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a b s t r a c t

Two Lepp algorithms for quality Delaunay triangulation are discussed. Firstly a terminal triangles
centroid Delaunay algorithm is studied. For each bad quality triangle t, the algorithm uses the longest
edge propagating path (Lepp(t)) to find a couple of Delaunay terminal triangles (with largest angles
less than or equal to 120 degrees) sharing a common longest (terminal) edge. Then the centroid of the
terminal quadrilateral is Delaunay inserted in the mesh. Insertion of the midpoints of some constrained
edges are also performed to assure convergence close to the constrained edges. We prove algorithm
termination and that a graded, optimal size, 30 degrees triangulation is obtained, for any planar straight
line graph (PSLG) geometry with constrained angles greater than or equal to 30 degrees. We also prove
that the size of the final triangulation is optimal and that this size is independent of the processing
order of the bad triangles in the mesh. Next, by introducing the concept of non-improvable triangles
(with constrained angle < 30 degrees), we generalize the algorithm to deal with PSLG geometries with
N small constrained angles. Thus given a triangle size parameter δ for non-improvable triangles, the
generalized algorithm constructs a quality triangulation with non constrained angles ≥ 30 degrees and
at most N non-improvable triangles of size δ (longest edge ≤ δ). In practice the algorithms behave as
predicted by the theory.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Algorithms based on the longest edge bisection of triangles
were proposed and studied in [1,2] for adaptive and multigrid
finite element methods. Lepp bisection algorithm [3,4] is an ef-
ficient reformulation of previous longest edge algorithm for tri-
angulation refinement, that for each target triangle follows the
longest edge propagating path (Lepp) to find a couple of terminal
triangles sharing a common longest edge (terminal edge), which
are then refined by longest edge bisection. Consequently, local
refinement operations are used, and conforming triangulations
(where adjacent triangles either share a common edge or a com-
mon vertex) are maintained throughout the whole refinement
process. Due to the properties of the iterative longest edge bi-
section of triangles, refined triangulations that maintain the tri-
angulation quality (bounded smallest angle) are obtained, while
the proportion of quality triangles increases as the refinement
proceeds. Based on the properties of terminal triangles and ter-
minal edges it was also proved that optimal size triangulations
are obtained [4].
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A Lepp Delaunay algorithm for quality Delaunay triangulation,
based on the Delaunay insertion of the midpoint of the terminal
edge, was introduced by Rivara [3] and further studied by Bedre-
gal and Rivara [5]. An algorithm based on computing the centroid
Q of the terminal triangles which is Delaunay inserted, was
presented in [6] without proving termination, neither optimal
size property. In this paper we study a tuned, order independent
algorithm (where the size of the refined triangulation is almost
equal independently of the triangle processing order), based on
the Lepp centroid algorithm discussed in [6].

Alternative Delaunay refinement algorithms, based on selec-
ting the circumcenter (or a point close to the circumcenter) of
each skinny triangle, which is Delaunay inserted in the trian-
gulation have been studied by Ruppert [7], Shewchuk [8], and
by Erten an Üngor [9]. Lepp Delaunay algorithms and circum-
center based algorithms have analogous practical behavior, as
shown in the empirical study of Ref. [6], where the Triangle
software [8] (without later improvement criteria) was compared
with Lepp Delaunay algorithms. It is worth noting however that
Lepp based algorithms have the advantage of being order in-
dependent, in the sense that they construct triangulations of
approximately the same size independently of the processing
order of the bad quality triangles. Consequently they are simpler
methods than circumcenter based algorithms, easy to implement
and easy to parallelize. On the other hand, the implementation
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of circumcenter algorithms is rather cumbersome, and requires
processing triangles in bad-quality order. Section 6.3 of Ref. [10]
discusses several recommendations to implement Ruppert’s al-
gorithm efficiently, which include maintaining a queue of skinny
and oversized triangles throughout the refinement process.

Lepp algorithms. These are longest edge algorithms formu-
lated in terms of the concepts of terminal edges, terminal trian-
gles and the longest edge propagating path [3–6]. An edge E is a
terminal edge in triangulation τ if E is the longest edge of every
triangle that shares E. The triangles sharing E are called terminal
triangles (edge AB in Fig. 1(a)). If E is shared by two terminal
triangles then E is an interior edge; if E is shared by a single
terminal triangle then E is a boundary edge.

For any triangle t0 in τ , the longest edge propagating path of t0,
Lepp(t0), is the ordered sequence of increasing triangles {tj}N+1

0
such that tj is the neighbor triangle on the longest edge of tj−1
and where longest_edge tj > longest_edge tj−1, for j = 1, . . . ,N .
The process ends by finding the terminal edge E and a couple of
associated terminal triangles tN , tN+1. In Fig. 1(a), Lepp(t0) = {t0,
t1, t2, t3}.

For each target triangle t , the generic Lepp based algorithms
find an associated local largest edge shared by a couple of termi-
nal triangles. Then a point is selected inside the terminal triangles
(terminal edge midpoint or terminal triangles centroid) and in-
serted in the mesh. In the Lepp bisection algorithm, the midpoint
M of the terminal edge is inserted by longest edge bisection of the
terminal triangles as shown in Fig. 1(b). The process is repeated
until the target triangle t is destroyed. The generic algorithm is
as follows:

Algorithm Generic Lepp-based algorithm
Input : triangulation τ , set S of triangles to be refined/improved
Output : Refined triangulation τ ′

1: for each t in S do
2: while t remains in τ do
3: Find Lepp(t), terminal triangles t1, t2 and terminal edge

E (t2 can be null)
4: Select point P inside terminal triangles, insert P in the

mesh and update S
5: end while
6: end for
In the Lepp centroid Delaunay algorithm of this paper, for

each processing bad triangle t, if Lepp(t) finds a couple of non
constrained Delaunay terminal triangles, the centroid Q of the
quadrilateral formed by the terminal triangles is computed, and
Delaunay inserted in the mesh. For constrained edges two addi-
tional operations are used. The algorithm is presented in Section 2
together with a sketch of the analysis performed over the most
frequent operation, the Delaunay insertion of centroid Q.

This paper discusses a simple algorithm in 2-dimensions for
the construction of quality triangulations suitable for complex
practical applications such as those related with finite element
methods, as well as a set of robust improvement operations that
can be easily added to any meshing software to improve meshes.
The following summarizes the contributions (new and improved
results) of this paper.

