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Abstract
We present an alternating forward–backward splitting method for solving linearly
constrained structured optimization problems. The algorithm takes advantage of the
separable structure and possibly asymmetric regularity properties of the objective
functions involved.We also describe some applications to the study of non-Newtonian
fluids and image reconstruction problems. We conclude with a numerical example,
and its comparison with Condat’s algorithm. An acceleration heuristic is also briefly
outlined.
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1 Introduction

The gradient method [19] and the proximal point algorithm [45,54] are cornerstones
in convex programming. Qualitatively, they have analogous asymptotic properties but
have noticeable differences in terms of their convergence analysis, implementation,
stability and several quantitative aspects, which result in distinct potential application
frameworks. Gradient-type methods are defined by an explicit formula, and it is fairly
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straightforward to implement line-search routines to determine efficient step sizes.
The price to pay is that, typically, convergence can only be proved under restrictive
smoothness assumptions. In particular, the step sizes are limited by a function of the
Lipschitz constant of the gradient, and it is not surprising that small steps may lead
to slower convergence. In turn, proximal-type methods enjoy a stable evolution and
tend to converge under much weaker assumptions, which makes them suitable for
nonsmooth functions. In general, their implementation relies on solving an auxiliary
subproblem at each iteration. However, the latter can be solved explicitly in several
relevant and frequent situations. Over the last decades, gradient and proximal iterations
have been refined, improved and combined in order to produce sophisticated first-
order methods, which are both versatile and efficient. A sufficiently thorough but
very accessible introduction to gradient and proximal algorithms can be found in [51,
Chapter 6] (see also [28,50] for a more detailed discussion).

A number of convex programming problems arising, for instance, in signal/image
processing, optimal control, statistics and mechanics, involves the minimization of
functions with a smooth + nonsmooth structure. In this scenario, a reasonable strategy
is to apply a proximal-gradient splitting paradigm to take advantage of the particular
properties of each component, using gradient-type iterations for the smooth part, and
proximal-type iterations for the nonsmooth one. The projected gradient method (see,
for instance [38,44]) and the iterative shrinkage thresholding algorithm (ISTA) (see
[30,32]) are well-known examples.

Another frequent situation is the presence of an additive structure in a product space:
the objective function can be expressed as the sum of two (or more) functions, each
depending on different sets of variables, all of which are coupled by some relation.
This leads to a natural componentwise splitting, where minimization with respect to
each set of variables can be treated independently (either in series or in parallel). The
coupling is interpreted as a constraint, which can be dealt with by means of projection,
penalization or Lagrange multiplier techniques, among others. To the best of our
knowledge, most existing algorithms treat the different summands in the objective
function in a symmetric manner. For instance, if no differentiability is assumed, one
may be inclined to using a proximal approach for each set of variables (see [4,22,25,
27,35], to cite a few). With this strategy possible differences in terms of regularity
are not taken into account and, therefore, not exploited. A framework allowing to take
advantage of possible dissymmetrieswill be useful in order to design efficient, versatile
and easily implementable algorithms.Afirst step in this directionwas given in [29], but
the decissive leap was given by in [31] (Condat’s algorithm, in the sequel), and further
developed in [60] and also [15]. Their algorithm and its convergence analysis are in
the line of (relaxed) fixed point iterations, following the Krasnoselskii–Mann scheme.
This work provides an alternative approach, which is intrinsically different. We focus
on the case of two functions whose variables are coupled by an affine constraint, for
which we use a penalization procedure, as in [9] (see also [5,6,16]). Our method is
inspired by the (purely proximal) method studied in [4], which is closely connected
to the ones considered in [1,2,8,10], but in a time-varying context. Our method shares
some features with the one in [31], namely: (1) exploits the fact that the components
involved in the objective function may be of a different nature; (2) uses the structured
character of the problem, reducing the size and complexity of the sub-problem solved
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at each iteration; (3) avoids unnecessary operator inversions; and (4) combines gradient
and proximal iterations with a penalization scheme in a simple way. An alternative
approach using Lagrange multipliers is given in [46]. It is important to say that, in its
full generality, the computation of the proximal subiteration requires an inner loop,
for which some approximation techniques are available (see [26,33,36,41,42,52,56]).

