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La con�abilidad y la continuidad operativa de los sistemas se han vuelto cada vez más impor-
tantes en la medida en que el progreso tecnológico se traduce en productos que van paulati-
namente siendo incorporados y estandarizados en la sociedad. Algunos ejemplos típicos que
se pueden nombrar son el uso de satélites para comunicaciones y ubicación, dispositivos de
ingeniería biomédica como resonancia magnética, computadoras, maquinaria para procesos
de manufactura como tornos o fresadoras, vehículos, defensa, entre otros.

Por la presente, se revisan los fundamentos probabilísticos del problema del pronóstico
de fallas, presentando críticas constructivas ante las inconsistencias encontradas en las es-
trategias que han seguido muchos investigadores. Además, se desarrolla una formalización
teóricamente rigurosa, presentando así nuevas distribuciones de probabilidad semi-cerradas
para el primer tiempo de ocurrencia de cualquier tipo de evento (no necesariamente una falla)
en sistemas dinámicos de tiempo discreto y continuo. También se introduce un nuevo con-
cepto de �evento incierto�, que generaliza el enfoque típico de cruce de umbral para declarar
la ocurrencia de eventos. Esta generalización permite incertidumbre en la de�nición de even-
tos, haciéndolos inciertos. Estos nuevos conceptos se ilustran a través de un caso de estudio
de pronóstico de crecimiento de fracturas por fatiga.

Debido a la falta de formalismo matemático con respecto al problema del pronóstico de
fallas, se desarrollaron métodos heurísticos para evaluar la calidad de los resultados. En este
sentido, otras dos contribuciones presentadas por el presente apuntan a abordar este problema
de una manera más formal, usando Bayesian Cramér-Rao Lower Bounds (BCRLBs) para
la Error Covariance Matrix (ECM) de estimaciones predictivas. Ambas contribuciones se
ilustran a la luz del problema del pronóstico de tiempo End-of-Discharge (EoD) de baterías
de Ion-Litio.

Dentro del problema de pronóstico, la incertidumbre de los estados del sistema se propaga
en el tiempo, produciendo distribuciones de probabilidad que terminan caracterizando el
primer tiempo de ocurrencia de eventos futuros. Por lo tanto, hay nuevas BCRLBs asociadas
con el ECM de estados futuros del sistema (en cada instante de tiempo futuro), así como con
elMean Squared Error (MSE) del primer tiempo de ocurrencia de eventos futuros (el concepto
de ECM reduce MSE en una dimensión). Las primeras (relacionadas con futuros estados del
sistema) se utilizan para proponer una metodología de diseño paso-a-paso para ajustar los
hiper-parámetros de algoritmos de pronóstico, lo que permite garantizar que los resultados
no violen límites fundamentales de precisión. Sin embargo, las últimas (relacionadas con la
primera ocurrencia de eventos futuros) se presentan y analizan en términos de uso potencial
en el análisis y diseño de algoritmos de pronósticos.

i



ii



RESUMEN EN INGLÉS DE LA TESIS PARA OPTAR

AL GRADO DE DOCTOR EN INGENIERÍA ELÉCTRICA

POR: DAVID ESTEBAN ACUÑA URETA

FECHA: ABRIL 2020

PROF. GUÍA: MARCOS EDUARDO ORCHARD CONCHA

PROF. CO-GUÍA: PATRICK WILLIAM WHEELER
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The reliability and operational continuity of systems have become increasingly important
as technological progress translates into products that are gradually being incorporated and
standardised in society. Some typical examples that can be named are the use of satellites
for communications and location, biomedical engineering devices such as magnetic resonance,
computers, machinery for manufacturing processes such as lathes or milling machines, vehi-
cles, defense, among others.

Hereby, the probabilistic fundamentals of the failure prognosis problem are revisited, pre-
senting constructive grievance to inconsistencies found in strategies that have been followed by
many researchers. Moreover, a theoretically rigorous formalisation is developed, thus present-
ing new semi-closed probability distributions for the �rst occurrence time of any sort of event
(not necessarily a failure) in both discrete- and continuous-time dynamic systems. A new
concept of �uncertain event� is introduced as well, generalising the typical threshold-crossing
approach to declare the occurrence of events. This generalisation allows uncertainty in the
de�nition of events, making them uncertain. These new concepts are illustrated through a
case study of fatigue crack growth prognosis.

Due to a lack of mathematical formalism with respect to the failure prognosis problem,
heuristic methods were developed to assess quality of results. In this regard, another two
contributions presented hereby aim at tackling this issue in a more formal fashion, namely,
by using Bayesian Cramér-Rao Lower Bounds (BCRLBs) for the Error Covariance Matrix
(ECM) of predictive estimates. Both contributions are illustrated in the light of the problem
of End-of-Discharge (EoD) time prognosis of Lithium-Ion batteries.

Within the prognosis problem, uncertainty of system states is propagated over time, yield-
ing probability distributions that end up characterising the �rst occurrence time of future
events. Therefore, there are novel BCRLBs associated with the ECM of future system states
(at each future time instant) as well as to the Mean Squared Error (MSE) of the �rst occur-
rence time of future events (the concept of ECM reduces to MSE in one dimension). The
former (related to future system states) are used to propose a step-by-step design methodol-
ogy to adjust prognostic algorithms hyper-parameters, permitting to guarantee that results
do not violate fundamental precision bounds. The latter (related to the �rst occurrence
time of future events), however, are presented and analysed in terms of potential use in the
analysis and design of prognostic algorithms.
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Chapter 1

Introduction

The elaboration of this thesis encompasses a transdisciplinary problem which corresponds to
the prediction of events. There might be many reasons to want to anticipate the occurrence
of various events depending on the context, of course. In agriculture, for example, climate
prediction is important to get the most out of the crops; in business, on the other hand, the
prediction of demand for products provides valuable information on logistics for the man-
agement and supply of stock. There are many other examples that could be mentioned, and
for this same reason is that all the mathematical criticism included in this thesis embraces a
general perspective. However, all the work presented in the following chapters is motivated
and contextualised in a very important problem in engineering systems: future time in which
these systems can present catastrophic failures (time instant in which they cease to be opera-
tional). The importance of this problem is enormous, and some examples of this are detailed
below:

• Excessive expenditure on maintenance of equipment or components: Normally a lot of
anticipation is made to reduce risks.
• Loss of production in the industry due to the detention of machinery: Either due to the
frequency with which maintenance is performed or due to the occurrence of a failure
and the time it takes for the respective repair.
• Risk of loss of human life: Failures in transport systems (airplanes, ships, cars, etc.) or
medical equipment (pacemakers, arti�cial respirators, etc.) are critical and can have
fatal outcomes.

The prediction of events is embraced from di�erent approaches depending on the system to
be studied and the information available. Suppose you want to study the remaining useful life
of a system (which is equivalent to studying the time it fails in the future). There are systems
that are very simple, such as pencils or screws, and therefore the unit-to-unit di�erences
are practically negligible; it can be assumed that all the elaborated units are statistically
identical. Adding this to the low marginal cost of production, several units can be used
until they fail and the cycle life of each of them can be recorded to later perform statistics.
Could the same be done with satellites, airplanes, vehicles or submarines? Obviously this
is not possible because, in contrast to pencils or screws, these are complex (it is impossible
to neglect the unit-to-unit di�erences, which immediately makes the hypothesis of statistical
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identity theoretically infeasible) and very expensive (it is also infeasible to make millions of
them fail, and so do statistics). What can be done in these cases then? The answer to this
last question is that the particular condition of the system under study must be monitored
and the way to do it depends on the information available.

Figure 1.1: Illustration of how reliable would yield data-driven and physics-based approaches
to health monitoring according to data availability [1]. Figure adapted from Inman et al.
(2005) [2], p. 6.

When many historical data are available, as in the case of some industrial plants, it
is recommended to use data-driven methods. Moreover, it is a great trend today due to
the great interest that has arisen on machine learning and, more precisely, deep learning
algorithms. However, in several other cases data is rather scarce, as in the case of satellites
(usually no more than a single unit of the same type is produced). In this type of situation,
it is essential to have an understanding of the physical phenomenology of the system which,
if added to a good availability of measurement data (using sensors), can lead to reliable
monitoring of the condition of the system under study. In Fig. 1.1 a scheme is shown that
very clearly summarises the recommendation of the type of monitoring approach depending
on the availability of data and physical models that account for the operability of the system
in question.

Condition Monitoring

Condition monitoring tasks can be classi�ed into two main �elds: fault diagnosis and fail-
ure prognosis. Diagnostics, on the one hand, aims at assessing the current system health
throughout a series of actions, including the detection of deviations from a desired operation
pattern (anomaly detection), fault detection, fault isolation, and the assessment of the fault
severity. Failure prognostics, on the other hand, consists on the extrapolation of system
health indicators into the future, providing critical information about the risk of imminent
catastrophic failures and thus helping to take preventive measures and maximise the system
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Figure 1.2: The Failure Prognosis Problem. Prognostics are executed in time kp once an
anomaly is detected during fault diagnosis. The current state posterior Probability Density
Function (PDF) p(xkp|y1:kp), which yields from a set of collected measurements, is used as
initial condition for a prognostic algorithm, which in turn propagates the uncertainty of the
system state over time. Given the model dynamics, the sequence of PDFs for the system
state in the future {p(xk|y1:kp)}k>kp is fully determined by the system model. However, these
PDFs are usually not tractable analytically, therefore prognostic algorithms aim at providing
approximations whose performance depend on hyper-parameters that have to be tuned. A
failure is typically declared when the system state gets into a particular region of the state-
space, like under or above a threshold, for example. Considering the failure threshold depicted
with an horizontal red line, P(τE = k) corresponds to the probability that an event E (failure
condition in this case) was going to take place for the �rst time at the time instant τE = k.
The aim of the failure prognosis problem is to compute the probability distribution of the
random variable τE .

performance within a given prediction horizon. Please refer to Fig. 1.2 for a graphical illus-
tration of condition monitoring. In aircraft applications, for example, prognostics algorithms
need to provide information required to decide if an emergency landing is needed upon the
detection of cracks in an airplane wing or in the blades of a turbine; in satellite applications,
in contrast, the information provided by prognostic algorithms could help to decide whether
to disturb a cubesat from its orbit (and make it fall to the Earth so that it does not remain
in orbit as space junk) as a preventive measure or not; in industrial or military applications,
however, prognostics could yield helpful for autonomous systems like a robot or a drone,
where energetic constrains may lead to prioritising some tasks over others, so as to guarantee
the ful�lment of the most important objectives and to allow its safe return to base [4].

Several failure prognostics techniques have been developed in the last decade, and the

3



selection of the most appropriate one depends on the particular application domain. Lately,
machine learning and arti�cial intelligence approaches have become a trend in the scienti�c
community. Unfortunately, because of their nature, the performance of data analytic tools
relays strongly on the quality and availability of data. Additionally, failure data sets tend
to be scarce, then it is usually necessary to focus on model-based approaches by using prior
knowledge about the system behaviour, so as to design and implement proper predictive
capabilities.

Prognostic algorithms may aim for either deterministic or probabilistic results in their
analysis. The former approach (deterministic) aims at obtaining an estimate for the future
speci�c time at which a particular event of interest (e.g., the End-of-Life (EoL) of a system)
may take place [5]. Although these algorithms may seem to work well in some applications,
it is important to note that the future is uncertain in nature. Deterministic approaches are
thus solely useful in applications where incorrect (or unnecessary) preventive actions would
only imply low-cost consequences (e.g., if a cellphone user needs to decide whether to charge
it or not). Nonetheless, the scenario is completely di�erent when catastrophic consequences
can be expected due to inadequate corrective measures: the quanti�cation of risk and low-
probability events becomes tremendously valuable.

Prognostic results have been labeled as �validated� mostly using heuristic procedures due
to the lack of standards and formalism for assessing algorithms performance. This lack of
standards evidences the di�culties faced by the scienti�c community to agree on standard-
ised performance metrics, since there has not been a consistent mathematical basis to sustain
rigorous arguments. Speci�cally, the di�culties encountered in evaluating failure prognostic
algorithms are due to the uncertainty associated with the failure time, and the number of
experiments being too small to characterize its statistics. This is because it is expensive to
experiment, so data is rather scarce, and also unit-to-unit di�erences weaken the hypoth-
esis of the experiments being statistically identical. Compliance with these conditions is a
requirement for metrics based on the Law of Large Numbers, for example.

1.1 Hypotheses

The �ndings presented in this thesis considered the following hypotheses:

1. The prognostic problem can be rigorously formalised using Probability Theory under
a Bayesian perspective. Probability measures can be de�ned, given system dynamics
and a proper characterisation of uncertainty sources.

2. Probability-based methods for event prognosis in nonlinear dynamic processes, and
particularly Bayesian approaches, allow characterising the e�ect of the most signi�cant
sources of uncertainty a�ecting the accuracy and precision of risk estimates, conditional
on acquired measurements.

3. Performance measures for prognostic algorithms can be built using the concept of
Bayesian Cramér-Rao Lower Bounds (BCRLBs) for the Error Covariance Matrix (ECM)
of predicted state trajectories and a probabilistic characterisation of many sources of
uncertainty that a�ect their dynamics; including system initial conditions, model pa-
rameter uncertainty, measurement (sensor) uncertainty, and possible future operating
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pro�les.
4. It is possible to de�ne guidelines and design procedures for prognostic algorithms by

making use of performance measures that are inspired on the concept of BCRLB for
the ECM of predicted state trajectories, ensuring a proper characterisation of the un-
certainty related to the long-term prediction problem.

5. There is a BCRLB associated with the Mean Squared Error (MSE) incurred when
estimating the �rst occurrence time of an event, which may be used to assess the
performance of prognostic algorithms.

1.2 Objectives

This thesis focuses on theoretical aspects that help to signi�cantly improve event prognosis
frameworks currently available in literature. Among the objectives of this thesis, there are
the following.

1.2.1 General Objectives

This research aims at providing a general and rigorous theoretical formalisation of the event
prognosis problem by using Probability Theory, as well as at developing novel prognostic
performance measures inspired on the concept of BCRLBs. The aforementioned metrics
(or measures) must be capable of properly assessing the performance of implementations
of prognostic approaches in terms of the following criteria, related to the random variable
that characterises the �rst occurrence time of an event of interest: convergence to the true
probability measure, precision and accuracy of the estimates.

1.2.2 Speci�c Objetives

1. To formalise the event prognosis problem in the light of Probability Theory by estab-
lishing a rigorous mathematical framework.

2. To prove the existence of fundamental limits for prognostic performance measures based
on the Bayesian Cramér-Rao concept, conditional to a proper probabilistic characteri-
sation of future operating pro�les in speci�c applications.

3. To de�ne guidelines and algorithm design procedures based on these measures, which
should ensure proper characterisation of the uncertainty related to the long-term pre-
diction problem.

4. To introduce rigour into the Prognostics and Health Management (PHM) community.

1.3 Contributions and Structure of the Thesis

The contributions of this thesis to the state-of-the-art are enumerated hereby accordingly
with each of the next chapters; from Chapter 2 to Chapter 5. Brief descriptions of their
contents are explained below:

• Chapter 2: Provided prognostics covers a wide range of scienti�c disciplines concerned
with predicting, this chapter starts presenting the respective literature review in general
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and then goes throughout the speci�c �eld of failure prognosis, which motivates the
development of this thesis. Nonetheless, the literature review of this thesis is restricted
to probabilistic approaches given the contributions presented in the next chapters. The
�rst contribution of this thesis appears in this chapter and is the following:
1. Criticism to the lack of rigour in failure prognosis, which has led to results that

present philosophical contradictions with causality and Probability Theory. As
another consequence, heuristic metrics and standards have been adopted. This
motivates some of the next contributions that propose formal mathematical limits
to address these issues.

• Chapter 3: The aim of event prognosis is to characterise the probability distribution
of the �rst time of occurrence of an event of interest (illustrated as τE in Fig. 1.2). As
it is shown in Chapter 2, most of the literature focuses on providing closed-form or nu-
merically solvable expressions for speci�c types of stochastic processes where events are
always triggered when crossing �xed thresholds. In the context of condition monitoring,
closed-form expressions are mostly unsuitable as practical applications would hardly
hold all the speci�c requirements, whereas numerically solvable expressions provide
generality but are computationally expensive and infeasible in real-time applications.
The contributions in this chapter are the following:
2. Analytical semi-closed expressions for calculating the �rst time of occurrence prob-

ability distribution of any type of event are derived rigorously using Probability
Theory in both discrete- and continuous-time systems. These expressions are com-
pletely general and suitable for being used in real-time prognostic routines.

3. The classical notion of threshold crossing that depicts the occurrence of events
is generalised and, hence, a new concept of �uncertain event� is introduced. This
concept allows the incorporation of uncertainty over the notion of event occurrence.
Besides, it corresponds to the idea of �uncertain hazard zone� broadly known but
never formalised in the PHM community.

All the concepts are illustrated throughout an example of fatigue crack growth prog-
nosis. Additionally, this chapter sets the theoretical basis over which Chapters 4 and 5
are developed.
• Chapter 4: The general consensus is that better algorithms will be more accurate
(related to biases in estimates) and more precise (related to variances in estimates).
This idea sounds intuitive and natural. However, it is simple to arbitrarily �improve�
the precision of an algorithm by modifying the model's hyper-parameters that de�ne
the state's evolution over time (state transition model). It is logical to wonder if there
exists a fundamental limit for these �improvements�. Could precise, although biased,
time-of-failure estimates be generated? In terms of decision-making processes linked
to maintenance scheduling, the latter could be catastrophic. The contributions in this
chapter are the following:
4. In Fig. 1.2 it is shown that the PDF of future system states, p(xk|y1:kp), is approx-

imated by p̂(xk|y1:kp), which could in turn be obtained by employing a prognostic
algorithm. The similarity between both PDFs depends on the hyper-parameters of
the algorithm, and could be measured in terms of ECM. This chapter introduces
predictive BCRLBs for the predicted states' ECMs, and uses them as fundamental
limits restricting the space of feasible hyper-parameters for prognostic algorithms
design. It is a lower bound for the ECM that yields for each k > kp, thus con-
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forming a sequence of bounds.

5. A new step-by-step design methodology is proposed to �ne-tune discrete-time prog-
nostic algorithms' hyper-parameters to ensure that the results obtained do not in-
fringe fundamental precision limits.

6. Particle-�ltering-based prognostic algorithms have been adopted as the �de facto�
alternative to Monte Carlo (MC) simulations. It is the very �rst time one of these
algorithms is �ne-tuned by following a formal design methodology.

