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We study the model-checking problem for first- and monadic second-order logic on finite relational struc-

tures. The problem of verifying whether a formula of these logics is true on a given structure is considered

intractable in general, but it does become tractable on interesting classes of structures, such as on classes

whose Gaifman graphs have bounded treewidth. In this article, we continue this line of research and study

model-checking for first- and monadic second-order logic in the presence of an ordering on the input struc-

ture. We do so in two settings: the general ordered case, where the input structures are equipped with a fixed
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order or successor relation, and the order-invariant case, where the formulas may resort to an ordering, but

their truth must be independent of the particular choice of order. In the first setting we show very strong in-

tractability results for most interesting classes of structures. In contrast, in the order-invariant case we obtain

tractability results for order-invariant monadic second-order formulas on the same classes of graphs as in the

unordered case. For first-order logic, we obtain tractability of successor-invariant formulas on classes whose

Gaifman graphs have bounded expansion. Furthermore, we show that model-checking for order-invariant

first-order formulas is tractable on coloured posets of bounded width.

CCS Concepts: • Theory of computation → Finite Model Theory; Fixed parameter tractability; Com-
plexity theory and logic; • Mathematics of computing → Graph algorithms; Graphs and surfaces;

Additional Key Words and Phrases: Model checking, order-invariance, successor-invariance, algorithmic

meta-theorems
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1 INTRODUCTION

Pinpointing the exact complexity of the model-checking problem for first-order and monadic
second-order logic has been the object of a large body of research. The model-checking prob-
lem for a logic L, denoted MC(L), is the problem of deciding for a given finite structure A and a
formula φ ∈ L where A is a model of φ; in symbols A |= φ. We will denote MC(L) restricted to a
class C of input structures as MC(L,C ).

Vardi [59] proposed to distinguish the complexity of the model-checking problem into data, for-
mula, and combined complexity, depending on whether we treat the structure A (the data) as input
while consideringφ as fixed, the formula as input while consideringA as fixed, or considering both
A andφ as part of the input. As shown by Vardi, for any fixed formulaφ ∈ FO of size |φ | the model-

checking problem is solvable in polynomial time nO ( |φ |) , i.e., the data complexity of MC(FO) is in
Ptime. However, the formula complexity and combined complexity of first-order logic is Pspace-
complete already on a fixed 2-element structure [5]. Evaluating a fixed formula of monadic second-

order logic belongs to the polynomial time hierarchy, and for each level Σ
p
i and Π

p
i there exists an

MSO-formula whose model-checking problem is complete for that level [57]. Again, the formula
complexity and combined complexity of monadic second-order logic is PSpace-complete.

A more fine-grained analysis of model-checking complexity can be achieved through the lens of
parameterised complexity. In this framework, the model-checking problem MC(L) for a logic L
is said to be fixed-parameter tractable if it can be solved in time f ( |φ |) · |A|c , for some function f
(usually required to be computable) and a constant c independent of φ and A. The complexity
class FPT of all fixed-parameter tractable problems is the parameterised analogue to Ptime as a
model of efficient solvability. Hence, parameterised complexity lies somewhere between data and
combined complexity, in that the formula is not taken to be fixed and yet has a different influence
on the complexity than the structure. Already the model-checking problem for first-order logic is
complete for the parameterised complexity class AW[∗], which is conjectured to strictly contain
the class FPT. Thus it is widely believed that model-checking for first-order logic in general (and
thus also for monadic second-order logic) is not fixed-parameter tractable.

Perhaps the most famous result on the parameterised complexity of model-checking is Cour-
celle’s theorem [7], which states that every algorithmic property on graphs definable in monadic
second-order logic (with quantification over edge sets) can be evaluated in linear time on any class
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of graphs of bounded treewidth. An equivalent statement is that MC(MSO,C ) is fixed-parameter
tractable via a linear-time algorithm for any class C of bounded treewidth. This result was fol-
lowed by a similar result for monadic second-order logic with only quantification over vertex sets
on graph classes of bounded clique-width [9]. It was shown in References [39, 40] that Courcelle’s
theorem cannot be extended in full generality much beyond bounded treewidth.

For first-order logic, Seese [55] proved that first-order model-checking is fixed-parameter
tractable on any class of graphs of bounded degree. This result was the starting point of a long
series of papers establishing tractability results for first-order model-checking on sparse classes of
graphs; see, e.g., References [11, 15, 22, 24, 31], and see Reference [29] for a survey. This line of
research culminated in the theorem of Grohe et al. [31], stating that for any nowhere dense class C
of graphs we have MC(FO,C ) ∈ FPT. Moreover, for classes of graphs that are closed under taking
subgraphs, this yields a precise characterisation of tractability for first-order model-checking [15].

So far, most of the work on algorithmic meta-theorems has focused on unordered structures.
Many of the results mentioned above rely on locality theorems for first-order logic, such as Gaif-
man’s locality theorem [25], and the applied techniques do not readily extend to ordered structures.
In this article, we study the complexity of first-order model-checking on structures where an order-
ing is available to be used in formulas. We do so in two different settings. The first is that the input
structures are equipped with a fixed order or with a fixed successor relation. (A successor relation
is a directed Hamiltonian path on the universe of the structure.) We show that first-order logic on
ordered structures as well as on structures with a successor relation is essentially intractable on
nearly all interesting classes.

The other cases we consider are order-invariant or successor-invariant formulas. In an order-
invariant formula, we are allowed to use an order relation, but whether the formula is true in
a given structure must not depend on the particular choice of order. In the following, we will
speak about successor- and order-invariant formulas, and not about successor- and order-invariant
logics, as usually it is required that a logic has a decidable syntax. However, it is undecidable
whether a first-order sentence is successor or order invariant, see, e.g., Reference [41]. In particular,
in case we deal with the model-checking problem for successor- or order-invariant formulas we
assume that the input formula is indeed successor or order invariant, and we do not have to verify
this property.

It is easily seen that the expressive power of order-invariant MSO formulas is greater than
that of plain MSO formulas, as, e.g., with an order we can formalise in MSO that a structure has
an even number of elements, a property not definable without an order. In fact, the expressive
power of order-invariant MSO formulas is even greater than the expressive power of the exten-
sion of MSO formulas with counting quantifiers CMSO [28]. Over-restricted classes of structures,
order-invariant MSO formulas, and CMSO formulas have the same expressive power (see, e.g., Ref-
erence [8]). This holds true for successor-invariant MSO formulas as well, as an order is definable
from a successor relation via MSO.

We are able to show that the model-checking problem for order-invariant MSO formulas is
tractable on essentially the same classes of graphs as for plain MSO formulas, i.e., we can increase
the expressive power without restricting the tractable cases. To be precise, we show that the model-
checking problem for order-invariant MSO formulas on classes of graphs of bounded clique-width
is fixed-parameter tractable. Furthermore, combining the result of Courcelle [7] and results that
one can add the edges of a successor relation to a graph of bounded treewidth without increasing
its treewidth too much, we get that model-checking for order-invariant MSO formulas (with quan-
tification over edge sets) on classes of graphs of bounded treewidth is fixed-parameter tractable.

Also successor- and order-invariant first-order formulas have both been studied intensively in
the literature, see, e.g., References [1, 19, 47, 50, 52, 53]. However, the difference between the
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expressive powers of order-invariant, successor-invariant, and plain FO formulas on various
classes of structures remains largely unexplored. An unpublished result of Gurevich states that
the expressive power of order-invariant FO formulas is stronger than that of plain FO formulas
(see, e.g., Theorem 5.3 of Reference [41] for a presentation of the result). Rossman [53] proved the
stronger result that successor-invariant FO formulas are more expressive than plain FO formulas.
The construction of Reference [53] creates dense instances though, and no separation between
successor-invariant FO formulas and plain FO formulas is known on sparse classes, say, on classes
of bounded expansion. However, collapse results in this context are known only for very restricted
settings. It is known that order-invariant FO collapses to plain FO on trees [1, 46] and on graphs
of bounded treedepth [16]. Moreover, order-invariant FO is a subset of MSO on graphs of bounded
degree and on graphs of bounded treewidth [1] and, more generally, on decomposable graphs in
the sense of Reference [19].

We show that, up to a narrow gap, the model-checking results for plain FO formulas carry
over to successor-invariant FO formulas. In particular, we show that model-checking successor-
invariant FO formulas is fixed-parameter tractable on any class of graphs of bounded expansion.
Classes of bounded expansion generalise classes with excluded topological minors and form a
natural meta-class one step below nowhere dense classes of graphs. More precisely, we show that
if C is a class of structures of bounded expansion, then model-checking for successor-invariant
first-order formulas on C can be solved in time f ( |φ |) · n · α (n), where n is the size of the universe
of the given structure, f is some function, and α (·) is the inverse Ackermann function. Note that
model-checking for plain FO can be done in linear time on classes of bounded expansion [15], thus
the running time of our algorithm is very close to the best known results for plain FO.

The natural way of proving tractability for successor-invariant FO formulas on a specific class
C of graphs is to show that any given graph G ∈ C can be augmented by a new set S of coloured
edges that form a successor relation on V (G ) such that G + S falls within a class D of graphs on
which plain FO is tractable. In this way, model-checking for successor-invariant FO on the class C
is reduced to the model-checking problem for FO on D . The main problem is how to construct
the set of augmentation edges S . For classes of bounded expansion, to construct such an edge
set, we rely on a characterisation of bounded expansion classes by generalised colouring numbers.
The definition of these graph parameters is roughly based on measuring reachability properties
in a linear vertex ordering of the input graph. Any such ordering yields a very weak form of
decomposition of a graph in terms of an elimination tree. The main technical contribution of this
article is that we find a way to control these elimination trees so that we can use them to define,
in a first step, a set F of new edges with the following properties: (a) F forms a spanning tree of
the input graph G, (b) F has maximum degree at most 3, and (c) after adding all the edges of F to
the graph, the increase in the colouring numbers is bounded. In a second step, from the bounded
degree spanning tree we will construct a successor relation S as desired.

This construction, besides its use in this article, yields a new insight into the elimination trees
generated by colouring numbers. We believe it may prove useful in future research as well.

