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a b s t r a c t

The notion of economic pipe size is extended to the case of settling slurries, which are commonly found
in high tonnage, long distance pipelines of mineral ores. Water, energy and pipe infrastructure costs have
been considered under the premise that the objective of this kind of infrastructure is to transport solids
but not water. Unit costs for pipes have been expressed based on pipe weight or diameter. In the first
case, both an assumption of a linear dependency of the pipe wall thickness with outside diameter and
the special case of prescribed, outside diameter-independent pipe wall thickness, have been considered.
On the other hand, a typical assumption of cost expressed as a potential function of the pipe diameter has
been assumed to compare with the present model. A dimensionless formulation of the problem,
including the requirement of turbulent flow transport above the deposit limit is proposed. Differently
from previous analyses, made for homogeneous fluids, the present approach does not require a particular
form of the friction factor. To this purpose it is shown, based on the general form of the dependency of
the friction factor with the Reynolds number, that the friction factor that minimizes the operation and
infrastructure cost is the maximum possible within the turbulent regime, i.e. that corresponding to the
laminar-turbulent transition. Optimal conditions feature: (1) the solid concentration should be the
largest possible provided safe transport is ensured, (2) the optimal pipe diameter is controlled either by
costs and turbulent transition or by the deposit limit condition (not both of them simultaneously), where
a dimensionless parameter has been derived to identify the relevant solution. Results with the present
cost scheme have been extended to the case of homogeneous fluids.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The notion of economic pipeline is not new when conveying
water or homogeneous fluids. In this case, the economic pipeline
diameter is commonly computed as that resulting of the sum of the
steel, maintenance and energy costs. The first analysis of economic
pipeline diameter for compressing or pumping has been made by
Genereaux (1937), who considered a number of economic metrics
including amortization, maintenance, a factor for fittings and
erection that were taken into account as part of single-phase
optimization. After a number of assumptions, including an
explicit modeling of pressure losses via the Fanning friction factor
(for turbulent flow) in terms of the Reynolds number and a set of
unit costs, he proposed an economic diameter in the form Ga= rb (in
his work, ða; bÞ ¼ ð0:448; 0:315Þ), where G and r are the fluid
Engineering, Universidad de
throughput and density, respectively. The approach made for this
was finding the minimum diameter by differentiation of the cost
function. The economic parameters used in his work have been
updated to 2008 by Durand et al. (2010). Contemporary to
Genereaux (1937), Sarchet and Colburn (1940) extended his no-
mographs to laminar flow and obtained a slightly different result
for turbulent flow, for diameters above and below 1inch. The
addition of tax effects and return of investment in laminar and
turbulent transport systems is discussed in Peters et al. (2002). In
their results, they found that for a fluid tonnage on the order of
200kg=s, a difference of about one commercial diameter compared
with the a simplified cost approach exists. In a smaller throughput
case (G ¼ 2kg=s) they found a similar relative difference. An
assumption common to the works referred herein is that for
pipeline nominal diameters above 1in, the annual cost for the
installed piping system is proportional to Dn, where nz1:5 for
carbon steel pipes and varies according to transported fluid, pres-
sure rating of the pipe and market conditions (Darby, 2001; Geni�c
et al., 2012; Geni�c and Ja�cimovi�c, 2018).
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The problem of optimal pipe diameter in generalized fluids has
been treated after the major development on the characterization
of friction losses in this kind of system (Metzner and Reed, 1955;
Dodge and Metzner, 1959). Garcia and Steffe (1986) proposed an
explicit relationship for Herschel-Buckley fluids in laminar flow. In
their derivation, they follow the same pipe diameter/cost scaling as
in the Newtonian case. An iterative framework for the computation
of optimal pipe size, including non-Newtonian fluids is discussed
by Darby (2001).

Fine slurries may be conditionally understood as a special type
of non-Newtonian fluid. When fully mixed and if transport is ho-
mogenous they are commonly treated as Bingham or Herschel-
Buckley fluids (Bird et al., 1983; Ricks, 2002). However, depending
on the characteristics of the solid phase, including concentration
and particle size, they may segregate (Turian and Yuan, 1977), thus
creating operational risks related to plugging, especially in long
distance systems (Ihle, 2014b). In slurries, a solid phase is relevant
due to its effect on energy consumption and greenhouse emissions
(Ihle, 2014). Is it common that the fluid (liquid) phase is merely a
vehicle required for the solid phase transport, which is often lost
and thus constitutes a cost (Ihle et al., 2014), which can be
considerable high given that commonly slurry transport systems
span distances that can reach hundreds of kilometers to replace rail
roads (Jacobs, 1991; Abulnaga, 2002). The required energy, on the
other hand, is that resulting from transporting not just the solid
phase, but also the water phase. When put together, water an en-
ergy configure an equivalent fluid whose transport conditions face
the critical trade-off of energy and infrastructure requirements. The
problem departs from that of designing water (or homogeneous
fluid) lines in two critical aspects: (1) when transporting slurries,
the relevant process variable for energy, and ultimately cost effi-
ciency enhancement is throughput (solid phase transport), not
water and (2) the mean flow velocity cannot be arbitrarily small, as
particles tend to form solid deposits in the pipeline and thus cannot
be transported. The second aspect is effectively a process restric-
tion, while the first one implies the introduction of the concept of
solids concentration in the choice of the infrastructure/process
condition combination. A potentially third aspect to consider is the
need to transport within a specific flow regime (either laminar or
turbulent). In water pipelines, normally facilities are designed for
turbulent flow because laminar flow would imply prohibitively
high transport costs. In the case of slurry pipelines, the flow regime
can be either laminar or turbulent, the former case corresponding
to paste slurries behaving as ‘stabilized’, homogeneous fluid
(Paterson, 2012) while the latter is associated to lower volume
concentrations, and is commonly the preferred regime for long
distance transport (Abulnaga, 2002; Ihle and Tamburrino, 2012).

Given that slurry pipelines commonly connect long distances,
sub-optimal choices of their diameter may be related to strong
additional costs. As an example, a 1-inch difference using a SCH80
pipe pressure rating (say, between 5 and 6 inches in diameter) in a
100 km-line would cost, considering a 15USD=kgsteel scenario a
difference of about 17.4MUSD, whereas differences in the range
22ine24in imply more than 100MUSD difference. In engineering
practice, the determination of the economic settling slurry pipe
diameter is limited to the identification of the diameter associated
to the limiting velocity for the formation of deposits, commonly
referred to as the deposit velocity. Recently, this condition has been
effectively identified as that whichminimizes the energy and water
costs given the pipe diameter (Ihle, 2016). However, the intuitive
notion that the determination of the optimal diameter should be, in
principle, dependent on the pipe infrastructure cost, suggests an
extended formulation including such variable. In the present paper,
the concept of optimal diameter for settling slurries is introduced,
and a simple model is proposed to assess the most economic
pipeline diameter based on the aspects referred above. To the best
knowledge of the author, the only previous approach to this exact
problem has been explored by Ihle et al. (2013) using a sequential
quadratic programming optimization approach in a limited number
of system throughputs and cost scenarios. Although a number of
optimal scenarios could be identified therein, conditions were very
particular, motivating the present extension.

The paper structure is as follows: in Section 2, the problem
formulation is given, including the declaration of all the hypotheses
in the analysis. In Section 3, the water, energy and pipe material
cost equation is rendered dimensionless to proceed to the con-
struction of the model. Section 4 presents derived expressions for
economic pipe diameter. Dimensional results, useful for practical
purposes, are given on equations 36e41. From the present analysis,
a new equation for the case of a homogeneous fluid (without the
presence of settling particles whatsoever) is proposed on equation
(42). The corresponding notation for all expressions is described
throughout the document and are summarized, including units, on
page List of symbols. In the same section, the sensitivity of results is
analyzed in light of the most important parameters of the model
and additional aspects such as conciliation of results with opera-
tional pressure are discussed as well. Themodel is exemplifiedwith
published pipeline data and a number of cost scenarios in Section
4.6. Final remarks are given in Section 5.