For illustrative purposes, the contributions are employed in an application example
of Lithium-Ion (Li-Ion) batteries, where the aim is to design prognostic algorithms to
predict their End-of-Discharge (EoD) time.
• Chapter 5: This chapter is motivated by the same ideas of Chapter 4. However, in
contrast to Chapter 4, the contribution explores a precision limits for the �rst time of
occurrence of future events, and is the following:
7. New BCRLBs in both discrete- and the continuous-time systems for the MSE

associated with the �rst occurrence time of future events, which is denoted as the
random variable τE in Fig. 1.2. It is a lower bound for the MSE obtained when
estimating τE and is related to the maximum precision achievable by prognostic
algorithms.

Same as in Chapter 4, EoD time prediction of Li-Ion batteries is chosen as case study
for illustrative purposes.

Finally, conclusions are presented in Chapter 6.
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Chapter 2

Background and Literature Review

As it was stated in Chapter 1, prognostics are performed in a vast amount of scienti�c disci-
plines. This chapter is oriented to do a literature review regarding probabilistic approaches
to event prognosis. It starts reviewing the problem from a transdisciplinary standpoint, and
then carries on speci�cally with the �eld of failure prognosis, where some criticism and dis-
cussion is presented. Finally, a brief explanation and the state-of-the-art of Cramér-Rao
bounds are provided at the end of the chapter, settling theoretical bases for Chapters 4 and
5.

2.1 Event Prognosis: A Transdisciplinary Problem

One of the reasons behind the use of mathematical models to describe the evolution of
dynamic systems over time is to provide the means to foresee and anticipate possible future
critical events. For this reason it is possible to use many di�erent mathematical structures,
and the �right� option for a model structure will depend largely on the speci�c application
domain. Dynamic models including an explicit characterisation of sources of uncertainty
(e.g., those involving stochastic equations) are particularly suitable for quantifying the risk
associated with the occurrence of events as they provide a rigorous mathematical framework
for the calculation of probability measures. In this regard, the conditions determining the
occurrence of events have usually been speci�ed as a �threshold�, so that the event of interest
is always triggered when the system states �rst exceed this threshold. Certainly, this implies
the assumption that a deterministic function of the system states can always re�ect the
requirements needed to cause the occurrence of events. As the system states evolve randomly
over time (i.e. the condition indicator is a stochastic process), a probability distribution for
the �rst hitting time is thus induced: the First-Passage Time (FPT) [6�9] or First-Hitting
Time (FHT) [10, 11] probability distribution. On the one hand, this de�nition is similar to
duration models [12, 13] and is also analogous to survival probability in statistics [14�16]
but interpreted in a di�erent context. On the other hand, these principles are related to
the Remaining Useful Life (RUL), End-of-Life (EoL), Time-of-Failure (ToF) and Time-to-
Failure (TtF) probability distributions [17�19] in the engineering discipline of Prognostics
and Health Management (PHM).
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E�orts have been made to �nd analytical expressions for FPT probability distributions
in many disciplines and �elds of application such as chemistry [20, 21], physics [22, 23],
biology [24, 25], neurobiology [26, 27], epidemiology [28], psychology [29], �nance [30, 31],
economy [32, 33], reliability theory [34, 35], among others [6, 7]. However, it is important
to emphasise the fact that most of these research e�orts focused on continuous-time [36�42]
rather than discrete-time systems [32, 43�45] (with the exception of autoregressive models
[44, 46�53]). In continuous-time systems, the FPT probability distribution is the solution
to a particular Stochastic Di�erential Equation (SDE) with boundary conditions, which is
generally solved with transformations [54�56] or eigenfunction expansions [37, 55] (mostly
approximated numerically). Direct expression derivations are restricted to a few standard
cases related to Brownian motion, such as in [57], and some other direct approximations
[58�70]. While it may be natural to think that events occur when a variable (or condition
indicator) that evolves in time reaches some threshold or region, in some cases it is not
straightforward to determine a suitable value for this threshold. In this regard, and to the
best of the author's knowledge, only a handful of contributions were intended to incorporate
the concept of random thresholds [71�76] (and only for very speci�c types of stochastic
processes).

One of the fundamental issues of interest in the modern engineering discipline PHM is
the prediction of system failures (i.e., failure prognosis), where there is a clear distinction
between �faults� (anomalous conditions under which the systems are still operational) and
catastrophic failures (which implies total system inoperability). As a consequence, the hazard
zone [77] concept emerged as an extension of the typical threshold point of view by de�ning a
likelihood over the state-space in regions that suggest faulty conditions. There was an attempt
to provide a more general perspective in [78, 79], but it was limited to Markov processes.
The proposed probability measures also contained an underlying hypothesis of statistical
independence; although these measures have still proved useful in de�ning a functional cost
criterion for the design of the prognostic algorithms [80]. Furthermore, despite the fact that
hazard zones are well-known and accepted in the PHM community [18], the current state-of-
the-art formalisation of the failure prognosis problem [81, 82] still de�nes failure events with
the classical deterministic threshold approach, is limited to events over Markov processes,
lacks of mathematical demonstrations, and has resulted in inconsistencies in computing FPT
probability distributions with methods other than those simulating complete system state
trajectories [78].

2.2 Failure Prognosis

Critical failures of systems has been a subject of great interest which caught the attention of
researchers for decades, especially from the military and industrial sectors. In consideration
of the increase in the sophistication of infrastructure and facilities, as well as their operating
costs due to faults, a scienti�c discipline was required that could address these issues in
a systematic manner, including factors such as reliability, repair and safety. Meeting such
requirements was the underlying motivation of the emergence of reliability engineering, with
a clear aim at evaluating and demonstrating safety of components, equipment, and systems,
and also reliability, maintainability, availability; all those throughout the research on novel
methods and tools [83].
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Reliability engineering adopts a frequentist standpoint [84�91], which is explained below.
Given many statistically identical items (of speci�c kind of equipment, component, or system)
operating from the same initial time, the probability of successfully ful�lling their design
�nal goal along a speci�ed time span, which corresponds to their reliability over time, can
be approximated as the ratio of the number of successful items over the total amount items,
due to the Law of Large Numbers.

Although in some speci�c cases the hypothesis of statistically identical items (or indepen-
dent identically distributed items, i.i.d.) followed by reliability engineering may be recognised
as a good approximation, it does not usually apply because it is not possible to make exact
copies of an object at all; there are always unit-to-unit variations even in serial manufacturing.
In addition, when considering series production, the marginal cost associated with each unit
is usually small relative to, for example, satellite or aircraft manufacturing; in this respect,
the volume must be limited to very small amounts. Indeed, because of the sophistication of
such systems it seems not possible to �nd only two of them equal.

Prognostics and Health Management (PHM) is a modern engineering discipline that seeks
to preserve the operational behaviour and functionality of systems within their speci�c char-
acteristics in order to ensure their mission success, safety and e�ciency. Distinguishing
between two general divisions adopted by PHM is essential, which are fault diagnosis and
failure prognosis (see Fig. 1.2). On the one hand, fault diagnosis is linked to system mon-
itoring by detecting and isolating faults in a particular system. Once a failure has been
identi�ed, on the other hand, failure prognosis involves predicting the system's Remaining
Useful Life (RUL) or Time-of-Failure (ToF) throughout the analysis of future system states
along with characterising sources of uncertainty that in�uence their evolution over time.

Di�erences between reliability engineering and PHM rely on the paradigm from which
systems are thought. In the �rst case (reliability engineering), prognostics provide knowledge
on the behaviour of many brand new or newly de�ned but statistically identical systems that
are viewed as samples, so it is based on historical data and classical objective probability;
whereas in the second case (PHM) it is a single and speci�c system whose condition is
especially tracked under Bayesian subjectivity, which di�ers from the former approach. In
the latter case, monitoring by aiming at optimal maintenance (only when needed) leads to
the well-known Condition-Based Maintenance (CBM) [92].

2.2.1 A Probabilistic Perspective

Over the past decades, multiple failure prognostic strategies have been developed and the
choice of the most suitable one depends on the speci�c application domain. Under the tag
of data mining and predictive analytics, machine learning and arti�cial intelligence methods
have recently become a trend in industrial and academic communities. Unfortunately, the
success of data analytics software is strongly related to data quality and availability due to
their nature. When data quality is not su�cient or failure data sets are limited, relying on
model-based solutions and using prior knowledge of system behaviour instead is essential to
design and implement acceptable predictive capabilities.

In their analysis, prognostic algorithms may be targeted as either deterministic or prob-
abilistic depending on their outcomes. The former (deterministic) approach attempts to
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achieve an approximation for a speci�c future time (a scalar) at which a particular event
of interest (e.g., a system's End-of-Life (EoL)) may occur. While in some implementations
these algorithms may seem to work perfectly, it is important to note that the future is in-
herently uncertain. Therefore, deterministic methods are only e�ective in situations where
inappropriate (or unnecessary) preventive measures would only conduce to low-cost implica-
tions (e.g. when a cell phone user has to consider whether or not to charge his/her device).
Nevertheless, the situation becomes entirely di�erent if catastrophic consequences can be
foreseen as a result of de�cient corrective measures: risk quanti�cation of low-probability
incidents becomes extremely valuable.

2.2.2 The Bayesian Approach

The manner in which uncertainty and risk are quanti�ed is one of the most critical as-
pects to address in the design of decision-making processes. The �nal costs associated with
all available choices can thus end up e�ected by these sources of uncertainty; costs that
sometimes mean sacri�cing operational continuity of industrial systems. In this regard, and
from di�erent standpoints, many methods intend to address the problem of characterisa-
tion of uncertainty. There are possibility-based or epistemic approaches, such as fuzzy logic
or evidence theory [93�96]. Nonetheless, most researchers have favoured probability-based
strategies when implementing real-time failure prognostic algorithms [97], since these tech-
niques allow the notion of uncertainty to be included under a broadly known and accepted
mathematical formulation.

Fault Diagnosis

Bayesian methods [98] appear as a suitable alternative for most real-time learning models in
the context of probability theory and are widely used in fault diagnosis. Bayesian schemes
allow �ltering algorithms (also known as Bayesian processors) to be applied in nonlinear
dynamic processes for uncertainty characterisation [99�101]. This task is achieved by deter-
mining the state vector's posterior estimates, where both prior knowledge (provided by the
model of a system) and measurements (acquired in real-time) are used e�ciently. Usually,
in fault diagnosis these states refer to critical variables whose potential progression over time
may substantially a�ect the health of the system, thereby experiencing a condition of fail-
ure. Nonetheless, it is not possible to obtain a closed-form solution for the �ltering problem
except for a small number of cases. When the involved system is linear and Gaussian, a
well-known solution is the Kalman Filter (KF) [102, 103], which gives an optimal posterior
estimate in the sense of minimising the Mean Squared Error (MSE). Despite the feasibility of
approximating nonlinear models by linearised variants within bounded regions of the state-
space, KF implementations usually provide suboptimal solutions. In addition, underlying
uncertainties may vary from a Gaussian Probability Density Function (PDF). In this respect,
Sequential Monte Carlo (SMC) methods, a.k.a. Particle Filters (PFs) [98], provide e�ective
solutions to the problem of �ltering in frameworks involving nonlinear non-Gaussian systems.
PFs represent the underlying PDF through a sequencially updated set of weighted samples,
generating empirical probability distributions from which statistical inference can be done.
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Failure Prognosis

Though state estimation is commonly applied in fault diagnosis, it ends up playing an es-
sential role in failure prognosis as well, because the result of the �ltering phase de�nes the
initial conditions for the problem of long-term predictions (refer to Fig. 1.2 for a graphical
illustration). Although state estimation algorithms are needed to describe the system's cur-
rent health status, other important aspects also have to be addressed in order to e�ectively
implement prognostic algorithms. On the one hand, whenever a fault condition is detected,
isolated, and identi�ed at early stages preferably through the implementation of fault diagno-
sis methods, uncertainty must be e�ectively (and e�ciently) propagated over time with the
implementation of appropriate degradation models. On the other hand, future loading (or
stress) pro�les must be probabilistically characterised as well as the impact of those pro�les
on degradation processes that may occur.

The concern in prognosis is centered on understanding the future evolution of uncertainty
[104], all to take preventive actions to avoid catastrophic events [77]. Even though this prob-
lem can be solved theoretically through Monte Carlo simulations [105], the disadvantage is
the related computational cost that cannot be a�orded in real-time applications. Particle-
�ltering-based algorithms [106] have been chosen by the PHM community as the de facto
state-of-the-art technique in this matter, as they constitute e�cient alternatives to Monte
Carlo simulation. Prognostic algorithms based on PFs [77] have frequently been used as a
standard choice in di�erent applications [107] such as prediction of damage growth [108],
analysis of failures in analog electronic circuits [109], design of fault-tolerant components
[110], electrical machines' failure analysis [111], State-of-Charge and State-of-Health progno-
sis of batteries [3, 112�114], among others [115]. Nonetheless, there are some disadvantages
to this class of algorithms. First, it does not consider exogenous factors that can impact
long-term predictions. Second, PF-based prognostic methods usually use a �xed number of
-occasionally equally weighted- samples randomly positioned in the space-state, and it is hard
to ensure that these samples are suitable to adequately characterise the tails of future state
PDFs as the horizon for prediction increases. Such considerations inspire the development of
new prognostic algorithms and performance assessment measures that could overcome such
limitations in design and implementation.

2.2.3 Lack of Formalism and Standardisation

Up to now, the evaluation of failure prognostic algorithms had generally followed standard
procedures involving single run-to-failure experiments in which it has been assessed the abil-
ity to �guess� the actual failure time [116�119]. In this respect, it would be interesting to
ask if the failure time reported in those experiments can be used as the �ground truth�. The
answer can di�er signi�cantly depending on whether it is referred to probabilistic or deter-
ministic methods to predict failures. The result of deterministic methods is a number, a
time of failure, so in those situations it can be concluded that the ground truth is the time
of failure in experiments. Nonetheless, the output of probabilistic algorithms is a collection
of probability distributions for the system's states; the uncertainty of the health indicator
is characterised at speci�c future times (inducing a probability distribution of failure on the
time axis) corresponding to each element of the collection. But how could the output of
probabilistic algorithms be analysed when an experiment o�ers only one realisation of the
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corresponding stochastic process? Would it be correct to compare a single realisation to a
probability distribution (i.e., a number vs a PDF)?

Many prognostic measures [119] (not metrics, given that it is infeasible to prove triangular
inequality in many cases) were conveniently described in terms of end-user demands: whereas
a maintainer would concentrate on cost-bene�t indicators that could help to reduce inter-
ruption, operators would be inclined towards precision and accuracy information that could
help to advise actions to be taken while re-planning process operation (or mission) during
an emergency. Alternatively, if a functional grouping is found, it should be understood that
a set of measures focuses on computational performance and algorithm e�ciency (precision,
accuracy, trajectory, robustness), whereas others are oriented to conduct cost-bene�t analy-
sis (mean-time between replacement and failure, life-cycle cost, total value, technical value,
return on investment).

2.2.4 Inconsistencies in Classic Formulations of The Failure Prog-

nosis Problem

The problem of failure prognosis can be de�ned in several ways. However, the mainstay over
which they are built is the Time-of-Failure (ToF) concept, typically de�ned as follows [81, 82]:

De�nition 2.1 [Time-of-Failure (widely accepted de�nition)] The time of the �rst
system failure τF is currently de�ned as

τF (kp) := inf{k ∈ N : {k > kp} ∧ {System Failure at k}}. (2.1)

Note that some other notions are available in the literature, such as Remaining Useful Life
(RUL), End-of-Life (EoL), or Time-to-Failure (TtF), which in terms of mathematical impli-
cations are equivalent to ToF. Hence, below it is only addressed and analysed the consistency
of the already introduced ToF de�nition.

Bayesian approaches [98] provide an appropriate solution for real-time monitoring of degra-
dation processes while characterising uncertainty sources a�ecting them through a state-space
representation. Indeed, let us consider a Markov process {Xk, Yk}k∈N and a time kp, which
denotes an initial time instant for prognostics. Probability distributions associated with ToF
prediction have been computed for more than two decades as shown below:

P(τF ≤ k) =

∫
X
1XF (xk)p(xk|y1:kp)dxk, (2.2)

with
P(τF = k) =

1

γ(Xkp+1:+∞|y1:kp)

(
P(τF ≤ k)− P(τF ≤ k − 1)

)
, (2.3)

where XF ⊂ X is such that XF = {x ∈ X : x ≤ x}, or, alternatively, XF = {x ∈ X : x ≥ x̄}.
Thus, the integral of Eq. (2.2) accounts for the probability mass of p(xk|y1:kp) that crosses a
failure threshold (x or x̄) at time k. As it is known from basic Probability Theory, there is a
normalising constant γ(Xkp+1:+∞|y1:kp) in Eq. (2.2) that should not be included if P(τF ≤ k)
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was well-de�ned. It had been included so far because otherwise probability axioms do not
hold.

Let us concentrate on the following among the potential inconsistencies that may result
from the above concept of ToF probability measures and the underlying philosophy embraced
by the PHM community:

a) Determinism: Determinism is the �rst major incoherence. This notion has already
been mentioned in Section 2.2.3: philosophically speaking, it has been related things
that are entirely di�erent in nature all along these years. The state-of-the-art has been
developed in practice by utilising degradation and, subsequently, ToF data from only
a few or single run-to-failure experiments. Such data sets are employed to validate
probabilistic algorithms and mathematical tools. However, though these algorithms
and tools provide probabilistic outcomes, data is deterministic in nature. Would it be
appropriate to compare a single sample with a probability distribution? Naturally not.
Scientists have tried to use statistics instead of probability distributions to prevent this
fundamental problem.

b) Non-causality: It is stated in Eq. (2.3) that the ToF probability demands computing
a normalisation constant. This requirement means that, in order to calculate P(τF ≤ k),
it would be needed to describe the way the systems evolve till the �end of time�, just
to �nd the correct constant of normalisation. When this claim is closely examined, it
means that this constant of normalisation is a function of time instants beyond k, which
is inconsistent. Furthermore, assume it is of concern to quantify the risk of failure up
to a certain �xed time k, k > kp. Would it be right to think that events after time k
have any kind of e�ect on what would have happened from kp to k? The response is
�no� due to the causality of the system.

c) Need of normalisation constants: When the ToF probability distribution is ob-
tained throughout the �usual� procedure, the need for a normalising constant implies
that the result is not per se a probability distribution, but something else that is forced
to ful�l axioms of probability. Normalisation is generally used to turn likelihood func-
tions into probability distributions.

d) Non-increasing Cumulative Distribution Functions: It is worth noting that Eq.
(2.3) was used to determine the ToF probability distribution on systems undergoing
monotonic processes of degradation. Because the expression in Eq. (2.3) was inter-
preted as cumulative probability, it should be an increasing function of time. This
property will not hold if the process of degradation is not monotonic. In addition, in
the general case, it is possible to demonstrate empirically that this idea is ill-de�ned.
As a side note, degradation processes with regeneration phenomena can be found rel-
atively easily: consider, for instance, capacity regeneration phenomena in Lithium-Ion
(Li-Ion) batteries.

