗ + icurlψ∗](q, T )|

+
∫ T

0
λ̇(s)

(
1

t − s
− 1

T − s

)

ds −
∫ t−λ2

T

λ̇(s)

t − s
ds.

Equation (11.1) then approximately reads

∫ t−λ2

T

λ̇(s)

t − s
ds =

∫ T

0
λ̇(s)

(
1

t − s
− 1

T − s

)

ds for t ≥ T,

The integral in the left hand side is approximately λ̇(t)| log(t − T )|, while
∫ T

0
λ̇(s)

(
1

t − s
− 1

T − s

)

ds

= (t − T )κ∗| log T |
∫ T

0

1

(t − s)(T − s)| log(T − s)|2 ds.

Arguing as before we get

∫ T

0

1

(t − s)(T − s)| log(T − s)|2 ds

= 1

t − T

1

| log(t − T )| + O

(
1

| log(t − T )|2
)

.

Hence, for t > T we get the apprximate equation

λ̇(t)| log(t − T )| = κ∗
1

| log(t − T )|
which gives

λ(t) = κ∗
(t − T )| log T |
| log(t − T )|2 , for t > T
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as desired. This computation can be made fully rigorous with the same argu-
ments already employed in the forward bubbling construction, leading to the
proof of Theorem 3.

For the proof of Theorem 4 we proceed in exactly the same way however,
now with an ansatz that does not include a bubble for t < T . In that case the
approximate equation for λ takes the form

∫ t−λ2

T

λ̇(s)

t − s
ds = −|[divψ∗ + icurlψ∗](q, T )|

for t > T . From this equation we get

λ(t) = κ∗
T − t

| log(t − T )| ,

as desired.
It is interesting to notice that this continuation, even at the level of the

parameter λ(t), does not seem to exhibit analyticity near t = T , even one-
sided, in terms of (T − t) or the natural parameter s = 1

log(T−t) . It is not hard
to check for instance that, even though formal improvements of approximation
in powers of s are possible for λ(t), they so not lead to a power series with
positive convergence radius.

Acknowledgements The research of J. Wei is partially supported by NSERC of Canada.
J. Dávila has been supported by grants Fondecyt 1130360 and PAI AFB-170001, Chile. M. del
Pino M. del Pino has been supported by a UK Royal Society Research Professorship and Grant
PAI AFB-170001, Chile.

Appendix A: The heat equation with right hand side

We are going to measure the solution to (6.31) in the norm ‖ ‖ ,�,γ , (c.f. 6.29)

with � and β (recall that R = λ
−β∗ ) satisfying:

β ∈
(

0,
1

2

)

, � ∈ (0, β) (A.1)

Ourmain result in this section is the following, where we use the norm ‖ ‖ ,�,γ

defined in (6.29).

Proposition A.1 Assume (A.1). For T , ε > 0 small there is a linear operator
that maps a function f : �× (0, T ) → R

3 with ‖ f ‖∗∗ < ∞ intoψ , c1, c2, c3
so that (6.31) is satisfied. Moreover the following estimate holds
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‖ψ‖ ,�,γ + λ∗(0)−�(λ∗(0)R(0))−1

| log T | (|c1| + |c2| + |c3|) ≤ C‖ f ‖∗∗, (A.2)

where γ ∈ (0, 1
2 ).

Remark A.1 The condition β ∈ (0, 1
2 ) is a basic assumption to have the sin-

gularity appear inside the self-similar region. The condition � > 0 is needed
for Lemma A.1. The assumption � < β is so that the estimates provided by
Lemma A.2 are stronger than the ones of Lemma A.1.

To prove Proposition A.1 we consider
⎧

⎪⎨

⎪⎩

ψt = �ψ + f in � × (0, T )

ψ(x, 0) = 0, x ∈ �

ψ(x, t) = 0, x ∈ ∂�, t ∈ (0, T ),

(A.3)

and let q be a point in �.
We always assume that R is given by (6.3).

Lemma A.1 Assume β ∈ (0, 1
2 ) and � > 0. Let ψ solve (A.3) with f such

that

| f (x, t)| ≤ λ∗(t)�(λ∗(t)R(t))−1χ{|x−q|≤3λ∗(t)R(t)}.