This paper is organized as follows: in Sect. 2, we describe the precise framework
and the proposed algorithm, and state themain theoretical result. Section 3 contains the
convergence analysis, showing that the sequences generated by the algorithm converge
to solutions of the problem.Moreover, in spite of the penalization scheme involved, we
are able to obtain aworst-case convergence rate in terms of aBregman-type divergence.
In Sect. 4, we illustrate the application of our method. First, we briefly comment some
examples in the study of non-Newtonian fluids and image/signal processing (readers
interested in dynamical games are referred to [2]). Next, we provide a numerical
implementation, along with a comparison with the algorithm in [31], in a medium size
image restoration problem, which is a basic, yet quite informative, example. Although
there are cases where the presence of parameters tending to∞might lead to numerical
instabilities, we did not witness this in our tests. We finish by outlining a possible
acceleration heuristic, whose convergence proof can be a subject for future research.

2 Algorithm, hypotheses andmain result

Let X and Y and Z be real Hilbert spaces. We are interested in the numerical approx-
imation of solutions for the following problem:

Find (x∗, y∗) ∈ Argmin{ f (x) + g(y) : (x, y) ∈ C}, (P)

where f : X → R is a smooth convex function; g : Y → R ∪ {+∞} is proper,
lower-semicontinuous and convex; and the set C ⊂ X × Y is defined by

C = {(x, y) ∈ X × Y : Ax + By = c} ,

for bounded linear operators A : X → Z and B : Y → Z , and a vector c ∈ Z .
Themethoddescribed here is a proximal-gradient algorithmwith two-step iterations

based on the alternating minimization of the function

Lλ(x, y) = f (x) + g(y) + γ

2λ
‖Ax + By − c‖2

with respect to the x and y variables at each iteration: Given (xn, yn), start by per-
forming a gradient iteration with respect to the x variable using the functionLλn along
with λn as a step size. This is simply

xn+1 = xn − λn∇ f (xn) − γ A∗(Axn + Byn − c) (1)

or, equivalently,
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xn+1 − xn + γ A∗(Axn + Byn − c) = −λn∇ f (xn).

Next, the idea is to apply a proximal iteration with respect to the y variable, namely

yn+1 = Argminy∈Y
{
Lλn (xn+1, y) + 1

2λn
‖y − yn‖2

}
, (2)

whose optimality condition can be written as

yn+1 − yn + γ B∗(Axn+1 + Byn+1 − c) ∈ −λn∂g(yn+1).

However, although the auxiliary subproblem given by (2) is strongly convex, it must be
solved inexactly in practice. Computational errors in this iteration can take a number
of forms: approximate minimization in (2), relaxed optimality condition based on
the approximate subdifferential, or proximity to the exact solution. Here, we use the
second option, which is intermediate in terms of computational complexity, but has
sufficiently strong geometric properties. More precisely, we require yn+1 to satisfy

yn+1 − yn + γ B∗(Axn+1 + Byn+1 − c) ∈ −λn∂ηn g(yn+1), (3)

where

∂ηg(ȳ) = {υ ∈ Y : g(y) ≥ g(ȳ) + 〈υ, y − ȳ〉 − η for all y ∈ Y } for η ≥ 0.

Problem (P) can also be solved, for instance, bymeans ofDouglas–Rachford [35] or
forward-Douglas–Rachford methods [14] (see also [31]). Their implementation relies
on the computation of the pseudo-inverses of the operators involved, a procedure that
may be costly for large problems. Our method does not involve operator inversion,
unless the proximal step were to be computed exactly, which would result in a standard
proximal iterationwith respect to an auxiliarymetric involving B. It is purely primal, so
the dimension of the problem is not increased, as it is in dual, primal-dual or Lagrangian
methods. Although it includes a penalization scheme, the worst-case convergence
rate is consistent with that of standard first-order methods (see Sect. 3.1). A simple
numerical experiment, reported inSect. 4, suggests that it admits an accelerated variant,
but we shall not address the theoretical aspects here.

The main convergence result relies on the following set of assumptions:
Hypothesis (H):

(H1) The function f : X → R is convex, differentiable and its gradient ∇ f is
Lipschitz-continuous with constant L . The function g : Y → R ∪ {+∞} is
proper, lower-semicontinuous and convex. The operators A : X → Z and
B : Y → Z are linear and continuous.