• We prove that the algorithm produces 30◦ quality triangu-
lations for any planar straight line graph (PSLG) geometry
with constrained angles greater than or equal to 30◦ by
using the improvement properties of the operations OP1,
OP2, OP3 described in the next section, and the fact that
the average Lepp size tends to be 2. This is a strong new
result with respect to previous algorithms. Note that the
proof in Ruppert’s algorithm requires constrained angles
≥ 90◦, while the modified algorithm of Shewchuk requires
constrained angles ≥ 60◦.

Fig. 1. (a) AB is a terminal edge shared by terminal triangles {t2, t3} and
Lepp(t0) = {t0, t1, t2, t3}; (b) First step of Lepp-bisection algorithm for refining
t0 .

• The constrained Delaunay triangulation (CDT) of the PSLG
data defines an intuitive edge distribution function, which
identifies edge details and non-edge details in the PSLG
geometry (smallest edges in the CDT). We prove that the
algorithm constructs a graded quality triangulation around
the geometry details. This also allows us to prove termina-
tion and optimal size property. Note that we use the edge
distribution function instead of using the local feature size
function introduced by Ruppert [7].

• To deal with constrained edges in the PSLG geometry, the
algorithm does not require the edge encroachment test used
in Ruppert’s algorithm, but a simple test based on triangle
constrained edges.

• We prove that the size of the output (quality) triangulation
is independent of the processing order of the bad triangles
in the mesh, which is not the case of circumcircle based
algorithms.

• Due to the properties of Delaunay terminal triangles, the bad
obtuse triangles with largest angle > 120◦ cannot belong
to couples of Delaunay terminal triangles, and are elimi-
nated by edge swapping, assuming that an edge swapping
Delaunay algorithm is used.

• The average Lepp size is small and tends to be 2 as the re-
finement proceeds. This result was proved for triangulations
obtained by the Lepp bisection algorithm [5] and extends to
the algorithms of this paper. This contributes to prove the
optimal size property.

• Finally we generalize the tuned algorithm for PSLG geome-
tries with non-improvable angles (constrained angles < 30
degrees), an extension of the algorithm suitable for applica-
tions involving material changes.

This paper is organized as follows. In Section 2 we present
the algorithm based on three simple mesh operations, as well
as a sketch on the algorithm analysis based on studying the
improvement properties of three intermediate mesh operations,
not used in the implementation, but required in the analysis. In
Section 3 we review results on the iterative longest edge bisection
of triangles and on the properties of Lepp algorithms. In Section 4
we state improvement properties on the longest edge bisection of
triangles with largest angles ≤ 120◦ (the only triangles involved
in the mesh operations). In Section 5 we discuss improvement
properties of the operations performed over triangles with con-
strained edges. In Section 6 we present improvement results for
the simple centroid insertion over Delaunay terminal triangles.
In Section 7 we analyze the algorithm integrating the results of
the previous sections. In Section 8 we present empirical results
in agreement with the theory. In Section 9 we generalize the
algorithm for geometries with constrained angles < 30◦.
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Fig. 2. Operation OP1 applied over non constrained terminal triangles (t1, t2) in
triangulation TT.

Fig. 3. Intermediate operations used in the analysis of Operation OP1. Operation
IO1 performs longest edge bisections; Operation IO2 performs simple centroid
insertion.

2. The algorithm and sketch of the analysis

The (tuned) Lepp Delaunay centroid algorithm uses the follow-
ing three simple mesh operations:

OP1 Over a couple (t1, t2) of non constrained Delaunay terminal
triangles (see Fig. 2 TT), the centroid Q of the quadrilateral
formed by (t1, t2) is computed and Delaunay inserted in the
mesh as shown in Fig. 2 OP1.

OP2 Over a couple of Delaunay terminal triangles where one of
the triangles is bad and has a constrained second longest
edge E, the midpoint of E is selected and constrained De-
launay inserted in the mesh.

OP3 For constrained terminal edge, the longest edge bisection
of the terminal triangles (or triangle) is performed.

The operation OP2 was added to the algorithm discussed in
Ref. [6], and contributes to prove the stronger results on the
algorithm. A preliminary version of this paper was presented in
the 27th International Meshing Roundtable [11].

2.1. The algorithm for geometries with constrained angles ≥ 30◦

Assuming an input constrained Delaunay triangulation (CDT)
of a PSLG data with constrained angles ≥ 30◦; and angle tolerance
θtol ≤ 30◦, the algorithm is as follows.

Algorithm Tuned Terminal_Triangles_Centroid_Delaunay
_Algorithm
Input: CDT τ associated with PSLG data, angle tolerance θtol
Output: Refined triangulation τf with angles ≥ θtol.
1: Find S set of bad quality triangles
2: for each t in S (while S ̸= ∅) do

3: while t remains unrefined do
4: Use Lepp(t) to find Delaunay terminal triangles t1, t2 and

terminal edge E
5: if E is constrained (this includes t2 null) then
6: Perform Constrained Delaunay insertion of midpoint of

E
7: else
8: if there exists t (t1 or t2) such that αt < θtol and

second longest edge L is constrained then
9: Perform constrained Delaunay insertion of midpoint

of L
10: else
11: Compute centroid Q of terminal triangles, and per-

form constrained Delaunay insertion of Q
12: end if
13: end if
14: Update S
15: end while
16: end for

2.2. Sketch of the algorithm analysis

In the analysis we assume that the Delaunay insertion of
the centroid Q is performed by using an edge swapping Delau-
nay function as described by de Berg et al. [12] in section 9.3,
page 192.

Let us consider the most frequent operation OP1 in the algo-
rithm. Then assume that by processing a bad quality triangle t
with smallest angle αo < 30◦, the algorithm computes Lepp(t)
finding a couple of non constrained terminal triangle (t1, t2) as
shown in Fig. 2 TT, where t1 is a bad triangle. Then operation
OP1 applies and the centroid Q of the quadrilateral formed by
the terminal triangles (t1, t2) is computed and Delaunay inserted
in the mesh as shown in Fig. 2 OP1, which improves the involved
triangles.

To study the improvement properties of the operation OP1 we
need to consider three intermediate operations, not performed by
the algorithm, but required in the analysis.

IO1 The longest edge bisection of the triangles (t1, t2), which
introduces midpoint M and produces the triangulation of
Fig. 3 IO1.