Then

|ψ(x, t)| ≤ Cλ∗(0)�λ∗(0)R(0)| log T |, (A.4)

|ψ(x, t) − ψ(x, T )| ≤ λ∗(t)�λ∗(t)R(t)| log(T − t)|, (A.5)

|∇ψ(x, t)| ≤ Cλ∗(0)�, (A.6)

|∇ψ(x, t) − ψ(x, T )| ≤ Cλ∗(t)�, (A.7)

and for any γ ∈ (0, 1
2 ),

|∇ψ(x, t) − ∇ψ(x, t ′)|
|t − t ′|γ ≤ C

λ∗(t)�

(λ∗(t)R(t))2γ
(A.8)

for any x, and 0 ≤ t ′ ≤ t ≤ T such that t − t ′ ≤ 1
10 (T − t), and

|∇ψ(x, t) − ∇ψ(x ′, t ′)|
|x − x ′|2γ ≤ C

λ∗(t)�

(λ∗(t)R(t))2γ
(A.9)

for any |x − x ′| ≤ 2λ∗(t)R(t) and 0 ≤ t ≤ T .
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The proof is in Sect. A.1.

Lemma A.2 Assume β ∈ (0, 1
2 ) and m ∈ (12 , 1). Let ψ solve (A.3) with f

such that

| f (x, t)| ≤ λ∗(t)m

|z − q|2χ{|x−q|≥λ∗(t)R(t)}.

Then

|ψ(x, t)| ≤ CTm | log T |2−m,

|ψ(x, t) − ψ(x, T )| ≤ C | log T |m(T − t)m | log(T − t)|2−2m,

|∇ψ(x, t)| ≤ C
Tm−1| log T |2−m

R(T )
,

|∇ψ(x, t) − ∇ψ(x, T )| ≤ C
λ∗(t)m−1| log(T − t)|

R(t)

and for any γ ∈ (0, 1
2 ):

|∇ψ(x, t) − ∇ψ(x ′, t ′)|
(|x − x ′|2 + |t − t ′|)γ ≤ C

1

(λ∗(t)R(t))2γ
λ∗(t)m−1| log(T − t)|

R(t)

for any |x−x ′| ≤ 2λ∗(t)R(t) and 0 ≤ t ′ ≤ t ≤ T such that t−t ′ ≤ 1
10 (T −t).

The proof is in Sect. A.1.

Lemma A.3 Let ψ solve (A.3) with f such that

| f (x, t)| ≤ 1,

Then

|ψ(x, t)| ≤ Ct,

|ψ(x, t) − ψ(x, T )| ≤ C(T − t)| log(T − t)|,
|∇ψ(x, t)| ≤ T 1/2|∇ψ(x, t) − ∇ψ(x, T )| ≤ C(T − t)1/2

|∇ψ(x, t2) − ∇ψ(x, t1)| ≤ C |t2 − t1|1/2.
|∇ψ(x1, t) − ∇ψ(x2, t)| ≤ C |x1 − x2|| log(|x1 − x2|).
The proof is in Sect. A.1.

Proof of Proposition A.1 Let ψ0[ f ] denote the solution of (A.3) where f sat-
isfies ‖ f ‖∗∗ < ∞.
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We claim that ‖ψ0[ f ]‖∗ ≤ C‖ f ‖∗∗. Indeed, given f with ‖ f ‖∗∗ < ∞ we
decompose f = ∑3

i=1 fi with | fi | ≤ C‖ f ‖∗∗!i . By linearity it is sufficient
to prove that when f is each of the !i , the corresponding ψ has finite ‖ ‖∗∗
norm.

The case f = !1 is direct from Lemma A.1. Using the hypothesis � < β

we can find σ0 small so that the case f = !2 follows from Lemma A.2. The
case f = !3 follows from Lemma A.3.

Finally, let us show that in problem (6.31) we can choose ci so that that
ψ(q, T ) = 0. To do this we let ψi the solution

⎧

⎪⎨

⎪⎩

∂tψi = �xψi in � × (0, T )

ψi = 0 on ∂� × (0, T )

ψi (x, 0) = eiη1 in �

Let

ψ = ψ0 +
3
∑

i=1

ciψi .