Such statements indicate an ill-conditioned de�nition of ToF probability distribution, and
the PHM community should acknowledge and examine them.
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2.3 Bayesian Cramér-Rao Lower Bounds

The Cramér-Rao Lower Bound (CRLB) [120, 121] is a fundamental mathematical limit that
lower bounds the Error Covariance Matrix (ECM) of any parameters vector estimator (ECM
is equivalent to Mean Squared Error (MSE) in one dimension). Its conventional version was
originally developed for performance evaluation of unbiased estimators in settings of unknown
deterministic parameters. A Bayesian version of it was later developed by Van Trees, being
now applicable to settings of random parameters estimation: the so called Bayesian Cramér-
Rao Lower Bound (BCRLB) [122]. This later version does not require estimators to be
unbiased.

2.3.1 The Bayesian Cramér-Rao bound

Let x ∈ Rnx and y ∈ Rny be random vectors of parameters (to be estimated) and observations,
respectively. Let also x̂(y) be an estimator of x conditional to the observations y. The
Bayesian Cramér-Rao inequality [122] states that

Ep(x,y){[x̂(y)− x][x̂(y)− x]T} ≥ J−1 (2.4)

where p(x, y) is a joint PDF and J is known as the Bayesian Information Matrix (BIM)
(called Fisher Information Matrix (FIM) in the conventional deterministic parameter esti-
mation setting), which is de�ned as

J = Ep(x,y){−∆x
x log p(x, y)}, (2.5)

where ∆ denotes the second-order derivative operator

∆y
x = ∇x∇y

T , (2.6)

and ∇ denotes the gradient operator.

Although the BCRLB was presented for parameter estimation, the same concepts can be
conceived in state estimation, as shown below.

2.3.2 BCRLBs in Dynamic Systems

The state-space representation of systems that is used by Bayesian processors (a.k.a. Bayesian
�lters) [98] is specially suitable to characterise and quantify uncertainty of system states in
a sequential fashion. Therefore, consider a Markov process {Xk, Yk}k∈N such that

xk = f(xk−1, ωk−1) (2.7)
yk = g(xk, νk), (2.8)

where ωk and vk denote random vectors that are independent though not necessarily Gaus-
sian.

There are four di�erent versions of BCRLBs that can be used in discrete-time dynamic
systems [123] that are presented below. Let us denote a collection of state vectors as
x0:k =

[
x0

T x1
T . . . xk

T
]T , and let also y1:k =

[
y1
T y2

T . . . yk
T
]T denote a collection
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of measurement vectors, both up to time k. In addition, let x̂k(y1:k) denote an estimator of xk
conditional to the measurements collection y1:k and, on the other hand, let x̂0:k(y1:k) denote
an estimator of the whole states collection x0:k. There are four di�erent Bayesian Cramér-
Rao inequalities since the estimation could be joint or marginal, depending on whether it
is oriented to estimate x0:k or xk, respectively. At the same time, if there is a collection of
measurements y1:k−1 available, the estimation is said to be conditional to it, whereas it is
said to be unconditional otherwise as measurements are accounted as random variables. The
inequalities are shown below:

A. Joint unconditional BCRLB

Ep(x0:k,y1:k){[x̂0:k(y1:k)− x0:k][x̂0:k(y1:k)− x0:k]
T} ≥ J−1

0:k (2.9)

J−1
0:k = Ep(x0:k,y1:k){−∆x0:k

x0:k
log p(x0:k, y1:k)} (2.10)

B. Marginal unconditional BCRLB

Ep(xk,y1:k){[x̂k(y1:k)− xk][x̂k(y1:k)− xk]T} ≥ J−1
k (2.11)

J−1
k = Ep(xk,y1:k){−∆xk

xk
log p(xk, y1:k)} (2.12)

C. Joint conditional BCRLB

Ep(x0:k,yk|y1:k−1){[x̂0:k(y1:k)− x0:k][x̂0:k(y1:k)− x0:k]
T} ≥ J0:k(y1:k−1)−1 (2.13)

J0:k(y1:k−1)−1 = Ep(x0:k,yk|y1:k−1){−∆x0:k
x0:k

log p(x0:k, yk|y1:k−1)} (2.14)

D. Marginal conditional BCRLB

Ep(xk,yk|y1:k−1){[x̂k(y1:k)− xk][x̂k(y1:k)− xk]T} ≥ Jk(y1:k−1)−1 (2.15)

Jk(y1:k−1)−1 = Ep(xk,yk|y1:k−1){−∆xk
xk

log p(xk, yk|y1:k−1)} (2.16)

In order to avoid manipulation and recomputation of large matrices at each time instant
k, a recursive way to compute the marginal unconditional BCRLB J−1

k (see Eq. (2.12)) was
introduced in [124], thus providing an elegant and e�cient solution in the following manner:

Jk+1 = D22
k −D21

k (Jk +D11
k )−1D12

k , (2.17)

where

D11
k = E{−∆xk

xk
log p(xk+1|xk)} (2.18)

D12
k = E{−∆xk+1

xk
log p(xk+1|xk)} = (D21

k )T (2.19)
D22
k = E{−∆xk+1

xk+1
[log p(xk+1|xk) + log p(yk+1|xk+1)]} (2.20)

= D22,a
k +D22,b

k , (2.21)

with expectations taken with respect to p(x0:k+1, y1:k+1). However, it is known that marginal
unconditional BCRLBs consider measurements only as random variables. An elegant re-
cursive way to compute the marginal conditional BCRLB Jk(y1:k−1)−1 (see Eq. (2.16)) was
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developed and introduced in [125] so as to include measurements acquired sequentially in
time (typical optimal �ltering settings):

Jk+1(y1:k) = B22
k −B21

k (JAk (Yk) +B11
k )−1B12

k , (2.22)

where

B11
k = E{−∆xk

xk
log p(xk+1|xk)} (2.23)

B12
k = E{−∆xk+1

xk
log p(xk+1|xk)} = (B21

k )T (2.24)
B22
k = E{−∆xk+1

xk+1
[log p(xk+1|xk) + log p(yk+1|xk+1)]} (2.25)

= B22,a
k +B22,b

k , (2.26)

with expectations taken with respect to p(x0:k+1, yk+1|y1:k). The nx × nx matrix JAk (y1:k)
denotes an auxiliary BIM matrix for xk whose inverse corresponds exactly to the lower-right
block of the inverse of the auxiliary BIM matrix IAk (y1:k), where

IAk (y1:k) = Ep(x0:k|y1:k){−∆x0:k
x0:k

log p(x0:k|y1:k)}. (2.27)
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Chapter 3

Uncertain Event Prognosis

In this chapter, the classical deterministic threshold crossing approach with which events are
typically triggered is generalised to a probabilistic notion of uncertain event, analogous to
that of uncertain hazard zone in PHM [77]. A mathematically rigorous formalisation is pro-
vided for the �rst time of occurrence of uncertain future events characterised by discrete- and
continuous-time stochastic processes. For the corresponding probability measures, explicit
semi-closed expressions are derived and demonstrated throughout Section 3.1. In addition to
the aforementioned theoretical contribution, Section 3.2 concentrates on discrete-time appli-
cations by showing how to compute such probability measures and validate the mentioned
procedures with results compared to those obtained by using Monte Carlo simulations as a
benchmark; all in the scope of an illustrative fatigue crack growth prognosis problem. Finally,
Section 3.3 summarises the conclusions of this chapter.

3.1 Probability of Uncertain Future Events

Let us consider a probability space (Ω,F ,P) and a measurable space (X,Σ). Also, let X :
T ∪ {0} × Ω → X, T ∈ {N,R+}, be a stochastic process; and FXτ denote the respective
probability measure in (X,Σ) induced by Xτ , τ ∈ T.

De�nition 3.1 [Uncertain Event Process & Likelihood] Let E denote an event of
interest. An uncertain event process is de�ned as a function E : T × X → {E , Ec} such
that

P(Eτ = E) =

∫
Ω

P(Eτ = E , Xτ (ω))dP(ω) (3.1)

=

∫
Xτ

P(Eτ = E|xτ )dFXτ (xτ ), ∀τ ∈ T. (3.2)

The likelihood P(Eτ = E|x) = 1 − P(Eτ = Ec|x), as a function of x ∈ X and τ ∈ T, is
called uncertain event likelihood function.

Therefore, an uncertain event process {Eτ}τ∈T represents a binary random variable evolv-
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ing in time associated with occurrence of an uncertain event whose statistics depend on those
of a stochastic process {Xτ}τ∈T∪{0} evaluated at the same time instant. Indeed, provided
i, j ∈ T, i 6= j, then

P(Ei, Ej|{Xτ}τ∈T) = P(Ei|Xi)P(Ej|Xj). (3.3)

In general, Eτ is independent from any other parameter as long as it is conditioned on
Xτ , ∀τ ∈ T. This is a very important property that is used later.

Remark 3.1 [Particular Case: Threshold]According to De�nition 3.1, expressing P(Eτ =
E
∣∣x) as a function of x ∈ X corresponds exactly to a probabilistic description of the occur-

rence of an uncertain event E . By assuming X = R, for example, and de�ning P(Eτ = E|x) =
1XE (x), with XE = {x ∈ R : x > c, c ∈ R}, it is obtained the classical threshold crossing
event setting studied so far in the literature, where Eτ (x) conditional to a �xed x ∈ R is no
longer a random variable:

Eτ (x) =

{
E , x ∈ XE
Ec, ∼ .

(3.4)

Remark 3.2 [Uncertain Hazard Zone] The uncertain event likelihood function P(Eτ =
E|x) only as a function of x ∈ X is exactly what is conceived as uncertain hazard zone [77]
in the PHM discipline.

Now, let us introduce a formal de�nition for the �rst occurrence time of an uncertain
event.

De�nition 3.2 [First Occurrence Time of an Event] Let {Xτ}τ∈T∪{0} be a stochastic
process and {Eτ}τ∈T be an uncertain event process, respectively. The �rst time of occurrence
of an event E after a time instant τp ∈ T ∪ {0} is de�ned as

τE(τp) := inf{τ ∈ T : {τ > τp} ∧ {Eτ = E}}. (3.5)

With these few de�nitions, semi-closed expressions of the probability distribution asso-
ciated with τE can be formally derived for both discrete- and continuous-time stochastic
processes in a general manner as follows.

3.1.1 Discrete-Time Stochastic Processes

Let {Xk}k∈N∪{0} be a stochastic process and {Ek}k∈N be an uncertain event process. The
probability mass function associated with τE = τE(kp), kp ∈ N∪{0}, is obtained below, which
in turn coincides in structure with an expression found in survival probability :

P(τE = k) := P
(
{Ek = E}, {Ej = Ec}k−1

j=kp

)
(3.6)

= P
(
Ek = E

∣∣{Ej = Ec}k−1
j=kp

)
P
(
{Ej = Ec}k−1

j=kp

)
(3.7)
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...

= P
(
Ek = E

∣∣{Ej = Ec}k−1
j=kp

) k−1∏
j=kp+1

P
(
Ej = Ec

∣∣{Ei = Ec}j−1
i=kp

)
��

���
���:1

P
(
Ekp = Ec

)
(3.8)

= P (Ek = E|τE ≥ k)
k−1∏

j=kp+1

P (Ej = Ec|τE ≥ j) (3.9)

Conversely, P(τE = k) according to [32], de�ned below but under the generalised notion
of uncertain event given in De�nition 3.1, can be expressed in recursive form. If an event
occurs at time k, it implies that kp < τE ≤ k, and by the Law of Total Probability it can be
obtained

P(Ek = E) =
k∑

j=kp+1

P(Ek = E|τE = j)P(τE = j) (3.10)

= P(Ek = E|τE = k)P(τE = k) +
k−1∑

j=kp+1

P(Ek = E|τE = j)P(τE = j) (3.11)

Hence, given that P(Ek = E|τE = k) = 1, it yields

P(τE = k) = P(Ek = E)−
k−1∑

j=kp+1

P(Ek = E|τE = j)P(τE = j) (3.12)

Let us now prove the equivalence with the following lemma of the two probability distri-
butions presented above in Eqs. (3.9) and (3.12).

Lemma 3.1 Let {Xk}k∈N∪{0} be a stochastic process and {Ek}k∈N be an uncertain event
process, respectively. Let also τE = τE(kp), kp ∈ N∪ {0}. The mapping P(τE = ·) : N→ [0, 1]
can be either de�ned as

P(τE = k) : = P (Ek = E|τE ≥ k)
k−1∏

j=kp+1

P (Ej = Ec|τE ≥ j) (3.13)

as well as

P(τE = k) : = P(Ek = E)−
k−1∑

j=kp+1

P(Ek = E|τE = j)P(τE = j). (3.14)

Proof.

Using Eq. (3.14), Eq. (3.13) can be obtained as shown below

P(τE = k) = P(Ek = E)−
k−1∑

j=kp+1

P(Ek = E|τE = j)P(τE = j) (3.15)
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= P(Ek = E)−
k−1∑

j=kp+1

P(τE = j|Ek = E)P(Ek = E) (3.16)

= P(Ek = E)

1−
k−1∑

j=kp+1

P(τE = j|Ek = E)

 (3.17)

= P(Ek = E) (1− P(τE < k|Ek = E)) (3.18)
= P(Ek = E)P(τE ≥ k|Ek = E) (3.19)
= P(Ek = E|τE ≥ k)P(τE ≥ k) (3.20)

Nevertheless, note that

P(τE ≥ k) = 1− P(τE < k) (3.21)
= 1− P(τE < k − 1)− P(τE = k − 1) (3.22)
= P(τE ≥ k − 1)− P(τE = k − 1) (3.23)

= P
(
{Ej = Ec}k−2

j=kp

)
− P

(
{Ek−1 = E}, {Ej = Ec}k−2

j=kp

)
(3.24)

= P
(
{Ej = Ec}k−2

j=kp

)
− P

(
Ek−1 = E

∣∣{Ej = Ec}k−2
j=kp

)
P
(
{Ej = Ec}k−2

j=kp

)
(3.25)

= P
(
{Ej = Ec}k−2

j=kp

)(
1− P

(
Ek−1 = E

∣∣{Ej = Ec}k−2
j=kp

))
(3.26)

= P(τE ≥ k − 1)P
(
Ek−1 = Ec

∣∣τE ≥ k − 1
)

(3.27)

Since Eq. (3.27) shows that P(τE ≥ k) can be obtained using P(τE ≥ k − 1), by iterating
this result it yields

P(τE ≥ k) =
k−1∏

j=kp+1

P (Ej = Ec|τE ≥ j) (3.28)

Please note the following before presenting the preceding results in a formal theorem.
Considering that each Ek depends on Xk, the concept of uncertain event likelihood function
introduced in De�nition 3.1 arises below by using the property illustrated with Eq. (3.3):

P(τE = k) = P (Ek = E|τE ≥ k)
k−1∏

j=kp+1

P (Ej = Ec|τE ≥ j) (3.29)

=

∫
Xkp+1:k

P
(
Ek = E|{τE ≥ k}, xkp+1:k

) k−1∏
j=kp+1

P
(
Ej = Ec|{τE ≥ j}, xkp+1:k

)
dFXkp+1:k

(xkp+1:k)

(3.30)

=

∫
Xkp+1:k

P (Ek = E|xk)
k−1∏

j=kp+1

P (Ej = Ec|xj) dFXkp+1:k
(xkp+1:k). (3.31)
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This expression is used in Section 3.2 to introduce a procedure for estimating such prob-
abilities based on numerical methods.

Theorem 3.1 [First Event Time in Stochastic Processes] Let {Xk}k∈N∪{0} be a stochas-
tic process and {Ek}k∈N be an uncertain event process, respectively. If the �rst time of oc-
currence of the event E , τE = τE(kp), with kp ∈ N∪{0}, is such that τE < +∞, P− a.s., then
the mapping P(τE = ·) : N → [0, 1] exists and is well-de�ned in terms of its uncertain event
likelihood function as

P(τE = k) :=

∫
Xkp+1:k

P (Ek = E|xk)
k−1∏

j=kp+1

P (Ej = Ec|xj) dFXkp+1:k
(xkp+1:k). (3.32)

Therefore,

PE(A) =
∑
k∈A

P(τE = k), ∀A ∈ 2N, (3.33)

is a probability measure that de�nes the probability space (N, 2N,PE). Indeed, the following
conditions hold:

1) PE(N) = 1.

2) 0 ≤ PE(A) ≤ 1, ∀A ∈ 2N.

3) PE(∪k∈NAk) =
∑

k∈N PE(Ak), ∀{Ak ∈ 2N}k∈N, with Ai ∩ Aj = φ, ∀i 6= j.

Proof.