IO2 the simple insertion of centroid Q obtained by joining Q
with the vertices of the quadrilateral AEBC Fig. 3 IO2, which
indeed corresponds to the Laplacian smoothing over vertex
M in triangulation of Fig. 3 IO1.

IO3 Delaunization of the triangulation obtained by operation
IO2 by applying the necessary edge swapping operations to
produce a full Delaunay triangulation. This completes the
operation OP1.

Important Remark. Each triangle belonging to a couple of
Delaunay terminal triangles has largest angle ≤ 120◦. This implies
that every bad triangle with largest angle > 120◦ is eliminated
by Delaunay swapping of its longest edge. In this sense, the
Delaunay edge swapping operation plays an important role in the
algorithm, by performing the implicit elimination of too obtuse
bad triangles in the mesh.

The algorithm analysis is roughly as follows. The operation IO1
produces both a triangle better than the terminal triangle and a
bad obtuse triangle. The next operation IO2 improves the new tri-
angles, especially the obtuse ones, while the Delaunay operation
IO3 further improves the mesh by producing more equilateral
triangles and eventually by eliminating (by edge swapping) the
too obtuse triangles (with angle > 120◦).
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Fig. 4. (a) Longest-edge bisection of triangle t(ABC) (b) First longest edge bisections that define a quasiequilateral triangle t(ABC).

3. Previous results

The iterative longest edge bisection of individual triangles was
studied by Rosenberg and Stenger [13] and by Stynes [14,15]. This
process produces a finite number of non-similar triangles with
bounded smallest angle, while the proportion of good triangles
(quasiequilateral triangles) increases as the refinement proceeds.
The following definitions are in order.

Definition 1. Given a triangle t(ABC) of vertices A, B, C , and
edges AB ≥ BC ≥ CA, the longest-edge bisection of t (or simply
bisection of t) is performed by joining the midpoint M of AB with
the opposite vertex C (see Fig. 4(a)).

Definition 2. Triangle t(ABC) of edges AB ≥ BC ≥ CA is
quasiequilateral if AC ≥ max{AB/2, CM} and MC ≥ BC/2 (see
Fig. 4 (b)).

Note that for quasiequilateral triangles (see Fig. 4(b)) after the
first median MC is introduced, the next longest edge bisections
only produce medians parallel to the edges of the initial triangle
ABC , which implies that at most, four similarly distinct triangles
are produced. Furthermore the following results hold [13–15]:

A1. Given any triangle t0 of smallest angle α0, the iterative
longest edge bisection of t0 and its descendants produces
a finite set S(t0) of similarly distinct triangles. Furthermore
each triangle t in S(t0) has smallest angle αt such that
αt ≥ α0/2.

A2. For any quasiequilateral triangle tqeq, the triangle set S(tqeq)
has at most, four similarly distinct triangles, all of which
are also quasiequilateral.

A3. For any non quasiequilateral triangle t0, consider the se-
quence of triangle sets Qj defined as follows: Q0 = {t0},
and for j ≥ 1, Qj is obtained by longest edge bisection of the
triangles of Qj−1. Then the triangle sets Qj improve with j as
follows: both the percentage of quasiequilateral triangles
and the area of t0 covered by these triangles, monotonically
increase as the iterative refinement proceeds.

Lepp bisection algorithm. As discussed in Section 1, the Lepp
bisection algorithm only performs longest edge bisections of cou-
ples of terminal triangles sharing a common longest (terminal)
edge.

The triangulations obtained are conforming and inherit prop-
erties A1, A2, A3 as follows: the iterative local/global use of
the Lepp bisection algorithm (and previous longest edge algo-
rithms) produces sequences of nested, refined and conforming
triangulations {τj} such that B1, B2 hold:

B1. For any triangle t0 in τ0, the refined triangles nested in t0
belong to a finite set S(t0) of similarly distinct triangles, all
of which have smallest angle α ≥ α0/2, where α0 is the
smallest angle of t0.

B2. The refined triangulations {τj} improve with j in the following
senses: both the percentage of quasiequilateral triangles,
and the area covered by these triangles, increase as the
refinement proceeds.

Later Bedregal and Rivara [4] proved that there exists a close
relationship between quasiequilateral triangles and terminal tri-
angles (the proportion of terminal triangles increases as
quasiequilateral triangles increases), which imply B3. Further-
more, bounds on the number of triangle partitions performed
inside a triangle in a Lepp sequence, summarized in assertion B4,
were stated by Bedregal and Rivara [4]. Finally assertions B3 and
B4 together imply B5.

B3. The proportion of terminal triangles increases (approaching
1) as the refinement proceeds and the average length of
Lepp(t) tends to be 2 as the refinement proceeds.

B4. The number of longest edge bisections performed in the
interior of a triangle t to make it conforming in a refining
Lepp sequence, is constant and less than 3 in most cases.
This constant is bounded by O(log2(1/α)) for triangles with
arbitrary smallest angle α.

B5. Lepp bisection algorithm produces optimal size triangula-
tions.

Lepp Delaunay algorithms. These allow the construction of
quality Delaunay triangulations of planar straight line graph
(PSLG) geometries. Starting from the bad quality Delaunay tri-
angulation of the PSLG input data, for each bad quality triangle
t, the Lepp(t) is computed to find a couple of Delaunay terminal
triangles over which a point is Delaunay inserted in the mesh. It
is worth noting that Delaunay terminal triangles play a crucial
role in Lepp Delaunay algorithms which have the properties
summarized in the next theorems [3,16,17].

Theorem 1. For any pair of Delaunay terminal triangles t1, t2
sharing a terminal edge AB it holds:

(a) Largest angle (ti) ≤ 2π/3 for i=1,2
(b) At most one of the triangles t1, t2 is obtuse

Proof (Part (a) Sketch). Couples of Delaunay terminal triangles
ABC , ABD (see Fig. 5) are neighbor triangles that simultaneously
satisfy that AB is the common longest edge of the both triangles,
and that triangles ABC and ABD are locally Delaunay, which
implies that vertex D is outside the circumcircle of triangle ABC .
Both conditions together imply that vertex D must belong to
the shadowed region R limited by the circumcircle of triangle
ABC and the circles of vertices A, B and radius AB. In the case
that ∡ACB = 120◦, R reduces to one point D′ (triangle AD′B
is equilateral). Consequently for ∡ ACB greater than 120◦, R is
empty and assertion (a) follows. □

The Lepp Delaunay algorithms inherit the properties B3 and B5
as stated in the following theorem. For a proof see references [4,5]
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Fig. 5. Delaunay terminal triangles ABC , ABD; vertex D belongs to region ℜ.