2. Problem formulation

The problem is to estimate the lowest cost operational and
pipeline diameter combination in industrial pipelines, given the
throughput (solid phase transport rate) requirement, the pipeline
topography and the operational life of the infrastructure. The
formulation of the present problem implies that higher pipeline
diameters reduce the energy consumption as velocities are lower,
but increment the pipe cost. On the other hand, there is a cost
related to water. Therefore, there is a trade-off between energy
consumption, particle concentration and required throughput.
There is a solid phase mass balance that acts an a restriction of the
problem. Additionally, the fact that given a pipe diameter there is a
critical mean flow velocity that marks a settling limit acts as a re-
striction for the potential solutions of the problem. While in a
traditional optimization approach for optimal pipeline diameter it
is straightforward to derive the minimum cost diameter via
differentiating the cost function, equating to zero and solving for
the diameter, in this case the referred constraints act as limiting
factors that need to be accounted for.

2.1. Assumptions

The following assumptions hold in the present approach to the
solution of the problem:

1. The operational throughput is a constant of the problem, and
is defined by the transport service characteristics.

2. The life of operation of the project is known.
3. Given a throughput range, the rest of the components of the

construction cost, including trench dimensions in buried
systems, pumps and possibly dissipation stations are weakly
dependent on the identification of the optimal pipeline
diameter and thus can be omitted from the present analysis.
This is equivalent to assume that such costs are piecewise
constant in a reasonably wide range of throughputs.

4. Singular pressure losses due to elbows, valves, etc., are
negligible when compared to frictional losses.

5. Maintenance costs to operate facilities are virtually constant
both with pipeline diameter and solids concentration, and
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thus are not amenable to be optimized in terms of these
variables.

6. The pipeline route is fixed (or previously selected), and thus
pipeline length and the corresponding earthworks (as dis-
cussed, e.g., in Baeza et al., 2017) are not subject to
optimization.

7. Unit costs for energy, water and (installed) pipeline per unit
weight can be estimated and set constant in the problem.

8. The pipeline has a circular cross section and constant wall
thickness throughout its length. Thus, some coefficients
indicated herein (including factors of p) correspond to such
geometry.

9. There is a pre-established relation between the pipeline
thickness, the pipeline internal diameter (D) and the pipeline
cost.

10. The flow of slurries is such that they are amenable to be
transported as an homogeneous (or quasi-homogeneous)
suspension. There is a deposit limit that can be described
as a function of one or more characteristic parameters and its
dependence on the particle concentration can be neglected.
The mean flow velocity needs to exceed the minimum ve-
locity to avoid deposit formation.

11. To complement the previous hypothesis, it is required that
transport is in turbulent flow. Additionally, laminar-
turbulent transition can be described through a single
dimensionless parameter (a Reynolds number). This implies
that near transition the flow is hydraulically smooth.

12. As the intent of hydraulic transport is to convey the solids
rather than water, solid concentration will not be within the
dilute range. The present problem is thus treated under the
assumption that moderate to high solid concentrations are
used for transport. Thus, the parameter that describes the
deposit formation (named to herein as the Durand number)
is assumed to be weakly dependent on the solids concen-
tration. This is discussed in Section 3.

13. There is a maximum safe operational concentration beyond
which transport is not allowed.

14. The pumping efficiency has a negligible dependence on the
concentration, within the concentration range of interest for
optimization, and therefore can be treated as a constant. This
assumption is reasonable when positive displacement
pumps are used, which is the case in the high pressure
systems.

15. The system is not allowed to generate energy, as would occur
in pipelines with a slope such that the energy consumption is
exceeded by the potential-to-kinetic energy conversion. The
justification of this assumption is that an energy generation
system capacity would have to include strongly case-specific
infrastructure costs whose estimation is out of the scope of
the present paper.

Assumptions 2.1e2.1 allow centering the problem of seeking the
most economical pumping infrastructure and operational condi-
tions on finding the most economical pipeline diameter, solids
concentration and slurry flow.

2.2. Cost function

The cost function is an extension to that defined in Ihle (2013)
with the addition of a cost term associated to the steel/infrastruc-
ture cost, _U ¼ qWQw þ qE _Eþ qwgt _P0, where _x≡dx=dt (time de-
rivatives). Here, the first term stands for the costs of water per unit
time, the second corresponds to pumping power and the third
corresponds to the (present) cost of pipe steel per unit time. The
latter term can be more conveniently expressed as a fixed cost,
spent at the beginning of the project, P0 ¼ Pt=t, where P is the
weight of (constant diameter) pipe material required in the facility,
and t is the operational time frame of the project (Peters et al.,
2002, discusses, for the case of transport of homogeneous fluids,
amore general investment scenariowhich, for the sake of obtaining
an explicit expression for the economic diameter is not pursued
herein). Here, Qw is the volume flow of water (expressed as volume

time )
and _E is the flow of energy (expressed as energy

time ). Unit costs are
expressed as currency

unit volume of water for qW and currency
unit energy in the case of qE.

The pipeline steel unit cost, qwgt is expressed as currency
unit weight of steel and

represents all possible fixed costs, including amortization, main-
tenance costs and construction (see Durand et al., 2010, for a detail).
A discussion of potential values for the first two terms in a mining
context are discussed in Ihle and Kracht (2018). The latter expres-
sion for _U can be therefore expressed in a more simple form as:

_U¼ qWQw þ qEmaxf _E;0g þ qwgt
P
t
: (1)

The positive enforcing of the second term of right hand side of
energy term is justified by the limitation corresponding to
assumption 2.1 above. The reason to express (1) in units of flow of
currency (currency over time), rather than simply currency, is that
it allows to cast its components in units more familiar to hydraulic
transport of solids.

From amass balance standpoint, the terms related to energy and
water use can be related to the solid throughput (e.g. concentrate
throughput), G (normally imposed as a plant production goal) as:

G¼Qslrs4; (2)

where Qsl is the slurry flow and 4 is the volume fraction of solids.
The water flow can be obtained from the latter as Qw ¼ Qð1 � 4Þ,
and therefore, in terms of the throughput and the solids
concentration,

Qw ¼ G
rs

�
1
4
�1
�
: (3)

The cost of energy can be expressed by means of an energy
balance between two arbitrary points in the pipeline. To account for
the energy consumption throughout the whole length of the sys-
tem, it is convenient to consider both the start (pump station),
whose tube length position and altitude are ðx; zÞ ¼ ð0; zPSÞ (zPS ¼
zðx ¼ 0Þ), and the delivery point, at ðx;zÞ ¼ ðL;zLÞ, with zL ¼ zðx ¼
LÞ. After an energy balance, the corresponding required pumping
power is:

_E¼
"
Dzþ 8

p2

�
fL
D
þ k
�

Q2
sl

gD4

#
rslgQsl

h
; (4)

with Dz ¼ Hþ zL � zPS. The parameter H>0 is any other constant
point energy dissipation, e.g., required for ensuring pressures above
the vapor value everywhere in the system in cross-country pipe-
lines. As H is positive, the least energy consumption in relation to
dissipation is related to the lowest possible value of H (Ihle, 2016),
which is, in particular, independent of the system diameter (sin-
gular pressure losses are typically imposed using a number of
chokes in the line). On the other hand, f is the Darcy friction factor, k
is a minor singular loss coefficient due e.g. to valves, elbows, etc.
The variable g is the magnitude of the acceleration of gravity, L is
the overall length of the pipeline, h is the pump efficiency and rsl is
the density of the slurry. It is noted that commonly industrial slurry
transport systems feature internal diameters above 3 inches, and
span distances from several hundred meters to several hundreds of
kilometers. From a constructive point of view, smooth paths are
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promoted to avoid pipe damage due to abrasion, and therefore
singularities are scarce or inexistent. An order of magnitude
approach to (4) suggests that given f � 10�2, k � 10�1, L � e3m (up
to e5m) and D � e� 1m implies that fL=D[k and thus singular
losses in this kind of system are negligible, and the energy con-
sumption due to pumping can be expressed as:

_Ez

 
Dzþ 8

p2

fLQ2
sl

gD5

!
rslgQsl

h
: (5)

This simplification corresponds to assumption 2.1.
The density of the slurry can be expressed in terms of the solid

volume fraction as:

rsl ¼ rs4þ rf ð1�4Þ; (6)

with rs and rf the density of the solids and fluid phase, respectively.
The statement maxf _E;0g in (1) is the analytical expression of

assumption 2.1 and is equivalent to impose that Dz � � 8
p2

fLQ2
sl

gD5 . In
particular, the sign of Dz is arbitrary, depending on the result of the
relation between dissipation and altitude of both the pump station
and delivery point. A possible case at this point is when the pump
station is high enough to exceed pressure losses by friction at the
throughput of interest, requiring no external energy to deliver
solids. When this occurs (i.e., the energy term becomes negative)
then the excess kinetic energy can be either converted to electrical
energy through a generation system or dissipated. If no extra en-
ergy consumption is added, then the systemwould adjust itself to a
new equilibrium point corresponding to a higher throughput.

The present approach is based on the observation that industrial
steel pipeline vendors often quote pipelines by unit weight of
material (Reliable Pipes, 2018; Aesteiron, 2020), and thus differs
from the common costing scheme, proportional to Dn, where nz
1:5 for carbon steel pipe (see Durand et al., 2010, for updated values
and materials different than carbon steel). A limitation of this
approach is the need to update not just the pipe unit cost but also
the exponent n, which is not information that can be obtained
straightforward from pipeline vendors and/or contractors. This
approach preclude to use direct unit costs from vendors and, as is
observed below, becomes impractical when non-economical cost
metrics are introduced for decision making.

Considering pipe costs per unit length the n-dependence is
obtained by replacing the third term of the right hand side of (1) by

qwgt
P
t
: ¼ qlenL

t

 
D

Dref

!n

; (7)

where qlen accounts for fixed costs, and has units of currency
pipe length and

Dref is a reference diameter scale (often considered as 1inch,
Sarchet and Colburn, 1940).

The corresponding optimization problem to be solved is:

_U
* ¼min

4;D;Q
_U; (8)

subject to the following constraints:

U � Udep (9a)

4 � 4max (9b)

pmin < pðxÞ<pmax; with 0 � x � L (9c)

here, Udep, 4max, pmin and pmax are the deposit velocity, maximum
allowable concentration, minimum and maximum allowable
pressure, respectively. An implication of (9a) is that the present
method is inadequate for slurries which are transported in laminar
flow, such as some high concentration sludges. On the other hand,
the pressure constraint (9c) imposes materials and constructive
conditions that the pipeline should withstand according to an
applicable standard both in front of negative and positive relative
pressures.

Considering that available commercial pipeline diameters are
available in a discrete fashion, the problem is naturally a discrete
one. Although the approach proposed herein is continuous, to
adapt it to a discrete one is straightforward by means of approxi-
mating results, either to closest commercial values or closest higher
ones, depending on the design criteria.
3. Dimensionless cost function

It is convenient to cast the optimization problem (8) into a
dimensionless one. To this purpose, a set of (arbitrary) scales is
proposed. Then the required flow restrictions, and the pipe thick-
ness modeling are expressed in terms of dimensionless variables to
finally solve the new optimization problem.
3.1. Normalization for 4 and D

The solid balance statement given by (2) allows to reduce from
three to two the independent variables initially posed in (1),
namely 4 and D.

For dimensional analysis purposes, it is convenient to re-scale
variables in terms of the representative parameters in the system.
According to Ihle (2016), the most economical water and energy
cost is achieved at rather high concentrations, close to the solids
deposition limit. This suggests the following definition of normal-
ized concentration:

f≡
4

4max
: ð0 < f�1Þ (10)

In the case of the pipeline diameter, apart from the tube length
(L) there is not an external variable that, at first sight, could be on
the order of the optimal pipeline diameter. The solid deposit for-
mation process is the result of the interplay between particles and
the flow characteristics, including turbulence, when present. It is
assumed that a spherical fluid parcel of a single particle of diameter
d has a kinetic energy KEf � 1

2mfU2
dep, where Udep is the corre-

sponding mean flow velocity and mf ¼ pd3

6 rf its mass. On the other
hand, the required work to move a single solid particle of the same
volume and density rs from the bottom to the top of the tube
section can be scaled in terms of its potential energy, PEs ¼ msgD,
with ms ¼ pd3

6 rs the particle mass. Assuming that the flow stream
should provide sufficient energy to keep particle above the bottom,
the order-of-magnitude balance KEf � Es is assumed to hold.
Solving for Udep results in the following scale for Udep:

Udep �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gDðS� 1Þ

p
; (11)

where S ¼ rs=rf is defined as the specific solids gravity. If the mean
flow velocity of a particular slurry streamU verifies U[Udep then it
is expected that no particles will have the opportunity to settle at
the bottom of the pipeline. If, on the other hand, U≪Udep, solids
will form a deposit at the bottom of the pipeline. To account for
such critical condition (named to as the deposit limit), it is common
to define the Durand dimensionless number
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FL≡
Udepffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gDðS� 1Þp ; (12)

so the unknowns Udep and D can be condensed in the independent
dimensionless positive parameter FL. Experimental evidence shows
that in general FL � 1 (Parzonka et al., 1981; Poloski et al., 2010).
The expression (11) has been obtained in the absence of other
particles or, in other words, disregarding the role of the particle
concentration. This factor might be relevant in industries such as
dredging, where particles are on the order of the millimeter. In the
mining industry, where comminution products are often below
100 mm in diameter, the effect of 4 is slight, as is shown on the
(extrapolated) curves in the pioneering work of Durand and
Condolios (1952) or the more recent version of Miedema (2016).
For moderate to high concentrations (4>

z
0:25), experimental evi-

dence suggests that FL is, again, weakly dependent on the particle
concentration for a wide range of particle sizes (Parzonka et al.,
1981) and thus can, in first order be treated as a constant value.
This argument validates assumption 2.1.

The scale of the deposit velocity can be related both to the
particle concentration and the throughput. The mean flow velocity
can be expressed in terms of the slurry flow as U ¼ Qsl= A, with A ¼
pD2=4 the cross-sectional area of the pipeline. Also, as U � Udep
near optimal water and energy consumption, solving for D, the
following pipeline diameter scale is proposed:

D* ¼
"

23=2G

p4maxrsg1=2ðS� 1Þ1=2

#2=5
: (13)

This relation allows to define a dimensionless pipeline diameter,
D ¼ D=D* in terms the external properties G, 4max, rs and rf . It is
noted that so far there are not rigorous bounds for D that have been
adopted in the definition of the scale, and therefore, DW1 and
possibly, but not necessarily, D � 1.

Considering the dimensionless variables f and D , dividing the
optimization equation (8) by rsqC (qC being an arbitrary unit cost
scale), the following dimensionless cost function is obtained:

_u¼KW

�
1

4maxf
�1
�
þmax

�
KE

�
1þ1

S

�
1

4maxf
�1
��

�
�
Zþ f ðS� 1Þ

f2D 5

�
;0
�
þ KP0~eðD þ ~eÞ; (14)

where the dimensionless constants Kð,Þ and Z, alongwith the newly
defined variable ~e, corresponding to the dimensionless pipe wall
thickness, are given by:

KW ¼ qW
SrfqC

ð� 0Þ (15a)

KE ¼
qEgL
qCh

ð>0Þ (15b)

Z¼Dz
L

ðW0Þ (15c)

KP0 ¼
pqwgtLD*

2rwall
GqCt

ð>0Þ (15d)

~e¼ e
D*

: ð > 0Þ (15e)

It is noted that, for convenience, (15d) is expressed in terms of
the diameter scale D*, defined in (13).