1) Let us de�ne {Ak}k∈N, Ak = {1, . . . , k}, such that Ak ↗ N

PE(Ak) =
k∑
j=1

P(τE = j) = P(τE < k + 1) (3.34)

⇒ lim
k→+∞

PE(Ak) = lim
k→+∞

P(τE < k + 1) (3.35)

⇒ PE(N) = P(τE < +∞) = 1, (3.36)

due to the continuity property of probability measures and because τE < +∞, P− a.s.
2) By de�nition, because

0 ≤ P(τE = k), ∀k ∈ N ⇒ 0 ≤ PE(A), ∀A ∈ 2N, (3.37)

and, on the other hand,

A ⊆ N ⇒
∑
k∈A

P(τE = k) ≤
∑
k∈N

P(τE = k) (3.38)

⇔ PE(A) ≤ PE(N) = 1, ∀A ∈ 2N. (3.39)
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3) Let {Ak ∈ 2N}k∈N such that Ai ∩ Aj = φ, ∀i 6= j. By de�nition,

PE (∪k∈NAk) =
∑

j∈∪k∈NAk

P(τE = j) (3.40)

=
∑
k∈N

∑
j∈Ak

P(τE = j) (3.41)

=
∑
k∈N

PE(Ak) (3.42)

3.1.2 Continuous-Time Stochastic Processes

Let {Xt}t∈R+∪{0} be a stochastic process and {Et}t∈R+ be an uncertain event process. By
de�nition, if there was a probability density function associated with τE = τE(tp), tp ∈
R+ ∪ {0}, then it could be obtained as shown below, which in turn coincides in structure
with an expression found in survival probability :

p(τE = t) := P
(
{Et = E}, {Eτ = Ec}τ∈(tp,t)

)
(3.43)

= P ({Et = E}, {τE ≥ t}) (3.44)
= P (Et = E|τE ≥ t)P (τE ≥ t) (3.45)

with P(τE ≥ t) = 1 − P(τE < t). Let B(R+) and λ = λ(R+) denote the Borel σ-algebra and
Lebesgue measure in R+, respectively. Let also FτE (t) = P(τE ≤ t) be a probability measure
in the measurable space (R+,B(R+)) such that FτE << λ. According to the Theorem of
Radon-Nikodym, there is a probability density function p(τE = t) :=

dFτE
dλ

(t), t ∈ R+, such
that

P(τE < t) =

∫
(tp,t)

dFτE (τ) (3.46)

=

∫
(tp,t)

p(τE = τ)dτ (3.47)

=

∫
(tp,t)

P (Eτ = E|τE ≥ τ)P (τE ≥ τ) dτ (3.48)

Given that the aforementioned probability density function exists, P(τE ≥ t) has to be
di�erentiable:

⇒ d

dt
P(τE ≥ t) = −P (Et = E|τE ≥ t)P (τE ≥ t) , (3.49)

because P
(
Etp = E|τE ≥ tp

)
= P

(
Etp = E

)
= 0 (τE > tp, by de�nition of τE). By integrating

over time:

−
∫

(tp,t)

P (Eτ = E|τE ≥ τ) dτ =

∫
(tp,t)

1

P (τE ≥ τ)

d

dτ
P (τE ≥ τ) dτ (3.50)

=

∫
(tp,t)

d

dτ
logP (τE ≥ τ) dτ (3.51)
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= logP (τE ≥ t)−
���

���
��:0

logP (τE ≥ tp) . (3.52)

Therefore,

⇒ P (τE ≥ t) = e
−

∫ t
tp

P(Eτ=E|τE≥τ)dτ
. (3.53)

Please note the following before presenting the preceding results in a formal theorem.
Given the dependence of Et on Xt, by using the concept of uncertain event likelihood function
introduced in De�nition 3.1 and the property illustrated with Eq. (3.3), it can be obtained:

p(τE = t) = P (Et = E|τE ≥ t) e
−

∫ t
tp

P(Eτ=E|τE≥τ)dτ

=

∫
X(tp,t]

P
(
Et = E|{τE ≥ t}, x(tp,t]

)
e
−

∫ t
tp

P(Eτ=E|{τE≥τ},x(tp,t])dτ
dFX(tp,t]

(x(tp,t]) (3.54)

=

∫
X(tp,t]

P (Et = E|xt) e
−

∫ t
tp

P(Eτ=E|xτ )dτ
dFX(tp,t]

(x(tp,t]). (3.55)

Theorem 3.2 [First Event Time in Stochastic Processes] Let B(R+) and λ = λ(R+)
denote the Borel σ-algebra and Lebesgue measure in R+, respectively. Let also {Xt}t∈R+∪{0}
be a stochastic process and {Et}t∈R+ be an uncertain event process. If the �rst time of
occurrence of the event E , τE = τE(tp), with tp ∈ R+ ∪ {0}, is such that τE < +∞, P− a.s.,
and FτE << λ, then the mapping p(τE = ·) : R+ → [0, 1] exists and is well-de�ned in terms
of its uncertain event likelihood function as

P(τE = t) :=

∫
X(tp,t]

P (Et = E|xt) e
−

∫ t
tp

P(Eτ=E|xτ )dτ
dFX(tp,t]

(x(tp,t]). (3.56)

Hence,

PE(B) =

∫
B

dFτE (τ) =

∫
B

p(τE = τ)dτ, ∀B ∈ B(R+), (3.57)

is a probability measure de�ning a probability space (R+,B(R+),PE). Indeed, the following
conditions hold:

1) PE(R+) = 1.
2) 0 ≤ PE(B) ≤ 1, ∀B ∈ B(R+).
3) PE(∪k∈NBk) =

∑
k∈N PE(Bk), ∀{Bk ∈ B(R+)}k∈N, with Bi ∩Bj = φ, ∀i 6= j.

Proof.

1) Let us de�ne Bt = (0, t), t ∈ R+, such that Bt ↗ R+

PE(Bt) =

∫
(0,t)

p(τE = τ)dτ = P(τE < t) (3.58)
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⇒ lim
t→+∞

PE(Bt) = lim
t→+∞

P(τE < t) (3.59)

⇒ PE(R+) = P(τE < +∞) = 1, (3.60)

due to the continuity property of probability measures and because τE < +∞, P− a.s.
2) By de�nition, because

0 ≤ P(τE = t), ∀t ∈ R+ ⇒ 0 ≤ PE(B), ∀B ∈ B(R+), (3.61)

and, on the other hand,

B ⊆ R+ ⇒
∫
B

p(τE = τ)dτ ≤
∫
R+

p(τE = τ)dτ (3.62)

⇔ PE(B) ≤ PE(R+) = 1, ∀B ∈ B(R+). (3.63)

3) Let {Bk ∈ B(R+)}k∈N such that Bi ∩Bj = φ, ∀i 6= j. By de�nition,

PE(∪k∈NBk) =

∫
∪k∈NBk

p(τE = τ)dτ (3.64)

=
∑
k∈N

∫
Bk

p(τE = τ)dτ (3.65)

=
∑
k∈N

PE(Bk) (3.66)

3.2 Application to Fatigue Crack Prognosis

The theoretical contributions provided in Section 3.1 include formal mathematical demon-
strations and therefore do not require further veri�cation. In this section, however, the aim
is to explain how to use these abstract mathematical statements in practical applications of
engineering: characterisation of Time-of-Failure (ToF) probability distributions; and more
precisely, the problem of fatigue crack growth prognosis. As a function of loading cycles, a
simpli�ed stochastic degradation model is used for this purpose to describe the growth of a
fatigue crack in a test coupon. The event E refers to critical failures that may occur in me-
chanical systems with components undergoing fatigue crack processes, although it may not
be obvious what particular crack lengths may cause such events. The problem is approached
using the notion of uncertain event and is contrasted to the classical threshold-crossing-based
events (i.e., when critical failure is declared once the length of the crack reaches a known par-
ticular value). Probability distributions are shown in both cases, so as to develop a further
discussion.

3.2.1 Crack Growth Model

It has been opted to use the condensed discrete-time crack growth model described in [126]
to explain both the problem and the application of the theory of uncertain events. It is of
paramount importance to highlight the fact that the purpose of this application example is
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to show how the conceptual contributions presented can be applied, rather than contributing
to the state-of-the-art in terms of the topic of crack length prognostics. More information on
the speci�cs of fatigue crack growth in alloy test coupons can be found in [126].

The crack length can be depicted by a stochastic process {Xk}k∈N∪{0}, according to the
mathematical notation introduced in Section 3.1. Note that the k indexing variable usually
denotes time, though in this case more speci�cally, it denotes a cycle number. The material
undergoes several instances of compression and decompression. Also, X = R+ and Σ = B(R+)
(Borel sets in R+) due to the positiveness of length measures. In arbitrary units, the following
discrete-time model de�nes the crack length:

xk+1 = xk + eωkC(β
√
xk)

n, (3.67)

where ωk ∼ N (0, σ2
w) is a random variable describing white Gaussian noise, and C, β and n

are �xed constants. All the model parameters values are summarised in Table 3.1.

C β n σ2
w

Values 0.005 1 1.3 2.98

Table 3.1: Model parameters and their values.

3.2.2 Uncertain Event De�nition

As speci�ed in De�nition 3.1, the statistics of an uncertain event E (in this case, critical
failures in mechanical systems with components that undergo fatigue crack processes) are
de�ned by an uncertain event likelihood function P(Ek = E|x), which expresses how likely is
the event E conditional to a particular �xed crack length x at a given time k. Without loss
of generality, let us say that critical failure occurrences are correlated with crack lengths of
about x̄ = 100. So the uncertain event likelihood function can be de�ned as

P(Ek = E|x) =
1

1 + e−α(x−x̄)
, α > 0, (3.68)

and therefore characterises the uncertainty associated with the occurrence of critical failure
events as a function of the condition of the test coupon. In fact, it is still possible to return
to a threshold-based failure de�nition when using this critical failure likelihood (see Remark
3.1) by merely observing the limit

lim
α→+∞

1

1 + e−α(x−x̄)
= 1{x∈R:x>x̄}(x). (3.69)

3.2.3 Method of Monte Carlo Simulations

The uncertain event de�nition introduces a new degree of freedom regarding uncertainty. To
see how this new source of uncertainty might in�uence event prognosis, its e�ects on the
probability distribution associated with τE have to be analysed. Monte Carlo simulations
are used below to perform the necessary approximations due to their ability to estimate
expectations with arbitrary precision by simply increasing the number of simulations, de�ned
as N ∈ N. Additionally, let x(i)

kp+1:k = {x(i)
j }kj=kp+1 denote the i-th random state trajectory
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Figure 3.1: Single realisation of the stochastic process associated with crack length growth.
The red color indicates the likelihood of an uncertain event; the greater the opacity the
greater the likelihood (see De�nition 3.1). The classical approach to the �rst occurrence
time prediction on the other hand, would not have shown a color gradient, but a sudden and
discontinuous shift from white to red.

or realisation of the stochastic process simulated from cycle kp up to cycle k (see Fig. 3.1),
described by the crack growth model (Markov process) of Eq. (3.67), with i ∈ {1, . . . , N},
N >> 1. The probability P(τE = k), with τE = τE(kp), can be approximated according to
Theorem 3.1 as:

P(τE = k) =

∫
Xkp+1:k

P (Ek = E|xk)
k−1∏

j=kp+1

P (Ej = Ec|xj) dFXkp+1:k
(xkp+1:k) (3.70)

=

∫
Xkp+1:k

P (Ek = E|xk)
k−1∏

j=kp+1

(1− P (Ej = E|xj)) dFXkp+1:k
(xkp+1:k) (3.71)

≈ 1

N

N∑
i=1

P
(
Ek = E|x(i)

k

) k−1∏
j=kp+1

(
1− P

(
Ek = E|x(i)

j

))
(3.72)

As shown in Fig. 3.1, each realisation of the stochastic process describing the development
of crack growth throughout usage cycles (for example, the i-th), determines the likelihood of
an uncertain event (in this case material futility). The �gure shows an example of magnitudes
taken by an uncertain event likelihood event function (similar to the one de�ned in Eq. (3.68))
expressed in terms of an hue over the crack length axis with colors ranging from clear white
to red slowly. In this case, the smoothness of these changes in color would depend on the
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α parameter with which the uncertain event likelihood function was de�ned in Eq. (3.68).
To test the e�ect of this parameter on the probability mass distribution P(τE = ·), some
variations are explored with the values shown in Table 3.2.

α1 α2 α3 α4 α+∞
Values 0.1 0.3 1.0 3.3 α→ +∞

Table 3.2: Values considered for the parameter α in the de�nition of the uncertain event
likelihood P (Ek = E|x) shown in Eq. (3.68).

Figure 3.2: Uncertain event likelihood P (Ek = E|x) as function of crack lengths x ∈ R+

considering di�erent possible α parameters in Eq. (3.68), which are summarised in Table 3.2.
The α+∞ parameter represents a limit behaviour of the function when α → +∞ (see Eq.
(3.69)). The less the value of the parameter α, the greater the uncertainty about an speci�c
crack length describing material futility.

For purposes of clarity, Fig. 3.2 reveals how the α parameter changes the way the uncertain
event likelihood function looks like. There is a special case when α → +∞ that is denoted
by α+∞, which corresponds to the generic threshold crossing notion that is widely assumed
in the literature to trigger events (see Eq. (3.69)).

3.2.4 Simulation Results

Let us assume the predictions begin with the cycle number kp = 100, where an initial crack
almost negligible is observed (considered as xkp = e−10 for simulations) and the cycle number
kh = 1000 at which simulations are halted. Fig. 3.3 shows graphically how one hundred
random crack growth trajectories would look like. Nevertheless, the Monte Carlo method
mentioned in Section 3.2.3 to approximate P(τE = k), with k ∈ N, demands the amount of
simulations to be such that N → +∞, which is not feasible in real applications, but e�ective
approximations can be obtained if N is �su�ciently large� (where �su�ciently large� depends
on the state vector dimension, sources of uncertainty, model complexity, etc.). In this regard,
the results for each of the α parameters obtained by performing an amount of N = 107 Monte
Carlo simulations are included in Table 3.3 and Fig. 3.4. Greater values for N have not been
considered because they have negligible e�ects on the results.
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Figure 3.3: Graphical illustration of 100 realisations of the stochastic process described in
Eq. (3.67), which corresponds to a fatigue crack growth model. The dashed horizontal line
indicates a crack length of x̄ = 100 at which the material would incur critical failure, though
there is uncertainty about it (see Section 3.2.2).

α1 α2 α3 α4 α+∞
E{τE} 660.8835 766.3128 783.6094 786.7342 787.4333
Std{τE} 102.6699 82.0342 82.7552 82.9145 82.9521∑kh

k=kp
P(τE = k) 1.0000 0.9988 0.9970 0.9964 0.9962

Table 3.3: Results in terms of expected values, standard deviations and probability mass
within a cycle span between kp and kh. The information is provided for each of the values
considered for the parameter α in the de�nition of the uncertain event likelihood P (Ek = E|x)
of Eq. (3.68), which are shown in Table 3.2.

The probability distributions of τE shown in Fig. 3.4 are pretty illustrative regarding
consequences of uncertainty on the relationship between crack lengths and the eventuality of
critical failures. Since the outline of these probability distributions is comparable to Gaussian
bells, the expected values and standard deviations presented in Table 3.3 condense essentially
all of the information needed to analyse the results properly.

The current standard threshold crossing methodology used in the literature is described
precisely by α+∞. It is straightforward to note from the expected values that, as α is re-
duced, the probability distributions of τE are moved to the left. The standard deviations are
increased in parallel, extending probabilities over a larger range of cycle numbers. Clearly,
this behaviour is caused by any source of uncertainty indicating the possibility of earlier
events. In fact, the uncertain event likelihood function de�nition (see section 3.2.2) implies
that crack lengths below x̄ may also trigger critical failures in mechanical components. It
means that in a smaller amount of loading cycles it is likely to experience critical failures,
which re�ects the behaviour of the expected values in Table 3.3. On the other hand, the
standard deviations are calculated as the result of introducing a new source of uncertainty
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Figure 3.4: Probability distributions of the �rst occurrence time of uncertain future events
under di�erent de�nitions of uncertain event likelihood P (Ek = E|x), which changes accord-
ing to the di�erent values of the α parameter (see Eq. (3.68)) presented in Table 3.2. The
α+∞ parameter describes the limit behaviour of the function when α→ +∞ (see Eq. (3.69)).
The less the value of the α parameter, the greater the uncertainty about the cycle number
at which cracks could lead to critical failures.

into the analysis. Finally, the results obtained by using α3, α4 and α+∞ show consistency
in similarity considering that their uncertain event likelihood functions are quite similar as
well, as depicted in Fig. 3.2.

3.3 Summary

Scientists from several backgrounds have been addressing for more than �fty years the ques-
tion of forecasting the time of occurrence of future events. They have therefore discussed this
concept assuming a broad spectrum of stochastic processes. The common approach, though,
has always been to trigger an event occurrence once a certain threshold or area in a higher
dimensional space had been crossed. The fundamental explanation is based primarily on a
goal of obtaining closed-form mathematical expressions. Uncertainty on this limit or higher
dimensional area has been discussed so far only for a reduced amount of stochastic processes.

The concept of �uncertain event� is introduced in this chapter, which generalises the classic
event de�nition by incorporating uncertainty on it. Even though the underlying idea was
preconceived, its formalisation using Probability Theory is one of the main contributions
presented in this chapter. In addition, the �uncertain hazard zone� de�nition established
in the Prognostics and Health Management discipline has also �nally been formalised. On
the other hand, the second -and no less signi�cant- contribution is the illustration of its
applicability with a practical example of fatigue crack growth where concrete guidance and
consequences of the proposed new concepts were presented and discussed.
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Chapter 4

Predictive Bayesian Cramér-Rao Bounds

of Future System States

As it was stated in Chapter 1, the event prognosis problem requires to predict the future
states of a system, which can be described in terms of probability distributions (see Fig. 1.2).
Such probability distributions are approximated by prognostic algorithms and are mainly
determined by initial conditions (information about the system condition at the beginning of
prognostics), dynamic model of the system, future inputs, characterisation and quanti�cation
of uncertainty sources, and hyper-parameters of the prognostic algorithm itself. An important
question that arises in this respect is: are there fundamental limits that may bound the hyper-
parameters space when tuning a prognostic algorithm? This question is embraced in this
chapter by developing a conditional predictive version of the Bayesian Cramér-Rao Lower
Bound (CP-BCRLB) (see Section 2.3 for a brief introduction). It establishes fundamental
limits to the Error Covariance Matrix (ECM) incurred by estimators of future system states
at each time in the future. This sequence of bounds (one per each future state vector
predicted) can yield useful for hyper-parameters tuning of prognostic algorithms, as it is
shown below.

This chapter begins by introducing theoretical contributions in Section 4.1 that are later
used to propose a design methodology for prognostic algorithms in Section 4.2. Numerical
methods may be needed to compute CP-BCRLBs, so Section 4.3 presents simpli�cations
that can be made in particular prediction settings to get analytical expressions with which
minimise computational e�orts. All the contributions included in this chapter are then
illustrated in Section 4.4 with a case study of End-of-Discharge (EoD) time prognosis of
Lithium-Ion (Li-Ion) batteries. A summary is �nally presented in Section 4.5.

Most of the content of this chapter was originally published in [80] and later extended as
a book chapter in [127].
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4.1 Conditional Predictive Bayesian Cramér-Rao Lower

Bounds

Before presenting all the mathematical results based on the concept of CP-BCRLB (inspired
by previous results presented in [125, 128]), it is important to clarify the idea behind these
developments. The main goal is to lower bound the ECM incurred by any estimator x̂k(y1:kp)
when estimating the system state vector xk (marginal estimation), for all future time instants
k greater than kp (beginning of prognostics; see Fig. 1.2). This lower bound is formalised
in Theorem 4.2 (mathematical demonstrations available in Appendix A.2) and later used in
Section 4.2 for prognostic algorithm design. It can be computed in a recursive fashion, so it
turns to be quite cheap in terms of computational resources. However, such recursion comes
from a previous step where a di�erent CP-BCRLB is derived for the whole future state tra-
jectory (joint estimation), and whose results are summarised in Theorem 4.1 (mathematical
demonstrations available in Appendix A.1).

Mathematical Results

Let xkp:k =
[
xkp

T xkp+1
T . . . xk

T
]T and also xi, i = 1, 2, . . . , (k − kp + 1)nx, be the i-th

element of the vector xkp:k. The �rst step towards �nding the marginal CP-BCRLB associated
with xk, is to explore the joint case of xkp:k estimation.

Given a set of measurements y1:kp , let x̂kp:k(y1:kp) denote an estimator of xkp:k. Also, let

x̃kp:k , x̂kp:k(y1:kp)− xkp:k (4.1)

denote the respective estimation error and

pcpk , p(xkp:k|y1:kp). (4.2)

The second order derivative can be denoted as

∆y
x = ∇x∇y

T , (4.3)

where ∇x =
[
∂
∂x1
, ∂
∂x2
, . . . , ∂

∂xnx

]
represents a gradient operator with dimensionality 1× nx.