(H2) The solution set S is nonempty, and (x∗, y∗) ∈ S if, and only if, there exists
z∗ ∈ Z such that (x∗, y∗, z∗) satisfies
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⎧⎨
⎩

−A∗z∗ = ∇ f (x∗)
−B∗z∗ ∈ ∂g(y∗)
c = Ax∗ + By∗.

(4)

(H3) The step sizes (λn) form a nonincreasing sequence in �2 such that
supn∈N

( 1
λn+1

− 1
λn

)
< +∞.

(H4) The relaxation parameter verifies γ ∈
(
0, 2

‖A‖2
)
.

(H5) The error sequence (ηn) belongs to �1.

In (H1), a line searchmethod could be used as an alternative if the Lipschitz constant
is not available, but we shall not follow this line of research here. A sufficient condition
for (H2) is that R(A) + R(B) be closed in Z , in view of the Moreau–Rockafellar the-
orem [47,53]. It can also be obtained using the Attouch–Brézis qualification condition
[3]. Hypothesis (H3) implies the sequence (λn) is not in �1 and, therefore, it does not
converge to zero too fast. It holds for λn = n−q with 1/2 < q ≤ 1. In (H4), as one
should expect, the relaxation parameter does not depend on B, which enters in the
proximal subiteration.

Our main theoretical result is the following:

Theorem 1 Let hypothesis (H) hold. Every sequence (xn, yn) satisfying (1) and (3)
converges weakly, as n → +∞, to a point in S.

3 Convergence analysis and rate

Fix (x∗, y∗, z∗) satisfying (4) and set

⎧⎪⎨
⎪⎩

Dn = ‖xn − x∗‖2 + ‖yn−1 − y∗‖2
αn = ‖B‖2 |λn−1 − λn|
εn =

[
λ2n
γ

+ |λn−1 − λn|
]
‖z∗‖2 + 2λn−1ηn−1.

(5)

If (λn) is a nonincreasing sequence in �2 then (αn) and (εn) belong to �1.

Lemma 2 Let hypothesis (H1) hold and let (x∗, y∗, z∗) satisfy (4). We have

Dn+1 − Dn + γ ‖Axn + Byn − c‖2 ≤ ‖xn+1 − xn‖2 + αn‖yn − y∗‖2 + εn . (6)

Proof From the monotonicity of ∇ f we have

〈xn+1 − xn + γ A∗(Axn + Byn − c) − λn A
∗z∗, xn − x∗〉 ≤ 0.

This is equivalent to

‖xn+1 − x∗‖2 − ‖xn − x∗‖2 − ‖xn+1 − xn‖2 + 2γ 〈Axn + Byn − c, A(xn − x∗)〉
≤ 2λn〈z∗, A(xn − x∗)〉. (7)
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In a similar fashion, the quasi-monotonicity of ∂ηn g gives

‖yn − y∗‖2 − ‖yn−1 − y∗‖2 + ‖yn − yn−1‖2 + 2γ 〈Axn + Byn − c, B(yn − y∗)〉
≤ 2λn−1〈z∗, B(yn − y∗)〉 + 4λn−1ηn−1. (8)

Keeping in mind that Ax∗ + By∗ = c, add inequalities (8) and (7) to deduce that

‖xn+1 − x∗‖2 − ‖xn − x∗‖2 + ‖yn − y∗‖2 − ‖yn−1 − y∗‖2
+2γ ‖Axn + Byn − c‖2 − ‖xn+1 − xn‖2

≤ 2λn〈z∗, A(xn − x∗)〉 + 2λn−1〈z∗, B(yn − y∗)〉 + 4λn−1ηn−1. (9)

But

2λn〈z∗, A(xn − x∗)〉 + 2λn−1〈z∗, B(yn − y∗)〉
= 2λn〈z∗, Axn + Byn − c〉 + 2(λn−1 − λn)〈z∗, B(yn − y∗)〉
≤

[
λ2n

γ
+ |λn−1 − λn|

]
‖z∗‖2 + γ ‖Axn + Byn − c‖2

+‖B‖2 |λn−1 − λn| ‖yn − y∗‖2. (10)

Inequality (6) is obtained by combining (9) and (10) and using the definitions
in (5). ��

Now set

En = f (xn) + g(yn) + γ

2λn
‖Axn + Byn − c‖2

and

Ln = L + γ ‖A‖2
λn

.