3.2. Flow restrictions

Flow regime restriction. In Newtonian, and even in a number of
non-Newtonian fluids featuring a dual plastic-fluid behavior
delimited by a yield stress, the critical laminar-turbulent transition
is most commonly defined in terms of a single parameter d the
Reynolds number: Re ¼ rslUD=m, where m is the equivalent fluid
viscosity (dependent of the particle concentration) at the relevant
shear rate. Several models for laminar-turbulent transition
condense the transition into one single parameter (Guzel et al.,
2009; Eshtiaghi et al., 2012). In these cases, the applicable restric-
tion for minimum laminar-turbulent transition is Re>Recrit, where
Recrit is theminimumReynolds number that ensures turbulent (and
not transitional) flow.

At fully developed turbulent flow the friction factor decreases
with the Reynolds number. Experimental examples of this trend
with Newtonian and non-Newtonian fluids can be found in Draad
et al. (1998), whereas a comparison between various models is
described in Alderman and Haldenwang (2007) and Ihle et al.
(2014). Therefore, in this condition Re � Recrit implies that f � fcrit
(f is the friction factor corresponding to turbulent flow), where
fcrit ¼ f ðRecritÞ. From (14), it follows that:

_u�KW

�
1

4maxf
�1
�
þmax

�
KE

�
1þ1

S

�
1

4maxf
�1
��

�
�
Zþ fcritðS� 1Þ

f2D 5

�
;0
�
þ KP0~eðD þ ~eÞ; (16)

and the equality corresponds to the particular case f ¼ fcrit.
Defining bounds of f above fcrit is equivalent to impose that the

flow is allowed to be transported in laminar flow regime. In
particular, fcrit < flam for all possible values of flam where the latter is
a friction factor corresponding to the laminar regime (Metzner and
Reed, 1955). If, conversely, an upper bound for the cost function is
set with f ’< fcrit (being f ’ within the turbulent regime), then
_uðf ’Þ> _uðfcritÞ. This is shown in Section 3.4, after establishing an
explicit form for the last term of the right hand side of expression
(16).

Normalized deposit velocity. The length scale for the pipeline
diameter is useful to express flow properties as a function of the
dimensionless diameter. Noting that U � Udep, it is equivalent to
write, using (2) and (11), that 23=2G

4rspD5=2g1=2ðS�1Þ1=2 � FL, which yields the
inequality D � D*

�
1
FL

4max
4

�2=5

or, equivalently,

D �
�

1
FLf

�2=5

: (17)

In contrast with the definition of D , which can take values
greater or lower than the unity, the relation (17) corresponds to a
rigorous bound for D , a direct consequence of (9a).

The inequality (17) can be recast in terms of a normalized
parameter l (0< l � 1) as:

D ¼ l

ðFLfÞ2=5
; (18)

thus allowing expressing the dimensionless diameter D explicitly
in terms of the normalized concentration and the Durand number.

3.3. Pipeline thickness modeling

So far, it is not possible to treat the cost function (14) as a
continuous function because no explicit form of the dimensionless



Þ

Fig. 1. Example of a typical linear dependence of the pipe thickness with the outside
diameter (OD ¼ Dþ 2e). Here, OD and thickness values correspond to SCH 80 pipelines
following Christensen et al. (2004).
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wall thickness ~e has been given. The pipeline thickness, e, depends
on the specific standard that rules the pipeline. In the case of high
pressure tubes, it is common to follow industrial standards defining
steel pipeline thicknesses in terms of their outside diameter (OD ¼
Dþ 2e). A common example is ASME Standard B36.10M-2004,
which groups pipelines according to a schedule (SCH) parameter
(Christensen et al., 2004). Long distance pipelines for this service
often are specified to use thicknesses corresponding to schedule 80,
associated to the strong specification, where allowable pressures
ultimately depend on piping material, outside diameter and
working temperature.

A common feature of this infrastructure is that pipe thicknesses
are increasing functions of the OD. Fig. 1 shows an example of two
linear adjustments that can be made according to the diameter
range.

The pipe thickness can be expressed in a linear fashion as:

e¼aþ bOD; (19)

where a has dimensions of length and b is dimensionless. This al-
lows to express the las term of the right hand side of (14) as:

~eðD þ ~eÞ¼ c0
D2
*

þ c1
D*

D þ c2D
2; (20)

with:

c0 ¼
a2

ð1� 2bÞ2
(21a)

c1 ¼
a

ð1� 2bÞ2
(21b)

c2 ¼
ð1� bÞb
ð1� 2bÞ2

: (21c)

The dominant term among the three of themwill depend on the
diameter range. In particular, for very large diameters the third
term of the right hand side of (20) dominates over the second,
whereas the opposite is expected for very small diameter facilities.
In the example of Fig. 1, c0, proportional to a2, is negligible in front
of the other two terms for all the diameters revised (OD>60mm).
For OD ¼ 100mm the second and third terms are of the same order
of magnitude, whereas increasing the pipeline diameter towards
500mmmakes the third term about 5 times larger than the second.
A similar tendency is observed with higher diameters, lower
pressure rating pipelines following the same standard.

Considering this approach, the simpler case of a prescribed,
constant thickness e0, independent of OD, as in some custommade
pipelines in large scale projects, corresponds to the parameter
setting c0 ¼ e20, c1 ¼ e0 and c3 ¼ 0. In compact form, the dimen-
sionless pipeline cost component corresponding to the third term
of the right hand side of (14), can be expressed in terms of l and FL
as:

qwgtP
GqC

¼KP a
la

ðFLfÞ2a=5
; ða¼ 1 or 2Þ (22)

where a ¼ 1 is the case of prescribed pipe wall thickness (OD-in-
dependent) or very small pipeline diameters and a ¼ 2 (OD-
dependent pipe wall thickness) applies for large diameters. The
dimensionless constant KPa is given accordingly by:

KPa

KP0
¼

8><
>:

e0
D*

if a ¼ 1 ðOD� independent pipe wall thickness

c2 if a ¼ 2;

(23)

where e0 is the value of the constant pipe wall thickness and KP0 is
given by (15d). In the less interesting case of small pipeline diam-
eter, where also a ¼ 1, KP a=KP0 ¼ c1=D*, where c1 is given by
(21b). Here, the coefficient c0 has been neglected under the hy-
pothesis that the pipeline wall thickness is significantly smaller
than its diameter (and, even more, the square of the thickness in
comparison with the square of the diameter).

When the Genereaux-type of cost scheme is used, then (22) is
still valid provided

KP a ¼
qlenL
tGqC

 
D*

Dref

!n

; (24)

and a ¼ n.
3.4. Normalized l-f cost function

Replacing (18) and (23) into (14) allows to express the cost
function in terms of FL and the normalized variables l and f:

_u¼KW

�
1

4maxf
�1
�
þmax

(
KE

�
1þ1

S

�
1

4maxf
�1
��

�
"
Zþ f ðS� 1ÞF2L

l5

#
;0

)
þ KP a

la

ðFLfÞ2a=5
; (25)

with KPa given by (23).
The relation (16) expresses an upper boundary for the cost

function given that f � fcrit ( _u � _ucrit, with _ucrit≡ _uðf ¼ fcritÞ). If, on
the other hand, f < fcrit (within the turbulent flow) the solution of
the problem (8) is sub-optimal in the f-dimension. This can be seen
expressing the friction factor in the generic form f � b1Re�b2 , with
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b1 and b2 positive parameters (i.e., df =dRe<0), applicable to the
smooth wall turbulence regime. In the case of Newtonian fluids, an
empirical fit has been firstly proposed by Blasius as ðb1; b2Þ ¼
ð0:316;0:25Þ (Hager, 2003) and has been extended to yield stress
fluids by Chilton and Stainsby (1998). The Reynolds number can be
expressed in terms of the present set of independent variables as:

Re¼ðfFLÞ2=5
�
1þ1

S

�
1

4maxf
�1
��

m0
m

Re0
l

; (26)

with Re0 ¼ 4G
pm0D*

(m0 is the fluid phase viscosity). The friction factor f
represents the part of the kinetic energy dissipated by friction. In
turbulent flow f(10�2, and the term Re�b2 acts an order unity
correction factor to b1 � f , which implies that, for Reynolds
numbers just above the laminar-turbulent transition number range
(� 4000), b1 <1 (e.g. Chilton and Stainsby, 1998; Darby, 2001), be-
ing b1 ¼ 1 the value of the exponent for laminar flows. Thus, the
term bearing the friction factor is proportional to lb2�5 (b2 � 5< 0),
whereas the pipe material term is proportional to la�b2 (a� b2 >
0). Therefore, as l/0 (and consequently Reðl/0Þ/∞), it is seen
that the term bearing the friction factor diverges and that of pipe
steel vanishes. Thus, for any arbitrary value of f � fcrit it is possible
to find a sufficiently small value of l such as (i) Re � Recrit (turbulent
flow, as required) and (ii) _uðf Þ � _uðfcritÞ. This contradicts (16)
except for the case f ¼ fcrit and therefore implies that the value of f
that minimizes _u is necessarily fcrit. The cost function _ucrit, depends
on the dimensionless variables l and f, and therefore solving the
original optimization problem (8) is equivalent to solving the
problem:

_u*
crit ¼min

l;f
_ucrit (27a)

0 < l � 1 (27b)

0 < f � 1; (27c)

where all the referred dimensionless parameters are independent
from each other and, with the possible exception of Z, are positive.
An advantage of this approach to the problem is that it is based on
the notion of critical condition for laminar-turbulent regime (the
critical friction factor, fcrit) and it is not explicitly dependent on the
particular expression of the Reynolds number dependence.
Although in the derivation of this result a power law, which is an
explicit form of the friction factor, has been used to illustrate the
relevance of fcrit, a similar reasoning can be applied using implicit
derivation based on the hydraulically smooth turbulent flows
described by the logarithmic velocity profile. This is the case of the
Dodge-Metzner (Dodge and Metzner, 1959) and Wilson-Thomas
model (Wilson and Thomas, 1985; Thomas and Wilson, 1987)
where, however, their results can be clearly interpreted in a power
law fashion as the straight lines in their reported log-log curves
show.

4. Results and discussion

4.1. Model

It is straightforward to see from (25), that v _ucrit=vf<0 (and also
_ucrit/∞ as f/0), which leads to the conclusion that lowest costs
are always related to highest possible transport concentrations (i.e.
f ¼ 1), where possible stands for operational limitations. Concen-
trations near the maximum packing fraction are commonly related
to the risk of pipeline plugging with subsequent rupture after
shutdown (Ihle, 2014b). This observation holds in the particular
case of negligible pipe material cost (KP a ¼ 0), thus confirming
the conclusion in Ihle (2016), obtained with particular rheological
parameters and friction factor structure.

The function (25) has an explicit dependency on the Durand
number, FL. Differently from the already referred weak dependence
of FL with the particle concentration that constitutes assumption
2.1, and also the weak dependence of this variable with the pipeline
diameter (Miedema and Ramsdell, 2015), there is a stronger cor-
relation with particle size. Such relationship is not monotonic
(Miedema and Ramsdell, 2015, pointed out from their experimental
compilation that highest values of FL, close to 1.6, were found for
values of 4 between 0.15 and 0.2). On the low-end of FL values are
those related to small particle sizes, where Durand numbers can be
between 0.2 and 0.8 depending on their size and density (Parzonka
et al., 1981). In relation to (25), increasing the values for the Durand
number cause an increase of the relevance of the friction loss term
and, on the contrary, causes a decrease of the pipe weight term.
This is reasonable, as from (12), higher values of FL are related to
higher minimum velocities which, as the energy consumption is on
the order of U2QslfU3, impose larger amounts of energy to keep
particles suspended. Given a fixed throughput, this is related, by
virtue of (2), to comparatively lower pipeline sections, thus making
relatively less important the third term of the cost expression.

Assuming that Z þ fcritðS�1ÞF2
L

l
5 >0 for all possible values of l, the

rate of change of _ucrit with l is expressed as:

v _ucrit
vl

¼ � 5KE

�
1þ 1

S

�
1

4maxf
�1
��

fcritðS� 1ÞF2L
l6

þ aKP al
a�1

ðFLfÞ2a=5
:

(28)

This expression can be either positive or negative depending on
the relative weight of terms. On the other hand, the relation (28) is
independent of the water unit costs, which is explained by the fact
that thewater cost term is related to themass balance in the system
and thus is independent of the particular transport conditions.
Additionally, it is noted that the dimensionless parameter Z is also
absent from (28), which implies, in particular, that the presence of a
dissipation station tilting the energy line by a fluid column H to
ensure that line pressure is above the vapor value neither affect the
optimal diameter nor the optimal concentration.

The expression (28) shows that the cost is positive and diverges
when l/0, which means that it exists l�, 0< l� � 1 such as
v _ucrit=vl<0. Additionally, as the first and second term of the right
hand side have opposite signs, then it is possible, depending on the
values of the parameters, that v _ucrit=vl ¼ 0 for some value of l.
Solving the equation v _ucrit=vl ¼ 0 and f ¼ 1 for l yields:

l0 ¼
�
5KE

�
1þ 1

S

�
1

4max
� 1
��

fcritðS� 1Þ
aKPa

� 1
5þa

F2=5L : (29)

there is, however, no guarantee a priori that l0 � 1. Therefore, if
l0 >1, then v _ucrit=vl<0 and the value of l that minimizes _ucrit is
l ¼ 1. This reasoning can be condensed in the statement:

lopt ¼minfl0;1g: (30)

To find out whether l0 is lower than the unity the following
condition results from (29):

L<1; (31)

with

L¼5KE

�
1þ1

S

�
1

4max
�1
��

fcritðS� 1ÞF
2ð5þaÞ

5
L

aKPa
: (32)
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The two solution possibilities suggested in (30) have two
distinct interpretations. When lopt ¼ l0 <1, the term F2=5L cancels
out in the right hand side of (18), and thus the dimensionless
optimal diameter is

D opt ¼
�
5KE

�
1þ 1

S

�
1

4max
� 1

��
fcritðS� 1Þ

aKPa

� 1
5þa

; (33)

which is independent of the deposit limit condition and it is
therefore solely controlled by costs (energy and infrastructure), the
slurry properties and the critical condition to ensure turbulent flow.

The second possibility is when lopt ¼ 1. In this case, again using
(18),

D opt ¼ F�2=5
L ; (34)

where it is noted that this solution is independent of the energy and
pipeline costs, as well as on the critical friction factor and fully relies
Dopt ¼

8>>>>>>><
>>>>>>>:

1

p2=5 �
�
40
n

� 1
5þn
�

G
4max

� 3
5þn

(
qEfcritDn

ref ½1þ 4maxðS� 1Þ�t
Sqlenhr2s

) 1
5þn

if L3 <1

(
23=2G

prs4max½gðS� 1Þ�1=2FL

)2=5

if L3 � 1;

(40)
on the depositional mechanism.

4.2. Dimensional results

The previous results, in consistent units as detailed in page List
of symbols, can be summarized in the dimensional expressions that
follow.