De�nition 4.1 [Conditional Predictive Bayesian Information Matrix] The Condi-
tional Predictive Bayesian Information Matrix (CP-BIM) is de�ned as

Icp(xkp:k|y1:kp) , Epcpk {
[
∇xkp:k

T log pcpk

][
∇xkp:k

log pcpk

]
}. (4.4)

Two theorems lead to the mathematical notions of both joint and marginal CP-BCRLB
variants. The joint variant lower bounds the ECM of complete state trajectories xkp:k and
demands expensive matrix computations. The marginal variant, in contrast, lower bounds
the ECM of estimators of xk (at a single future time instant) and is computed recursively
with ease.
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Theorem 4.1 [Joint Conditional Predictive BCRLB] Let us assume the following
conditions about the density pcpk (see Eq. (4.2)):

1. pcpk is absolutely continuous and ∂pcpk
∂xi

is absolutely integrable with respect to xkp:k, this
is ∫ ∣∣∣∂pcpk

∂xi

∣∣∣dxkp:k < +∞. (4.5)

2. For each xi, with i = 1, 2, . . . , (k − kp + 1)nx,

lim
xi→+∞

xip(xkp:k) = lim
xi→−∞

xip(xkp:k) = 0. (4.6)

The ECM associated with any estimator x̂kp:k(y1:kp) of the state trajectory xkp:k is lower
bounded as

Epcpk {x̃kp:kx̃
T
kp:k|y1:kp} ≥ I−1

cp (xkp:k|y1:kp), (4.7)

where I−1
cp (xkp:k|y1:kp) is referred to as the Joint Conditional Predictive BCRLB (JCP-BCRLB).

Theorem 4.2 [Marginal Conditional Predictive BCRLB] Let us de�ne

Si
i+1 = E{−∆xi

xi
log p(xi+1|xi)}, (4.8)

Si,i+1
i+1 = E{−∆xi+1

xi
log p(xi+1|xi)}, (4.9)

Si+1
i+1 = E{−∆xi+1

xi+1
log p(xi+1|xi)}, (4.10)

with Si+1,i
i+1 = Si,i+1

i+1

T
, i = kp, kp + 1, . . . , k. The ECM associated with xk, is lower bounded as

Epcpk {x̃kx̃
T
k |y1:kp} ≥ C22

k , (4.11)

where C22
k is named as Marginal Conditional Predictive BCRLB (MCP-BCRLB), and can

be recursively computed as

[C22
k ]−1 = Skk − S

k,k−1
k [[C22

k−1]−1 + Sk−1
k ]−1Sk−1,k

k , (4.12)

with the initial condition [C22
kp

]−1 = S
kp
kp

= E{−∆
xkp
xkp log p(xkp |y1:kp)}.

Bayesian approaches to system monitoring (state estimation) assume that exogenous in-
puts are known. As a consequence, the latter are omitted in mathematical notation as it is
concerned with describing state vector probability distributions. However, in event progno-
sis there is no certainty about future system operation; i.e., a random process characterises
future exogenous inputs. This uncertainty becomes important in long-term predictions as
its characterisation a�ects the whole prognosis problem and, thus, the computation of CP-
BCRLBs. This fact can be easily sorted out by embedding the exogenous inputs vector into
an augmented state vector before performing prognostics. This procedure is explained in
Section 4.4.5.
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4.2 Methodology for Prognostic Algorithm Design

Although it was mentioned that the concept of MCP-BCRLB (formalised in Theorem 4.2)
would be used in this section to describe a design methodology, it is not applied straightfor-
ward. If there was an unbiased estimator x̂∗k with zero covariance satisfying the conditions
presented in Theorem 4.1, then the ECM would be minimum and the Bayesian Cramér-Rao
inequality of Theorem 4.2 would become

Epcpk {x̃kx̃
T
k |y1:kp} = Covp(xk|y1:kp ){xk} ≥ C22

k . (4.13)

In the following, a design methodology for prognostic algorithms is described where the
last inequality is used as criteria (in terms of predicted covariance rather than predicted
ECM) to discard possible hyper-parameters of an algorithm whose covariance in time might
violate this fundamental limit. Theorem 4.2 de�nes the lower bound C22

k .

Design Methodology

Let us say that a probability-based prognostic algorithm is needed to assess the risk of future
use for equipment failure. Let θ ∈ Θ ⊆ Rnθ denote an hyper-parameters vector determining
any possible implementation of the aforementioned probability-based prognostic algorithm.
A step-by-step methodology is de�ned for tuning these hyper-parameters, seeking to max-
imise the e�cacy of the algorithm while taking into account speci�c e�ciency restrictions
(commonly imposed by computational cost and/or maximum processing time). Nevertheless,
it is worth noting that some hyper-parameters may have a positive in�uence on the algo-
rithm's e�cacy, while others on its e�ciency. Because of this, the hyper-parameters vector
θ could be split into two by grouping those hyper-parameters primarily a�ecting e�ciency
(conveniently arranged as θA ∈ ΘA ⊆ RnθA , nθA < nθ), and those primarily impacting on
quality of results (conveniently arranged as θB ∈ ΘB ⊆ RnθB , where θT = [θTA θTB] and
nθA + nθb = nθ). The θA parameter vector is commonly adjusted to satisfy e�ciency limi-
tations (e.g. maximum processing time); nevertheless, the actual question should be how to
select suitable values for the θB parameter vector.

Below it is presented a methodology for the design of prognostic algorithms where CP-
BCRLBs are implemented to lower bound covariances at each future time instant when
predicting system states (see Eq. (4.13)). A feasibility region ΘB ⊂ ΘB is thus determined
for the values of the hyper-parameters vector θB, where θA is assumed to meet e�ciency
restrictions. Therefore, this feasibility region is de�ned as all θB such that predictive state
covariances do not violate MCP-BCRLBs (see Theorem 4.2), which constitute fundamental
mathematical limits. The aforementioned design methodology is summarised as follows:

1) Meet e�ciency requirements by choosing appropriate values for θA. Recursively com-
pute MCP-BCRLBs for each predicted state in the future, beginning at time kp and
�nishing at kh, kh > kp, which de�nes a prediction horizon.

2) Choose di�erent possible values for the hyper-parameters vector θB ∈ ΘB. These can
be obtained by sampling from a prior probability distribution, for example.

3) Conditional to each of the possible values for θB, execute prognostics. Each con�gura-
tion of θB violating MCP-BCRLBs must be discarded, at any time kp < k < kh.
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Figure 4.1: Methodology for the design of prognostic algorithms using MCP-BCRLBs.

4) For each of those non-discarded con�gurations of θ used in Step 3), compute the `1-
distance, element by element, between the sequence of covariances {Cov(xk)}khk=kp

(co-
variances as a function of time) and its corresponding MCP-BCRLB sequence. Calcu-
late a weighted average with those distances. Select [θTA θ̂TB] such that this weighted
average was minimised. Obtain the respective �rst event occurrence time probability
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distribution associated with the hyper-parameters selection [θTA θ̂TB].
5) Explore how results are a�ected by relaxing soft e�ciency constraints: Change θA to

allow less e�cient implementations and repeat Steps 1)-4). Evaluate the impact on the
�rst event occurrence time probability distribution approximation by using any metric
of choice. Iterate this procedure until changes in hyper-parameters yield negligible
e�ects on this probability distribution.

4.3 Analytic Computation of MCP-BCRLBs

MCP-BCRLBs computation involves calculation of expectations over the probability distri-
butions of predictive system states. This means that the designer might have to run Monte
Carlo simulations (or alternative numerical methods) in order to tune the hyper-parameters
of a particular prognostic algorithm. It would be better to avoid such situations whenever
possible, as it is computationally expensive and time consuming. Fortunately, MCP-BCRLBs
can be determined analytically in systems that are linear with respect to their state vectors
and whose process noise is additive; i.e.,

xk+1 = f(xk, uk) + ωk (4.14)
= Ak(uk) · xk +Bk(uk) + ωk, (4.15)

where uk denotes system input, Ak(uk) and Bk(uk) correspond to an nx-dimensional square
matrix and an nx× 1 matrix, and ωk represents an nx-dimensional zero mean Gaussian noise
vector. Indeed, if ωk has Σk as covariance matrix:

− log p(xi+1|xi) = c+
1

2
[xi+1 − f(xi, ui)]

TΣ−1
i [xi+1 − f(xi, ui)] (4.16)

−∇xi∇xi
T log p(xi+1|xi) = Ai(ui)

TΣ−1
i

T∇xif(xi, ui) (4.17)
= Ai(ui)

TΣ−1
i Ai(ui) (4.18)

−∇xi+1
∇xi

T log p(xi+1|xi) = −Ai(ui)
TΣ−1

i

T∇xi+1
xi+1 (4.19)

= −Ai(ui)
TΣ−1

i (4.20)

−∇xi+1
∇xi+1

T log p(xi+1|xi) = Σ−1
i

T∇xi+1
xi+1 (4.21)

= Σ−1
i (4.22)

Note that Σ−1
i

T
= Σ−1

i due to the symmetry assumed in the covariance matrix and
∇y∇x

T = ∆y
x. In addition, it is worth underlying that the omission of the dependency on

inputs uk in mathematical expressions such as p(xi+1|xi) is a typical practice in engineering
systems due to the assumption that inputs are accurately and precisely measured (therefore
they should not afect, in this case, state transitions). Although not always true in prognosis,
this chapter incorporates this omission practice unless it was necessary to make explicit the
aforementioned dependency. Hence, analytical expressions for computing MCP-BCRLBs can
be obtained from Eqs. (4.8)-(4.10):

Si
i+1 = E{−∆xi

xi
log p(xi+1|xi)} = Ai(ui)

TΣ−1
i Ai(ui) (4.23)

Si,i+1
i+1 = E{−∆xi+1

xi
log p(xi+1|xi)} = −Ai(ui)

TΣ−1
i (4.24)

Si+1
i+1 = E{−∆xi+1

xi+1
log p(xi+1|xi)} = Σ−1

i (4.25)
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4.4 Case Study: End-of-Discharge Time Prognosis of Lithium-

Ion Batteries

The proposed design methodology for hyper-parameters tuning of prognostic algorithms is
now being tested on an illustrative case study, which refers to End-of-Discharge (EoD) time
prognosis of Lithium-Ion (Li-Ion) batteries. It is assumed in this case study that the �rst
stage of fault diagnosis is carried out throughout state estimation via a particle �ltering
algorithm as suggested in [3] (regarding the amount of particles to be utilised, etc.). On
the other hand, posterior estimates of the states of the system, namely the State-of-Charge
(SoC, de�ned as the actual percentage of energy available with respect to the maximum
storage capacity, denoted as Ecrit) and internal polarisation resistance, are assumed to be
always available whenever the prognostic algorithm was executed. The system is said to
have undergone failure whenever SoC levels fall underneath 10%.

Section 4.4.4 illustrates how to apply the design methodology described in Section 4.2
in a simpli�ed framework where future exogenous inputs are assumed to be known. In
contrast, Section 4.4.5 incorporates uncertainty about them and explores their impact on
the computation of predictive BCRLBs. Notwithstanding, let us �rstly explain the system
model and the prognostic algorithm to be designed.

4.4.1 State-Space Model

State-space models are useful in both estimation and prognosis stages as they provide rep-
resentation of system dynamics. Voltage, in this application example of Li-Ion battery mon-
itoring, is modelled as a function of i) SoC, ii) internal impedance of the battery, and iii)
discharge current (which corresponds to the exogenous system input). The aim in this case
study is oriented to prognosticate the time of depletion of the battery, de�ned to take place
whenever its SoC reaches values below 10%.

Since actual failure prognostic algorithms demand the characterisation of future exogenous
inputs, referring to future operating pro�les (discharge currents) of a Li-Ion battery in this
case, a probabilistic characterisation is proposed in [3] speci�cally for EoD time prognosis
via Markov Chains. It is worth noting that, without loss of generality, the aforementioned
characterisation of future system inputs and the performance assessment of prognostic al-
gorithms can be addressed separately [113]. Moreover, conditional to a single realisation
of the stochastic process characterising future system inputs, it is always feasible to assess
prognostic algorithm performance. The impact of the uncertainty on future exogenous input
characterisation can be later incorporated and evaluated by conditioning on di�erent reali-
sations and applying the Law of Total Probability. A known future battery usage pro�le is
assumed then in a �rst instance, isolating the problem of EoD time probability distribution
computation.

The relationship between Open Circuit Voltage (OCV) and SoC could be characterised
through an a�ne function for most of the operating range of a Li-Ion battery, as depicted
by �zone 2 � in Fig. 4.2. Nevertheless, a state-space model that incorporates nonlinear
operational behaviour was proposed in [3], which can be noted in �zone 1 � and �zone 3 �
in the same �gure. Besides, the polarisation resistance of the battery can be modelled as
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a function of the discharge battery according to [129]. A state-space representation is thus
expressed as:

Figure 4.2: OCV curve of a Li-Ion cell (black line) and the projection of its linear operational
range (dashed gray line) as a function of SoC [3].

State Transition Model

xk+1 = xk − voc(xk) · uk ·
Ts
Ecrit

+ ωk (4.26)

Measurement Model

yk = voc(xk)− u(k) ·Rint(xk, uk) + ηk, (4.27)

with

voc(xk) =vL + (v0 − vL) · eγ·(x2(k)−1) + α · vL · (x2(k)− 1) . . .

. . .+ (1− α) · vL · (e−β − e−β·
√
x2(k))

(4.28)

and
Rint(xk, uk) = r0(uk) + r1(uk) · xk + r2(uk) · xk2. (4.29)

The input uk = ik and output yk = vk of the system are discharge current (measured in
Amperes) and voltage (measured in Volts) between battery terminals, respectively. There is
a single system state describing battery SoC, denoted as xk, whose calculation is made as a
fraction between actual energy available in the battery and its maximum storage capacity
Ecrit. The function Rint(xk, uk), on the other hand, represents the absolute value of the
battery internal impedance. Regarding ωk and ηk, they denote process and measurement
noise, respectively, and follow zero mean Gaussian distributions. Finally, sample time is
measured in seconds and expressed as Ts, and v0, vL, α, β and γ refer to model parameters
that must be obtained via batch estimation (see [3] for more details).

According to De�nition 3.1 in Chapter 3, triggering a failure event whenever the bat-
tery SoC reaches values that fall underneath a threshold of 10% of available energy can be
mathematically expressed in terms of an uncertain event likelihood function (see Remark 3.1)
as

P(Eτ = E|x) = 1{x∈R:x<0.1}(x). (4.30)
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4.4.2 Prognostic Algorithm

To illustrate how to apply the design methodology presented in Section 4.2, a particle-
�ltering-based algorithm [77] is chosen for prognostic purposes. Predictions start at time
kp with an initial condition given by an empirical state posterior distribution yielded from a
particle �lter used for state estimation (fault diagnosis). This state posterior distribution is
denoted as

p(xkp |y1:kp) =

Np∑
i=1

w
(i)
kp
δ
x
(i)
kp

(xkp), (4.31)

where the number of samples is denoted as Np. The particle-�ltering-based prognostic algo-
rithm is summarised below:

0) Resample p(xkp |y1:kp) to obtain a set of Nθ particles equally weighted.

Perform the next steps for each future time k, k > kp:

1) Compute expected state transitions x∗k
(i) = E{f(xk−1

(i), uk−1, ωk−1)}, ∀i ∈ {1, . . . , Nθ},
and the empirical covariance matrix

Ŝk =
1

Nθ − 1

Nθ∑
i=1

[x∗k
(i) − x∗k][x∗k

(i) − x∗k]T , (4.32)

with x∗k = 1
Nθ

∑Nθ
i=1 x

∗
k

(i).

2) Compute D̂k such that D̂k · D̂T
k = Ŝk.

3) Update the samples

x
(i)
k = x∗k

(i) + hθ · D̂k · ε(i)
k , ε

(i)
k ∼ E , (4.33)

where E denotes an Epanechnikov kernel with bandwidth hθ.

Therefore, the hyper-parameters vector to be tuned in the prognostic algorithm ends up
being θT =

[
Nθ hθ

]
(number of particles and Epanechnikov kernel bandwidth).

4.4.3 Avoiding Monte Carlo Simulations to Estimate Fundamental

Limits

According to Section 4.3, analytical expressions of MCP-BCRLBs can save unnecessary com-
putations by avoiding Monte Carlo simulations (or similar numerical methods), like linear
systems with additive process noise, for example. Hence, in the following it is intended to
provide an approximation of the battery discharge model presented in Section 4.4.1, thus
meeting the aforementioned requisites.

The state transition equation presented below can be used as a battery discharge model
to later obtain mathematical expressions for MCP-BCRLBs computations:

xk+1 = xk − voc(xk) · uk ·
Ts
Ecrit

+ ωk. (4.34)
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It shows nonlinear behaviour with respect to the SoC state xk due to the term voc(xk).
However, from Fig. 4.2 it can be acknowledged that voc(xk) depicts a linear behaviour in
most of its operational range. Furthermore, if voc(xk) is linearised around xo = 0.5, then

voc(xk) ≈ voc(xo) +
∂voc(xk)

∂xk

∣∣∣
xk=xo

· (xk − xo). (4.35)

As a consequence, an approximation of the state transition equation can be obtained:

xk+1 =
(

1− ∂voc(xk)

∂xk

∣∣∣
xk=xo

· uk ·
Ts
Ecrit

)
︸ ︷︷ ︸

Ak(uk)

·xk . . .

. . .+
(∂voc(xk)

∂xk

∣∣∣
xk=xo

· xo − voc(xo)
)
· uk ·

Ts
Ecrit︸ ︷︷ ︸

Bk(uk)

+ωk,

(4.36)

which in turn expresses the required form xk+1 = Ak(uk) · xk +Bk(uk) + ωk.

Figure 4.3: Di�erences between actual MCP-BCRLBs and an analytical, though simpli�ed,
way of computing MCP-BCRLBs by taking advantage of the linear behaviour experienced
by Li-Ion batteries in a wide operating range.

Fig. 4.3 shows how the previous linearisation a�ects the computation of MCP-BCRLBs.
This simpli�cation saves a lot of computations, though its drawback relies on the lack of
nonlinear characterisation and may skew the design methodology. It shows itself as an
attractive alternative to proceed with design and avoid hard computations as long as its
restricted validity region was considered.
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4.4.4 Prognostic Algorithm Design: Known Future Operating Pro-

�les

The prognostic algorithm presented in Section 4.4.2 is applied in EoD time prognosis of Li-Ion
batteries (see Section 4.4.1). Hence, its hyper-parameters Nθ and hθ can now be tuned by
following the methodology described in Section 4.2. An important remark is to note that Nθ

directly impacts on the computational e�ort of the algorithm (i.e., θA = Nθ), whereas hθ has
signi�cant impact on the quality of probability distributions approximated by the prognostic
algorithm (i.e., θB = hθ).