As mentioned before, the tractability of model-checking for FO on sparse graphs is well under-
stood, while only few results are available for classes of dense graphs. We review some known
results for FO model-checking on dense graph classes in Section 6 and show that a result by
Gajarský et al. [26] carries over to order-invariant FO formulas.

Organisation of the article. In Section 2, we fix the terminology and notation used throughout
the article. In Section 3, we study the case of ordered structures, i.e., structures equipped with a
fixed order or successor relation. Order-invariant MSO formulas are considered in Section 4. We re-
call the notions from the theory of sparse graphs, in particular the generalised colouring numbers,
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and prove tractability of the model-checking problem for successor-invariant FO formulas on
bounded expansion classes in Section 5. Finally, in Section 6 we consider order-invariant FO for-
mulas on posets of bounded width and other dense classes of structures.

2 PRELIMINARIES

General notation. By N , we denote the set of nonnegative integers. For a setX , by
(

X
2

)
we denote

the set of unordered pairs of elements of X , that is, 2-element subsets of X . By α (·), we denote the
inverse Ackermann function, i.e., the inverse of the function n �→ A(n,n) with

A(m,n) �
⎧⎪⎪⎨⎪⎪⎩
n + 1, ifm = 0;
A(m − 1, 1), ifm > 0 and n = 0;
A(m − 1,A(m,n − 1)), ifm,n > 0.

Relational structures. We consider finite structures over finite signatures that contain only re-
lation symbols and constant symbols. Hence a signature τ = {R1, . . . ,Rk , c1, . . . , cs } is a finite set
of relation symbols Ri and constant symbols ci , where each relation symbol R ∈ τ is assigned an
arity ar(R) (arities are part of the signature). A τ -structure A = (V (A),R1 (A), . . . ,Rk (A), c1 (A),
. . . , cs (A)) consists of a setV (A), the universe of A, for each Ri ∈ τ a relation Ri (A) ⊆ V (A)ar(Ri ) ,
and for each ci ∈ τ a constant ci (A) ∈ V (A). If A is a τ -structure and R is a relation symbol not
in τ with associated arity r and R (A) ⊆ V (A)r is an r -ary relation over V (A), then we write
(A,R (A)) for the τ ∪ {R}-structure obtained by extending A with the relation R (A). The order
|A| of a τ -structure A is |V (A) |, and its size ‖A‖ is |τ | + |V (A) | +∑

R∈τ |R (A) |, which corre-
sponds to the size of a representation of A in an appropriate model of computation. We call a
structure G of signature {E}, where E is a binary relation symbol, a digraph, and if E (G ) is sym-
metric and irreflexive, then we call G a graph. We denote an undirected edge between vertices u
and v by uv and a directed edge by (u,v ). A directed path is sometimes denoted by a sequence
v1, . . . ,vn of vertices such that (vi ,vi+1) ∈ E (G ) for all 1 � i < n and sometimes by a binary re-
lation containing the pairs (vi ,vi+1) for 1 � i < n. Let V be a set. A successor relation on V is a
binary relation S ⊆ V ×V such that (V , S ) is a directed path of length |V | − 1. We write ā for a
finite sequence (a1, . . . ,ak ) and usually leave it to the context to determine the length of a se-
quence. The Gaifman-graph G (A) of a τ -structure A is the graph with vertex set V (A) and edge
set {(u,v ) : u � v , and there is an R ∈ τ and a tuple ā ∈ R (A) such that u,v ∈ ā}.
First-order logic. We assume familiarity with first-order logic FO and monadic second-order
logic MSO. We write FO(τ ) and MSO(τ ) for the set of all FO and MSO formulas over signature τ ,
respectively. If φ is a formula of FO or MSO, then we write |φ | for the length (of an encoding) of
φ. If φ is a sentence of FO(τ ) or MSO(τ ) and A a τ -structure, then we write A |= φ if φ is true in
A. If φ (x̄ ) has free variables x̄ and ā ∈ V (A)k is a tuple of the same length as x̄ , then we write
A |= φ (ā) if φ is true in A, where the free variables x̄ are interpreted by the elements of ā in the
obvious way. We write φ (A) for the relation R � {ā : A |= φ (ā)}. We call a formula φ (x̄ ) over
signature τ = σ ∪ {<}order invariant if for every σ -structure A and all linear orders <1, <2 over
V (A) we haveφ (A, <1) = φ (A, <2). Analogously, we call a formulaφ (x̄ ) over signature τ = σ ∪ {S }
(where S is a binary relation symbol) successor invariant if for every σ -structureA and all successor
relations S1, S2 over V (A) we have φ (A, S1) = φ (A, S2). We write FO[<-inv] and MSO[<-inv] for
the set of all order-invariant FO and MSO formulas, respectively, and FO[+1-inv] and MSO[+1-inv]
for the set of all successor-invariant FO and MSO formulas, respectively. We write FO[<] and
MSO[<] for the set of all FO and MSO formulas, respectively, over a signature that contains at
least the binary relation symbol <, and similarly for FO[+1] and MSO[+1]. For any order-invariant
formula φ and any τ -structure A, we write A |=ord-inv φ if for some (equivalently, every) order
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relation < on the universe of A we have (A, <) |= φ. Similarly, for a successor-invariant formula
φ we write A |=succ-inv φ if for some (equivalently, every) successor relation S on the universe of A
we have (A, S ) |= φ.

Throughout the article, we study the complexity of order- and successor-invariant logics on
restricted classes of structures. As usual in this type of research we focus on classes of graphs. More
general structures can be reduced to this case using their Gaifman-graphs. In our analysis we will
use the framework of parameterised complexity, see, e.g., References [10, 13, 23]. A parameterised
problem is a subset of Σ∗ ×N , where Σ is a fixed finite alphabet. For an instance (w,k ) ∈ Σ∗ ×N ,
we call k the parameter.

Let C be a class of graphs andL be one of first-order or monadic second-order logic. The model-
checking problem MC(L[<-inv],C ) for order-invariant sentences of L on the class C of graphs is
defined as the problem

MC(L[<-inv],C )
Input: G ∈ C , order-invariant φ ∈ L ({E, <})

Parameter: |φ |
Problem: G |=ord-inv φ ?

As mentioned before, we assume that the given formula is order invariant and the algorithm
does not have to verify this property. Analogously, we define the model-checking problem
MC(L[+1-inv],C ) successor-invariant sentences of L on C , where instead the formula φ ∈
L ({E, S }) is required to be successor invariant. Finally, we define the ordered model-checking prob-
lem MC(L[<],C ) for L on C as

MC(L[<],C )
Input: G ∈ C , < a linear order of V (G ) and φ ∈ L ({E, <})

Parameter: |φ |
Problem: (G, <) |= φ?

Likewise, we define the model-checking problem MC(L[+1],C ) with successor forL on C , which
gets as input a graph G ∈ C , a successor relation S on V (G ), and a formula φ ∈ L ({E, S }).

The order- and successor-invariant model-checking problems are fixed-parameter tractable, or
in the complexity class FPT, if there are algorithms that correctly decide on input (G,φ) whether
(G, <) |= φ for some linear order <, or (G, S ) |= φ for some successor relation S , respectively,

in time f ( |φ |) · ‖G‖O (1) , for some function f : N → N in the case where φ is order invariant,
or successor invariant, respectively. We use an analogous definition of FTP for MC(L[<]) and
MC(L[+1]). The model-checking problem for first-order logic is complete for the parameterised
complexity class AW[∗], which is conjectured to strictly contain the class FPT. Thus, it is widely
believed that model-checking for first-order logic (and thus also for monadic second-order logic)
is not fixed-parameter tractable.

3 MODEL-CHECKING ON ORDERED STRUCTURES

In this section, we investigate the tractability of model-checking on classes of ordered structures
and on classes of structures with a successor relation. Of course, it is easy to come up with classes
of ordered structures on which model-checking is fixed-parameter tractable, e.g., by taking the
class of all cliques with a linear order on the vertex set. Thus we seek restrictions as weak as
possible while still allowing us to show that model-checking is AW[∗]-hard.
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Fig. 1. A sample graph (left) encoded in a linear order plus partial matching (upper right) and a star forest

plus successor relation (lower right).

3.1 Coloured Sets

We start by observing that on the class of ordered coloured sets (and, a forteriori, on the class of
coloured sets with a successor relation), model-checking is tractable even for monadic second-
order logic. This is Büchi-Elgot-Trakhtenbrot’s Theorem (cf. Reference [23]), since coloured or-
dered sets are just strings. Thus model-checking for MSO is fixed-parameter tractable on structures
whose signature contains only unary relation symbols, apart from the order relation.

3.2 Vertex-Ordered Graphs

The simplest case not covered by the preceding paragraph is that of ordered graphs, i.e., {E, <}-
structures where both E and < are binary relation symbols. We show that model-checking for
first-order logic is AW[∗]-hard even for very simple graphs.

Theorem 3.1. Let C be a class of graphs. If C contains all partial matchings, then MC(FO[<],C )
is AW[∗]-hard. If C contains all star forests, then MC(FO[+1],C ) is AW[∗]-hard.

Here, a partial matching is a disjoint union of edges and isolated vertices (a graph of maximum
degree 1), while a star forest is a disjoint union of stars (complete bipartite graphsK1,n with n � 0).
Note that on both these graph classes, the model-checking problem for plain FO is fixed-parameter
tractable.

Proof. For the first part we show how to construct in polynomial time for every graph G an
{E, <}-structure A such that G can be FO-interpreted in A. For this, let {v1, . . . ,vn } be the vertex
set ofG ordered in an arbitrary way, and assume thatvi has degree di inG. To each vertex inG we

associate an interval of length d̂i � max{di , 1} in A and separate the intervals by gaps of length
2. Thus with

Dk � 2k − 1 +

k−1∑
i=1

d̂i ,

we associate with vi the interval {Di , . . . ,Di + d̂i − 1}. The edge set E (A) consists of the edges
{Di − 2,Di − 1} for i � 2, together with the edges {Di + k,D j + �} if vivj is an edge of G, vj is the
kth neighbour ofvi in the ordering, andvi is the �-th neighbour ofvi . The resulting construction is
sketched in Figure 1. Notice that the edges {Di − 2,Di − 1} are the only edges between consecutive
elements, so they can be used to determine the intervals used in this construction. We leave the
slightly technical but simple details of the FO-interpration to the reader.