Optimum volume flow. As previously referred, the optimum
volume flow is that which verifies 4 ¼ 4max. Thus, using (2),

Qsl ;opt ¼
G

rs4max
: (35)

Prescribed pipe wall thickness independent of outside diameter
(a ¼ 1)

Dopt¼

8>>>>><
>>>>>:

�
40
p3

�1=6
ffiffiffiffiffiffiffiffiffiffiffi
G

4max

s �
qEfcrit½1þ4maxðS�1Þ�t

Sqwgte0hrwallr
2
s

�1=6

if L1<1

(
23=2G

prs4max½gðS�1Þ�1=2FL

)2=5

if L1 �1;

(36)

with

L1 ¼
5

ð2pÞ3=5
�

G
4max

�3=5

qEfcritF
12=5
L ½1þ 4maxðS� 1Þ�r2=5s ½gðS� 1Þ�6=5t

Sqwgte0hrwall
:

(37)

Linear increase of wall thickness with outside diameter (a ¼ 2)
Considering the linear fit (19) in terms the parameter b and the

dimensionless coefficient c2ðbÞ, given by (21c) yields:
Dopt¼

8>>>>><
>>>>>:

�
20
p3

�1=7� G
4max

�3=7�qEfcrit½1þ4maxðS�1Þ�t
Sc2qwgthrwallr

2
s

�1=7

ifL2<1

(
23=2G

prs4max½gðS�1Þ�1=2FL

)2=5

ifL2�1;

(38)

with

L2 ¼
5

4� ð2pÞ1=5
�

G
4max

�1=5

qEfcritF
14=5
L r

4=5
s ½1þ 4maxðS� 1Þ�½gðS� 1Þ�7=5t

Sc2qwgthrwall

(39)

Genereaux-type pipe cost scheme.
with

L3 ¼
5
n
�
�
p2

8

�n=5�
G

4max

�1�2n
5

qEfcritF
2
	
1þn

5



L ½1þ 4maxðS� 1Þ�½gðS� 1Þ�1þn

5r
2n=5
s Dn

reft

Sqlenh

(41)
4.3. Relative effect of terms

Pipeline length and topography. The present approximation to the
solution of the optimal pipeline diameter problem is independent
of the pipeline length. Results are, on the other hand, independent
of possible high points, station locations and the presence of point
dissipation in the system, thus obtaining the same result as in sole
water and energy optimization (Ihle, 2016). The independence of L
comes from the fact that both the energy consumption and the steel
requirement for the pipelines are proportional to their length. A
potential exception to consider at this point is that long distance
pipelines in hilly topographies commonly operate at high pressures
and, under certain circumstances, more than one pump station
would be required to split the energy line on more than one
segment due to standard industrial material limitations. Examples
are the case of Alumbrera and Antamina pipelines, with about
300 km of extension and three pump stations (Derammelaere and
Shou, 2002), and Samarco (Brazil) with a tubelength of 398 km and
two pump stations (Santos et al., 2009). However, often systems
shorter than 200 km use a single pump station and standard high
resistance carbon steel.

Sensitivity to throughput and 4max. Eqs. (36) and (38) expose that
the strongest dependency of the optimal diameter is of the system
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throughput, where exponents 1=2, 3=7 and 1� 2n=5 are found in
the cost- and flow regime-dependent ranges (L<1). This de-
pendency becomes slightly weaker whenL � 1, where the Durand
number appears in the expression for the optimal diameter,
opposing its effect to that of the throughput. Comparing the three
pipe costing schemes, it is noted that the least sensitive de-
pendency to G corresponds to a ¼ 2, with an exponent 3= 7z 0:43.
This value is close to the exponent 0.45 derived by Geni�c et al.
(2012) for water and hydraulically smooth flow in carbon steel
pipes, based on the Genereaux equation. The highest sensitivity to
the throughput corresponds to the case a ¼ 1 with an exponent 1=
2.

The optimal diameter is sensitive to the maximum operational
concentration (4max) in a similar fashion than the throughput. The
value of 4max affects two terms in (36) and (38): firstly, it multiplies
S� 1 and, on the other hand, it divides G. In the first case, the term
½1þ 4maxðS� 1Þ�1=7 is order unity for a wide range of values of S
(typically between about 2.7 and 5), and values of 4max between
about 0.2 and 0.4, a range that plausibly covers the full spectrum of
turbulent transport possibilities. However, in the second case, with
Doptf4�k

max, with k ¼ 1=2 or 3=7 the effect of such variations of 4max
can impact the optimal result between about 41% and 52% for the
referred range. Trends are similar in the cases a ¼ 1 and the Gen-
Dopt;hf ¼

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�
40
p3

�1=6
(

qEfcritt
qwgte0hrwallr

2
f

)1=6

G1=2 if a ¼ 1

�
20
p3

�1=7
(

qEfcritt
qwgthrwallr

2
f

)1=7

G3=7 if a ¼ 2

1

p2=5 �
�
40
n

� 1
5þn

(
qEfcritDn

reft

qlenhr
2
f

) 1
5þn

G
3

5þn; ðGenereaux� type pipe costÞ

(42)
ereaux pipe cost approach.
Sensitivity to the depositional limit. In (36) and (38), FL has an

opposing effect compared to G. In particular, higher values of FL
(towards the unity) tend to push the optimal diameter to lower
values. This is interpreted as the requirement to increase the mean
velocity to preclude the formation of deposits in the pipeline
section.

The pipeline depositional limit is bounded to small values in fine
slurries. Poloski et al. (2010) compile a list of FL values for fine
slurries (in their work, they use Froude number notation, Fr, where
FL ¼ Fr=

ffiffiffi
2

p
). The equivalent values for FL reported are between 0.21

and 0.78 for characteristic particle sizes (d) between 6mm and
70mm. They propose an empirical model specific for fine particles
where, besides confirming that, for engineering purposes the effect
of concentration is slight, FLfd0:45. It is then expected that, in light
of (36) and (38), FL would be approximately proportional to d�0:18.
Therefore, the proposed model is weakly sensitive to the particle
size.

Effect of the total operation time t. Larger values of t are related to
capital costs diluted on larger times. This is seen from the dimen-
sional formulation of the optimization problem (1), where rela-
tively higher values of t might render less important the
infrastructure term compared to the energy and water compo-
nents. As a result, larger total operation times would set optimal
values tailored towards lesser energy consumptions, which are
related to higher pipeline diameters.
Relative effect of other parameters. The impact of fcrit is modest, as
seen from the exponent 1=6 or 1=7 in (36) and (38) and due to the
fact that this parameter does not change significantly under the
conditions considered and is, in all cases, on the order of 0.03, as has
been extensively documented for a variety of fluids and slurry flows
(Alderman and Haldenwang, 2007; Guzel et al., 2009).

The particular case of energy and pipeline steel costs deserves a
separate mention and is analyzed in Section 4.6. Other parameters
such as the pipe thickness in (36), the pump efficiency and the
slurry solids density remain constant for a particular system.

4.4. The particular case of a homogeneous fluid

In the case of an homogeneous fluid there is no restriction on
the mean flow velocity, and thus Udep must vanish. This is achieved
noting that for any finite value of FL � ε (arbitrarily small) it is
possible to set rs :¼ rf and 4max ¼ 1 in (6) (i.e., a single phase). From
(18), l � ε

2=5D in the optimal case f ¼ 1. For any value of D it is
possible to set ε0 such that for ε< ε0, l<1 and thus the expressions
(36), (38) and (40), reflecting independence of the deposit limit, can
be used. The corresponding dimensional expressions of the opti-
mum diameter are:
where the prefactors are dimensionless.
4.5. Allowable pressure and optimal diameter

Actual line pressures depend on the difference between the
energy line and the topography, the former depending on the
frictional pressure losses and required point dissipation and the
latter being strongly site-specific. The constraint (9c) requires a
feasible space from the point of view of the relationship between
pipe pressure rating (including materials, OD and wall thickness)
and actual operational pressure. Pressure compliance then requires,
after computing the optimal diameter and pipe wall thickness, to
verify whether the particular choice of pipeline size and pressure
rating is in accordance with such hypothesis. After an energy bal-
ance, the pressure under optimal operational conditions, pðxÞ as
referred to in the inequality (9c), needs to verify

pðxÞ¼ rsl ;maxg

"
8fcritðL� xÞG2

gp242
max

þHþ zL � z

#
; (43)

with rsl ;max ¼ rslð4maxÞ in (6) and z ¼ zðxÞ. Once the pressure
rating of the pipeline is set, verifying (9c) and (43) can be ensured
setting H or splitting the energy line into several segments adding
intermediate pump stations to limit the maximum line pressure
(Santos et al., 2009; Ihle and Kracht, 2018). The process of
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integrating optimal pipe diameters with actual topography and
service conditions can be, in this sense, an iterative one. However,
using high pressure rating pipes allows considerable flexibility in
terms of pressure resistance as a function of pipe length in a wide
variety of situations.