Figure 4.4: Discharge currents assumed as known. Prognostics are executed at time kp =
4000[s].

Consider that prognostics are executed at kp = 4000[s] and that predictions of future
discharge currents (exogenous inputs) are assumed to be known (see Figure 4.4). In addition,
no model simpli�cations are considered (in contrast to those mentioned in Section 4.4.3),
embracing therefore the nonlinear behaviour shown in Fig. 4.2.

Let us now proceed with the design methodology proposed, step-by-step.

Step 1: Generation of MCP-BCRLBs Compute the MCP-BCRLBs from kp (initial
condition whose calculation was reported in [123]) onwards up to the prediction horizon
kh. Provided the computation of MCP-BCRLBs demands the calculation of analytically
intractable integrals, ten million random trajectories are simulated using Eq. (4.26).
The results of such predictions are shown in Fig. 4.5. Set Nθ to 100 particles, as
recommended in [3].
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(a) SoC estimation and prognosis. (b) ECM and MCP-BCRLB curves.

Figure 4.5: Example results for kp = 4000[s]. Figure 4.5(a) shows the results for battery SoC
�ltering and prediction stages. The estimation stage assumes an incorrect initial condition
of 70% for the SoC, and is executed using a particle �lter with 100 particles [3]. Long-term
predictions are built simulating ten million random state trajectories. These predictions
are used to compute covariance and MCP-BCRLB curves in Figure 4.5(b), thus empirically
verifying Eq. (4.13).

Step 2: Choose hyper-parameter candidates for the algorithm There is an
optimal bandwidth value for Epanechnikov kernels, denoted as hopt, though it only
applies when particles are obtained by independently sampling a Gaussian distribution
having unity covariance matrix (see Eq. (4.37)) [77]. Nonetheless, despite the fact that
such requirements rarely apply in nonlinear systems, hopt has been used as educated
guess in implementations of particle-�ltering-based prognostic algorithms. In this case
study, for instance, this educated guess would be hopt = 0.8529 provided nx = 1 and

hopt = A ·N
− 1
nx+4

θ , A =
(
8 · c−1

nx · (nx + 4) · (2 ·
√
π)nx

) 1
nx+4 (4.37)

However, setting hθ = hopt leads to poor performance results regarding predicted state
covariances (values of MCP-BCRLB are far lower than those of predicted state covari-
ances). This fact suggests the search for new criteria to propose hyper-parameter can-
didates. The following Epanechnikov kernel bandwidths are considered as candidates
henceforth in this chapter: hθ,1 = 0.0048, hθ,2 = 0.0046, hθ,3 = 0.0044, hθ,4 = 0.0042
and hθ,5 = 0.0040.
Step 3: Discard hyper-parameter candidates that violate MCP-BCRLBs
Assuming Nθ = 100, Fig. 4.6 shows curves of predicted state variances related to each
hyper-parameter candidate associated with hθ. It can be noted that the MCP-BCRLB
curve is violated by implementations that assume hθ,3, hθ,4 and hθ,5. In the case of hθ,3,
however, it happens during short time spans, so it might not be discarded as increasing
the hyper-parameter Nθ (related to e�ciency) might eventually change this fact.
Step 4: Choose the most appropriate hyper-parameter candidate by using
the `1-norm Only two candidates remain after Step 3): hθ,1 and hθ,2. A weighted
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Figure 4.6: Predicted state variances obtained considering each of the possible candidates for
the hyper-parameter hθ whereas assuming Nθ = 100. These curves can be compared to the
actual variances (approximated via Monte Carlo simulations) and to the fundamental limits
imposed by MCP-BCRLBs. Prognostics are executed at time kp = 4000[s].

average of the `1-norm is proposed as a notion of distance, applied element by element,
between the sequences of matrices related to MCP-BCRLB and predicted state covari-
ances, so as to be able to discriminate between candidates. However, since the system
state is a scalar, then the criteria is reduced to choose the hyper-parameter whose se-
quence of variances in future times reaches minimum `1-distance with the sequence of
MCP-BCRLBs: ∥∥Varhθ,1 −MCP-BCRLB

∥∥
1

= 4.4223 (4.38)∥∥Varhθ,2 −MCP-BCRLB
∥∥

1
= 3.8738. (4.39)

A suitable candidate should be hθ,2 = 0.0046. But what happens when relaxing e�-
ciency constraints (i.e., allowing Nθ to adopt greater values and, hence, a larger number
of particles)? The answer is not clear and may lead to a di�erent candidate selection.
Step 5: E�ciency soft-constraints relaxation In order to understand the rela-
tionship between algorithmic e�cacy (quality of results) and soft-constraints related to
algorithmic e�ciency (number of particles Nθ in this case), those soft-constraints may
be relaxed and Steps 1)-4) may be repeated once more. Indeed, if Nθ = 500 now, then
the selected hyper-parameters vector would have been (see Table 4.1):

θT =
[
Nθ hθ,2

]
=
[
500 0.0046

]
. (4.40)

Although a criteria for choosing among hyper-parameter candidates could be only based
on predicted state variance curves, to be fair, it should also include the true outcome
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hθ,1 hθ,2 hθ,3 hθ,4 hθ,5
Nθ = 100 4.4223 3.87383 2.85807 3.17877 2.84157

Nθ = 500 4.7344 3.9532 3.47073 2.96097 2.85197

Nθ = 1000 4.2415 3.6688 3.01133 3.03367 2.83677

Nθ = 5000 4.3668 3.9204 3.15963 2.74927 2.84417

Nθ = 10000 4.3299 3.6690 3.14243 2.85027 2.83867

Table 4.1: Dissimilarity between predicted state variance and MCP-BCRLB curves (`1-
distance). Candidates that were discarded in Step 3) are marked with a 7-symbol. Selected
candidates associated with minimum distances are marked with a 3-symbol.

yielded from probabilistic prognostic algorithms, which is a probability distribution for
the �rst occurrence time of an event (EoD, in this case). Therefore, another metric is
required to discriminate between such probability distributions. Again, an `1-distance
may yield useful for this purpose.

Figure 4.7: EoD time probability distributions for two choices of algorithm hyper-parameters
θT1 = [100 0.0046] and θT2 = [500 0.0044]. Prognostics are executed at time kp = 4000[s]. The
gray area shows the �ground truth" EoD time probability distribution, which is approximated
by ten million simulations of state trajectories (convergence is reached with less than one
million simulations).

As an illustrative example, Fig. 4.7 shows the output of the particle-�ltering-based
prognostic algorithm after going through Steps 1)-4) two times and selecting θT1 =
[100 0.0046] and θT2 = [500 0.0044] as hyper-parameters at di�erent e�ciency levels.
Di�erences in terms of Nθ suggest di�erent e�ciency levels that must be considered.
On the other hand, it can be noted, by taking the `1-distance between both outputs,
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that di�erences in e�ciency constraints lead to signi�cant impact regarding quality
of results when comparing to the �ground truth" EoD time probability distribution
obtained via Monte Carlo simulations. Results improve as the number of particles Nθ

gets larger.
After taking into account all of the above, the impact on algorithmic e�cacy can
be evaluated with respect to e�ciency (larger numbers of particles Nθ). A set of
hyper-parameters candidates (obtained by following the previous design methodology)
maximising e�cacy conditional to given e�ciency constraints is shown below:

{θn}5
n=1 =

{[
Nθn

hθn

]}5

n=1

(4.41)

=

{[
100

0.0046

]
,

[
500

0.0044

]
,

[
1000

0.0044

]
,

[
5000

0.0044

]
,

[
10000
0.0044

]}
. (4.42)

Figure 4.8: EoD time probability distributions for two choices of algorithm hyper-parameters
θT4 = [5000 0.0044] and θT5 = [10000 0.0044]. Prognostics are executed at time kp =
4000[s]. The gray area shows the �ground truth" EoD time probability distribution, which
is approximated by ten million simulations of state trajectories (convergence is reached with
less than one million simulations).

Improvements on prognostic results are clearly reached by increasing the number of
particles, as shown in Figs. 4.7 and 4.8. It is of special interest to characterise the left
tail of probability distributions for the �rst occurrence time of the event (EoD in this
case), because it constitutes valuable information to quantify future operational risk. It
can be noted that e�cacy does not increase signi�cantly for number of particles larger
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than Nθ = 5000. Thus, the recommendation would be to select θT4 = [5000 0.0044]
as a �nal hyper-parameter design in this speci�c case study. It o�ers the best e�cacy
performance without incurring in unnecessary computations.

Figure 4.9: Summary of `1-distances between two consecutive EoD time probability dis-
tributions obtained throughout the design methodology. The hyper-parameters vector θn
corresponds to the selection taken at the n-th iteration of the design procedure.

Fig. 4.9 shows how the `1-distances between consecutive prognostic algorithm's outputs
evolve when iterating on the design methodology. It quanti�es the analysis previously
described from observing Figs. 4.7 and 4.8.

4.4.5 Prognostic Algorithm Design: Statistical Characterisations of

Future Operating Pro�les

Although the design methodology proposed in Section 4.2 was already illustrated in Section
4.4.4, it assumed that the future operating pro�le was known, which is seldom the case.
What happens if future system inputs are unknown?

Uncertainty about future exogenous inputs can be incorporated during the prognosis stage
by embedding system inputs into an augmented state vector. Thus, the latter would be
de�ned as

x̆k =

[
xk
uk

]
. (4.43)

The augmented state vector now requires the incorporation of the future inputs dynamics
into an augmented state transition system of equations. In this particular example of EoD
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time prognosis, uk (discharge current and system input) is characterised by a random walk
model. As a consequence, the augmented state transition system of equations yields:[

xk+1

uk+1

]
︸ ︷︷ ︸
x̆k+1

=

[
xk − voc(xk) · uk · Ts

Ecrit

uk

]
︸ ︷︷ ︸

f̆(x̆k)

+

[
ωk
νk

]
︸ ︷︷ ︸
ω̆k

, (4.44)

where νk represents zero mean Gaussian distribution. Measurement equations are not re-
quired in this case since the state augmentation here would only been adopted in prognostics
(which only propagates prior information in time), and predictions are thus not corrected by
actual measurements.

According to Theorem 4.2, the elements of the recursive formula of MCP-BCRLB com-
putations would become:

S̆i
i+1 = E{−∆x̆i

x̆i
log p(x̆i+1|x̆i)} =

[
−∂2 log p(x̆k+1|x̆k)

∂xk
2 −∂2 log p(x̆k+1|x̆k)

∂xk∂uk

−∂2 log p(x̆k+1|x̆k)

∂uk∂xk
−∂2 log p(x̆k+1|x̆k)

∂uk
2

]
, (4.45)

S̆i,i+1
i+1 = E{−∆

x̆i+1

x̆i
log p(x̆i+1|x̆i)} =

[
−∂2 log p(x̆k+1|x̆k)

∂xkdxk+1
−∂2 log p(x̆k+1|x̆k)

∂xk∂uk+1

−∂2 log p(x̆k+1|x̆k)

∂uk∂xk+1
−∂2 log p(x̆k+1|x̆k)

∂uk∂uk+1

]
, (4.46)

S̆i+1
i+1 = E{−∆

x̆i+1

x̆i+1
log p(x̆i+1|x̆i)} =

[
−∂2 log p(x̆k+1|x̆k)

∂xk+1
2 −∂2 log p(x̆k+1|x̆k)

∂xk+1∂uk+1

−∂2 log p(x̆k+1|x̆k)

∂uk+1∂xk+1
−∂2 log p(x̆k+1|x̆k)

∂uk+1
2

]
. (4.47)

The �nal element to consider in MPC-BCRLB computations is a proper de�nition for the
initial condition of the recursion. It requires information about error precision with which
states and inputs are characterised at kp (time at which prognostics are executed). The �rst
one related to posterior estimates of the state vector xkp was already review in Section 4.4.4.
The second one, however, refers to ukp and its error precision is given the capacity of the
corresponding sensors, which are imperfect and associated with measurement uncertainty.
Therefore, the initial condition for the recursive computation of MCP-BCRLBs is given by:

[C̆22
kp ]−1 =

[
[C22

kp
]−1 0

0 ε−1
I

]
, (4.48)

with εI > 0. Note that the de�nition of the matrix [C̆22
kp

]−1 is expressed as an inverse and,
therefore, has to be non-singular. Proper selection of the constant εI may allow to force this
invertibility property. This positive and arbitrary small constant εI sets a lower bound for
measurement precision at time kp; i.e., Ikp .

4.5 Summary

Inspired by Bayesian Cramér-Rao Lower Bounds, this chapter has introduced new formal
performance metrics to assess and design prognostic algorithms. These establish fundamen-
tal limits to predicted state covariances, thus allowing the development of a step-by-step
methodology to tune hyper-parameters of prognostic algorithms, discarding those violating
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the aforementioned limits. Both the design methodology as well as the metric are validated
with mathematical demonstrations and empirical veri�cation in the context of a problem of
EoD time prognosis of Li-Ion batteries.

The design methodology presented in this chapter splits the hyper-parameters vector of
a prognostic algorithm, distinguishing between those hyper-parameters with greater impact
on e�ciency, and those a�ecting e�cacy. E�ciency hyper-parameters, on the one hand,
are related to computational resources required in practical implementations, whereas the
adjustment of e�cacy hyper-parameters in�uence quality of results. Generally, e�ciency
resources are limited, so algorithm design must provide the best performance conditional to
such limitation. The aforementioned design methodology is thus a structured procedure to
explore and achieve the best e�cacy given certain level of e�ciency restriction.

From the point of view of prognostic algorithm designers, it is always feasible to assume
future operating pro�les as known: the algorithm will serve well regarding ful�lling its design
purpose, though conditional to a proper characterisation of future system's inputs. However,
this characterisation of future inputs can be conceived as a separate problem.
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Chapter 5

Predictive Bayesian Cramér-Rao Bounds

of Event Occurrence Time

According to the description of the event prognosis problem presented in Chapter 1, prognos-
tic algorithms propagate uncertainty about the current state of the system into the future,
which generates a sequence of probability distributions for each of the future states of the
system (see Fig. 1.2). Chapter 4 shows that there are fundamental limits for these that allow
us to lower bound the Error Covariance Matrix (ECM) or, in some cases, the covariance with
which they are predicted. These fundamental limits are based on the concept of Bayesian
Cramér-Rao Lower Bound (BCRLB) and, as seen in Chapter 4, they can be used as criteria
to design prognostic algorithms. However, the true output of prognostic algorithms consists
of a probability distribution for the �rst occurrence time of an event of interest, as illustrated
in Fig. 1.2. It is reasonable, therefore, to think that such bounds could also exist for the
time of occurrence of events, and this is what this chapter is about. Intuitively, these would
constitute fundamental limits for the accuracy and precision with which the occurrence time
of events can be predicted.

In the context of failure prognosis (where the event of interest is the occurrence of a failure),
the scienti�c community has repeatedly promoted the validation of prognostic algorithms
using the concept of �accuracy� (i.e., hoping to provide Time-of-Failure (ToF) estimates as
close as possible to the actual value that was obtained in a single run-to-failure experiment)
or �precision� (the smaller variance of obtained ToF Probability Density Functions (PDFs),
the better). But, is this assessment theoretically correct? On the one hand, the actual ToF
in a failure data set corresponds to a single realisation of a stochastic process, so studying
the accuracy of the algorithm should be about how it approaches the expected ToF with
respect to the actual statistics of the �ground truth� theoretical ToF probability distribution.
The experimental ToF could even adopt an unlikely value distant from the expectation.
Therefore, the notion of accuracy as a metric so far does not have a valid theoretical basis.
On the other hand, is it actually possible to achieve an arbitrary high precision? Is there a
minimum achievable Mean Squared Error (MSE)?

This chapter intends to approach the previous questions by associating concepts of ac-
curacy and precision of prognostic algorithms with the �rst two moments of an underlying
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�ground truth� �rst occurrence time probability distribution. BCRLBs are derived to lower
bound the MSE (equivalent to ECM in one dimension, which is the case in τE estimation) of
any �rst occurrence time estimator. As this lower bound yields independent of the utilised
prognostic algorithm, it may help to build objective performance metrics to discriminate
poorly designed prognostic algorithms: particularly those promising higher precision than it
is possible to achieve. The main contributions of this chapter are (i) to show the existence
of such fundamental mathematical limits, and (ii) to provide insights on their potential use.

The aforementioned BCRLB is introduced below for both discrete- and continuous-time
systems in Sections 5.1.1 and 5.1.2, respectively, while the corresponding mathematical proofs
can be found in Appendix B. The same case study of End-of-Discharge (EoD) time prognosis
of Lithium-Ion (Li-Ion) batteries that is previously chosen for illustrative purposes in Chapter
4 is used here as well. A brief summary of the main results of this chapter can be found in
Section 5.3.

5.1 Mathematical Formalisations

Depending on the nature of time (discrete or continuous), the theorems that formalise
BCRLBs that lower bound the MSE associated with the estimation of the �rst occurrence
time of an event E are shown below.

5.1.1 Discrete-Time Stochastic Systems

Before attempting to introduce the BCRLB associated with the �rst occurrence time of future
events in the discrete-time case, it is convenient for pedagogical purposes to describe some
of the most important constituent elements for the theorem presented below.

Figure 5.1: Example of probability mass distribution of τE with disconnected support. The
support of τE , denoted as supp(τE) ⊆ N, is de�ned as the union of time intervals where the
probability distribution of τE is greater than zero. In this example, supp(τE) = {k1

i , k
1
i +

1, ..., k1
f} ∪ {k2

i , k
2
i + 1, ..., k2

f}.

The stochastic process denoted as {Xk}k∈N∪{0} represents a dynamic system evolving in
time. If prognostics are performed time kp, then the probability distribution associated with
the �rst occurrence time of a future event E , τE = τE(kp), is denoted as P(τE = ·). In this
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section, P(τE = ·) is referred to as the �ground truth". Although the statistics of τE are com-
pletely determined given a system dynamic model, in practice some approximations must
be done due to the intractable analytic expressions that result from the nonlinear nature
of the uncertainty propagation process. Consequently, an approximated random variable τ̂E
(estimator of τE) is computed by the prognostic algorithm, providing approximate statistical
information via P(τ̂E = ·). The mathematical expression τ̂E ⊥ τE stands for the independence
between τ̂E and τE : the prognostic algorithm is conditioned on the same system dynamics,
initial conditions and uncertainty sources that determine P(τE = ·), although the prognostic
algorithm propagates uncertainty in an independent manner (yielding a probability distri-
bution P(τ̂E = ·)). The support of τE , supp(τE), is de�ned as an union of disjoint sets, as
illustrated in Fig. 5.1.