Fig. 6. Notation for longest edge bisection. Angles in longest edge bisection of
triangle ABC with AB ≥ BC ≥ AC .

Theorem 2. For the triangulations obtained by the Lepp Delaunay
algorithms the following properties hold:

(a) The proportion of terminal triangles increases (approaching 1)
as the refinement proceeds and the average length of Lepp(t)
tends to be 2 as the refinement proceeds.

(b) Lepp Delaunay algorithms produce optimal size triangulations
(of size by a constant equal to the size of the smallest quality
triangulation)

Remark. Since the algorithms of this paper insert points in the
interior of couples of Delaunay terminal triangles, only triangles
with largest angle less than or equal to 120◦ can become a termi-
nal triangle throughout the algorithm processing. The following
definition identifies the triangles that can become a terminal
triangle throughout the algorithm processing.

Definition 3. We will say that t is a PD terminal triangle (po-
tentially a Delaunay terminal triangle) if the largestangle(t) ≤

120◦.

Corollary 1. Non-PD terminal triangles are eliminated by swapping
its longest edge in a delaunization process.

At this point we need to emphasize the improvement property
of the Delaunay edge swapping operation, stated by Sibson [18].
A proof can be found in Ref. [17].

Proposition 1. Given any couple t1, t2 of non Delaunay neighbor
triangles, then the swapping of the common edge produces a couple
of locally Delaunay triangles such that the six new angles are better
(by pairs) than the six angles of t1.t2.

4. Angle bounds on the first bisections of triangles

Here we present revised results with respect to those of ref-
erences [11]. We center the study on triangles with largest angle
≤ 120◦, and follow the notation of references [16,19].

4.1. Triangles taxonomy

Let us consider the first longest edge bisection of a triangle
ABC where AB ≥ BC ≥ AC , which produces a better triangle tB
and an obtuse triangle tOB (see Fig. 6). Considering this notation
it is rather easy to prove the following lemma:

Lemma 1.

(a) if t is a right angled triangle then α1 = α0, β1 = β0,
AM = CM

(b) if t is an acute triangle then α1 < α0, β1 < β0, AM < CM;
and

(c) if t is an obtuse triangle then α1 > α0, β1 > β0, AM > CM.

These properties allow proving the assertions (b), (c), (d) of
Lemma 2 [16]. The bound on α1 follows from the strong property
A1 of Section 3.

Lemma 2. The following angle bounds hold [16].

(a) α1 ≥ α0/2, α2 ≥ 90◦, β2 ≤ 90◦, β1 ≥ π/6, β1 ≥ α1
(b) β2 = α0 + α1 ≥ 3α0/2
(c) if t is obtuse, then α1 > α0 and β2 ≥ 2α0
(d) if t is acute, then α1 < α0 and tB is acute

Next we introduce the taxonomy of Fig. 7, which is a variation
of those discussed by Simpson and Rivara [16] and by Gutierrez
et al. [19]. This is obtained by fixing the longest edge AB of
triangle ABC considering AB ≥ BC ≥ CA, and studying which is
the longest edge of triangle AMC and the longest edge of triangle
CMN (see Fig. 6 ) according to the position of vertex C , which is
situated in the region limited by lines AM, MX and arc AX in Fig. 7.

Note that the half circle of vertex M and radius AM separates
obtuse and acute triangles. Arcs AR and MR respectively corre-
spond to isosceles triangles with edges AM = CM and edges
AC = AM; while arc ZW corresponds to the circle of center Ñ
(where AÑ = AB/3) and radius AÑ , corresponding to the triangles
for which CB = 2CM .

The set of quasiequilateral triangles is the union of region R1
(acute triangles) and region R2 (obtuse triangles). By studying the
boundaries of regions R1 and R2 it is easy to see that R1

⋃
R2

correspond to quasiequilateral triangles and that most of these
triangles (vertex C by above line SW ) have the smallest angles
≥ 30◦. Only for vertex C in region SZW , the smallest angle α0
is lightly < 30◦. The worst case corresponds to C = Z where
tg(α0(Z)) =

√
7/5 > 27.88◦). Note that most of the triangles of

R3 also have the smallest angle ≥ 30◦.
Finally arc AW corresponds to points C for which the largest

angle is equal to 120◦, defined by the circle of center W ′ and
radius WW ′, where points W ,W ′ are symmetric with respect to
line AB.

These results are summarized in the parts (a), (b), (c) of
Lemma 3. Part (d) was proved in [16,19]

Lemma 3.

(a) Consider the taxonomy of Fig. 7. Then for quasiequilateral
triangles in region TSWX, α0 ≥ 30◦;

(b) For quasiequilateral triangles in region SZW, α0 > 27.88.
(c) The non PD terminal triangles (with angle > 120◦) have

vertex C in region AMW.
(d) Any triangle in region R3 produces a quasiequilateral triangle

tB.
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Fig. 7. Taxonomy on longest edge bisection of triangles t(ABC) with AB ≥ BC
≥ CA.

4.2. Characterization of triangles tB, tOB

Here we study the triangles tB, tOB obtained by longest edge
bisection of triangle t with angles ≤ 120◦. Remember that the
angles α0, α1 are obtained by longest edge bisection of t(ABC) as
shown in Fig. 6. In addition we call α0(tB), α0(tOB) to the smallest
angles of tB, tOB.

Lemma 4. Given a triangle t, then:

(a) If t is an acute triangle with α0 ≤ 30◦, then α1 ≥ 0.79α0,
β2 ≥ 1.79α0 and α0(tB) ≥ 1.79α0. Furthermore α0 approaches
α1 as α0 decreases.

(b) If t is an obtuse triangle with largest angle ≤ 120◦ and smallest
angle α0 ≤ 30, then β0 > 30◦, β1 > 90◦

−α0 > 60◦, β2 = 2α0
and α0(tB) ≥ Min {30, 2α0}.

(c) If α0 ≥ 30◦, then α0(tB) ≥ 30◦ and tB is quasiequilateral.
(d) If t is quasiequilateral with α0 ≥ 30◦, then α0(tB) ≥ 30◦ and

α0(tOB) > 27.88◦.
(e) If α0 > 16.8◦, then α0(tB) ≥ 30◦.