For the second part we construct a structure A′ consisting of a disjoint union of stars and a
successor relation that can be used to recover the original graph using an FO interpretation. Again,
we assume the vertex set of G to be {v1, . . . ,vn }. A vertex v is encoded by a path v−1,v,v+1. The
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11:8 K. Eickmeyer et al.

vertices of these paths are placed at the beginning of the successor relation in an arbitrary order.
An edge e is encoded by three vertices e−1, e, e+1 such that e is a direct successor of e−1 and e+1

is a direct successor of e . All these vertices are placed at the end of the successor relation. For
every edge e = vw , assume that v is smaller than w in the successor relation. We connect, in A′,
v to e−1 and w to e+1. Again, it is easy to see that G may be recovered from A′ using an FO
interpretation. �

As a corollary of the previous theorem we get that MC(FO[+1],P ) and MC(FO[<],T ) are
AW[∗]-hard for the class P of planar graphs and the class T of graphs of treewidth 1 (forests).
However, for MC(FO[+1],C ) to be AW[∗]-hard it is essential that the graphs in the class T have
unbounded degree. Indeed, on graph classes of bounded degree, successor-invariant FO model-
checking is tractable.

Theorem 3.2. For every d � 0 let Dd be the class of graphs of maximum degree at most d . Then
for all d � 0, MC(FO[+1],Dd ) is fixed-parameter tractable. In fact, we can allow any (fixed) number
of successor relations on top of Dd and still have tractable first-order model-checking.

Proof. By a result of Seese [55], FO model-checking on graphs of bounded degree and also
on all structures with Gaifman graph of bounded degree is fixed-parameter tractable. Adding a
successor relation increases the degree of the Gaifman graph of a structure by at most two. �

4 ORDER-INVARIANT MSO

In this section, we consider order-invariant logics. The most expressive logic studied in the context
of algorithmic meta-theorems is monadic second-order logic, the extension of first-order logic by
quantification over sets of elements. With respect to graphs, there are two variants of MSO usu-
ally considered, one, called MSO1, where we can quantify over sets of vertices, and the other,
called MSO2, where we can additionally quantify over sets of edges. It was shown by Courcelle [7]
that MSO2 is fixed-parameter tractable on every class of graphs of bounded treewidth. Later,
Courcelle et al. [9] showed that MSO1 is fixed-parameter tractable on every class of graphs of
bounded clique-width, a concept more general than bounded treewidth. In this section, we show
that for both logics we can allow order-invariance without increase in complexity.

We first consider the case of MSO2. As shown in Theorem 5.1.1. of Reference [51], for every
graph G of treewidth k there is a successor relation S on V (G ) such that the graph obtained from
G by adding the edges in S has treewidth at most k + 2. From the proof one can easily derive an
algorithm that takes as input a graph G and a tree decomposition of G of width k and outputs
a successor relation as desired in polynomial time. We also refer to the earlier results [6, 43] for
proofs that for every graph G of treewidth k there is a successor relation S on V (G ) such that
the graph obtained from G by adding the edges in S has treewidth at most k + 5. We can use the

algorithm of Bodlaender [2] to compute an optimal tree decomposition in time 2O (k3 ) · n first, and
then compute the desired successor relation. In combination with Courcelle’s theorem, this implies
the following.

Theorem 4.1. For any class C of bounded treewidth, MC(MSO2[<-inv],C ) is fixed-parameter
tractable.

In fact, MC(MSO2[<-inv]) is fixed-parameter tractable with parameter |φ | + tw(G ), where
tw(G ) is the treewidth of a graph G. We prove next that also for MSO1 and clique-width we can
allow order-invariance without loss of tractability.

Theorem 4.2. For any class C of graphs of bounded clique-width, MC(MSO1[<-inv],C ) is fixed-
parameter tractable.
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We first review the definition of clique-width. For the rest of this section, we fix a relational
signature σ in which every relation symbol has arity at most 2.

Definition 4.3 (σ -clique-expression of width k). Let k ∈ N be fixed. A σ -clique-expression of
width k is a pair (T , λ), where T is a directed rooted tree in which all edges are directed away
from the root and

λ : V (T ) → {1, . . . , k} ∪ {⊕}
∪ {edgeR,i→j : R ∈ σ , i, j = 1, . . . ,k } ∪ {renamei→j : i, j = 1, . . . ,k },

such that for all t ∈ V (T ) we have the following: If λ(t ) ∈ {1, . . . , k}, then t is a leaf ofT ; if λ(t ) = ⊕,
then t has exactly two successors; and in all other cases t has exactly one successor.

Definition 4.4. Let (T , λ) be a σ -clique-expression of width k . With every t ∈ V (T ) we associate
a σ -structure G (t ) in which vertices are coloured by colours 1, . . . , k as follows.

• If t is a leaf, then G (t ) consists of one element coloured by λ(t ).
• If λ(t ) = ⊕ and t has successors t1, t2, then G (t ) is the disjoint union G (t1) ∪̇G (t2).
• If λ(t ) = edgeR,i→j and t1 is the successor of t , thenG (t ) is the structure obtained fromG (t1)

by adding to the relation R (G (t )) all pairs (u,v ) such that u has colour i and v has colour j.
• If λ(t ) = renamei→j and t1 is the successor of t , then G (t ) is the structure obtained from

G (t1) by changing the colour of all vertices v that have colour i in G (t1) to colour j in G (t ).

The σ -structure generated by (T , λ) is the structure G (r ), where r is the root of T , from which we
remove all colours {1, . . . , k}. Finally, the clique-width of a σ -structure G is the minimal width of
a clique-expression generating G.

Combining results from Reference [34] and Reference [48] yields the following well-known
result.

Fact 4.5. There are a computable function f : N → N and an algorithm that, given a graph G of
clique-width at mostk as input, computes a clique-expression of width at most 2k+1 in time f (k ) · |G |3.

Combining this theorem with results of Courcelle et al. [9] yields the following result.

Fact 4.6. For any class C of graphs of bounded clique-width, MC(MSO1,C ) is fixed-parameter
tractable.

In fact, the result applies to any σ -structure of bounded clique-width, provided that a clique-
expression generating the structure (whose width is bounded by a computable function of the
clique-width of the structure) is given or computable in polynomial time.

The next lemma is the main technical ingredient for the proof of Theorem 4.2 above.

Lemma 4.7. There is an algorithm that, on input a graph G of clique-width at most k , computes a
linear order < onV (G ) and a clique-expression of width at most 2k+2 generating the structure (G, <).

Proof. Let G and k be given. Using Theorem 4.5 we first compute an {E}-clique-expression
(T , λ) of width at most 2k+1 generating G. Let r be the root of T . For every node t ∈ V (T ) we fix
an ordering of its successors. Let ≺ be the partial order on V (T ) induced by this ordering.

Let t ∈ V (T ) be a node and let s � t be the first node on the path P from t to r with λ(s ) = ⊕, if
it exists. Let s1, s2 be the successors of s with s1 ≺ s2. We call t a left node if s1 ∈ V (P ), and a right
node otherwise. If there is no node labelled ⊕ strictly above t , then we call t a left node as well.

For every t ∈ V (T ) let Tt be the subtree of T with root t , and let λ |Tt
be the restriction of λ to

the subtree Tt . We recursively define a transformation ρ (Tt , λ |Tt
) on the subtrees of T defined as
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follows. Intuitively, we produce a new clique-expression (T ′, λ′) over the signature {E, <} using
colours {(i, left), (i, right) : 1 � i � k }. Essentially, the new clique-expression will generate the
same graph as (T , λ), but so that if t is a node inT andTt generates the graphGt , thenT ′ contains
a node t ′ generating an ordered versionG ′t � (Gt , <) ofGt so that ifv ∈ V (Gt ) has colour i , then,
inG ′t , v has colour (i, left) if t is a left node and (i, right) if t is a right node. Hence, whenever inT
we take the disjoint union of Gs and Gt and s ≺ t , then we can define the ordering on G ′s ∪̇G ′t by
adding all edges from nodes in G ′s to G ′t , i.e., all edges from vertices coloured (i, left) to (j, right)
for all pairs i, j. Formally, the transformation is defined as follows.

• If t ∈ V (T ) is a leaf, then ρ (t ) � (T ′, λ′), whereT ′ consists only of t and λ′(t ) � (λ(t ), left)
if t is a left node, and λ′(t ) � (λ(t ), right) if t is a right node.

• Suppose λ(t ) = renamei→j and let s be the successor of t . Then ρ (Tt , λ |Tt
) � (T ′, λ′),

where T ′ is a tree defined as follows. Let (T ′′, λ′′) � ρ (Ts , λ |Ts
) and let r ′′ be the root of

T ′′. Then T ′ is obtained from T ′′ by adding a new root r ′, a new node v , and new edges
r ′v and vr ′′. We define λ′(r ′) � rename(i, left)→(j, left) , λ

′(v ) � rename(i,right)→(j,right) , and
λ′(u) � λ′′(u) for u ∈ V (T ′′).

• Suppose λ(t ) = edgeE,i→j and let s be the successor of t . Then ρ (Tt , λ |Tt
) � (T ′, λ′),

whereT ′ is a tree defined as follows. Let (T ′′, λ′′) � ρ (Ts , λ |Ts
) and let r ′′ be the root ofT ′′.

ThenT ′ is obtained fromT ′′ by adding a pathv1,v2,v3,v4 of length 3 and making r ′′ a suc-
cessor ofv4. We define λ′(v1) � edgeE, (i, left)→(j, left) , λ

′(v2) � edgeE, (i,right)→(j, left) , λ
′(v3) �

edgeE, (i, left)→(j,right) , λ
′(v4) � edgeE, (i,right)→(j,right) , and λ′(u) � λ′′(u) for u ∈ V (T ′′).