Lemma 3 Let hypothesis (H1) hold. We have

En+1 − En + 1

λn
‖yn+1 − yn‖2 ≤

[
Ln

2
− 1

λn

]
‖xn+1 − xn‖2

+γ

2

[
1

λn+1
− 1

λn

]
‖Axn+1 + Byn+1 − c‖2 + ηn . (11)

Proof Since ∇ f is Lipschitz-continuous with constant L , we have (see [51,
Lemma 1.30])

f (z) ≤ f (x) + 〈∇ f (x), z − x〉 + L

2
‖z − x‖2
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for all x, z ∈ X . Using this inequality with z = xn+1 and x = xn we deduce that

f (xn+1) − f (xn)

≤ 1

λn
〈xn+1 − xn + γ A∗(Axn + Byn − c), xn − xn+1〉 + L

2
‖xn+1 − xn‖2

=
[
L

2
− 1

λn

]
‖xn+1 − xn‖2 + γ

λn
〈Axn + Byn − c, A(xn − xn+1)〉. (12)

But

2〈Axn + Byn − c, A(xn − xn+1)〉
= ‖Axn + Byn − c‖2 + ‖A(xn+1 − xn)‖2 − ‖Axn+1 + Byn − c‖2
≤ ‖Axn + Byn − c‖2 + ‖A‖2‖xn+1 − xn‖2 − ‖Axn+1 + Byn − c‖2 (13)

and so

f (xn+1) − f (xn) ≤
[
L

2
+ γ ‖A‖2

2λn
− 1

λn

]
‖xn+1 − xn‖2

+ γ

2λn
‖Axn + Byn − c‖2 − γ

2λn
‖Axn+1 + Byn − c‖2. (14)

On the other hand, the subdifferential inequality for g gives

g(yn) ≥ g(yn+1) + 1

λn
〈yn+1 − yn − γ B∗(Axn+1 + Byn+1 − c), yn+1 − yn〉 − ηn,

which we rewrite as

g(yn+1) − g(yn) + 1

λn
‖yn+1 − yn‖2

≤ γ

λn
〈Axn+1 + Byn+1 − c, B(yn − yn+1)〉 + ηn . (15)

Since

2〈Axn+1 + Byn+1 − c, B(yn − yn+1)〉
= ‖Axn+1 + Byn − c‖2 − ‖Axn+1 + Byn+1 − c‖2 − ‖B(yn+1 − yn)‖2
≤ ‖Axn+1 + Byn − c‖2 − ‖Axn+1 + Byn+1 − c‖2 (16)

we obtain

g(yn+1) − g(yn) + 1

λn
‖yn+1 − yn‖2

≤ γ

2λn
‖Axn+1 + Byn − c‖2 − γ

2λn
‖Axn+1 + Byn+1 − c‖2 + ηn . (17)

Finally add (14) and (17) to obtain (11). ��

123



1078 C. Molinari et al.

Remark 4 For (11), it suffices that ∇ f be L-Lipschitz-continuous on the segment
joining xn and xn+1.

Corollary 5 Let hypothesis (H1) hold and let K > 0. If
[
Ln
2 − 1

λn

]
≤ −K and[

1
λn+1

− 1
λn

]
≤ K, then

En+1− En + 1

λn
‖yn+1− yn‖2+K‖xn+1− xn‖2 ≤ γ K

2
‖Axn+1+ Byn+1−c‖2+ηn .

(18)

Define

Pn = Dn + 2

K
[ f (xn) + g(yn)] + γ

[
1

Kλn
− 1

]
‖Axn + Byn − c‖2

+ 2

Kλn−1
‖yn − yn−1‖2.

Multiplying (18) by 2/K and adding the result to (6) we obtain

Corollary 6 Let hypotheses (H1) hold and let K > 0. If
[
Ln
2 − 1

λn

]
≤ −K and[

1
λn+1

− 1
λn

]
≤ K, then

Pn+1 − Pn + ‖xn+1 − xn‖2 ≤ αn‖yn − y∗‖2 + εn + 2ηn
K

. (19)

Notice that the condition
[
Ln
2 − 1

λn

]
≤ −K can be rewritten as λn ≤ 2−γ ‖A‖2

L+2K .