Then for T > 0 small there is unique choice of ci such that ψ(q, T ) = 0.
Moreover |ci | ≤ Cλ∗(0)νR(0)2−a| log T |‖ f ‖∗∗ and hence ψ satisfies (A.2).

��

A.1 Proof of Lemmas A.1, A.2, and A.3

The proof of the estimates is done by analyzing the solution ψ of

{

∂tψ0 = �ψ0 + f in R2 × (0, T ),

ψ0(x, 0) = 0 x ∈ R
2,

(A.10)

defined by Duhamel’s formula

ψ0(x, t) =
∫ t

0

∫

R2

e−|x−y|2
4(t−s)

4π(t − s)
f (y, s) dyds

assuming

| f (x, t)| ≤ χ{|y|≤2λ∗(s)R(s)}λ∗(t)ν−2R(t)−a.

The solution to (A.3) is then given by ψ = ψ0 + ψ1 where ψ1 solves the
homogeneous heat equation in � × (0, T ) with boundary condition given by
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−ψ0. In the sequel we prove that the estimates (A.4)–(A.5) are valid for ψ0.
Then the conclusion forψ1 follows from standard parabolic estimates. In what
follows we denote by ψ the solution to (A.10) given by Duhamel’s formula.

Proof of (A.4) We have, using the heat kernel,

ψ(x, t) = C
∫ t

0

λ∗(s)ν−2R(s)−a

t − s

∫

|y|≤2λ∗(s)R(s)
e−|x−y|2

4(t−s) dyds

= C
∫ t

0
λ∗(s)ν−2R(s)−a

∫

|z|≤2λ∗(s)R(s)(t−s)−1/2
e−|x̃−z|2 dzds

where x̃ = x(t − s)−1/2. First we estimate

∫ t−(T−t)

0
λ∗(s)ν−2R(s)−a

∫

|z|≤2λ∗(s)R(s)(t−s)−1/2
e−|x̃−z|2 dzds

≤ C
∫ t−(T−t)

0

λ∗(s)νR(s)2−a

t − s
ds ≤ Cλ∗(0)νR(0)2−a. (A.11)

Consider the integrals
∫ t−λ∗(t)2
t−(T−t) and

∫ t
t−λ∗(t)2 . We have

∫ t−λ∗(t)2

t−(T−t)
λ∗(s)ν−2R(s)−a

∫

|z|≤2λ∗(s)R(s)(t−s)−1/2
e−|x̃−z|2/4 dzds

≤ Cλ∗(t)νR(t)2−a| log(T − t)|. (A.12)

For the second part we have

∫ t

t−λ∗(t)2
λ∗(s)ν−2R(s)−a

∫

|z|≤2λ∗(s)R(s)(t−s)−1/2
e−|x̃−z|2/4 dzds

≤ C
∫ t

t−λ∗(t)2
λ∗(s)ν−2R(s)−a ds ≤ Cλ∗(t)νR(t)−a. (A.13)

From (A.11), (A.12), (A.13),we deduce

|ψ(x, t)| ≤ Cλ∗(0)νR(0)| log T |.

which is the desired estimate. Estimates (A.4), (A.5), (A.6), (A.7), (A.8), (A.9)
follow in similar manner. ��

The proofs of Lemmas A.2 and A.3 follow similar lines to those above, and
we omit them.
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Appendix B: The heat equation with initial condition

In this section we consider the heat equation

⎧

⎪⎨

⎪⎩

∂t Z̃1(x, t) = �Z̃1(x, t) in � × (0, T )

Z̃1(x, 0) = Z∗
1(x) x ∈ �

Z̃1(x, t) = 0 (x, t) ∈ ∂� × (0, T ),

(B.1)

and derive estimates assuming, roughly speaking, that Z∗
1 behaves like (r +

ε)| log(r + ε)|.
Lemma B.1 Suppose Z∗

1 ∈ C2(�) satisfies

|D2
x Z

∗
1(x)| ≤ 1

|x − q0| + ε
x ∈ �.