• Finally, suppose λ(t ) = ⊕ and let t1, t2 be the successors of t such that t1 ≺ t2. Then
ρ (Tt , λ |Tt

) � (T ′, λ′), where T ′ is a tree defined as follows. For i = 1, 2, let (Ti , λi ) �
ρ (Tti
, λ |Tti

) and let ri be the root ofTi .T
′ consists of the union ofT1 andT2, and the additional

vertices vi , 1 � i � k , wi, j , 1 � i, j � k , and v⊕ . We add the edges vivi+1 for 1 � i < k , the
edgeswi, jwi, j+1 for 1 � i � k , 1 � j < k , and the edgeswi,kwi+1,1 for 1 � i < k , and finally
the edges vkw1,1, wk,kv⊕ , and v⊕ri for i = 1, 2. For every node s ∈ V (Ti ) we define λ′(s ) �
λi (s ), i = 1, 2. Furthermore, we define λ(v⊕ ) � ⊕ and λ′(wi, j ) � edge<, (i, left)→(j,right) for

1 � i, j � k . Finally, if t is a left node, then we define λ(vi ) � rename(i,right)→(i, left) for i � k ,
and if t is a right node, then we define λ(vi ) � rename(i, left)→(i,right) for i � k .

Now, it is easily seen that (T ′, λ′) generates an {E, <}-structure (V ,E, <) where (V ,E) is the
graph generated by (T , λ) and < is a linear order on V . The width of (T ′, λ′) is twice the width of
(T , λ), and hence at most 2k+2. �

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let C be a class of graphs of clique-width at most k . On input G ∈
C and φ ∈ MSO1[<-inv], we apply Lemma 4.7 to obtain a clique-expression (T , λ) of width 2k+2

generating an ordered copy (G, <) of G in time f (k ) · |G |3, for some computable function f . We
can now apply Theorem 4.6 to decide whether (G, <) |= φ in time д(2k+2) · p ( |G |), where д is a
computable function and p a polynomial. As φ is order invariant, if (G, <) |= φ, then (G, <′) |= φ
for any linear order <′ onG. Hence, if (G, <) |= φ we can accept and otherwise reject the input. �

It is worth pointing out the following feature of the model-checking algorithms established
in Theorems 4.1 and 4.2. Instead of designing new model-checking algorithms, we reduce the
verification of order-invariant MSO on classes of small treewidth or clique-width to the standard
model-checking algorithms for MSO on classes of (slightly larger) treewidth and clique-width,
respectively. The advantage of this approach is that we can reuse existing results on MSO on such
classes of graphs. For instance, in Reference [37] the authors report on a practical implementation
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of Courcelle’s theorem, i.e., on the implementation of a model-checker for MSO2 on graph classes
of bounded treewidth, and obtain astonishing performance results in practical tests. Our technique
allows us to reuse this implementation so that with minimal effort it is possible to implement our
algorithm on top of the work in Reference [37]. Furthermore, in Reference [22] it is shown that
on graph classes C of bounded treewidth, the set of all satisfying assignments of a given MSO
formula φ (X ) with free variables in a graph G ∈ C can be computed in time linear in the size of
the output and the size of G. Again we can use the same algorithm to obtain the same result for
order-invariant MSO.

5 SUCCESSOR-INVARIANT FO ON CLASSES OF BOUNDED EXPANSION

Classes of bounded expansion are classes of uniformly sparse graphs that have very good structural
and algorithmic properties. Most notably, these classes admit efficient first-order model-checking,
as shown by Dvořák et al. [15]. In this section we are going to lift this result to successor-invariant
formulas. Let us give the required definitions first.

Shallow minors and bounded expansion. A graph H is a minor of G, written H � G, if there
are pairwise vertex disjoint connected subgraphs (Iu )u ∈V (H ) of G, called branch sets, such that
whenever uv ∈ E (H ), then there are xu ∈ Iu and xv ∈ Iv with xuxv ∈ E (G ). We call the family
(Iu )u ∈V (H ) a minor model of H inG. A graph H is a depth-r minor ofG, denoted H �r G, if there is
a minor model (Iu )u ∈V (H ) of H in G such that each subgraph Iu has radius at most r . For a graph
G and r ∈ N , we write ∇r (G ) for the maximum edge density |E (H ) |/|V (H ) | of a graph H �r G.

Definition 5.1. A class of graphs C has bounded expansion if there is a function f : N → N such
that ∇r (G ) � f (r ) for all r ∈ N and all G ∈ C .

Let τ be a finite and purely relational signature and let C be a class of τ -structures. We say that C
has bounded expansion if the class {G (A) : A ∈ C } of the Gaifman-graphs of the structures from C
has bounded expansion.

Generalised colouring numbers. We will mainly rely on an alternative characterisation of
bounded expansion classes via generalised colouring numbers. Let us fix a graph G. By Π(G ) we
denote the set of all linear orderings ofV (G ). For L ∈ Π(G ), we write u <L v if u is smaller than v
in L, and u �L v if u <L v or u = v . For r ∈ N , we say that a vertex u is strongly r -reachable from
a vertexv with respect to L if u �L v and there is a path P of length at most r that starts inv , ends
in u, and all whose internal vertices are larger than v in L. By SReachr [G,L,v] we denote the set
of vertices that are strongly r -reachable from v with respect to L. Note that v ∈ SReachr [G,L,v]
for any vertex v . We define the r -colouring number of G with respect to L as

colr (G,L) = max
v ∈V (G )

���SReachr [G,L,v]
���,

and the r -colouring number of G (sometimes called strong r -colouring number) as

colr (G ) = min
L∈Π(G )

colr (G,L).

For r ∈ N and ordering L ∈ Π(G ), the r -admissibility admr [G,L,v] of a vertexv with respect to L
is defined as the maximum size of a family P of paths that satisfies the following two properties:

• each path P ∈ P has length at most r , starts in v , and is either the trivial length-zero path
or ends in a vertex u <L v and all its internal vertices are larger than v in L;

• the paths in P are pairwise vertex-disjoint, apart from sharing the start vertex v .
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The r -admissibility of G with respect to L is defined similarly to the r -colouring number:

admr (G,L) = max
v ∈V (G )

admr [G,L,v],

and the r -admissibility of G is given by

admr (G ) = min
L∈Π(G )

admr (G,L).

The r -colouring numbers were introduced by Kierstead and Yang [36], while r -admissibility was
first studied by Dvořák [14]. It was shown that those parameters are related as follows.

Fact 5.2 (Dvořák [14]). For any graph G, r ∈ N and vertex ordering L ∈ Π(G ), we have

admr (G,L) � colr (G,L) �
(
admr (G,L)

)r
.

(Note that in Dvořák’s work, the reachability sets do not include the starting vertex, hence the
above inequality is stated slightly differently in Reference [14].)

As proved by Zhu [60], the generalised colouring numbers are tightly related to densities of
low-depth minors, and hence they can be used to characterise classes of bounded expansion.

Fact 5.3 (Zhu [60]). A class C of graphs has bounded expansion if and only if there is a function
f : N → N such that colr (G ) � f (r ) for all r ∈ N and all G ∈ C .

We need to be a bit more precise and use the following lemma.

Fact 5.4 (Grohe et al. [30]). For any graph G and r ∈ N we have admr (G ) � 6r · (∇r (G ))3.

As shown by Dvořák [14], on classes of bounded expansion one can compute admr (G ) in linear
fixed-parameter time, parameterised by r . More precisely, we have the following.

Fact 5.5 (Dvořák [14]). Let C be a class of bounded expansion. Then there is an algorithm that,
given a graph G ∈ C and r ∈ N , computes a vertex ordering L ∈ Π(G ) with admr (G,L) = admr (G )
in time f (r ) · |V (G ) |, for some computable function f .

We remark that Dvořák states the result in Reference [14] as the existence of a linear-time
algorithm for each fixed value of r . However, an inspection of the proof reveals that it is actually a
single fixed-parameter algorithm that can take r as input. To the best of our knowledge, a similar
result for computing colr (G ) is not known, but by Lemma 5.2 we can use admissibility to obtain
an approximation of the r -colouring number of a given graph from a class of bounded expansion.

Bounded expansion classes are very robust under local changes, e.g., under taking lexicographic
products, as defined below.

Definition 5.6. Let G and H be graphs. The lexicographic product G • H of G and H is the graph
with vertex set V � V (G ) ×V (H ) and edge set

E �
{
{(u,u ′), (v,v ′)} : uv ∈ E (G ), or v = u and u ′v ′ ∈ E (H )

}
.

In the above definition we use the notation {(u,u ′), (v,v ′)} for the edge (u,u ′) (v,v ′) so that no
confusion can arise. The following lemma shows that taking lexicographic products preserves the
edge density of shallow minors. This was first proved in Reference [44]; the following improved
bounds are given in Reference [32].

Fact 5.7 (Har-Peled and Quanrud [32]). For any graph G and r , t ∈ N we have ∇r (G • Kt ) �
5t2 (r + 1)2∇r (G ).

Bounded expansion classes are also stable under taking shallow minors, as expressed in the
following fact.
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Fact 5.8 (see Nešetřil and Ossona de Mendez [45, Proposition 4.1]). If J ,H , and G are graphs
and r , s ∈ N such that J is a depth-r minor of H and H is a depth-s minor of G, then J is a depth-
(2rs + r + s ) minor of G.

The following lemma is folklore, we provide a proof for completeness.

Lemma 5.9. For any graph G and r ∈ N we have ∇r (G ) � col4r+1 (G ).

Proof. Set c = col4r+1 (G ) and let L be a linear order of V (G ) for which col4r+1 (G,L) = c . Next
let H �r G, say with a minor model (Iu )u ∈V (H ) . We will show that |E (H ) | � c · |V (H ) |.

For each u ∈ V (H ) let mu be the <L-minimal vertex in Iu . We define a linear order on V (H )
by setting u < v if mu <L mv . Observe that since each branch set has radius at most r and mu

and mv are minimum in their respective branch sets, if u < v , there exists a vertex in Iu that is
strongly (4r + 1)-reachable from mv . Hence, as col4r+1 (G ) � c , for each vertex v there can be at
most c vertices u with u < v . This implies that H is c-degenerate and can have at most c · |V (H ) |
edges. �

We are going to prove the following theorem.