Then, the existence of K > 0 satisfying the hypotheses of Corollaries 5 and 6 is
implied by (H1), (H3) and (H4).

The following result concerning real sequenceswill be useful to prove Proposition 8
below.

Lemma 7 Let (pn), (rn), (an) and (en) be nonnegative sequences such that (an) and
(en) belong to �1, and

(1 − an)pn+1 − pn + rn ≤ en (20)

for all sufficiently large n. Then (pn) is convergent and (rn) belongs to �1.

Proof Inequality (20) can be written as

pn+1 − pn + rn ≤ en + an pn+1,

so it suffices to show that (pn) is bounded from above. But, 1 − an > 0 for large n,
because limn→∞ an = 0. We have

pn+1 ≤ 1

1 − an
[pn + en] .
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By induction, and observing that (1 − an)−1 ≤ ∏n
k=1(1 − ak)−1, we obtain

pn+1 ≤
[

n∏
k=1

(1 − ak)
−1

] [
p1 +

n∑
k=1

ek

]
.

Since (an) and (en) belong to �1, the right-hand side is bounded, and so is (pn) . ��
We are now in a position to establish the asymptotic behavior, as n → ∞, of the

auxiliary sequences (Dn), (En) and (Pn), namely:

Proposition 8 Let hypotheses (H1), (H3) and (H4) hold, and let (x∗, y∗, z∗) satisfy
(4). Then

(i) The sequence (Pn) is convergent and
∑ ‖xn+1 − xn‖2 < +∞.

(ii) The sequence (Dn) is convergent and
∑ ‖Axn + Byn − c‖2 < +∞.

(iii) The sequence (xn, yn) is bounded and every weak cluster point lies in C.
(iv) The sequence (En) is convergent and

∑ 1
λn

‖yn − yn−1‖2 < +∞.

Proof Let K > 0 such that
[

1
λn+1

− 1
λn

]
≤ K for all n ∈ N. Since limn→∞ λn = 0,

for all sufficiently large n we have
[
Ln
2 − 1

λn

]
≤ −K . Hence, inequalities (18) and

(19) hold for all sufficiently large n.
First observe that 2

K f (xn+1)+‖xn+1 − x∗‖2 is bounded from below by a constant,
say P1. In turn, since

1

4
‖yn+1 − y∗‖2 ≤ 1

2
‖yn+1 − yn‖2 + 1

2
‖yn − x∗‖2

and limn→∞ λn = 0, eventually λn ≤ 4
K and we have

2

K
g(yn+1) + ‖yn − x∗‖2 + 2

Kλn
‖yn+1 − yn‖2

≥ 2

K
g(yn+1) + 1

2
‖yn − x∗‖2 + 1

2
‖yn+1 − yn‖2 + 1

2
‖yn − x∗‖2

≥ 2

K
g(yn+1) + 1

4
‖yn+1 − x∗‖2 + 1

2
‖yn − x∗‖2.

The sum of the first two terms is bounded from below by a constant P2. Finally,

once λn is sufficiently small, we have γ
[

1
Kλn

− 1
]
‖Axn + Byn − c‖2 ≥ 0. Writing

P = P1 + P2 we see that

Pn+1 ≥ P + 1

2
‖yn − x∗‖2 ≥ P

for all sufficiently large n. As a consequence, inequality (19) gives

(1 − 2αn)(Pn+1 − P) − (Pn − P) + ‖xn+1 − xn‖2 ≤ εn + 2ηn
K

.
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To prove (i), it suffices to use Lemma 7 with pn = Pn − P , rn = ‖xn+1 − xn‖2,
an = 2αn and en = εn + 2ηn

K .
For (ii), observe that inequality (6) implies

(1 − αn)Dn+1 − Dn + γ ‖Axn + Byn − c‖2 ≤ ‖xn+1 − xn‖2 + εn .

Use Lemma 7 with pn = Dn , rn = γ ‖Axn + Byn − c‖2, an = αn and en =
‖xn+1 − xn‖2 + εn .

Part (iii) follows from (ii) along with the weak lower-semicontinuity of the function
(x, y) �→ ‖Ax + By − c‖2.