A second aspect pertaining pressure compliance, beyond the
scope of the present analysis, is related to operational flexibility. It
might be desirable that pressure may not exceed pmax for a subset
of sub-optimal flow conditions. Provided H is set to the minimum
possible value to avoid phase change in the slurry, this can happen
for throughputs higher than the design value G, f < fcrit and 4<
4max. To respond this question, it is required, in particular, to set a
particular model for the friction factor f, not just the critical value as
required for the determination of the optimal diameter.
4.6. Examples

To obtain an order-of-magnitude comparison between the
present approach and existing pipeline facilities with known
characteristics are presented. It is noted that there is no intention of
validation with known existing pipeline diameters due to:

� Design criteria for the pipeline are not available. This should
include the consideration of critical Reynolds numbers for the
model, effective deposit velocity assumed and life of the project.

� Key geometric considerations such as the installation of an in-
ternal liner to protect the pipeline steel from corrosion affects
directly the relation between internal and external diameters.

� Reported throughput in the literature might not correspond to
the actual design capacity.

Fine slurries reproduced approximately correspond to iron
concentrate, copper concentrate and phosphate slurry. To obtain a
quantitative reference on the impact of variations on costs, low and
high values for both qE (50USD/MWh and 150USD/MWh) and qwgt

(5USD/kg_steel and 50USD/kg_steel) are combined according to
the matrix presented in Table A.4 in A. Results are detailed in
Table 1, and the calculation hypotheses common to all cost sce-
narios are given in Table A.5 in the same Appendix.

The results presented in Table 1 show that the algorithm cor-
responding to (30), and (31) applied to (18) to obtain Dopt give
results which are, in general, of the same order than those finally
Table 1
Calculation examples in terms of the cost scenarios denoted in brackets as ði; jÞ, with i an
ASME standard detailed in Christensen et al. (2004). The nominal diameter has been
Computational hypotheses are given in Table t:example_calc_hypotheses. Values of L ha

Ore type rs d FL G ODopt (L) for various sce

(kg/m3) (mm) (kg/s) (1,1) (1,2)

Iron concentrate 4760 44 0.45 64.7 8 in (3.1) 7 in (0.3)
51.8 8 in (3.0) 6 in (0.3)
43.2 7 in (2.9) 6 in (0.3)
60.4 8 in (3.1) 7 in (0.3)
523.21 20 in (4.8) 18 in (0.5)
237.8 14 in (4.1) 12 in (0.4)
840.3 24 in (5.2) 22 in (0.5)

Copper concentrate 4300 44 0.45 28.8 6 in (2.1) 5 in (0.21)
8.6 4 in (1.7) 3 in (0.2)
11.5 5 in (1.8) 3.5 in (0.2

60 0.5 28.8 6 in (2.8) 5 in (0.3)
23.0 6 in (2.7) 5 in (0.3)
47.6 8 in (3.1) 6 in (0.3)
34.9 7 in (3.0) 6 in (0.3)

4360 41.1 7 in (3.2) 6 in (0.3)
Phosphate slurry 2850 125 0.7 71.9 10 in (3.3) 9 in (0.3)

63.4 9 in (3.2) 8 in (0.3)

References: aAbulnaga (2002); bSantos et al. (2009); cAusenco (2018); dDerammelaere a
built. Of the 17 pipelines reported, in only one of them (Las Tru-
chas), a significant difference between the present computation
and the reported diameter was found. However, as previously
referred, the tendency observed herein is just to suggest that re-
sults of the present model are reasonable. Besides the diameter
similarity, there is a consistent prediction of diameters closely
below those established by corresponding engineering, as
confirmed by the four cost scenarios in Table A.4 analyzed herein. In
the case of several copper concentrate pipelines featuring internal
HDPE liners, some of the present computations of the internal
diameter Dopt are even closer. It is also noted that diameters which
are below and close to those of real facilities are those associated to
lower steel costs. These are cases (1,1) and (2,1), with qwgt ¼
5USD=kg, which yield the highest diameters due to values of L

greater than 1, implying that such optimal diameters are controlled
by the deposit condition rather than unit costs and critical Reynolds
numbers. Conversely about 1/4 of the cases feature L<1.

Present results show that there is a tendency in high tonnage
iron concentrate pipelines (G>

z
100kg=s) to be weakly dependent

on cost conditions and rather to be fully conditioned by the deposit
limit. In these large pipelines, turbulence is much more easily
achieved than the deposit condition and a therefore the latter ap-
pears as a more restrictive condition.

4.7. Including footprint in costs

In copper concentrate and phosphate slurry lines, the behavior
is rather dual in the sense of L, depending on the cost scenario. The
notion of cost has been treated so far in a rather slackway. Although
it is straightforward to interpret it in a supply cost sense, it is
possible to define a rather extended version, oriented towards
including embodied energy. From a dimensional standpoint, qwgt is
expressed as currency over kg pipeline. This can be extended to a
slightly more general definition:

qwgt ¼ qwgt s þ qEEEE; (44)

where qwgts represents supply costs and qEE might be associated to
embodied energy and has units of currency

unit energy. The term corresponds
to the embodied energy, andmay ormay not be relevant depending
on aspects such as the supply chain related to the pipeline. For
instance, assuming an average cradle to gate value (European
origin) of EE ¼ 9:6e� 3MWh=kg (Hammond and Jones, 2008), and
d j either 1 or 2, described in Table A.4 of A, for SCH 80, steel pipeline following the
approximated as the closest commercial value greater than the computed one.
ve been rounded to the first decimal place.

narios Facility with similar throughput

(2,1) (2,2)

8 in (9.4) 8 in (0.9) Savage River, Australia, 9 in, 86kma

8 in (9.0) 7 in (0.9) Pena, USA, 8 in, 45kma

7 in (8.7) 7 in (0.9) Las Truchas, Mexico, 10 in, 27kma

8 in (9.3) 8 in (0.9) Sierra Grande, Argentina, 8 in, 32kma

20 in (14.3) 20 in (1.4) Samarco line 1, Brazil, 18/20/22 in, 398kmb

14 in (12.2) 14 in (1.2) Samarco line 2, Brazil, 14/16 in, 398kmb

24 in (15.7) 24 in (1.6) Minas Rio, Brazil, 24/26 in, 529kmc

6 in (6.4) 6 in (0.6) Bougainville, PNG, 6 in, 32kma

4 in (5.0) 3.5 in (0.5) West Irian, Indonesia, 4 in, 111kma

) 5 in (5.3) 4 in (0.5) Pinto Valley, USA, 4 in, 17kma

6 in (8.5) 6 in (0.9) Collahuasi, Chile, 7 in, 203kma (lined)
6 in (8.2) 6 in (0.8) Alumbrera, Argentina, 6 in, 314kma (lined)
8 in (9.4) 7 in (0.9) Antamina, Peru, 9/12 in, 300kmd (lined)
7 in (8.9) 7 in (0.9) Los Pelambres, Chile, 8 in, 120kmd (lined)
7 in (9.5) 7 in (1.0) Minera Escondida, Chile, 6/7 in, 166kme (lined)
10 in (9.9) 10 in (1.0) Chevron, Vernal, USA, 10 in, 152kma

9 in (9.7) 9 in (1.0) Valep, Brazil, 10 in, 120kmf

nd Shou (2002); eBetinol and Jaime (2004); fJacobs (1991).
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a reference unit energy cost of qEE ¼ 100USD=MWh yield a correc-
tion in qwgt of 0:96USD=kg. In the Australian context, Lenzen and
Dey (2000) report a slightly higher value of EE ¼
1:1e� 2MWh=kg. Values for Brazil, China, India, Mexico and South
Africa are reviewed on Price et al. (2002) and, more recently in the
case of China (reporting 6:4e� 3MWh=kg) and US
(4:1e� 3MWh=kg) in Hasanbeigi et al. (2014). The role of distance
and transport has been reviewed by Gleick and Cooley (2009) using
North American data of energy costs both in terms of the weight
and the distance for cargo ship (1:03e� 4kWh ton�1km�1) and
heavy truck transportation (1:03e� 4MWh ton�1km�1). The
parameter qwgt can thus be adapted as a means of cradle to gate
assessment of different supply and transport options. Analysis can
be made either considering a one-to-one cost comparison, as
shown in (44), or giving weighting factors for qwgts and qEE .