Theorem 5.10. Let τ be a finite and purely relational signature and let C be a class of τ -structures
of bounded expansion. Then there exists an algorithm that, given a finite τ -structure A ∈ C and
a successor-invariant formula φ ∈ FO[+1], verifies whether A |=succ-inv φ in time f ( |φ |) · n · α (n),
where f is a function and n is the size of the universe of A.

In the language of parameterised complexity, Theorem 5.10 essentially states that the model-
checking problem for successor-invariant first-order formulas is fixed-parameter tractable on
classes of finite structures whose underlying Gaifman graph belongs to a fixed class of bounded
expansion. Note that Theorem 5.10 does not assert that f is computable and, hence, the algorithm
in the theorem is not necessarily strongly uniform. To have this property, it suffices to assume
that the class C is effectively of bounded expansion. In the characterisation of Theorem 5.3, this
means that there exist a computable function f : N → N such that colr (G (A)) � f (r ) for each
A ∈ C . See Reference [31] for a similar discussion regarding model-checking first-order logic on
(effectively) nowhere dense classes of graphs.

In principle, our approach follows that of the earlier results on successor-invariant model-
checking. Asφ is successor invariant, to verify whetherA |=succ-inv φ, we may compute an arbitrary
successor relation S on V (A), and verify whether (A, S ) |= φ. Of course, we will try to compute a
successor relation S so that adding it to A preserves the structural properties as much as possible,
so that model-checking on (A, S ) can be done efficiently.

Our construction of such a structure preserving successor relation is based on the above de-
scribed characterisation of bounded expansion classes by the generalised colouring numbers. As
a first step, we show how to define a set F of new edges with the following properties:

• F forms a tree on the vertex set V (G ) of the input graph G,
• F has maximum degree at most 3, and
• after adding all the edges of F to G, the colouring numbers are still bounded.

In a second step, we construct from the bounded degree spanning tree a successor relation on
V (G ), again ensuring that the relevant parameters remain bounded.

5.1 Constructing a Low-degree Spanning Tree

In this section, we prove the following theorem.
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Theorem 5.11. There exists an algorithm that, given a graph G, r ∈ N , and ordering L of V (G ),

computes a set of unordered pairs F ⊆
(
V (G )

2

)
such that the graphT = (V (G ), F ) is a tree of maximum

degree at most 3 and
admr (G + F ,L) � 2 + 2 · col2r (G,L),

where G + F is the graph (V (G ),E (G ) ∪ F ). The running time of the algorithm is O ((n +m) · α (n)),
wherem = |E (G ) | and n = |V (G ) |.

The main step toward this goal is the corresponding statement for connected graphs, as ex-
pressed in the following lemma.

Lemma 5.12. For a connected graph G, the statement of Theorem 5.11 holds with the improved
inequality

admr (G + F ,L) � 2 · col2r (G,L).

We first show that Theorem 5.11 follows easily from Lemma 5.12.

Proof of Theorem 5.11, assuming Lemma 5.12. Let G be a (possibly disconnected) graph, and
let G1, . . . ,Gp be its connected components. For i = 1, . . . ,p, let Li be the ordering obtained by
restricting L to V (Gi ). Obviously col2r (Gi ,Li ) � col2r (G,L).

Apply the algorithm of Lemma 5.12 toGi and Li , obtaining a set of unordered pairs Fi such that
Ti = (V (Gi ), Fi ) is a tree of maximum degree at most 3 and

admr (Gi + Fi ,Li ) � 2 · col2r (Gi ,Li ) � 2 · col2r (G,L).

For i = 1, . . . ,p, select a vertex vi ofGi with degree at most 1 inTi ; sinceTi is a tree, such a vertex
exists. Define

F = {v1v2,v2v3, . . . ,vp−1vp } ∪
p⋃

i=1

Fi .

Obviously, we have that T = (V (G ), F ) is a tree. Observe that it has maximum degree at most 3.
This is because each vertexvi had degree at most 1 in its corresponding treeTi , and hence its degree
can grow to at most 3 after adding edges vi−1vi and vivi+1. By Lemma 5.12, the construction of
each Ti takes time O ((ni +mi ) · α (ni )), where mi = |E (Gi ) |. It follows that the construction of T
takes time O ((n +m) · α (n)).

It remains to argue that admr (G + F ,L) � 2 + 2col2r (G,L). Take any vertex u of G, say, u ∈
V (Gi ), and let P be a set of paths of length at most r that start in u, are pairwise vertex-disjoint
(apart from u), and end in vertices smaller than u in L, while internally traversing only vertices
larger than u in L. Observe that at most two of the paths from P can use any of the edges from the
set {v1v2,v2v3, . . . ,vp−1vp }, since any such path has to use either vi−1vi or vivi+1. The remaining
paths are entirely contained inGi + Fi , and hence their number is bounded by admr (Gi + Fi ,Li ) �
2col2r (G,L). The theorem follows. �

In the remainder of this section we focus on Lemma 5.12.

Proof of Lemma 5.12. We begin our proof by showing how to compute the set F . This will be
a two step process, starting with an elimination tree. For a connected graphG and an ordering L of
V (G ), we define the (rooted) elimination tree S (G,L) of G imposed by L (cf. References [3, 54]) as
follows. IfV (G ) = {v}, then the rooted elimination tree S (G,L) is just the tree on the single vertex
v . Otherwise, the root of S (G,L) is the vertex w that is the smallest with respect to the ordering L
inG. For each connected componentC ofG −w we construct a rooted elimination tree S (C,L|V (C ) ),
where L|V (C ) denotes the restriction of L to the vertex set ofC . These rooted elimination trees are
attached below w as subtrees by making their roots into children of w . Thus, the vertex set of the
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Fig. 2. A graphG (solid black lines), the elimination tree S (dashed blue lines), and a treeU (dotted red lines).

elimination tree S (G,L) is always equal to the vertex set of G. See Figure 2 for an illustration. The
solid black lines are the edges ofG; the dashed blue lines are the edges of S . The ordering L is given
by the numbers written in the vertices.

Let S = S (G,L) be the rooted elimination tree ofG imposed by L. For a vertexu, byGu we denote
the subgraph ofG induced by all descendants ofu in S , includingu. The following properties follow
easily from the construction of a rooted elimination tree.

Claim 5.13. The following assertions hold.

(1) For each u ∈ V (G ), the subgraph Gu is connected.
(2) Whenever a vertex u is an ancestor of a vertex v in S , we have u �L v .
(3) For each uv ∈ E (G ) with u <L v , u is an ancestor of v in S .
(4) For each u ∈ V (G ) and each child v of u in S , u has at least one neighbour in V (Gv ).

Proof. Assertions (1) and (2) follow immediately from the construction of S . For assertion (3),
suppose that u and v are not bound by the ancestor-descendant relation in S , and let w be their
lowest common ancestor in S . Then u and v would be in different connected components ofGw −
w , henceuv could not be an edge; a contradiction. It follows thatu andv are bound by the ancestor-
descendant relation, implying thatu is an ancestor ofv , due tou <L v and assertion (2). Finally, for
assertion (4), recall that by assertion (1) we have thatGu is connected, whereas by constructionGv

is one of the connected components ofGu − u. Hence, inG there is no edge betweenV (Gv ) and any
of the other connected components of Gu − u. If there was no edge between V (Gv ) and u as well,
then there would be no edge between V (Gv ) and V (Gu ) \V (Gv ), contradicting the connectivity
of Gu . �

We now define a set of edges B ⊆ E (G ) as follows. For every vertex u of G and every child v of
u in S , select an arbitrary neighbour wu,v of u in Gv ; such a neighbour exists by Claim 5.13 (4).
Then let Bu be the set of all edges uwu,v , for v ranging over the children of u in S . Define

B =
⋃

u ∈V (G )

Bu .

Let U be the graph spanned by all the edges in B, that is, U = (V (G ),B). In Figure 2, the edges of
U are represented by the dotted red lines.

Claim 5.14. The graph U is a tree.
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Proof. Observe that for each u ∈ V (G ), the number of edges in Bu is equal to the number of
children of u in S . Since every vertex ofG has exactly one parent in S , apart from the root of S , we
infer that

|B | �
∑

u ∈V (G )

|Bu | = |V (G ) | − 1.

Therefore, since B is the edge set of U , to prove that U is a tree it suffices to prove that U is con-
nected. To this end, we prove by a bottom-up induction on S that for each u ∈ V (G ), the subgraph

Uu = (V (Gu ),B ∩ ( V (Gu )
2 )) is connected. Note that for the root w of S this claim is equivalent to

Uw = U being connected.
Take any u ∈ V (G ), and suppose by induction that for each child v of u in S , the subgraph Uv

is connected. Observe thatUu can be constructed by taking the vertex u and, for each child v of u
in S , adding the connected subgraphUv and connectingUv to u via the edge uwu,v ∈ Bu . Thus,Uu

constructed in this manner is also connected, as claimed. �

Next, we verify that U can be computed within the claimed running time. Note that we do not
need to compute S , as we use it only in the analysis. We remark that this is the only place in the
algorithm where the running time is not linear.

Claim 5.15. The tree U can be computed in time O (m · α (n)).

Proof. We use the classic Union-Find data structure on the set V (G ). Recall that in this data
structure, at each moment we maintain a partition of V (G ) into a number of equivalence classes,
each with a prescribed representative, where initially each vertex is in its own class. The operations
are (a) for a given u ∈ V (G ), find the representative of the class to which u belongs, and (b) merge
two equivalence classes into one. Tarjan [58] gave an implementation of this data structure where
both operations run in amortised time α (n), where n is the total number of elements covered by
the data structure. Recall that α (·) denotes the inverse Ackermann function.

Having initialised the data structure, we process the vertex ordering L from the largest end, start-
ing with an empty suffix. For an already processed suffix X of L, the maintained classes within X
will represent the partition ofG[X ] into connected components, while every vertex outside X will
still be in its own equivalence class. Let us consider one step, when we process a vertex u, thus
moving from a suffix X to the suffix X ′ = X ∪ {u}. We iterate through all the neighbours of u, and
for each neighbour v of u with u <L v , verify whether the equivalence classes of u and v are dif-
ferent. If this is the case, then merge these classes and add the edge uv to B. A straightforward
induction shows that the claimed invariant holds. Moreover, when processing u we add a valid
choice for the edges of Bu to B, hence at the end we obtain the set B and the tree U = (V (G ),B).