Then the solution Z̃1 of (B.1) satisfies

|∇x Z̃1(x, t) − ∇x Z̃1(x, T )| ≤ C
T − t

T

(

1 + log

(
T

t

))

if ε2 ≤ t ≤ T .

Proof We do the computation when � is R2 and we deal with the solution
given by Duhamel’s formula. The general case follows by the decomposing
the solution as a sum of the one in R

2 and a smooth one in �. Then

∇x Z̃1(x, t) = 1

4π t

∫

R2
e−|y|2

4t ∇x Z
∗
1(x − y) dy. (B.2)

Assume ε2 ≤ t ≤ T . Then, using (B.2), we have

|∇x Z̃1(0, t) − ∇x Z̃1(0, T )|
= 1

4π

∣
∣
∣
∣

∫

R2
e−|y|2

4

∫ 1

0
∇x Z̃

∗
1

(−s
√
T y + (1 − s)

√
t y
)

dsdy

∣
∣
∣
∣

≤ C
∫

R2
e−|y|2

4

∫ 1

0
|D2Z∗

1

(−s
√
T y + (1 − s)

√
t y
)|(√T − √

t)|y| dsdy

≤ C
∫

R2
e−|y|2

4

∫ 1

0

(
√
T − √

t)|y|
s(

√
T − √

t)|y| + √
t |y| + ε

dsdy

≤ C
∫

R2
e−|y|2

4 log
(
√
T |y| + ε√
t |y| + ε

)

dy
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= C
∫ ∞

0
e− ρ2

4 log
(
√
Tρ + ε√
tρ + ε

)

ρ dρ

= C(
√
T − √

t)ε
∫ ∞

0
e− ρ2

4
1

(
√
Tρ + ε)(

√
tρ + ε)

dρ.

Using this representation, after some computation the desired result follows.
��

Similar computations leads us to the following estimates.

Lemma B.2 Suppose Z∗
1 ∈ C2(�) satisfies

|D2
x Z

∗
1(x)| ≤ 1

|x − q0| + ε
x ∈ �.

Then the solution Z̃1 of (B.1) satisfies

|D2
x Z̃1(x, t) ≤ C

ε + √
t

Lemma B.3 Suppose Z∗
1 ∈ C2(�) satisfies

|D2
x Z

∗
1(x)| ≤ 1

|x − q0| + ε
x ∈ �.

Then the solution Z̃1 of (B.1) satisfies for 0 ≤ t0 ≤ t1:

|∇x Z̃1(x, t1) − ∇x Z̃1(x, t0)| ≤ C

⎧

⎪⎪⎨

⎪⎪⎩

√
t1−√

t0√
t1

log
(

2 t1
t0

)

if t0 ≥ ε2

√
t1−√

t0√
t1

log
(

2 t1
ε2

)

if t0 ≤ ε2, t1 ≥ ε2
√
t1−√

t0
ε

if t1 ≤ ε2

Let us recall the norm ‖ ‖∗ defined in (6.5). As a corollary of the previous
estimates we have.

Lemma B.4 Suppose Z∗
0 ∈ C2(�). Then the solution Z̃∗ of (B.1) satisfies

|∇x Z̃
∗(x, t)| ≤ | log ε| ‖Z∗

0‖∗, t ≥ 0,

|Z∗(x, t) − Z∗(x, T )| ≤ C | log T |T − t√
T

‖Z∗
0‖∗,

|∇x Z̃1(x, t) − ∇x Z̃1(x, T )| ≤ C‖Z∗
0‖∗

{

| log ε| if 0 ≤ t ≤ ε2

| log ε|1/2 T−t
T

(

1 + log
( T
t

) )

if ε2 ≤ t ≤ T .
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Appendix C: Derivatives for the exterior problem

Corollary C.1 Let �(p, ξ,�, Z∗
0) be the solution to equation (6.22) con-

structed in Proposition 6.7. Let pl, ξ satisfy (6.1), (6.2) and pl = λeiωl ,
‖�l‖E ≤ 1, and ‖Z∗

0l‖∗ < ∞, l = 1, 2. Then

‖�(p1, ξ,�1, Z
∗
01) − �(p2, ξ,�2, Z

∗
02)‖ ,�,γ

≤ CT σ (‖�1 − �2‖E + ‖λ∗(ω̇1 − ω̇2)‖∞ + ‖Z∗
01 − Z∗

02‖∗).