Theorem 5.1 [Discrete-Time Bayesian Cramér-Rao Inequality] Let {Xk}k∈N∪{0} be
a stochastic process and {Ek}k∈N be an uncertain event process, respectively. According
to Theorem 3.1, the �rst time of occurrence of an event E is characterised by the random
variable τE = τE(kp), with kp ∈ N ∪ {0}. On the other hand, if τ̂E is an estimator of τE ,
τ̂E ⊥ τE , then it can be de�ned

P∗(k̂, k) = P(τ̂E = k̂, τE = k) = P(τ̂E = k̂)P(τE = k). (5.1)

De�ning recursively

k1
i := min{k ≥ 0 : P(τE = k) > 0},
kci := min{k > kc−1

i : P(τE = k) > 0,P(τE = k − 1) = 0}, c > 1

kcf := min{k > kci : P(τE = k) > 0,P(τE = k + 1) = 0} , c ≥ 1

then the support of τE , supp(τE), can be expressed as

supp(τE) =
⋃
c≥1

{kci , kci + 1, ..., kcf} (Union of disjoint sets in N).

Thus, the MSE of any estimator τ̂E is lower bounded as

EP∗{(τ̂E − τE)2} ≥ ΘE ·
(

1−
∑
c≥1

(
EP(τ̂E=·){τ̂E} − (kci − 1)

)
P(τE = kci )

)2

(5.2)

where ΘE is well-de�ned and equivalent to the Bayesian Cramér-Rao lower bound in event
prognosis:

ΘE =

 ∑
k∈supp(τE)

(
P(τE = k + 1)

P(τE = k)
− 1

)2

P(τE = k)

−1

. (5.3)

As it can be seen in Eq. (5.2), a multiplying factor a�ects ΘE . Nonetheless, this multi-
plying factor is generally almost equal to 1 provided the probability distribution of τE tends
to be �continuous� in ∂supp(τE). In other words, P(τE = kci ) ≈ 0, ∀c.
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5.1.2 Continuous-Time Stochastic Systems

Analogous to the case of discrete-time stochastic processes presented in Section 5.1.1, the
continuous-time case refers to a probability density p(τE = t), which statistically characterises
τE , the random variable denoting the �rst occurrence time of an event E .

Theorem 5.2 [Continuous-Time Bayesian Cramér-Rao Inequality] Let {Xt}t∈R+∪{0}
be a stochastic process and {Et}t∈R+ be an uncertain event process, respectively. According
to Theorem 3.2, the �rst time of occurrence of an event E is characterised by the random
variable τE = τE(tp), with tp ∈ R+ ∪ {0}. On the other hand, if τ̂E is an estimator of τE ,
τ̂E ⊥ τE , then it can be de�ned

p∗(t̂, t) = p(τ̂E = t̂, τE = t) = p(τ̂E = t̂)p(τE = t). (5.4)

If the following conditions hold:

1. p(τE = t) is absolutely continuous and d
∂t
p(τE = t) is absolutely integrable with respect

to t ∈ R+, this is ∫ ∣∣∣ ∂
dt
p(τE = t)

∣∣∣dt < +∞, (5.5)

2. and, on the other hand,
lim
t→+∞

tp(τE = t) = 0, (5.6)

then the MSE of any estimator τ̂E is lower bounded as

Ep∗{(τ̂E − τE)2} ≥ ΘE , (5.7)

where ΘE is well-de�ned and equivalent to the Bayesian Cramér-Rao lower bound in event
prognosis:

ΘE =

(
Ep(τE=·){

(
d

dt
log p(τE = t)

)2

}

)−1

. (5.8)

5.2 Illustrative Example: Battery End-of-Discharge Time

Prognosis

The theoretical results shown in this chapter are examined in the light of the same case study
and the same probabilistic prognostic algorithm considered in Chapter 4, which are presented
in Section 4.4.1 and 4.4.2, respectively.

Results and analysis

Both Chapter 4 and this chapter develop BCRLB in the context of event prognosis; the former
refers to the prediction of system states, whereas the latter refers to the �rst occurrence time
of the event of interest. They are di�erent, but still they have in common the use of BCRLBs
and, therefore, they can be analysed in a similar way.
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According to Theorem 5.1, and following the same analytical ideas exposed in Section 4.2,
it can be noted that the multiplying factor of ΘE typically adopts a value near 1. Hence, the
Bayesian Cramér-Rao Inequality can be approximated by the following expression:

EP∗{(τ̂E − τE)2} ≥ ΘE , (5.9)

where the MSE can be rewritten as:

EP∗{(τ̂E − τE)2} = VarP(τE=·){τE}+ VarP(τ̂E=·){τ̂E}+Bias(τ̂E , τE)
2. (5.10)

The value of ΘE is a lower bound for the MSE. Notwithstanding, it can be seen from Eq.
(5.10) that if τ̂E is an unbiased estimator of τE with negligible variance, then the minimum
achievable MSE corresponds exactly to the variance of τE . Indeed, it would be obtained

VarP(τE=·){τE} ≥ ΘE . (5.11)

The random variable τ̂E can be any sort of estimator given its independence from τE , but
it should be de�ned wisely so that Eq. (5.9) becomes useful, where the best scenario is
given by Eq. (5.11). An important question that arises now from Eq. (5.11) is: how far is
VarP(τE=·){τE} from the lower bound ΘE?

Figure 5.2: EoD time prognosis: variance estimations of τE along the prognostic algorithm
design described in Section 4.4.4. Each estimation assumes one of the hyper-parameters
vector shown in Eq. (4.42). These results are compared to the actual variance of τE and the
BCRLB ΘE , which are obtained via ten million Monte Carlo simulations.

Simulations results are shown in Fig. 5.2. Conditional to each of the hyper-parameters
selected along the design methodology for prognostic algorithms in Section 4.4.4, estimators
of the variance VarP(τE=·){τE} are computed and yield quite close to the actual variance of
τE as the design goes on. The most important observation is how distant is the BCRLB ΘE
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from VarP(τE=·){τE}. This fact indicates at a �rst glance that the BCRLB presented in this
chapter cannot be used as criteria for prognostic algorithm design.

Despite interpretation issues, perhaps the main constraint associated with the potential
use of ΘE , is that it is not straightforward to compute [130]. Furthermore, there is ongoing
research on how to compute BCRLBs [131] in the state estimation setting [123�125, 128].
However, this concept is completely novel in the discipline of prognostics, provided that there
was no proper theoretical basis on which this concept could have been developed before (in
terms of the semi-closed form formalisation of uncertain event prognosis presented in Chapter
3), until the results presented in [78] that were further improved in this thesis.

As it has been shown recently, ΘE for the system studied hereby represents an interesting
mathematical result, although in practice this bound and the actual variance of τE are not
necessarily tight, but the opposite. Nevertheless, it might still have potential use in objective
functions for optimisation purposes, for example, or enable the access to an information
theoretic discussion of prognostics that is part of future research e�orts.

5.3 Summary

In this chapter it has been presented new theoretical results that expand the theory of
uncertain event prognosis recently formalised in a rigorous fashion in Chapter 3, which are
Bayesian Cramér-Rao lower bounds for the MSE of estimators of the �rst occurrence time
of uncertain events in both, discrete- and continuous-time dynamic systems. The results are
proven throughout mathematical demonstrations and a practical illustration is analysed in a
case study of EoD time prognosis.

The illustrative example is constituted from a very simpli�ed model for the State-of-
Charge of batteries. Simulations show that the theoretical bounds presented hereby seem to
be far distant from the MSE levels reached by a speci�c prognostic algorithm under di�erent
hyper-parameter con�gurations. Therefore, the use of these bounds as performance metrics
in uncertain event prognosis does not seem evident at a �rst glance. These theoretical results
expand and enrich the current theory of uncertain event prognosis and may provide useful
information under certain conditions, thus enabling a wider information theoretic analysis
and discussion.
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Chapter 6

Conclusion

Event prognosis is a problem that has caught the attention of researchers from several sci-
enti�c disciplines for more than �fty years. Regarding probabilistic approaches, most of the
research e�orts have focused on �nding closed-form mathematical expressions to the proba-
bility distribution of the �rst occurrence time of events. In this regard, related literature has
been enriched with problem-speci�c solutions that have been mostly reported for continuous-
time systems, where a common factor has been to declare the occurrence of an event when
some variables �rst cross particular thresholds.

The motivation of this thesis relies on the interest in predicting catastrophic failures.
These are part of one the most important types of event to be addressed, for several reasons
ranging from ine�cient maintenance of infrastructure, to the protection of people's physical
integrity. This research �eld is motivated by a practical need focused on applications, which
has led to adopting non-rigorous heuristic approaches that have neglected the formal use of
mathematics. Moreover, most of the e�orts have been put rather to diagnose failures than
to prognose them; the scienti�c community has been in debt in this regard.

The main contribution presented in this thesis is precisely a rigorous formalisation of the
event prognosis problem, seeking to establish a consistent and general theoretical basis that
has been lacking over some decades. The detail of the contributions to the state-of-the-art
presented in this thesis is as follows:

• Before proposing any changes, it is appropriate to analyse the correctness of current
approaches. Regarding failure prognosis, some arguments are presented in this thesis
to support the idea that state-of-the-art procedures present serious theoretical incon-
sistencies, which motivates a rethinking of theoretical bases.

• Although the literature regarding event prognosis is quite rich, it is mostly limited to
continuous-time systems (being mainly motivated by physical phenomena), but also
provides solutions to very speci�c problems. The second contribution of this thesis is
the derivation and formal demonstration of new semi-closed probability measures for
the time when an event �rst occurs; for both discrete- and continuous-time systems.
The quality of being semi-closed expressions gives greater generality, since there is no
restriction regarding the characteristics of the stochastic process that models system
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dynamics.
• At least as regarding failure prognosis, the idea of �uncertain hazard zone� was con-
ceived several years ago in the scienti�c community, but it was never formalised and still
gives glimpses of the inconsistency of the probability measures used so far. The third
contribution of this thesis is the introduction of a new notion of �uncertain event�,
which is rigorously proposed and used successfully in a case study of fatigue crack
growth. This new notion formalises the idea of �uncertain hazard zone� perfectly and
in a consistent manner.
• Having formalised the event prognosis problem, it is interesting to study the existence
of fundamental limits since they can account for the best possible performance that
prognostic algorithms might achieve. In this thesis, fundamental limits are derived
based on the concept of Bayesian Cramér-Rao lower bounds to limit the maximum
accuracy and precision with which future states of a system can be predicted. These
limits are rigorously demonstrated and used in a methodology that is proposed for
the design of prognostic algorithms, which seeks to obtain the best quality of results
conditional to limited computational resources. All of this theory is later successfully
applied to the problem of End-of-Discharge time prognosis of Lithium-Ion batteries.
• Another interesting idea that emerges from the previous point is the following: What
about the maximum accuracy and precision with which the future time of occurrence
of an event can be estimated? Using once again the concept of Bayesian Cramér-
Rao lower bounds, fundamental limits are formally derived that attempt to answer
the recently asked question, but unfortunately the limits lie well below the maximum
attainable precision and do not provide the expected utility. Nonetheless, the existence
of such fundamental limits and their potential use in future research are still valuable
contributions. These could allow a greater deepening in the understanding of theoretical
aspects of event prognosis, like their potential use in objective functions for optimisation
purposes, to give an example.

The contributions presented in this doctoral thesis are mainly of a theoretical nature and
propose substantial changes to the theoretical bases with which scientists have been educated
over several years around the world. It is a stimulating paradigm shift that requires a critical
vision and that also evokes the incorporation of greater rigour in research. The paradigm
changes are always di�cult, but it is still expected to happen over the next few years. Ideas
and intuition can be discussed, but one of the advantages of mathematics is that, given
certain assumptions, there are implications that constitute absolute truths, philosophically
speaking.
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Appendix A

Demonstrations: Chapter 4

A.1 Proof of Theorem 4.1

Proof. (Theorem 4.1)

Let x̂i = x̂i(y1:kp) be an estimator of xi. Since pcpk is absolutely continuous, ∂pcpk
∂xi

is well-
de�ned, moreover, by hypothesis, it is absolutely integrable. Therefore,

∂

∂xi

∫
R(k−kp+1)nx

pcpk (xkp:k)dxkp:k =

∫
R(k−kp+1)nx

∂pcpk
∂xi

(xkp:k)dxkp:k (A.1)

=

∫
R(k−kp+1)nx−1

(pcpk (xkp:k\i, x
i))
∣∣∣+∞
−∞

dxkp:k\i (A.2)

= 0 . (A.3)

where the last identity is implied by the hypothesis of

lim
xi→+∞

xip(xkp:k) = lim
xi→−∞

xip(xkp:k) = 0

Then, multiplying by x̂i(y1:kp) it is obtained∫
x̂i(y1:kp)

∂pcpk
∂xi

(xkp:k)dxkp:k = 0. (A.4)

On the other hand, integrating by parts one gets that∫ +∞

−∞
xi∂p

cp
k

∂xi
dxi = (xipcpk )

∣∣∣+∞
−∞
−
∫ +∞

−∞
pcpk dxi . (A.5)

Due to the second condition (see Eq.(4.6)), (xipcpk )
∣∣∣+∞
−∞

= 0. Integrating with respect to

xkp:k\i (xkp:k omitting the i-th element), then∫
xi∂p

cp
k

∂xi
dxkp:k = −1 . (A.6)
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Subtracting Eq. (A.6) to Eq. (A.4) it yields∫
(x̂i(y1:kp)− xi)

∂pcpk
∂xi

dxkp:k =

∫
(x̂i(y1:kp)− xi)

∂ log pcpk
∂xi

pcpk dxkp:k = 1 . (A.7)

Similarly, for j ∈ {1, 2, ..., (k − kp + 1)nx} \ {i} it can be obtained∫
(x̂i(y1:kp)− xi)

∂ log pcpk
∂xj

pcpk dxkp:k = 0 . (A.8)

Thus, combining Eqs. (A.7)-(A.8) in a matrix form∫
(x̂kp:k(y1:kp)− xkp:k)

[
∇xkp:k

log pcpk

]
pcpk dxkp:k = I(k−kp+1)nx , (A.9)

where I(k−kp+1)nx is the (k − kp + 1)nx-dimensional identity matrix. Pre-multiplying and
post-multiplying the last equation by aT and b, a, b ∈ R(k−kp+1)nx , respectively

aT b =

∫
aT (x̂kp:k(y1:kp)− xkp:k)

[
∇xkp:k

log pcpk

]
bpcpk dxkp:k (A.10)

=

∫
aT (x̂kp:k(y1:kp)− xkp:k)

√
pcpk

[
∇xkp:k

log pcpk

]
b
√
pcpk dxkp:k . (A.11)

Applying Cauchy-Schwarz inequality

(aT b)2 ≤
(∫

aT (x̂kp:k(y1:kp)− xkp:k)(x̂kp:k(y1:kp)− xkp:k)
Tapcpk dxkp:k

)
. . . ·

(∫ [
∇xkp:k

log pcpk

]
bbT
[
∇xkp:k

log pcpk

]T
pcpk dxkp:k

)
. (A.12)

Expressing this in terms of conditional expectation, it is obtained

(aT b)2 ≤
(
aTEpcpk {x̃kp:kx̃

T
kp:k|y1:kp}a

)
. . . ·

(∫ [
∇xkp:k

log pcpk

]
bbT
[
∇xkp:k

log pcpk

]T
pcpk dxkp:k

)T
(A.13)

=
(
aTEpcpk {x̃kp:kx̃

T
kp:k|y1:kp}a

)
. . . ·

(
bTEpcpk {

[
∇xkp:k

T log pcpk

][
∇xkp:k

log pcpk

]
}b
)
. (A.14)

De�ning
Icp(xkp:k|y1:kp) , Epcpk {

[
∇xkp:k

T log pcpk

][
∇xkp:k

log pcpk

]
} (A.15)

and choosing b = I−1
cp (xkp:k|y1:kp)a, then

aT
(
Epcpk {x̃kp:kx̃

T
kp:k|y1:kp} − I−1

cp (xkp:k|y1:kp)
)
a ≥ 0 . (A.16)

Given that a ∈ R(k−kp+1)nx is arbitrary, Epcpk {x̃kp:kx̃
T
kp:k|y1:kp} − I−1

cp (xkp:k|y1:kp) must nec-
essarily be a semi-de�nite positive matrix.
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A.2 Proof of Theorem 4.2

Some previous results are needed before demonstrating Theorem 4.2, which were extracted
from [132].

Theorem A.1 De�ning the score function s(θ, z) = ∇θ log p(θ|z) and taking t(·, ·) a vectorial
function of z and θ with values in Rnθ , and assuming some regularity, the following identity
holds

Ep(θ|z){t(θ, z)s(θ, z)} = ∇θEp(θ|z){t(θ, z)} − Ep(θ|z){∇θt(θ, z)}. (A.17)

Proof.

Since
Ep(θ|z){t(θ, z)} =

∫
t(θ, z)p(θ|z)dz, (A.18)

the gradient operator can be applied at both sides and assuming that di�erentiation condi-
tions are ful�lled so that the gradient can get into the integral:

∇θEp(θ|z){t(θ, z)} = ∇θ

∫
t(θ, z)p(θ|z)dz (A.19)

=

∫
[∇θt(θ, z)p(θ|z)]dz (A.20)

=

∫
t(θ, z)[∇θp(θ|z)]dz +

∫
[∇θt(θ, z)]p(θ|z)dz (A.21)

=

∫
t(θ, z)[∇θ log p(θ|z)]p(θ|z)dz +

∫
[∇θt(θ, z)]p(θ|z)dz (A.22)

= Ep(θ|z){t(θ, z)s(θ, z)}+ Ep(θ|z){∇θt(θ, z)} (A.23)

Corollary A.1 If s(θ, z) is the score function of a di�erentiable likelihood p(θ|z), then

Ep(θ|z){s(θ, z)} = 0. (A.24)

Proof.

By Theorem A.1, and because of Eq. (A.17), for each constant vector t:

tEp(θ|z){s(θ, z)} = Ep(θ|z){ts(θ, z)} (A.25)
= ∇θEp(θ|z){t} − Ep(θ|z){∇θt} (A.26)
= 0. (A.27)

As the latter expression is valid for all t, it follows that Ep(z|θ){s(θ, z)} = 0.

Lemma A.1 If the score function s(y1:kp , xkp:k) = ∇xkp:k
log p(xk|y1:kp) is di�erentiable, then

Icp(xkp:k|y1:kp) can be expressed as

Icp(xkp:k|y1:kp) = Epcpk {−∆
xkp:k
xkp:k log pcpk }. (A.28)
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Proof.