For the running time analysis, observe that in total we perform O (m) operations on the data
structure, and thus the running time is O (m · α (n)). We remark that we assume that the ordering L
is given as a bijection between V (G ) and numbers {1, 2, . . . , |V (G ) |}, thus for two vertices u,v we
can check in constant time whether u <L v . �

By Lemma 5.14 we have that U is a spanning tree of G. However its maximum degree may be
too large. The idea is to use U to construct a new tree T with maximum degree at most 3 (on the
same vertex set V (G )). The way we constructed U will enable us to argue that adding the edges
of T to the graph G does not change the generalised colouring numbers too much.

GiveU the same root as the elimination tree S . From now on we treatU as a rooted tree, which
imposes parent-child and ancestor-descendant relations in U as well. Note that the parent-child
and ancestor-descendant relations in S and inU may be completely different. For instance, consider
vertices 4 and 15 in the example from Figure 2: Vertex 4 is a child of 15 inU , and an ancestor of 15
in S .
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Fig. 3. A graph G (solid black lines), a tree U (dotted red lines), and the tree T (thick dashed green lines).

For every u ∈ V (G ), let (x1, . . . ,xp ) be an enumeration of the children of u in U , such that
xi <L x j if i < j. Let Fu = {ux1,x1x2,x2x3, . . . ,xp−1xp }, and define

F =
⋃

u ∈V (G )

Fu and T = (V (G ), F ).

See Figure 3 for an illustration.

Claim 5.16. The graph T is a tree with maximum degree at most 3.

Proof. Observe that for eachu ∈ V (G ) we have that |Fu | is equal to the number of children ofu
in U . Every vertex of G apart from the root of U has exactly one parent in U , hence

|F | �
∑

u ∈V (G )

|Fu | = |V (G ) | − 1.

Therefore, to prove that T is a tree, it suffices to argue that it is connected. This, however, follows
immediately from the fact that U is connected, since for each edge in U there is a path in T that
connects the same pair of vertices.

Finally, it is easy to see that each vertexu is incident to at most 3 edges of F : at most one leading
to a child of u in U , and at most 2 belonging to Fv , where v is the parent of u in U . �

Observe that once the tree U is constructed, it is straightforward to construct T in time O (n).
Thus, it remains to check that adding F to G does not change the generalised colouring numbers
too much.

Take any vertex u ∈ V (G ) and examine its children in U . We partition them as follows. Let Z ↑u
be the set of those children of u in U that are its ancestors in S , and let Z ↓u be the set of those
children of u in U that are its descendants in S . By the construction of U and by Claim 5.13(3),
each child of u in U is either its ancestor or descendant in S . By Claim 5.13(2), this is equivalent

to saying that Z ↑u , respectively Z ↓u , comprise the children of u in U that are smaller, respectively

larger, than u in L. Note that by the construction of U , the vertices of Z ↓u lie in pairwise different
subtrees rooted at the children of u in S , thus u is the lowest common ancestor in S of every pair

of vertices from Z ↓u . However, all vertices of Z ↑u are ancestors of u in S , thus every pair of them is
bound by the ancestor-descendant relation in S .

Claim 5.17. The graph union G + F satisfies admr (G + F ,L) � 2 · col2r (G,L).
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Proof. Write H = G + F . Let Fnew = F \ E (G ) be the set of edges from F that were not already
present inG. If an edge e ∈ Fnew belongs also to Fu for someu ∈ V (G ), then we know thatu cannot
be an endpoint of e . This is because edges joining a vertex u with its children in U were already
present in G. We say that the vertex u is the origin of an edge e ∈ Fnew ∩ Fu and denote it by a(e ).
Observe that a(e ) is adjacent to both endpoints of e inG by construction. For instance, in Figure 3
vertex 15 is the origin of the new edge between vertices 13 and 17, since this edge is contained in
the path F15. Also observe that if the endpoints of e belong to Z ↑a (e ) , then they are both ancestors
of a(e ) in S , and thus are both smaller than a(e ) in L. Otherwise, if the endpoints of e belong
to Z ↓a (e ) , then they are not bound by the ancestor-descendant relation in S and a(e ) is their lowest
common ancestor in S .

To give an upper bound on admr (H ,L), let us fix a vertex u ∈ V (G ) and a family of paths P in
H such that

• each path in P has length at most r , starts in u, ends in a vertex smaller than u in L, and all
its internal vertices are larger than u in L;

• the paths in P are pairwise vertex-disjoint, apart from the starting vertex u.

For each path P ∈ P, we define a walk P ′ in G as follows. For every edge e = xy from Fnew

traversed on P , replace the usage of this edge on P by the detour from x to a(e ) to y of length 2.
Observe that P ′ is a walk in the graphG, it starts in u, ends in the same vertex as P , and has length
at most 2r . Next, we definev (P ) to be the first vertex on P ′ (that is, the closest tou on P ′) that does
not belong toGu . Since the endpoint of P ′ that is not u does not belong toGu , such a vertex exists.
Finally, let P ′′ be the prefix of P ′ from u to the first visit ofv (P ) on P ′ (from the side of u). Observe
that the predecessor of v (P ) on P ′′ belongs to Gu and is a neighbour of v (P ) in G, hence v (P ) has
to be a strict ancestor of u in S . We find that P ′′ is a walk of length at most 2r in G, it starts in u,
ends in v (P ), and all its internal vertices belong to Gu , so in particular they are not smaller than u
in L. This means that P ′′ certifies that v (P ) ∈ SReach2r [G,L,u].

Since |SReach2r [G,L,u]| � col2r (G,L), to prove the bound on admr (H ,L), it suffices to prove
the following claim: For each vertex v that is a strict ancestor of u in S , there can be at most two
paths P ∈ P for whichv = v (P ). To this end, we fix a vertexv that is a strict ancestor of u in S and
proceed by a case distinction on how a path P with v = v (P ) may behave.

Suppose first that v is the endpoint of P other than u, equivalently the endpoint of P ′ other
than u. (For example, u = 1, P = 1, 11, 21, 0, P ′ = 1, 11, 1, 21, 0 and v = 0, in Figures 2 and 3.) How-
ever, the paths of P are pairwise vertex-disjoint, apart from the starting vertex u, hence there can
be at most one path P from P for which v is an endpoint. Thus, this case contributes at most one
path P for which v = v (P ).

Next suppose that v is an internal vertex of the walk P ′; in particular, it is not the endpoint of P
other than u. (For example, u = 6, P = 6, 11, 21, 0, P ′ = 6, 11, 1, 21, 0 and v = 1, in Figures 2 and 3.)
Since the only vertex traversed by P that is smaller than u in L is this other endpoint of P , and v is
smaller than u in L due to being its strict ancestor in S , it follows that each visit ofv on P ′ is due to
having v = a(e ) for some edge e ∈ Fnew traversed on P . Select e to be such an edge corresponding
to the first visit of v on P ′. Let e = xy, where x lies closer to u on P than y. (That is, in our figures,
x = 11 and y = 21.) Since v was chosen as the first vertex on P ′ that does not belong to Gu , we
have x ∈ Gu .

Sincev = a(e ) = a(xy), either x ∈ Z ↓v or x ∈ Z ↑v . Note that the second possibility cannot happen,
because then v would be a descendant of x in S , hence v would belong to Gu , due to x ∈ Gu ; a
contradiction. We infer that x ∈ Z ↓v .

Recall that, by construction, Z ↓v contains at most one vertex from each subtree of S rooted at a
child ofv . Sincev is a strict ancestor ofu in S , we infer that x has to be the unique vertex ofZ ↓v that
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belongs toGu . In the construction of Fv , however, we added only at most two edges of Fv incident
to this unique vertex: at most one to its predecessor on the enumeration of the children of v , and
at most one to its successor. Since paths from P are pairwise vertex-disjoint in H , apart from the
starting vertex u, only at most one path from P can use these two edges. We can havev = a(e ) for
this path only. Thus, this case contributes at most one path P for which v = v (P ), completing the
proof of the claim. �

We conclude the proof by summarising the algorithm: first construct the tree U , and then
construct the tree T . As argued, these steps take time O (m · α (n)) and O (n), respectively. By
Claims 5.16 and 5.17, T satisfies the required properties. �

5.2 Constructing a Successor Relation

The preceding section provides us with a spanning tree of maximum degree at most 3. We now
show how this can be used to obtain a successor relation from this spanning tree.

We give two constructions: One that constructs an actual successor relation, at the cost of pos-
sibly adding further edges. The added edges may increase the admissibility, but in a way that pre-
serves bounded expansion. We also give a second construction that does not add additional edges
and hence preserves also other structural properties. Such a construction may thus be potentially
used for model-checking on other graph classes. This construction shows how a successor rela-
tion may be interpreted by a first-order formula in a graph with bounded-degree spanning tree,
without adding any edges.

Adding a successor relation.

Theorem 5.18. There exists an algorithm that, given a graph G, r ∈ N , the edge set F of a tree
of maximum degree at most 3, computes a set of ordered pairs S ⊆ V (G )2 such that S is a successor
relation on V (G ) and

admr (G + S̄ ) � h
(
r , adm28r+13 (G + F )

)
,

for an appropriately defined function h, where S̄ = {ab : (a,b) ∈ S } is the set of undirected edges
obtained from forgetting the directions of pairs in S . The running time of the algorithm is O (m + n),
wherem = |E (G ) | and n = |V (G ) |.

As observed, e.g., in References [35, 56], the cube of every connected graph contains a Hamil-
tonian path. (The cube of a graph G is the graph on the same vertex set as G and in which two
vertices are connected if their distance in G is at most 3.) Furthermore, such a Hamiltonian path
can be computed in linear time in the size of the original graph [42]. The set S of edges whose
existence is stated in Theorem 5.18 will simply be the Hamiltonian path computed in the cube
of the spanning tree F that we constructed above. It remains to prove the claimed bound on the
r -admissibility of the new graph.