Finally, in order to verify (iv), notice that inequality (18) gives

En+1 − En + 1

λn
‖yn+1 − yn‖2 ≤ γ K

2
‖Axn+1 + Byn+1 − c‖2 + ηn .

Apply Lemma 7with pn = En , rn = 1
λn

‖yn+1− yn‖2, an = 0 and en = γ K
2 ‖Axn+1+

Byn+1 − c‖2 + ηn . ��

Proposition 9 Let hypotheses (H1), (H3) and (H4) hold, and let (x∗, y∗, z∗) satisfy
(4). Then

∞∑
n=1

λn
[
En − f (x∗) − g(y∗)

]
< ∞ (possibly − ∞). (21)

Proof The subdifferential inequality for f gives

f (x∗) ≥ f (xn) + 〈xn+1 − xn + γ A∗(Axn + Byn − c), xn − x〉.

Therefore,

λn
[
f (xn) − f (x∗)

] ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + ‖xn+1 − xn‖2
−γ 〈Axn + Byn − c, A(xn − x∗)〉.

In a similar fashion, the subdifferential inequality for g produces

λn−1
[
g(yn) − g(y∗)

] ≤ ‖yn−1 − y∗‖2 − ‖yn − y∗‖2 − ‖yn − yn−1‖2
−γ 〈Axn + Byn − c, B(yn − y∗)〉 + λn−1ηn−1.

Adding these two inequalities, recalling the definition of En , using the fact that Ax∗ +
By∗ = c, and neglecting the nonpositive terms on the right-hand side, we deduce that

λn
[
En − f (x∗) − g(y∗)

] ≤ Dn − Dn+1 + ‖xn+1 − xn‖2
+(λn−1 − λn)(g(y

∗) − g(yn)) + λn−1ηn−1.
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But (yn) is bounded because (Dn) converges. Since g is convex, (g(yn)) must be
bounded from below by some μ ∈ R. The fact that (λn) is nonincreasing implies

λn
[
En − f (x∗) − g(y∗)

] ≤ Dn − Dn+1 + ‖xn+1 − xn‖2
+(λn−1 − λn)(g(y

∗) − μ) + λn−1ηn−1. (22)

The summability of the terms on the right-hand side immediately gives the result. ��
Proof of Theorem 1 Assume (xkn , ykn ) converges weakly to (x∞, y∞). From part (iii)
of Proposition 8 we have (x∞, y∞) ∈ C . The weak lower-semicontinuity of f and g,
along with Proposition 9, together imply

f (x∞) + g(x∞) ≤ lim
n→∞ En ≤ f (x) + g(y)

for all (x, y) ∈ C . That is, weak cluster points belong to S. Since the sequence (Dn)

is convergent by part (ii) of Proposition 8, the result follows by Opial’s Lemma [49]
(as stated, for instance, in [51, Lemma 5.2]). ��
Remark 10 In Theorem 1, the Lipschitz continuity assumption on ∇ f is used only
along the polygonal line Q connecting the iterates.

3.1 Convergence rate

Let (x∗, y∗, z∗) be a primal-dual solution and consider the following Bregman-type
divergence:

dz∗(x, y) = [ f (x) + g(y)] − [
f (x∗) + g(y∗)

] + 〈z∗, Ax + By − c〉.

From the optimality conditions in (4), we know that dz∗(x, y) ≥ 0 for every (x, y) ∈
X×Y .Moreover, a feasible point (x, y) is a (primal) solution if and only if dz∗(x, y) =
0. So the quantity can be interpreted as a measure for the quality of the approximate
solution (x, y).Wehave the following result about the convergence rate for the quantity
dz∗(xn, yn):

Theorem 11 Given a primal-dual solution (x∗, y∗, z∗), set

C =
∞∑
k=1

λk
[
Ek − f (x∗) − g(y∗)

] + ‖z∗‖2
2γ

+∞∑
k=1

λ2k < +∞1 and σn =
n∑

k=1

λk .

For each n ≥ 1, the average value of dz∗ along the first n iterations satisfies

1

σn

n∑
k=1

λkdz∗(xk, yk) ≤ C

σn
.