Proof. The proof of assertion (a) follows by studying the case of
the acute triangles of region UAS in Fig. 7, where the worst case
corresponds to point U for which α1 ≈ 23.79◦. For more details
see Ref. [16,17]. Assertion (b) follows from Lemma 2. Parts (c), (d),
follow from Lemma 3. Assertion (e) follows from part (a) of this
lemma. □

The following Corollary and Lemma summarizes improvement
results for the longest edge bisection of PD-terminal triangles
(angles ≤ 120◦), which are the only triangles involved in the
operations OP1, OP2 applied over couples of Delaunay terminal
triangles in the algorithm. The non PD terminal triangles corre-
spond to the obtuse triangles of regionWAM in Fig. 7, with largest
angle > 120◦.

Corollary 2. Given a PD-Terminal triangle t, then

(a) tB is a PD-terminal triangle
(b) If α0 ≤ 30◦, the tB is such that α0(tB) ≥ Min{30◦, Bα(t0)},

where either B = 1.79 if t is acute, or B = 2 if t is obtuse
(c) If t is quasi equilateral then tB, tOB are quasiequilateral
(d) For triangles with α ≥ 30◦ (vertex C by above edge UB in

Fig. 8), tB is quasiequilateral

In Lemma 5 we further characterize tOB triangles associated to
PD-terminal triangles.

Lemma 5. Given any PD-terminal triangle t, then

Fig. 8. For constrained second longest edge CB of a bad quality terminal triangle,
the midpoint M ′ of CB is constrained Delaunay inserted in the mesh instead
of M.

(a) If t is acute and α0 ≤ 30◦, then tOB is a non-PD terminal
triangle.

(b) If t is obtuse and α0 > 22◦, then tOB can be a PD terminal
triangle. If α < 22◦ the tOB is a non-PD terminal triangle.

Proof. Part (a) follows from the fact that for acute triangles
α1 < α0, which in turn implies that β2 = α1 + α2 < 60◦ and
consequently tOB is a non-PD terminal triangle. Part (b) follows
from the fact that for obtuse triangles, α1 > α0. In [17] it was
proved that largest angle equal to 120◦ and α1+α0 = 60◦ implies
that α0 > 22◦. Thus, only for some triangles with α0 > 22◦ it can
hold α1 + α0 > 60◦ and tOB can be a PD terminal triangle. □

Remark. The longest edge bisection of a triangle close to the
equilateral one, introduces two quasiequilateral triangles tB and
tOB, such that α0(tB) ≥ 30◦ and where tOB can have a smallest
angle 27.88 ≤ α1 ≤ 30◦.

5. Operations over triangles with constrained edges

5.1. Triangles with constrained second longest edge

Here we study the operation OP2. For bad quality terminal
triangle ABC, where AB ≥ BC ≥ AC with a constrained sec-
ond longest edge CB, the constrained Delaunay insertion of the
midpoint M ′ of CB in Fig. 8 is performed,

For PD terminal triangles the following properties hold:

Theorem 3. Let t (ABC) be any PD terminal triangle (largest angle
≤ 120◦) with smallest angle < 30◦, and second longest edge CB of
midpoint M ′ (Fig. 8). Then the bisection of t by the edge CB produces
a non-PD terminal triangle AM ′B.

Proof. Firstly consider largest angle 120◦
≤ γ ≤ 90◦. Then

γ is also the largest angle of triangle CAM ′ which implies that
AM ′ > CM ′

= M ′B. This in turn implies that δ < α < 30◦ and
γ ′ > 120◦.

Next consider an isosceles acute triangle with edges AB = CB
and smallest angle α. In this case γ = (180◦

− α)/2 which is
also the largest angle of triangle CAM ′ and the result also follows.
Finally for any acute triangle with α < 30◦, its largest angle
γ > (180−α)/2 and using a reasoning analogous to the previous
ones, the result follows. □

Corollary 3. The operation OP2 always performs swapping of the
longest edge AB to delaunize the mesh (see Fig. 9 ). This improves
the mesh by destroying the bad (non-PD) triangle AM ′B by Delaunay
swapping of edge AB.

It is worth noting that the insertion of the midpoint of a
constrained second longest edge CB avoids the insertion of points
unnecessarily close to the constrained edges. Thus for very long
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Fig. 9. Operation OP2 (Delaunay insertion of midpoint M’) performs swapping
of edge AB.

polygons (such as a for long quadrilaterals), the algorithm re-
peatedly introduces a midpoint of either a terminal edge or of
a constrained second longest edge, as shown in Fig. 10.

Note that the previous Lepp Delaunay midpoint algorithm
requires an analogous operation to guarantee convergence [3].
The previous Lepp Delaunay centroid algorithm of references [6]
does not use this operation, but introduces more points than the
tuned algorithm close to constrained edges.

5.2. Triangles with constrained smallest angle

The following Lemma assures that for triangle t with 30◦ con-
strained angle the algorithm produces a finite number of quality
triangles in the interior of t when triangle t is reached throughout
an interior Lepp.

Lemma 6. Let t be any triangle with 30◦ constrained angle. Then
(a) If t is obtuse, the tuned algorithm produces quality triangles in
the interior of t; (b) If t is acute the tuned algorithm inserts three
points in the constrained edges, as shown in Fig. 11, to produce
quality triangles in the interior of t, excepting triangle EP3D, which
is improved using the simple centroid insertion operation inside
Delaunay terminal triangle of edge ED, if this is a good triangle.

Proof (a). Note that, according to Lemma 1(a), the longest edge
bisection of a 30◦ right angled triangle produces a good triangle
with α1 = α0 = 30◦ (see Fig. 6). Thus the refinement propagation
will introduce one midpoint over the constrained longest edge
and eventually one midpoint over the constrained second longest
edge (if the propagation arrives by this edge). If t is obtuse then

Fig. 11. Acute isosceles triangle with 30◦ constrained smallest angle (edges EF,
DF are constrained).

according to part (c) of Lemma 1, α1 > α0 = 30◦, and analogously
to the right triangle case, the result follows.