Proof of Theorem 5.18. Observe that we can find G + S , where S is as described above, as
a depth-3 minor of (G + F ) • K9. This is a simple consequence of the fact that F has maximum
degree 3. Let H �3 (G + F ) • K9 such that the edge density of H is equal to ∇3 ((G + F ) • K9). Now
we have

∇r (G + S ) � ∇r (H )

� ∇7r+3 ((G + F ) • K9) (by Fact 5.8)

� 5 · 92 · (7r + 4)2 · ∇7r+3 (G + F ) (by Fact 5.7)

� 5 · 92 · (7r + 4)2 · col28r+13 (G + F ) (by Lemma 5.9).
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Finally, by Lemma 5.4 we have admr (G + S ) � 6r (∇r (G + S ))3, which gives us

admr (G + S ) � д(r , col28r+13 (G + F )),

for an appropriately defined function д. Now the inequality of Lemma 5.2 leads to the stated
result. �

Interpreting a successor relation. We show how in a graph with a spanning tree of degree 3,
a successor relation can be interpreted after suitably colouring vertices and edges, but without
adding further edges. We first notice that the existence of such a spanning tree guarantees the
existence of a 3-walk, i.e., a walk through the graph that visits each vertex at least once and at
most three times. The following lemma allows us to interpret a successor relation from a k-walk
in first-order logic, for arbitrary k . For a natural number �, let [�] be the set {1, . . . , �}.

Lemma 5.19. Let σ be a finite relational signature, A a finite σ -structure, and w : [�]→ V (A) a
k-walk through the Gaifman graph of A, where � � k · |V (A) |.

Then there is a finite relational signature σk and a first-order formula φ (k )
succ (x ,y), both depending

only on k , and a (σ ∪ σk )-expansion A′ of A, which can be computed from A and w in polynomial
time, such that

• the Gaifman graphs of A′ and A are the same;

• φ (k )
succ defines a successor relation on A′.

Proof. We define a function f : [�]→ [k], which counts how many times we have visited a
vertex on the walk before, by

f (i ) � |{j � i : w (i ) = w (j )}|.

Furthermore, let F : V (A) → [k] count how many times we visit a vertex:

F (v ) � |{i ∈ [�] : w (i ) = v}|.

To simplify notation, if i ∈ [�], then we write F (i ) for F (w (i )).
We encode the k-walkw by binary relations Eab with a,b = 1, . . . ,k , in such a way that (u,v ) ∈

Eab if and only if there is some i ∈ [� − 1] such that

• w (i ) = u and f (i ) = a, and
• w (i + 1) = v and f (i + 1) = b.

That is, after visiting u for the ath time, the walkw proceeds tov , visiting it for the bth time. Note
that if k = 1, we can immediately define a successor relation by

φ (1)
succ (x ,y) � E11xy.

If k > 1, then we show how to interpret a (k − 1)-walk w ′ in first-order logic, given a k-walk
encoded by {Eab : 1 � a,b � k } as above. By daisy-chaining these interpretations we end up with
a 1-walk (i.e., a Hamiltonian path). Plugging in the interpretation of this Hamiltonian path into

φ (1)
succ defined above gives the formulas φ (k )

succ.
To get from a k-walk to a (k − 1)-walk, we look at all vertices that are visited k times, and “jump”

over these vertices, either when they are visited for the (k − 1)th or for the kth time. Jumping over
a vertex can be done in first-order logic, but we must be careful to choose the vertices for jumping
in such a way that we never jump over an unbounded number of vertices in a row, as this is not
possible in first-order logic. We encode the information on whether to jump when visiting for the
(k − 1)th or the kth time in a new unary predicate Pk .
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To be precise, let φk-times (x ) be a formula that states that x is visited k times:

φk-times (x ) �
k∨

a=1

∃y Eakyx ∨
k∨

a=1

∃y Ekaxy.

For those u ∈ V (A) that are visited k-times, we agree to jump over them when they are visited
for the kth time if u ∈ Pk , and when they are visited for the (k − 1)th time otherwise. Thus, if
w (i ) = u, f (i ) = k and u ∈ Pk , we want to remove the ith step. However, it may be the case that
w (i + 1) is also visited k times and needs to be jumped over. We define first-order formulas that
carry out a bounded number of such jumps as follows.

• For a ∈ [k], the formula φjump,a (x ) holds if we jump over x when visiting it for the ath time:

φjump,1 (x ), . . . ,φjump,k−2 (x ) � ⊥,
φjump,k−1 (x ) � φk-times (x ) ∧ ¬Pkx ,

φjump,k (x ) � φk-times (x ) ∧ Pkx .

• For r � 0 and a,b ∈ [k], the formula φ (r )
next,a,b

(x ,y) holds if, when applying at most r con-

secutive jumps on entering x for the ath time, we end up in node y, which is visited for the
bth time in the (original) walk. Specifically:

φ (0)
next,a,b

(x ,y) � x=̇y ∧ δab ,

φ (r+1)
next,a,b

(x ,y) �
(
¬φjump,a (x ) → (x=̇y ∧ δab )

)

∧
(
φjump,a (x ) → ∃z

k∨
c=1

(
Eacxz ∧ φ (r )

next,c,b
(z,y)

))
.

Here, δab is true if the indices a and b are the same:

δab �
{
�, if a = b;
⊥, otherwise.

• We will show below how to choose the predicate Pk so that we never need to take more than
two consecutive jumps. Thus, we can interpret a (k − 1)-walk w ′ using, for a,b ∈ [k − 2],
the formulas

φE,a,b (x ,y) � ∃z
k∨

c=1

(
Eacxz ∧ φ (2)

next,c,b
(z,y)

)
.

For a ∈ [k − 2] we set

φE,a,k−1 (x ,y) � ∃z
k∨

c=1

(
Eacxz ∧

(
φ (2)

next,c,k−1
(z,y) ∨ φ (2)

next,c,k
(z,y)

))
.

Next, for b ∈ [k − 2] we set

φE,k−1,b (x ,y) �
(
¬φjump,k−1 (x ) → ∃z

k∨
c=1

(
Ek−1,cxz ∧ φ (2)

next,c,b
(z,y)

))

∧
(
φjump,k−1 (x ) → ∃z

k∨
c=1

(
Ek,cxz ∧ φ (2)

next,c,b
(z,y)

))
,
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Fig. 4. Deciding when to jump over vertices in a k-walk.

and, finally, we define

φE,k−1,k−1 (x ,y) �
(
¬φjump,k−1 (x ) → ∃z

k∨
c=1

(
Ek−1,cxz ∧

(
φ (2)

next,c,k−1
(z,y) ∨ φ (2)

next,c,k
(z,y)

)))

∧
(
φjump,k−1 (x ) → ∃z

k∨
c=1

(
Ek,cxz ∧

(
φ (2)

next,c,k−1
(z,y) ∨ φ (2)

next,c,k
(z,y)

)))
.

To define the predicate Pk , letT ⊆ [�] be the set of indices i ∈ [�] for which F (i ) = k and f (i ) ∈
{k − 1,k }. We obtain a perfect matching M on T by matching i and j if and only if w (i ) = w (j )
(cf. Figure 4 (a)). We define a subset J ⊂ [�] with the intended meaning that if i ∈ J , we jump over
the ith step of w . The set J will satisfy the following two conditions:

• every vertex v with F (v ) = k is jumped over exactly once, i.e.,

���{i ∈ [�] : w (i ) = v} ∩ J ��� = 1, and

• we never jump more than twice in a row, i.e., if i, i + 1 ∈ J , then i + 2 � J .

We partition the set [�] into intervals of size 2, setting

U �
{
{1, 2}, {3, 4}, . . .

}
,

with the last set {�} being a singleton if � is odd. Then the matchingM defines a multigraph without
loops onU , and the degree of I ∈ U is at most 2. We direct the edges of M , viewed as edges in the
multigraph (U ,M ), in such a way that every I ∈ U has at most one incoming edge. This is possible
because the multigraph (U ,M ) can be decomposed into vertex-disjoint cycles and paths; we then
orient the edges cyclically on each cycle and from one end to the other along each path.

The edges incident with I correspond to the elements of I ∩T , and we put i ∈ I into J if and only
if the edge corresponding to i is directed toward I (cf. Figure 4 (b)). For every k = 1, . . . , � 1

2 (� − 1)�
at most one of 2k − 1 and 2k is in J , and therefore J satisfies the above requirements.

The definition of Pk ⊆ V (G ) is now straightforward:

Pk � {v ∈ V (G ) : F (v ) = k and f (i ) = k for the i ∈ J with w (i ) = v}.
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In summary, we end up with

σk � {Eab : a,b ∈ [k]} ∪ {Pa : a = 2, . . . ,k },

and it is clear that our construction can be carried out in polynomial time. �

5.3 Proof of Theorem 5.10

Let us finally derive the main theorem, Theorem 5.10. We first need to draw upon the literature
on model-checking first-order logic on classes of bounded expansion. The following statement
encapsulates the model-checking results of Dvořák et al. [15] and of Grohe and Kreutzer [29]. We
also refer to the new expositions given in References [27, 49].

Theorem 5.20. Let τ be a finite and purely relational signature. Then for every formula φ ∈ FO[τ ]
there exists a nonnegative integer r (φ), computable from φ, such that the following holds. Given a
τ -structure A, it can be verified whether A |= φ in time f ( |φ |, admr (φ ) (G (A))) · n, where n is the size
of the universe of A and f is a computable function.

Observe that if A is drawn from a fixed class of bounded expansion C , then admr (φ ) (G (A)) is a
parameter depending only on φ, hence we recover fixed-parameter tractability of model-checking
for FO on any class of bounded expansion, parameterised by the length of the formula. Theo-
rem 5.20 is stronger than this latter statement in that it says that the input structure does not need
to be drawn from a fixed class of bounded expansion, where the colouring number is bounded in
terms of the radius r for all values of r , but it suffices to have a bound on the colouring numbers up
to some radius r (φ), which depends only on the formula φ. We need this strengthening in our al-
gorithm for the following reason. When adding a low-degree spanning tree to the Gaifman graph,
we are not able to control all the colouring numbers at once, but only for some particular value of
the radius. Theorem 5.20 ensures that this is sufficient for the model-checking problem to remain
tractable.