Corollary C.1 gives a partial Lipschitz property of the exterior solution
�(p, ξ, φ) of (6.22) with respect to p, namely it only considers variations of
p = λeiω with respect to ω. We will need Lipschitz estimates for variations
of p = λeiω in λ and also variations with respect to ξ . These estimates are
obtained for �(p, ξ, φ) when considered as a function of the inner variable
(y, t) ∈ D2R .

For this let us introduce some notation. Suppose that ψ(x, t) is defined in
� × (0, T ). We let

ψ̃(y, t) = ψ(ξ(t) + λ(t)y, t), (y, t) ∈ D2R.

The following expression is ‖ψ‖ ,�,γ expressed in terms of ψ̃ (and restricted
to D2R):

‖ψ̃‖  ,�,γ := λ∗(0)−� 1

| log T |λ∗(0)R(0)
‖ψ̃‖L∞(D2R)

+ λ∗(0)−�−1‖∇yψ‖L∞(D2R)

+ sup
D2R

λ∗(t)−�−1R(t)−1 1

| log(T − t)| |ψ̃(y, t) − ψ̃(y, T )|

+ sup
(y,t)∈D2R

λ∗(t)−�−1|∇yψ̃(y, t) − ∇yψ̃(y, T )|

+ sup
(y,t),(y′,t)∈D2R

λ∗(t)−�−1R(t)2γ
|∇yψ̃(y, t) − ∇yψ̃(y′, t)|

|y − y′|2γ

+ sup λ∗(t)−�−1(λ∗(t)R(t))2γ
|∇yψ̃(y, t) − ∇yψ̃(x ′, t ′)|

|t − t ′|γ ,

where the last supremum is taken in the region

(y, t), (y, t ′),∈ D2R, |t − t ′| ≤ 1

10
(T − t).
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Corollary C.2 Let �(p, ξ, φ) be the solution to equation (6.22) in Proposi-
tion 6.7. Let pl = λl eiω, ξl satisfy (6.1), (6.2) and ‖φ‖∗,a,ν ≤ 1. Then for
�̃ ∈ (0,�) we have

‖�̃(p1, ξ1, φ) − �̃(p2, ξ2, φ)‖  ,�̃,γ

≤ C
[ ∥
∥
∥
λ1 − λ2

λ∗

∥
∥
∥
L∞ + ‖λ̇1 − λ̇2‖L∞ +

∥
∥
∥
ξ1 − ξ2

λ∗R

∥
∥
∥
L∞ +

∥
∥
∥
ξ̇1 − ξ̇2

R

∥
∥
∥
L∞

]

.

Let f (y, t) be a function satisfying

| f (y, t)| ≤ λ∗(t)νR(t)−aχBR(t),

and let ψ[λ, ξ ] be the solution of
⎧

⎪⎨

⎪⎩

ψt = �xψ + 1

λ(t)2
f

(
x − ξ

λ
, t

)

in R2 × (0, T )

ψ(x, 0) = 0 x ∈ R
2,

given by Duhamel’s formula.
Let

ψ̃[λ, ξ ](y, t) = ψ[λ, ξ ](ξ(t) + λ(t)y, t).

We consider the directional derivative with respect to λ of ψ̃ in the direction
of λ1, defined by

Dλψ̃[λ, ξ ][λ1] = lim
s→0

1

s

(

ψ̃[λ + sλ1, ξ ] − ψ̃[λ, ξ ]
)

and also the directional derivative with respect to ξ of ψ̃ in the direction of ξ1,
defined by

Dξ ψ̃[λ, ξ ][ξ1] = lim
s→0

1

s

(

ψ̃[λ, ξ + sξ1] − ψ̃[λ, ξ ]
)

.