By Theorem A.1 and Corollary A.1, substituting θ = xkp:k and z = y1:kp , then

Epcpk {t(y1:kp , xkp:k)s(y1:kp , xkp:k)}
= ∇xkp:k

Epcpk {t(y1:kp , xkp:k)} − Epcpk {∇xkp:k
t(y1:kp , xkp:k)}. (A.29)

Taking the function t(y1:kp , xkp:k) = s(y1:kp , xkp:k)
T = (∇xkp:k

log p(xk|y1:kp))
T and using

the previous result, it follows that

Epcpk {t(y1:kp , xkp:k)s(y1:kp , xkp:k)} = −Epcpk {∇xkp:k
t(y1:kp , xkp:k)} , (A.30)

and the result is straightforward.

Proof. (Theorem 4.2)

Taking into account these previous results, it is now possible to prove Theorem 4.2:

Provided

log p(xkp:k|y1:kp) = log p(xkp |y1:kp) +
k∑

i=kp+1

log p(xi|xi−1), (A.31)

and considering that Di = Si
i + Si

i+1, Icp(xkp:k|y1:kp) can be decomposed into a matrix of four
blocks in the following manner

Icp(xkp:k|y1:kp) =


Dkp S

kp,kp+1
kp+1

S
kp+1,kp
kp+1

. . . . . .

. . . Dk−1 Sk−1,k
k

Sk,k−1
k Skk

 =

[
J11
k J12

k

J21
k J22

k

]
, (A.32)

where empty spaces represent zeros. Considering the previous de�nitions, it can be veri�ed
that

Icp(xkp:k|y1:kp) =

 J11
k−1 J12

k−1

J21
k−1 J22

k−1 + Sk−1
k Sk−1,k

k

Sk,k−1
k Skk

 . (A.33)

On the other hand,

Epcpk {x̃kp:kx̃
T
kp:k|y1:kp} ≥

[
J11
k J12

k

J21
k J22

k

]−1

=

[
C11
k C12

k

C21
k C22

k

]
. (A.34)

Then, the ECM associated to any estimator of xk is lower bounded by

Epcpk {x̃kx̃
T
k |y1:kp} ≥ C22

k . (A.35)

Taking into account Eqs. (A.33)-(A.34), then the matrix inversion rule can be employed
to conclude the demonstration:

[C22
k ]−1 = J22

k − J21
k [J11

k ]−1J12
k (A.36)
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= Skk − S
k,k−1
k [J22

k−1 + Sk−1
k − J21

k−1[J11
k−1]−1J12

k−1]−1Sk−1,k
k (A.37)

= Skk − S
k,k−1
k [[C22

k−1]−1 + Sk−1
k ]−1Sk−1,k

k , (A.38)

with the initial condition [C22
kp

]−1 = S
kp
kp

= E{−∆
xkp
xkp log p(xkp |y1:kp)}.

A.3 MCP-BRCLB Initial Condition and Recursion Ele-

ments

A.3.1 Initial Condition

Below it is developed a series of equations for obtaining the initial condition for the compu-
tation of the MCP-BCRLB recursive sequence:

[C22
kp ] = E{−∆

xkp
xkp log p(xkp|y1:kp)}−1. (A.39)

Following the indications reported in [123], it can be noted that

p(xk|y1:k) =
p(xk, yk, y1:k−1)

p(yk, y1:k−1)
(A.40)

=
p(yk|xk, y1:k−1)p(xk|y1:k−1)p(y1:k−1)

p(yk|y1:k−1)p(y1:k−1)
(A.41)

=

likelihood︷ ︸︸ ︷
p(yk|xk)

prior︷ ︸︸ ︷
p(xk|y1:k−1)

p(yk|y1:k−1)︸ ︷︷ ︸
evidence

(A.42)

Thus,

− log p(xk|y1:k) = − log p(yk|xk)− log p(xk|y1:k−1) + log p(yk|y1:k−1) (A.43)

It is required to get second derivatives with respect to xk before applying expectation. Let
us proceed term by term:

• Likelihood:

− log p(yk|xk) = − log
1√

2πσν
e
− 1

2

(
yk−(voc(xk)−IkRint(xk,Ik))

)2
σ2ν (A.44)

= c0 +
1

2

(
yk − (voc(xk)− IkRint(xk, Ik))

)2

σ2
ν

(A.45)

⇒ −∂ log p(yk|xk)
∂xk

= −
(yk − (voc(xk)− IkRint(xk, Ik))

σ2
ν

)
. . . ·

(∂voc(xk)
∂xk

− Ik
∂Rint(xk, Ik)

∂xk

)
(A.46)
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⇒ −∂
2 log p(yk|xk)

∂xk
2 =

1

σ2
ν

(∂voc(xk)
∂xk

− Ik
∂Rint(xk, Ik)

∂xk

)2

. . .−
(yk − (voc(xk)− IkRint(xk, Ik))

σ2
ν

)
. . . ·

(∂2voc(xk)

∂xk
2 − Ik

∂2Rint(xk, Ik)

∂xk
2

)
(A.47)

• Prior: Firstly, note that

p(xk|y1:k−1) =

∫
Xk−1

p(xk, xk−1|y1:k−1)dxk−1 (A.48)

=

∫
Xk−1

p(xk|xk−1, y1:k−1)p(xk−1|y1:k−1)dxk−1 (A.49)

=

∫
Xk−1

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (A.50)

Then, since p(·|xk−1) is su�ciently regular,

− log p(xk|y1:k−1) = − log
(∫
Xk−1

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

)
(A.51)

⇒ −∂ log p(xk|y1:k−1)

∂xk
= − 1

p(xk|y1:k−1)

∂p(xk|y1:k−1)

∂xk
(A.52)

= −

∫
Xk−1

∂p(xk|xk−1)

∂xk
p(xk−1|y1:k−1)dxk−1∫

Xk−1
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

(A.53)

⇒ −∂
2 log p(xk|y1:k−1)

∂xk
2 = −

∫
Xk−1

∂2p(xk|xk−1)

∂xk
2 p(xk−1|y1:k−1)dxk−1∫

Xk−1
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

. . .+
( ∫
Xk−1

∂p(xk|xk−1)

∂xk
p(xk−1|y1:k−1)dxk−1∫

Xk−1
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

)2

(A.54)

On the other hand

p(xk|xk−1) =
1√

2πσω
e
− 1

2

(
xk−(xk−1−Ik−1voc(xk−1)

Ts
Ecrit

)

)2
σ2ω (A.55)

⇒ ∂p(xk|xk−1)

∂xk
=− 1√

2πσ3
ω

e
− 1

2

(
xk−(xk−1−Ik−1voc(xk−1)

Ts
Ecrit

)

)2
σ2ω

. . . ·
(
xk − (xk−1 − Ik−1voc(xk−1)

Ts
Ecrit

)
)

(A.56)
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⇒ ∂2p(xk|xk−1)

∂xk
2 =

1√
2πσ5

ω

e
− 1

2

(
xk−(xk−1−Ik−1voc(xk−1)

Ts
Ecrit

)

)2
σ2ω

. . . ·
(
xk − (xk−1 − Ik−1voc(xk−1)

Ts
Ecrit

)
)2

. . .− 1√
2πσ3

ω

e
− 1

2

(
xk−(xk−1−Ik−1voc(xk−1)

Ts
Ecrit

)

)2
σ2ω (A.57)

=
1√

2πσ3
ω

e
− 1

2

(
xk−(xk−1−Ik−1voc(xk−1)

Ts
Ecrit

)

)2
σ2ω

. . . ·
((xk − (xk−1 − Ik−1voc(xk−1) Ts

Ecrit
)
)2

σ2
ω

− 1
)

(A.58)

• Evidence: Since p(yk|y1:k−1) does not depend on xk, it follows that

⇒ ∂2 log p(yk|y1:k−1)

∂xk
2 = 0 (A.59)

Therefore, the MCP-BCRLB at the prognostic time instant kp can be approximated con-
sidering the state posterior distributions at times kp and kp − 1, which are of the form:

p(xkp |y1:kp) ≈
Np∑
i=1

w
(i)
kp
δ
x
(i)
kp

(xkp) (A.60)

p(xkp−1|y1:kp−1) ≈
Np∑
i=1

w
(i)
kp−1δx(i)kp−1

(xkp−1) (A.61)

Nonetheless, all these calculations require the following equations:

xk+1 = xk − Ikvoc(xk)
Ts
Ecrit

+ ωk (A.62)

yk = voc(xk)− IkRint(xk, Ik) + νk (A.63)

voc(xk) = vL + (v0 − vL)eγ(xk−1) + αvL(xk − 1) + (1− α)vL(e−β − e−β
√
xk) (A.64)

∂voc(xk)

∂xk
= (v0 − vL)γeγ(xk−1) + αvL + (1− α)vLe−β

√
xk

β

2
√
xk

(A.65)

∂2voc(xk)

∂xk
2 = (v0 − vL)γ2eγ(xk−1) − (1− α)vLe−β

√
xk
β

4

( β
xk

+
1

xk3/2

)
(A.66)

Rint(xk, Ik) = p0(Ik) + p1(Ik)xk + p2(Ik)x
2
k (A.67)

∂Rint(xk, Ik)

∂xk
= p1(Ik) + 2p2(Ik)xk (A.68)

∂2Rint(xk, Ik)

∂xk
2 = 2p2(Ik) (A.69)
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A.3.2 Elements of the Recursion

− log p(xk+1|xk) = − log
1√

2πσω
e
− 1

2

(
xk+1−(xk−Ikvoc(xk)

Ts
Ecrit

)

)2
σ2ω (A.70)

= c1 +
1

2

(
xk+1 − (xk − Ikvoc(xk) Ts

Ecrit
)
)2

σ2
ω

(A.71)

− ∂ log p(xk+1|xk)
∂xk

=
1

σ2
ω

(
xk+1 − xk + Ikvoc(xk)

Ts
Ecrit

)(
− 1 + Ik

dvoc(xk)

dxk

Ts
Ecrit

)
(A.72)

− ∂ log p(xk+1|xk)
∂xk+1

=
1

σ2
ω

(
xk+1 − xk + Ikvoc(xk)

Ts
Ecrit

)
(A.73)

⇒ −∂
2 log p(xk+1|xk)

∂xk
2 =

1

σ2
ω

((
− 1 + Ik

dvoc(xk)

dxk

Ts
Ecrit

)2

. . .+
(
xk+1 − xk + Ikvoc(xk)

Ts
Ecrit

)
Ik

d2voc(xk)

dxk
2

Ts
Ecrit

)
(A.74)

⇒ −∂
2 log p(xk+1|xk)
∂xk∂xk+1

=
1

σ2
ω

(
− 1 + Ik

dvoc(xk)

dxk

Ts
Ecrit

)
(A.75)

⇒ −∂
2 log p(xk+1|xk)

∂xk+1
2 =

1

σ2
ω

(A.76)
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Appendix B

Demonstrations: Chapter 5

B.1 Demonstration of Theorem 5.1

Proof. (Theorem 5.1)

For k ∈ N, let us de�ne ∆k : F(N,N) → R as ∆k(f(·, k)) = f(·, k + 1) − f(·, k), for any
f ∈ F . Then,

∆kEP∗{(τ̂E − τE)1τE=k} := EP∗{(τ̂E − τE)1τE=k+1} − EP∗{(τ̂E − τE)1τE=k} (B.1)

=
∑
k̂∈N

(k̂ − (k + 1))P∗(k̂, k + 1)− (k̂ − k)P∗(k̂, k) (B.2)

=−
∑
k̂∈N

P∗(k̂, k + 1) +
∑
k̂∈N

(k̂ − k)
(
P∗(k̂, k + 1)− P∗(k̂, k)

)
(B.3)

=− P(τE = k + 1) +
∑
k̂∈N

(k̂ − k)∆kP∗(k̂, k). (B.4)

Summing with respect to k ∈ supp(τE − 1), it is obtained∑
k∈supp(τE−1)

∆kEP∗{(τ̂E − τE)1τE=k}︸ ︷︷ ︸
(?)

= −1 +
∑

k∈supp(τE−1)

∑
k̂∈N

(k̂ − k)∆kP∗(k̂, k)

︸ ︷︷ ︸
(??)

. (B.5)

Therefore, on the one hand,

(?) =
∑
c≥1

kcf−1∑
k=kci−1

∆kEP∗{(τ̂E − τE)1τE=k} (B.6)

=
∑
c≥1

EP∗{(τ̂E − τE)1τE=k}
∣∣∣k=kcf

k=kci−1
(B.7)

=
∑
c≥1

EP(τ̂E=·){τ̂E − k}P(τE = k)
∣∣∣k=kcf

k=kci−1
(B.8)
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=
∑
c≥1

EP(τ̂E=·){τ̂E − kcf}P(τE = kcf ) (B.9)

Because P(τE = kci − 1) = 0 by de�nition of kci , ∀c ≥ 1.

On the other hand, by independence

∆kP∗(k̂, k) = P(τ̂E = k̂)
(
P(τE = k + 1)− P(τE = k)

)
, (B.10)

and de�ning

αk :=
P(τE = k + 1)

P(τE = k)
, ∀k ∈ supp(τE), (B.11)

then,

(??) =
∑

k∈supp(τE−1)

∑
k̂∈N

(k̂ − k)P(τ̂E = k̂)
(
P(τE = k + 1)− P(τE = k)

)
(B.12)

=
∑

k∈supp(τE)

∑
k̂∈N

(k̂ − k)P(τ̂E = k̂)
(
P(τE = k + 1)− P(τE = k)

)
. . .−

∑
c≥1

∑
k̂∈N

(k̂ − kcf )P(τ̂E = k̂)
(
P(τE = kcf + 1)− P(τE = kcf )

)
. . .+

∑
c≥1

∑
k̂∈N

(k̂ − (kci − 1))P(τ̂E = k̂)
(
P(τE = kci )− P(τE = kci − 1)

)
(B.13)

=
∑

k∈supp(τE)

∑
k̂∈N

(k̂ − k)P(τ̂E = k̂)P(τE = k)(αk − 1)

. . .+
∑
c≥1

∑
k̂∈N

(k̂ − kcf )P(τ̂E = k̂)P(τE = kcf ) (B.14)

. . .+
∑
c≥1

∑
k̂∈N

(k̂ − (kci − 1))P(τ̂E = k̂)P(τE = kci ) (B.15)

=
∑

k∈supp(τE)

EP(τ̂E=·){(τ̂E − k)(αk − 1)}P(τE = k)

. . .+
∑
c≥1

EP(τ̂E=·){τ̂E − kcf}P(τE = kcf )

. . .+
∑
c≥1

EP(τ̂E=·){τ̂E − (kci − 1)}P(τE = kci ). (B.16)

Considering the expressions for (?) and (??), (B.5) becomes

1 =
∑

k∈supp(τE)

EP(τ̂E=·){(τ̂E − k)(αk − 1)}P(τE = k)

. . .+
∑
c≥1

EP(τ̂E=·){τ̂E − (kci − 1)}P(τE = kci ). (B.17)
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Applying the Cauchy-Schwarz inequality, ∑
k∈supp(τE)

EP(τ̂E=·){(τ̂E − k)(αk − 1)}P(τE = k)

2

≤

 ∑
k∈supp(τE)

EP(τ̂E=·){(τ̂E − k)2}P(τE = k)


. . . ·

 ∑
k∈supp(τE)

EP(τ̂E=·){(αk − 1)2}P(τE = k)

 (B.18)

= EP∗{(τ̂E − τE)2} ·

 ∑
k∈supp(τE)

(αk − 1)2P(τE = k)

 . (B.19)

The Bayesian Cramér-Rao lower bound de�ned as

ΘE =

 ∑
k∈supp(τE)

(αk − 1)2P(τE = k)

−1

(B.20)

=

( ∑
k∈supp(τE)

(
P(τE = k + 1)

P(τE = k)
− 1

)2

P(τE = k)

)−1

(B.21)

is well-de�ned. Thus, Eqs. (B.18)-(B.19) lead to

EP∗{(τ̂E − τE)2} ≥ ΘE ·

(
1−

∑
c≥1

EP(τ̂E=·){τ̂E − (kci − 1)}P(τE = kci )

)2

. (B.22)

B.2 Demonstration of Theorem 5.2

Proof. (Theorem 5.2)

Let τ̂E be an estimator of τE . Since p(τE = t) is absolutely continuous, d
∂t
p(τE = t) is

well-de�ned, moreover, by hypothesis, it is absolutely integrable. Therefore, we have the
following identity

d

dt
(Ep∗{(τ̂E − τE)1τE=t}) :=

d

dt

(∫
R+

(t̂− t)p∗(t̂, t)dt̂

)
(B.23)

=

∫
R+

(
−p∗(t̂, t) + (t̂− t) d

dt
p∗(t̂, t)

)
dt̂ (B.24)

= −
∫
R+

p∗(t̂, t)dt̂+

∫
R+

(t̂− t) d

dt
p∗(t̂, t)dt̂ (B.25)
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= −p(τE = t) +

∫
R+

(t̂− t) d

dt
p∗(t̂, t)dt̂ (B.26)

Integrating with respect to t ∈ R+, it is obtained∫
R+

d

dt
Ep∗{(τ̂E − τE)1τE=t}dt︸ ︷︷ ︸

(?)

= −1 +

∫
R+

∫
R+

(t̂− t) d

dt
p∗(t̂, t)dt̂dt︸ ︷︷ ︸

(??)

. (B.27)

Therefore, on the one hand,

(?) =

∫
R+

d

dt

(
Ep(τ̂E=·){τ̂E − t}p(τE = t)

)
dt (B.28)

= lim
t→+∞

Ep(τ̂E=·){τ̂E − t}p(τE = t)− Ep(τ̂E=·){τ̂E}����
��:0

p(τE = 0) (B.29)

= 0, (B.30)

because lim
t→+∞

tp(τE = t) = 0. On the other hand, by independence

d

dt
p∗(t̂, t) = p(τ̂E = t̂)

d

dt
p(τE = t). (B.31)

Thus,

(??) =

∫
R+

∫
R+

(t̂− t)p(τ̂E = t̂)
d

dt
p(τE = t)dt̂dt (B.32)

=

∫
R+

∫
R+

(t̂− t)p(τ̂E = t̂)
d

dt
log p(τE = t)p(τE = t)dt̂dt (B.33)

= Ep∗{(τ̂E − τE)
d

dt
log p(τE = t)}. (B.34)

Considering the expressions for (?) and (??), (B.27) becomes

Ep∗{(τ̂E − τE)
d

dt
log p(τE = t)} = 1. (B.35)

Applying the Cauchy-Schwarz inequality,(
Ep∗{(τ̂E − τE)

d

dt
log p(τE = t)}

)2

≤ Ep∗{(τ̂E − τE)2} · Ep∗{
(

d

dt
log p(τE = t)

)2

}. (B.36)

The Bayesian Cramér-Rao lower bound de�ned as

ΘE =

(
Ep(τE=·){

(
d

dt
log p(τE = t)

)2

}

)−1

(B.37)

is well-de�ned. Thus, Eq. (B.36) leads to

Ep∗{(τ̂E − τE)2} ≥ ΘE . (B.38)
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