We now sketch how Theorem 5.20 may be derived from the works of Dvořák et al. [15] and
of Grohe and Kreutzer [29]. We prefer to work with the algorithm of Grohe and Kreutzer [29],
because we find it conceptually simpler. For a given quantifier rank q and an nonnegative integer
i � q, the algorithm computes the set of all types R

q
i realised by i-tuples in the input structure A:

for a given i-tuple of elements a, its type is the set of all FO formulas φ (x ) with i free variables
and quantifier rank at most q − i for which φ (a) holds. Note that for i = 0 this corresponds to the
set of sentences of quantifier rank at most q that hold in the structure, from which the answer to
the model-checking problem can be directly read; whereas for i = q we consider quantifier-free
formulas with q free variables. Essentially, R

q
q is computed explicitly, and then one inductively

computes R
q
i based on R

q
i+1. The above description is, however, a bit too simplified, as each step

of the inductive computation introduces new relations to the structure, but does not change its
Gaifman graph. We will explain this later.

When implementing the above strategy, the assumption that the structure is drawn from a class
of bounded expansion is used via treedepth-p colourings, a colouring notion functionally equivalent
to the generalised colouring numbers. More precisely, a treedepth-p colouring of a graph G is a
colouring γ : V (G ) → Γ, where Γ is a set of colours, such that for any subset C ⊆ Γ of i colours,
i � p, the vertices with colours from C induce a subgraph of treedepth at most i . The treedepth-
p chromatic number of a graph G, denoted χp (G ), is the smallest number of colours |Γ | needed
for a treedepth-p colouring of G. As proved by Zhu [60], the treedepth-p chromatic numbers are
bounded in terms of r -colouring numbers as follows.
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Theorem 5.21 (Zhu [60]). For any graph G and p ∈ N we have

χp (G ) � (col2p−2 (G ))2p−2

.

Moreover, an appropriate treedepth-p colouring can be constructed in polynomial time from an
ordering L ∈ Π(G ), certifying an upper bound on col2p−2 (G ).

The computation of both R
q
q and R

q
i from R

q
i+1 is done by rewriting every possible type as a

purely existential formula. Each rewriting step, however, enriches the signature by unary relations
corresponding to colours of some treedepth-p colouring γ , as well as binary relations representing
edges of appropriate treedepth decompositions certifying that γ is correct. However, the binary
relations are added in a way that the Gaifman graph of the structure remains intact. For us it is
important that in all the steps, the parameter p used for the definition of γ depends only on q and
i in a computable manner. Thus, by Theorem 5.21, to ensure that γ uses a bounded number of
colours, we only need to ensure the boundedness of colr (q ) (G (A)) for some computable function
r (q). By taking q to be the quantifier rank of the input formula, the statement of Theorem 5.20
follows.

We can now combine all the ingredients and show how our main result follows from Theo-
rem 5.18.

Proof of Theorem 5.10. Given a successor-invariant formula φ ∈ FO[τ ∪ {S }], we first com-
pute the integer r � r (φ) whose existence and computability is stated in Theorem 5.20. Given
the structure A, we now use the algorithm of Theorem 5.5 to compute an order L of the vertex
set V (A) of the Gaifman graph of A, which satisfies adm56r+26 (G (A)) � c (r ) for some constant
c (r ). Such constant exists by the assumption that A is from a class of bounded expansion. We use

the algorithm of Theorem 5.11 to compute a set of unordered pairs F ⊆ ( V (A)
2 ) such that the graph

T = (V (A), F ) is a tree of maximum degree at most 3 and

adm28r+13 (G (A) + F ,L) � 2 + 2 · col56r+26 (G (A),L).

By Lemma 5.2 we find col56r+26 (G (A),L) � adm56r+26 (G (A),L)56r+26 � c (r )56r+26. This means
that adm28r+13 (G (A) + F ,L) � д(r ) for д(r ) = 2 + 2c (r )56r+26. Now, using the algorithm of The-
orem 5.18 we compute a successor relation S such that

admr (G (A) + S ) � h(r , adm28r+13 (G (A) + F )),

where h is the function from Theorem 5.18. Finally, we apply the algorithm of Theorem 5.20 to
decide whether (A, S ) |= φ in time f ( |φ |, admr (G (A) + S )) · n. Since A is drawn from a fixed class
of bounded expansion C , admr (G (A) + S ) is a parameter depending only on φ. This finishes the
proof of the theorem. �

6 DENSE GRAPHS

While model-checking for first-order logic has been studied rather thoroughly for sparse graph
classes, few results are known for dense graphs.

• On classes of graphs with bounded clique-width (or, equivalently, bounded rank-width;
cf. [48]), model-checking even for monadic second-order logic has been shown to be fixed-
parameter tractable by Courcelle et al. [9].

• More recently, model-checking on coloured posets of bounded width has been shown to be
fixed-parameter tractable for existential FO by Bova et al. [4] and for all of FO by Gajarský
et al. [26].
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Both of these results extend to order-invariant FO and therefore also to successor-invariant FO.
For bounded clique-width, this has already been shown in Section 4 . For posets of bounded width
we give a proof here. We first review the necessary definitions.

Definition 6.1. A partially ordered set (poset) (P ,�P ) is a set P with a reflexive, transitive and
antisymmetric binary relation �P . A chain C ⊆ P is a totally ordered subset, i.e., for all x ,y ∈ C
one of x �P y and y �P x holds. An antichain is a set A ⊆ P such that if x �P y for x ,y ∈ A, then
x = y. The width of (P ,�P ) is the maximal size |A| of an antichain A ⊆ P .

A coloured poset is a poset (P ,�P ) together with a function λ : P → Λ mapping P to some set Λ
of colours.

By |P | we denote the length of a suitable encoding of (P ,�P ).

We will need Dilworth’s Theorem, which relates the width of a poset to the minimum number
of chains needed to cover the poset.

Theorem 6.2 (Dilworth’s Theorem). Let (P ,�P ) be a poset. Then the width of (P ,�P ) is equal to
the minimum number k of disjoint chainsCi , . . . ,Ck ⊆ P needed to cover P , i.e., such that

⋃
i Ci = P .

A proof can be found, e.g., in Reference [12, Sec. 2.5]. Moreover, by a result of Felsner et al. [21],
both the widthw and a set of chainsC1, . . . ,Cw covering P can be computed from (P ,�P ) in time
O (w · |P |).

With this, we are ready to prove the following.

Theorem 6.3. There is an algorithm that, on input a coloured poset (P ,�P ) with colouring λ : P →
Λ and an order-invariant first-order formula φ, checks whether P |= φ in time f (w, |φ |) · |P |2 where
w is the width of (P ,�P ).

Proof. Using the algorithm of Reference [21], we compute a chain coverC1, . . . ,Cw of (P ,�P ).
To obtain a linear order on P , we just need to arrange the chains in a suitable order, which can be
done by colouring the vertices with colours Λ × [w] via

λ′(v ) = (λ(v ), j ), for v ∈ Cj .

Then

φ� (x ,y) �
( ∨

λx ,λy ∈Λ,
i< j

(λ′(x ) = (λx , i ) ∧ λ′(y) = (λy , j ))
)

∨
( ∨

λx ,λy ∈Λ,
i∈[w ]

(λ′(x ) = (λx , i ) ∧ λ′(y) = (λy , i ) ∧ x � y)
)

defines a linear order on (P ,�P ) with colouring λ′. After substituting φ� for � in φ, we may apply
the algorithm of Gajarský et al. [26] to check whether P |= φ. �

7 CONCLUSION

We analysed the parameterized complexity of FO and MSO model-checking on graphs in the pres-
ence of a linear order or a successor relation. We showed that if the linear order or successor
relation is part of the input, then FO (and hence in particular MSO) model-checking is AW[∗]-hard
even on partial matchings and star forests, respectively. As FO model-checking is fixed-parameter
tractable on nowhere dense graph classes, the classes obtained in the reduction by combining a
successor relation with star forests cannot be nowhere dense. In fact, it is easily observed that one
can find all graphs as depth-1 minors in the class we construct in the reduction.
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However, in the successor-invariant case we are allowed to choose a successor relation that is
compatible with the input structures, in the sense that good structural properties are preserved.
We showed that this is possible in the case that the input structures come from a class of bounded
expansion, and conclude that model-checking for successor-invariant first-order formulas is fixed-
parameter tractable on classes of bounded expansion.

It remains an open problem whether a similar construction is possible in nowhere dense graph
classes, which constitute the currently known limit of tractability for plain first-order model-
checking. Our approach does not generalise to nowhere dense graphs for the following reason.
The analog of Fact 5.3 for nowhere dense graphs is that a class C of graphs is nowhere dense if
and only if there is a function f : N ×R→ N such that for all r ∈ N and all real ε > 0 we have
colr (H ) � f (r , ε ) · nε for all n-vertex subgraphs H of graphs G ∈ C . Hence, if we follow our ap-
proach and construct for every graph G ∈ C a successor relation, or for our purpose equivalently
a low degree spanning tree FG , it is not sufficient to prove the analog of Theorem 5.11. While our
proofs show that for all n-vertex graphsG ∈ C we have colr (G + FG ) � f (r , ε ) · nε , this is not suf-
ficient to prove that the class D = {G + FG : G ∈ C } is nowhere dense. We need to establish bounds
for the r -colouring numbers for all subgraphs of graphs from D . This statement may in fact not be
true, as in the characterisation of nowhere dense graphs via the colouring numbers we may have to
construct a different order LH for each n-vertex subgraph H such that colr (H ,LH ) � f (r , ε ) · nε is
satisfied. Our approach does also not generalise to solve the order-invariant case. The reason is that
the locality based arguments that are applied to test first-order properties of bounded expansion
or nowhere dense graph classes can no longer be applied in the presence of an order relation.

For order-invariant MSO, we proved that the complexity of its model-checking is the same as
for plain MSO: for MSO2 it is fixed-parameter tractable on classes of bounded treewidth and for
MSO1 on classes of bounded clique-width.
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