(b) Consider the acute isosceles triangle DEF of Fig. 11 with
constrained smallest angle 30◦ and longest edges DF, EF of length
equal to 1. If triangle DEF becomes terminal, a vertex P1 is
constrained Delaunay inserted over constrained longest edge EF
(or DF) producing triangles DEP1 and DP1F . Note that DE = 2 sin
15◦

≈ 0.5176. Next, using the cosine theorem we find that DP1 ≈

0.6196 and (smallest angle) ̸ FDP1 ≈ 23.79◦. Then by processing
triangle DP1F , the algorithm will perform constrained Delaunay
insertion of point P2 over constrained longest edge DF, which
introduces new bad triangle DP1P2 whose processing will find ter-
minal triangles DP1P2, DEP1. Since triangle DP1P2 has constrained
second longest edge DP2, the point P3 midpoint of DP2 will be
Delaunay inserted producing the triangles of Fig. 11(b). Using

Fig. 10. For long quadrilateral both the insertion over a constrained second longest edge (operation OP2) and over a constrained longest edge (operation OP3) are
repeatedly used.
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Fig. 12. Centroid refinement of terminal triangles ABC , ADB.

repeatedly the cosine theorem to compute edges and angles we
find that triangles P3EP1 and P2P3P1 are good triangles of smallest
angles 46.89◦ and 36.7 approximately, while triangle DEP3 is a
bad triangle with smallest angle ≈ 28.1◦, longest edge DE and
non constrained second longest edge EP3. Consequently this will
be improved by using the standard centroid insertion operation
where Q will be inside the neighbor Delaunay terminal triangle
if this is good. □

6. Improvement properties of the simple centroid insertion

Here we study the intermediate operation IO2, correspond-
ing to the simple insertion of the centroid Q over a couple of
Delaunay terminal triangles as shown in Fig. 12. This is per-
formed by joining Q with the four vertices, instead of performing
longest edge bisections. This operation corresponds to a Laplacian
smoothing of the terminal edge midpoint M (inserted by longest
edge bisection of the terminal triangles) which improves the
triangles obtained by longest edge bisection. It is well known
that the Laplacian smoothing works well for convex geometries
[20,21], and couples of terminal triangles always define a convex
quadrilateral. The following theorem states further improvement
results for couples of Delaunay terminal triangles.

Theorem 4. Let us consider any couple of Delaunay terminal
triangles (t1, t2) where t1(ABC) is bad and worst than the triangle
t2(ADB) as shown in Fig. 13. Then, considering the coordinate system
of center A and x-axis over edge AB, with length of AB equal to 1, it
holds that:

(a) The centroid Q of (t1, t2) is situated inside the better triangle
t2 and yQ < 0. Furthermore −0.217 < yQ < 0

(b) For any triangle t1, it holds that 0.25 + xC/4 < xQ <
0.375 + xD/4 < 0.625

(c) If t1 is obtuse then xQ < 0.375 + xI/4, where I is the right
intersection point of the circumcircle of t1(ABC) and the arc
of circle of center A and radius AB, as shown in Fig. 5

Proof. The first part of assertion (a) comes from Theorem 1. The
lower bound on yK comes from the case of terminal triangles of
angles (30◦, 30◦, 120◦) and (60◦, 60◦, 60◦).

Assertion (b) comes from computing xQ using the coordinate
system described in the body of this theorem. Thus, xQ = 0.25+

(xC + xD)/4. Since triangle t1 has largest angle ≤ 120◦, then
xC < 1/2, and the first part of the upper bound of assertion (b)
follows. Since xD < 1, the 0.625 bound follows. The lower bound
is quite direct.

Next we prove assertion (c). If t is obtuse, then xD < xI , where I
is the right intersection point of the circles of Fig. 5, and assertion
(c) follows. □

Fig. 13. Delaunay terminal triangles t1(ABC), t2(BAD). Centroid Q is inside
rectangle EFGH.

Fig. 14. Operation OP1 over two bad skinny Delaunay terminal triangles with
opposite and almost equal smallest angles α0, α

′

0 .

Corollary 4.

(a) For Q inside polygon MEFM’, the simple insertion of Q (oper-
ation IO2) improves the angles α0, α1.

(b) For Q inside polygon MM’GH, the simple insertion of Q (oper-
ation IO2) improves the angle α0.

Note that another improvement case occurs when the Delau-
nay terminal triangles correspond to two acute bad quality tri-
angles with opposite and almost equal smallest angles as shown
in Fig. 14. Here the centroid Q (close to the terminal edge)
is inserted by using operation IO2 producing two better acute
triangles CAQ and QDB and two very obtuse triangles (largest
angle > 120◦) QAD and CQB, which are eliminated by swapping
of their respective longest edges.

7. Analysis of the tuned terminal triangles centroid Delaunay
algorithm of Section 2.1

Consider a general PSLG (planar straight line graph) geome-
try, defined by a set of points, edges and eventually polygonal
objects defining exterior boundaries and interior holes. Any PSLG
geometry has edge details and non-edge details. Edge details are
small edges in the PSLG data, while non edge details are defined
by two close isolated interior points, an isolated point close to an
input edge, two edges with close points, constrained angles either
over the boundaries or interior to the geometry, and vertices over
these angles. For an illustration see Fig. 15(a).

Note that the constrained Delaunay triangulation (CDT) of the
input PSLG data intuitively defines an edge distribution func-
tion to which an optimal size good quality triangulation should
be adapted. More specifically this identifies edge details and
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Fig. 15. (a) PSLG geometry; (b) constrained Delaunay triangulation identifies
edge details and non edge details.

non-edge details by means of skinny triangles with associated
(constrained or non constrained) small edges, very obtuse trian-
gles with largest angled vertex close to an edge data, and triangles
with constrained smallest angle. Fig. 15(b) shows the constrained
Delaunay triangulation of the example of Fig. 15(a). We will prove
that the algorithm of Section 2.1 produces a graded quality mesh
with smaller good quality triangles around the PSLG geometry
details.

Theorem 5. Consider any PSLG geometry with constrained an-
gles ≥ 30◦ and the input constrained Delaunay triangulation τ0
associated with the PSLG data. Then for angle tolerance θtol = 30◦,

(a) The algorithm finishes with a graded 30◦ constrained Delaunay
triangulation.

(b) The final triangulation is size optimal.

Proof. Given θtol = 30◦, consider the bad triangles with angles
less than 30◦. To prove part (a), we will study five cases of triangle
processing:

Case 1. Non PD terminal triangles. Each bad quality triangle t
(with largest angle > 120◦ either with one or two bad angles)
is a non PD terminal triangle which cannot become Delaunay
terminal. Then according to Corollary 1, this is eliminated by
swapping its longest edge, either by processing t or by processing
a Lepp-neighbor bad quality triangle. This operation produces
locally more equilateral triangles.