The same concept can be used, in the case of the energy cost
component, to include the impact of the energy source on the
carbon footprint when there is more than one sourcing option. In
general, qE and qwgt can be understood as weighting factors for
decision making, where the final decision include the pipeline
diameter as a key factor.
5. Final remarks

Modern pipeline systems need to face a number of strong re-
strictions that range from the economical and resourcing (water
and energy) to environmental. New future pipeline designs need to
cope with these new restrictions from the conception phase, where
there engineering is continuously challenged to be less and less
conservative in their conceptions. The present formulation for the
optimal concentration and diameter shows that a multi-million
investment may be adjusted quantitatively following modern
environmental metrics that are blended together with engineering
requisites for proper operation.

The present model has been focused on the formulation of a
simple, though physically-based model for the problem of slurry
pipeline design in the potential presence of multiple scenarios for
commodity supply (steel and energy costs), where the nature of the
sources can be relevant and thus would need to be analyzed in the
context of engineering design and operation. Added to imposing
the condition of turbulent flow, a deposit formation limit has been
included, where both restricting conditions have been referred
depending of key parameters governing them rather than using
particular models explicitly.

One of the outcomes of the present work is the possibility to
explicitly isolate the unit cost of pipeline materials. Results have
been found to be consistent with previous approaches to this cost
estimation. However, a significant conceptual difference with past
approaches is the independence of results with market fluctua-
tions, except by unit costs of energy and pipeline material.

The more general problem of economic pipe diameter for
strongly stratified slurries has not being tacked herein, featuring a
static or sliding bed was not pursued, but appears as a natural
extension of the present model.
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List of symbols

a modeling case parameter (Eq. (22)), OD-independent
wall thickness or very small pipe diameter (a ¼ 1 ) or
linear function of OD (a ¼ 2) (dimensionless)

c0 model parameter (length2, Eq. (21a))
c1 model parameter (length, Eq. (21b))
c2 model parameter (dimensionless, Eq. (21c))
d particle characteristic size (length)
D pipeline diameter (length)
Dopt pipeline optimal diameter (length)
Dopt;hf homogeneous fluid pipeline optimal diameter (length)
Dref reference (dimensional) diameter (length, Eq. (7))
D* pipeline (dimensional) diameter scale (length, Eq. (13))
D dimensionless pipeline diameter (¼ D=D*)
D opt optimal dimensionless pipe diameter
_E energy consumption (energy/time)
e pipeline wall thickness (length)
e0 prescribed pipe wall thickness (length)
~e dimensionless pipelinewall thickness (length, Eq. (15e))
FL Durand number (dimensionless, Eq. (12))
f Darcy friction factor (dimensionless)
fcrit maximum value of f in turbulent flow regime

(dimensionless)
G solids throughput (solid mass/time)
g magnitude of gravity acceleration (mass/time2)
flam friction factor in laminar flow regime (dimensionless)
H point energy dissipation head (length)
KEf scale of kinetic energy of fluid parcel (mass length2/

time2)
KE dimensionless parameter (Eq. (15b))
KP0 dimensionless parameter (Eq. (15d))
KPa dimensionless parameter (Eq. (23))
KW dimensionless parameter (Eq. (15a))
k singular energy loss coefficient (dimensionless)
L pipeline length (length)
mf mass of fluid parcel (mass)
n exponent for pipe cost modeling (Eq. (7),

dimensionless)
OD pipeline outside diameter (length)
ODopt nearest higher standard pipeline outside diameter close

to optimal value (length)
p line pressure (mass length�1 time�2)
P pipe material mass (mass)
PEs scale of potential energy of particle (mass length2/

time2)
_P0 pipeline material use (pipe material mass/time)
Qsl slurry volume flow (volume/time)
Qw water consumption (volume/time)
Re Reynolds number (dimensionless)
Recrit minimum Reynolds number for turbulent flow

(dimensionless)
S solid phase specific gravity (¼ rs=rf , dimensionless)
SCH pipeline schedule ()
t time
U mean flow velocity (length/time)
Udep mean flow velocity corresponding to the solid deposit

formation limit (length/time)
Z dimensionless parameter (Eq. (15c))
zL discharge point altitude (length)
zPS pump station altitude (length)
Greek letters
a modeling parameter (length, Eq. (19))
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b modeling parameter (dimensionless, Eq. (19))
Dz H þ zL � zPS (length)
ε arbitrarily small parameter (dimensionless)
4 solids volume fraction (dimensionless)
4max maximum feasible solids volume fraction in operation

(dimensionless)
f normalized volume fraction (¼ 4=4max , dimensionless)
qC solid unit cost (arbitrary) scale (currency/solid mass)
qE energy unit cost (currency/energy unit)
qlen pipe cost per unit length (currency/unit length)
qW water unit cost (currency/water volume unit)
qwgt pipe material unit cost (currency/pipe weight)
L dimensionless parameter for optimal diameter control

mechanism (Eq. (32))
l dimensionless parameter (Eq. (18))
lopt optimal value of l (Eq. (30), dimensionless)
m concentration-dependent slurry dynamic viscosity

(mass length�1 time�1)
m0 fluid phase dynamic viscosity (mass length�1 time�1)
h pump efficiency (dimensionless)
rf fluid phase density mass length�3

rs solid phase density mass length�3

rsl slurry density mass length�3

rwall pipe wall density mass length�3

t life span of operation (time)
_U cost flow function (currency/time)
_u dimensionless flow function (currency/time)
_ucrit _uðf ¼ fcritÞ (dimensionless)
_u*
crit optimal value of _ucrit (dimensionless, system 27)
Appendix A. Calculation Hypotheses for example in Section
4.6

Table A.4 presents energy and steel cost scenarios used in the
example of Section 4.6. The remaining required input parameters
used in the corresponding computations are given in Table A.5.
Table A.4
Cost scenarios developed in examples.

case designation

(1,1) (1,2) (2,1) (2,2)

qE(USD/MWh) 50 50 150 150
qwgt(USD/kgsteel) 5 50 5 50

Table A.5
Calculation for results given in Table 1.

Variable Value Comments

4max 0.3 Volumetric concentration corresponding to the order-of-
magnitude of transport of fine slurries (e.g. several facility
descriptions in Sec. 5 of Jacobs, 1991)

t 20 years Life span of operation
h 0.7 Pump efficiency, as in Ihle and Kracht (2018)
rwall 7850 kg/

m^3
Density corresponding to high pressure pipeline steel

a 2 Linear increment of pipeline thickness with outside
diameter

c2 0.11929 From (21c), corresponding to using SCH80 data
from Christensen et al. (2004)

fcrit 0.032 According to Metzner and Reed (1955) (note that in that
work the Fanning friction factor, fN ¼ f =4, is used instead of
the Darcy value (f), as considered herein)

FL (variable) Computed Durand number, following data of Figure 1 in
Miedema and Ramsdell (2015)

ODopt (variable) Nearest higher standard pipeline outside diameter close to
optimal value (Dopt)
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