C.1 Derivative with respect to λ

The proofs of the estimates below are based on Duhamel’s formula for the
solution:

ψ(x, t) =
∫ t

0

∫

R2

exp
(

−|x−x ′|2
4(t−s)

)

t − s

1

λ(s)2
f

(
x ′ − ξ(s)

λ(s)
, s

)

dx ′ds.
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We change variables writing x = ξ(t) + λ(t)y and x ′ = ξ(s) + λ(s)y′. Then

ψ̃(y, t) =
∫ t

0

∫

R2

exp
(

−|ξ(t)−ξ(s)+λ(t)y−λ(s)y′|2
4(t−s)

)

t − s
f (y′, s) dy′ds,

and we obtain the following formula for the directional derivative:

Dλψ̃[λ1](y, t)

= −1

2

∫ t

0

∫

R2

exp
(

−|ξ(t)−ξ(s)+λ(t)y−λ(s)y′|2
4(t−s)

)

(t − s)2

· (ξ(t) − ξ(s) + λ(t)y − λ(s)y′)
· (λ1(t)y − λ1(s)y

′) f (y′, s) dy′ds.

Lengthy but direct computations show the validity of the following esti-
mates.

Lemma C.1 We have

|Dλψ̃[λ, ξ ](λ1)(y, t)| ≤ C
(∥
∥
∥
λ1

λ

∥
∥
∥
L∞ + ‖λ̇1‖L∞

)

λ∗(0)νR(0)2−a,

and

|Dλψ̃[λ, ξ ](λ1)(y, t) − Dλψ̃[λ, ξ ](λ1)(y, T )|
≤ C

(∥
∥
∥
λ1

λ

∥
∥
∥
L∞ + ‖λ̇1‖L∞

)

λ∗(t)νR(t)2−a,

for |y| ≤ R(t), t ∈ (0, T ). On the other hand, for any σ > 0, γ ∈ (0, 1
2 ) there

is a C such that

|∇x Dλψ̃[λ, ξ ](λ1)(y, t) − ∇x Dλψ̃[λ, ξ ](λ1)(y, T )|
≤ C

(∥
∥
∥
λ1

λ

∥
∥
∥
L∞ + ‖λ̇1‖L∞

)

λ∗(t)ν−1−σ R(t)1−a,

|∇x Dλψ̃[λ, ξ ](λ1)(y1, t) − ∇x Dλψ̃[λ, ξ ](λ1)(y2, t)|
≤ C

( |y1 − y2|
R(t)

)γ (∥
∥
∥
λ1

λ

∥
∥
∥
L∞ + ‖λ̇1‖L∞

)

λ∗(t)ν−1−σ R(t)1−a,

|∇x Dλψ̃[λ, ξ ](λ1)(y, t2) − ∇x Dλψ̃[λ, ξ ](λ1)(y, t1)|
≤ C

(t2 − t1)γ

(λ∗(t2)R(t2))2γ

(∥
∥
∥
λ1

λ

∥
∥
∥
L∞ + ‖λ̇1‖L∞

)

λ∗(t2)ν−1−σ R(t2)
1−a

for t1, t2 in [0, T ] with 0 ≤ t2 − t1 ≤ 1
10 (T − t2) and |y| ≤ R(t2).
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We can derive a similar expression for the derivative with respect to ξ and
obtain the following estimates.

Lemma C.2 Assume that|ξ̇ (t)| ≤ C, |λ̇(t)| ≤ C, C1λ∗(t) ≤ λ(t) ≤ C2λ∗(t),
in (0, T ) and let R(t) = λ∗(t)−β , β < 1

2 , C,C1,C2 > 0. Then there is C such
that

|∇x Dξ ψ̃[λ, ξ ](ξ1)(y, t) − ∇x Dξ ψ̃[λ, ξ ](ξ1)(y, T )|
≤ C

(∥
∥
∥
ξ1(·) − ξ1(T )

λR

∥
∥
∥
L∞ +

∥
∥
∥
ξ̇1

R

∥
∥
∥
L∞

)

λ∗(t)ν−1R(t)1−a,

for |y| ≤ R(t), t ∈ (0, T ).
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