Case 2. Operation OP1 over bad PD terminal triangles. Consider
a couple of non constrained Delaunay terminal triangles. Let
t(ABC) with AB ≥ BC ≥ AC be the worst triangle in the couple
with α0 < 30◦. Here we will consider the three intermediate
operations IO1, IO2, IO3 to perform the operation OP1.

According to part(b) of Corollary 2, the longest edge bisection
of t would introduce the midpoint M of AB, a better triangle
tB(ACM) with α0(tB) ≥ 1.79α0, and a bad obtuse triangle tOB.
Next, the simple centroid insertion of Q (operation IO2) corre-
sponds to the Laplacian smoothing of point M , which according
to Theorem 4 and Corollary 4, improves the worst angles of
tOB (introduced by the longest edge bisection) and avoids the
repetition of a triangle similar to triangle ABC .

Finally the operation IO3 is performed, which delaunize the
current triangulation. If triangle CQB is a non PD terminal triangle,
then triangle CQB is eliminated (and improved) by swapping
edge CB, either when Q is Delaunay inserted (if there exists a
vertex inside the (big) circumcircle of triangle CQB), or by later
processing CBQ , or by processing a bad quality neighbor triangle.
If triangle CQB is a PD terminal triangle and still bad, then by
processing triangle CQB this can become a terminal triangle and

Fig. 16. Triangle ABC with α0 < 30◦ . Better triangle ACQ and CQB are obtained
with respect to those obtained by longest edge bisection.

Fig. 17. Points Qi are introduced until triangle CAQn is good.

the centroid Q̃ of CQB and its neighbor triangle is inserted, which
improves the angles (see Fig. 16).
Repetitive use of operation OP1. According to part (e) of
Lemma 4, for α0 < 16.8◦, triangle CAQ can still be bad. Then
for small α0, a finite sequence of points Qi need to be inserted in
the mesh until a good triangle CAQn is obtained (see Fig. 17). The
process finishes without refining edge AC (AC is a local smallest
edge), unless a close smaller edge induces neighbor refinement.
See the termination analysis for more details.

Case 3. Terminal triangles with constrained edges. For Delau-
nay terminal triangles with the constrained terminal edge, the
constrained Delaunay insertion of the terminal edge midpoint
is performed and the improvement process continues. For bad
triangles with constrained second edge E, the simple constrained
Delaunay insertion of the midpoint of E is performed, which ac-
cording to Corollary 3 improves the triangles close to constrained
edges in the PSLG geometry.

Case 4. Couples of good Delaunay terminal triangles. For cou-
ples of good quality Delaunay terminal triangles with smallest
angles ≥ 30◦, the centroid Q of the terminal quadrilateral is
inserted, which produces four quasiequilateral triangles better
than those obtained by longest edge bisection. This is equivalent
to a Laplacian smoothing of the terminal edge midpoint intro-
duced by the longest edge bisection of the terminal triangles.
This operation improves eventual angles lightly less than 30◦ that
could have been introduced by the longest edge bisection.

Case 5. Triangles with 30◦ constrained angles. Here, according
to Lemma 6, good quality triangles are obtained inside t by
inserting a small number of points over the constrained edges.

Termination. The proof on termination is based on the fact that
for skinny triangles and according to part (b) of Corollary 2, a
sequence of Qi points are added to the mesh such that the new
smallest angles increase at least by a factor of (1.79)i until a good
triangle is obtained. Thus the algorithm stops when every triangle
of local smallest edge in τ0 becomes good (smallest angle ≥ 30◦),
and every remaining intermediate bad quality triangle t is pro-
cessed or eliminated by edge swapping; and every intermediate
almost good terminal triangle is improved by centroid insertion.
This produces a good quality triangulation graded around the
PSLG geometry details. Note that the smallest edge AC is never
refined, unless there exists a smaller bad quality triangle t∗ such
that Lepp(t∗) contains triangle AQnC (see Fig. 18).

Optimal size property. This follows from the termination reason-
ing together with the fact that the average Lepp size tends to be
2 as the refinement proceeds (part a) of Theorem 2). □
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Table 1
Algorithms comparison, Key test case, θtol = 33o .
Triangle processing Del centroid algorithm Ruppert’s algorithm [8]

Without order Without order Ordering triangles

Final Mesh size 229 450 249

Table 2
Mesh sizes for Delaunay centroid algorithm as a function of θtol .

Superior
lake

Neuss
geometry

Square Chesapeake
bay

Long
rectangle

Key
geometry

size(τ0) size(τ0) size(τ0) size(τ0) size(τ0) size(τ0)
528 3070 9 14,262 2 54

θtol size(τ0) size(τ0) size(τ0) size(τ0) size(τ0) size(τ0)

30 1835 8338 54 36,803 19 170
33 2273 9939 65 45,883 22 229
34 2512 11,054 70 52,027 25 262
35 3017 12,742 81 63,138 27 349

Table 3
Percentage of triangles added with respect to current version of Trianglea .
θtol Lake

superior
Neuss
geometry

Square Chesapeake
Bay

Long
rectangle

Key
geometry

30 0.44 13.18 24.07 4.82 −15.79 22.94
33 −528 1201 16.92 2.41 0.00 10.92
34 −5.29 −2.70 20.00 3.61 −68.00 −8.78
35 −∞ −∞ 24.69 −∞ −207.41 5.44

aTriangle processes skinny and oversized triangles in order and uses a boundary preprocess step.

Fig. 18. Neighbor triangle t∗(ACF ) induces refinement of triangle AQnC to obtain
a graded refined triangulation around edge FA.

Theorem 6. The algorithm is order independent, in the sense
that the mesh size is approximately the same by processing the bad
triangles in arbitrary order.

Proof. It is easy to see that the set of terminal edges in the
triangulation induces a mesh partition so that every triangle in
the partition reaches the same terminal edge. Thus the processing
of several bad quality triangles in each partition (independently
of their quality) find the same couple of terminal triangles. □

8. Empirical study for geometries with constrained angles ≥

30◦

In Table 1 we compare our algorithm with results reported
by Shewchuk [8] on Ruppert’s algorithm (without the off-center
preprocess of Üngor). Next we present results on the behavior of
the Delaunay centroid algorithm for the six geometries of Fig. 19.
Table 2 includes final mesh sizes for θtol = 30◦, 33◦, 34◦, 35◦

obtained with our algorithm. See the final triangulations for θtol =

30◦ for these examples in Fig. 19. Table 3 compares the number
of triangles obtained with our software, with respect to those
obtained with the current version of Triangle [22] which pro-
cesses skinny and oversized triangles in order, and includes a
boundary preprocess technique due to Üngor [9] to minimize
the size of the final triangulation. A negative number means our

software introduces less triangles than Triangle, while the -∞
symbol means that Triangle does not converge.