1 This quantity is finite, in view of Proposition 9, and the fact that (λn) ∈ �2 [an upper bound can be
obtained from (22)].
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In particular, the best and averaged iterates satisfy, respectively,

min
1≤k≤n

dz∗(xk, yk) ≤ C

σn
and dz∗

(
1

σn

n∑
k=1

λk(xk, yk)

)
≤ C

σn
.

Proof First, fix k ∈ N. From the definition of Ek , to we have

dz∗(xk, yk) ≤ [ f (xk) + g(yk)] − [
f (x∗) + g(y∗)

] + λk

2γ
‖z∗‖2

+ γ

2λk
‖Axk + Bxk − c‖2

= Ek − f (x∗) − g(y∗) + λk

2γ
‖z∗‖2.

Multiply by λk , and take the sum over k = 1, . . . , n, to deduce that

n∑
k=1

λkdz∗(xk, yk) ≤
n∑

k=1

λk

[
Ek − f (x∗) − g(y∗) + λk

2γ
‖z∗‖2

]
= C .

The rest of the proof is straightforward. ��

4 Illustration

In this section, we specialize and test the behavior of the proposed method. As exam-
ples, we describe briefly a variational problem used in the analysis of non-Newtonian
fluids and a classical family of models used in image/signal processing. We perform
a numerical simulation on a medium-size problem, and compare the outcome with a
well-known algorithm with similar features, namely Condat’s method [31]. We fin-
ish by outlining a possible acceleration heuristic, whose convergence proof can be a
subject for future research.

4.1 Two simple keynote examples

4.1.1 TV-minimization and the p-Laplace equation

Let � be a bounded domain in Rd , and take p ≥ 1 and r > 0. In the study of
non-Newtonian fluids, one encounters the following variational problem:

min
u∈W 1,p

0 (�)

{
1

p

∫
�

|∇u|p dx −
∫

�

hu dx + r
∫

�

|∇u| dx
}

(23)

(see [40] and the references therein), where a total variation regularization term
appears. A standard numerical approach to this problem is the following: given a
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suitable approximation matrix D ∈ RM×N for the gradient (typically, M = N − 1 or
less), the corresponding discrete version is given by

min
x∈RN

{
1

p
‖Dx‖p

p − 〈h, x〉 + r‖y‖1 : Dx = y

}
,

which is Problem (P) with f (x) = 1
p‖Dx‖p

p − 〈h, x〉, g(y) = r‖y‖1, A = D and
B = −I . If p ≥ 2, the function f has aLipschitz-continuous gradient on each bounded
subset of RN . If p ∈ [1, 2), the same is true provided one withdraws a subset of the
form {x ∈ RN : ‖Dx‖p < ε} (roughly, a neighborhood of the constant functions).
The closedness condition for R(A) + R(B) is clearly satisfied, and the algorithm is
reduced to

xn+1 = xn − λn‖Dxn‖p−2D∗Dxn − γ D∗(Dxn − yn)

yk+1 = Argminy∈RN

{
‖y‖1 + 1 + γ

2rλn

∥∥∥∥y − yn + γ Dxn+1

1 + γ

∥∥∥∥
2

2

}
,

which is fully explicit, in terms of the soft thresholding operator.

4.1.2 �1 + �2 minimization

Consider the problem

min
x∈RN

{
1

2
‖Kx − h‖22 + r‖Qx‖1

}
, (24)

where r > 0, h ∈ RM1 , K ∈ RM1×N and Q ∈ RM2×N . In image/signal process-
ing, the first term represents the fidelity of the observation Kx of the variable x to
a given measurement h. The second term induces sparsity in a representation Qx
of x . If M2 = N and Q is the identity matrix, this is a sparse linear regression,
an unconstrained version of LASSO. In turn, if Q is a (full) wavelet transform, it
induces sparsity in a given wavelet basis. In both cases, Q is invertible, and stan-
dard proximal-gradient algorithms can be applied. However, Q can also account for a
partial wavelet transform (typically with M2 � N ), which enforces a minimal level
of compression in the given basis. Alternatively, Qx can represent x in a redundant
dictionary (see [17] and the references therein), where M2 > N . On the other hand,
if, as in the previous paragraph, Q is a discrete approximation of the gradient, we
obtain the ROFmodel, introduced by Rudin et al. [55]. The total variation term admits
solutions with high variations, only if these are also highly localized in space. In
the last three cases, Q is not invertible, and the term r‖Qx‖1 poses computational
or implementation difficulties. A standard trick is to introduce an auxiliary variable
y = Qx ∈ RM2 . As before, the proposed method is fully explicit when applied to this
formulation.
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4.2 Benchmark: Condat’s algorithm