It should be noted that: (i) our results are not far from those
obtained by the current optimized version of Triangle; (ii) our
software works properly until θtol = 35◦ for all the test cases,
while Triangle fails for 50% of the test cases (-∞ symbol) for
θtol = 35◦; iii) Note that for the key test case and θtol =

33◦, our algorithm produces a final triangulation with 229 trian-
gles against 450 triangles obtained with pure Ruppert algorithm
(first-come first split bad quality triangle) and 249 triangles by
always processing the worst existing triangle, as reported by
Shewchuk [8].

Furthermore, for all the test cases, the average Lepp size is less
than 3 from the beginning and quickly becomes less than 2.5, as
the refinement proceeds. The algorithm is an easy to implement,
order independent, robust method, suitable for use in adaptive
finite element methods where good quality meshes are needed
to assure convergence. With an adequate triangle data structure
that keeps information on neighbor triangles, the refinement is of
cost O(N) where N is the number of points inserted.

9. Algorithm for PSLG geometries with constrained angles <
30◦

In this section we consider a PSLG geometry with N con-
strained angles < 30◦, which implies that the associated CDT
will have N non-improvable triangles with constrained angle <

30◦. However if we introduce and edge size parameter δ, each
non-improvable triangle t can be refined until obtaining a non-
improvable triangle of size δ (longest edge < δ) and a set of
quality triangles in the interior of t. The algorithm is as follows:
Algorithm Algorithm_For_Geometries_With_Small_Constrained
_Angles
Input: CDT τ associated with PSLG data, angles tolerance θtol, and
finite number N of constrained angles < 30o

Output: Refined triangulation τf with non constrained angles ≥

θtol, and N δ-size small constrained triangles.
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Fig. 19. Quality meshes for θtol = 30◦ (a) lake Superior shape; (b) Neuss shape; (c) Square with skinny triangles; (d) Chesapeake B bay shape; (e) Long rectangle;
(f) Key shape.

1: Find S set of bad quality triangles and set S̃ of non-improvable
triangles (constrained angle < θtol )

2: Initialize W set of processing triangles with set S and triangles
of S̃ with longest edge > δ

3: for each t in W (while W ̸= ∅) do
4: while t remains unrefined do
5: Use Lepp(t) to find Delaunay terminal triangles t1, t2 and

terminal edge E
6: if E is constrained (this includes t2 null) then
7: Perform Constrained Delaunay insertion of midpoint of

E
8: else
9: if there exists t (t1 or t2) such that αt < θtol and

second longest edge L is constrained then
10: Perform constrained Delaunay insertion of midpoint

of L
11: else
12: Compute centroid Q of terminal triangles, and per-

form constrained Delaunay insertion of Q
13: end if
14: end if
15: Update S, S̃
16: Update W eliminating refined triangles and adding new

triangles with non constrained angle < θtol; and adding
new non-improvable triangles with longest edge > δ

17: end while
18: end for

Theorem 7. Given a parameter δ, for each non-improvable trian-
gle t, the algorithm produces a smaller non-improvable triangle of
longest edge < δ, and a set of quality triangles in the interior of t.

Proof. The algorithm works until inserting points P, Q to obtain
a triangle of size δ, (see Fig. 20 ) by processing triangles in the
quadrilateral CAQP by using the edge constrained operations. □

Fig. 20. For small angle ABC with constrained edges AB, CB, the algorithm
finishes with a triangle PQB of size δ and quality triangles in region AQPC.

The use of the algorithm for interior small constrained angles
is illustrated in Figs. 21, 22, 23, for sets of (shadowed) small
constrained angles.

10. Conclusions

We have discussed a simple, easy to implement and robust
Lepp algorithm for the construction of quality Delaunay trian-
gulations. This uses three simple mesh operations over couples
of Delaunay triangles sharing a common longest (terminal) edge.
These are Delaunay insertion of either the centroid Q, or the mid-
point of a constrained second edge, and longest edge bisection of
the triangles when the terminal edge is constrained.

For any input PSLG geometry with constrained angles ≥ 30◦,
the algorithm produces an optimal size triangulation (of size by a
factor equal to the smallest possible one) with angles ≥ 30◦, and
where the mesh size is independent of the triangle processing
order. The last property makes the algorithm very appropriate for
parallel implementation.

We also discussed an algorithm for geometries including con-
strained angles < 30◦. Obviously these angles cannot be im-
proved, but are isolated when refinement around them is needed.
This is important for geometries with complex material changes
such a those required for semiconductor applications.
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Fig. 21. Rectangle with interior (small) shadowed constrained angles of 10◦, 15◦, 20◦ . (a) Initial constrained Delaunay triangulation. Triangulations (b), (c) correspond
to different δ values.

Fig. 22. Rectangle with interior (small) shadowed constrained angles of 7◦, 12◦, 9◦, 6◦, 9◦, 8◦ . (a) Initial constrained Delaunay triangulation. Triangulations (b), (c)
correspond to different δ values.

It is worth noting that we have been able to develop al-
gorithms that produce almost Delaunay triangulations, without
using explicit Delaunay point insertion operations, but simpler

mesh operations based on those described in this paper. We have
developed research in this direction, which will be published
elsewhere.



M.-C. Rivara and J. Diaz / Computer-Aided Design 125 (2020) 102870 13

Fig. 23. (a) Initial triangulation with 32 constrained angles of 11.25◦ sharing the same vertex. Triangulations (b), (c), (d) correspond to different δ values.

Finally, these ideas can be generalized to 3-dimensions. In a re-
cent paper by Balboa, Rodriguez and Rivara [23], an improvement
method for tetrahedral meshes was proposed. This uses a simple
centroid insertion operation that generalizes the IO2 operation
of this paper, combined with a ’swapping of a terminal edge’
operation, a mesh improvement operation that follows the ideas
of Freitag and Oliver Gooch [24] but applied to the 3-dimensional
terminal edge context.
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