Condat’s algorithm [31] (further extended by Vu [60]) is among the few methods
combining the following two features, which are the core of the motivation for our
research: (1) it exploits the fact that the components involved in the objective function
may be of a different nature in terms of differentiability; and (2) uses the structured
character of the problem, reducing the size and complexity of the sub-problem solved
at each iteration. Thus, it is a natural benchmark for our proposed method. Problem
(P) corresponds to taking F = f , G = g, L = [A, B] and H = ı{c}, according to the
notation in [31].

4.3 Implementation and comparison

We implement our algorithm in an instance of the ROF model, which is a simple
but relevant framework. It is important to mention that, for this specific model, more
sophisticated and better-performing algorithms have been designed (see [11–13,18,
21,23,24,34,39,43,58,59,61,62]). We do not expect our algorithm to outperform all
of those methods. Instead, we shall carry out a comparison with Condat’s algorithm,
which can handle problems with the same (and even higher) level of generality.

In the experiments, we considered the 256× 256-pixel cameraman test image (see
Fig. 1a). As image corruption K , we used a Gaussian blur of size 9 × 9 and standard
deviation 4 (applied by MatLab function fspecial), followed by an additive zero-
mean white Gaussian noise with standard deviation 10−3. The corrupted image is
shown in Fig. 1b. We set the regulation parameter at r = 10−4. The starting point is
the corrupted image x0, and we set y0 = Dx0, along with μ0 = 0 for the dual variable
in Condat’s algorithm. As comparison criterion, we used the energy of the original
(unconstrained) problem (24) (with Q = D), namely

E(xk) := 1

2
‖Kxk − h‖22 + r‖Dxk‖1. (25)

We first investigated different choices for the parameters Condat’s algorithm with-
out relaxation (ρn = 1). The best-performing parameters we found, in terms of the

energy given by (25) after 1000 iterations, are σ = 0.25 and τ =
( ‖K‖2

2 + σ‖L‖2
)
,

where L = [D,−I ]. For our algorithm (1)–(3), we chose the step-sizes λn = 5n−0.51

and penalization parameter γ = 0.1.
The final results for the image reconstruction are shown in Fig. 1c, d. For the original

image the energy in (25) assumes the value 0.475, while for the corrupted one it is
equal to 12.067. The final values energy after 400 iterations are respectively 0.435
for our algorithm and 0.586 for Condat’s (after 1000 iterations, we obtain 0.370 and
0.400, respectively). In Fig. 2a, we show a comparison between the behaviour of the
two algorithms, in terms of (25). Except for a few erratic iterations at the beginning,
the values corresponding to our algorithm are always below those of Condat’s scheme.

Remark 12 The proximal-gradient algorithm can be accelerated by means of Nes-
terov’s scheme [48] (see also [11]). Inspired by the latter, we introduce a heuristically
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(a) Original image (b)Corrupted image (c) Condat (d) Penalized FB

Fig. 1 Deblurring of the cameraman image

Fig. 2 Energy comparison after 400 iterations

accelerated version of our algorithm, in which the iterations (1) and (2) are not
applied to (xn, yn), but to (x̃n, ỹn), defined as an extrapolation of the segment joining
(xn−1, yn−1) to (xn, yn), namely

(x̃n, ỹn) = (xn, yn) +
(
1 − α

�n + α�
)

(xn − xn−1, yn − yn−1),

with α > 3 (see [7,20]). We have performed a preliminary computational experiment,
in the same setting as before, and with α = 3.1. The final energy after 400 iterations
is 0.2671 (see Fig. 2b). A deeper numerical analysis and the theoretical proof of
convergence and acceleration properties are left for future development, as well as the
possibility to use this tool together with a restarting technique [57] or early stopping
rules (see [37]).

Acknowledgements Supported by Fondecyt Grant 1181179 and Basal Project CMM Universidad
de Chile. The first author was also supported by CONICYT-PCHA/Doctorado Nacional/2016
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