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Abstract—There are only a few analytical 2?1D models for

tsunami propagation, most of which treat tsunami generation from

a static deformation field isolated from the kinematics of the rup-

ture. This work examines the behavior of tsunami propagation in a

simple setup including a source time function which accounts for a

time description of the rupture process on the tsunami source. An

analytical solution is derived in the wavenumber domain, which is

quickly inverted to space with the fast Fourier transform. The

solution is obtained in closed form in the 1?1D case. The inclusion

of temporal parameters of the source such as rise time and rupture

velocity reveals a specific domain of very slow earthquakes that

enhance tsunami amplitudes and produce non-negligible shifts in

arrival times. The results confirm that amplification occurs when

the rupture velocity matches the long-wave tsunami speed, and the

static approximation corresponds to a limit case for (relatively) fast

ruptures.
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1. Introduction

In most cases, tectonic tsunamis are modeled as

shallow water phenomena excited by large subduc-

tion earthquakes. These earthquakes radiate seismic

waves from a source described by a rupture front and

a dislocation vector at each point of the source. This

deformation can last several seconds, but is normally

assumed to be instantaneous when compared with

tsunami time scales. This was first observed by

Kajiura (1970), who constructed an analytical model

that included a rise time but assumed an infinite

rupture velocity. From that study, it was concluded

that the instantaneous approach is suitable because of

the minor effect that standard values of rise time have

on tsunami generation.

A pioneering work by Novikova and Ostrovsky

(1979) questioned the static approach and studied the

physics of the process of wave generation by a

propagating deformation of the sea floor. The energy

radiation was calculated, and an optimal situation was

found for a synchronous moving floor. Later, Novi-

kova and Ostrovsky (1982) examined cases where a

nonlinear hydroacoustic mechanism could contribute

to tsunami waves.

Schmedes et al. (2010) computed 315 dynamic

strike-slip rupture scenarios to produce probability

density functions of several kinematic parameters.

The most likely values for rise time are � 2 � 4 s and

for rupture velocity � 2:0 � 2:7 km/s. The compu-

tation was performed in a half space with a layer over

it, spanning S-wave velocities from 2.0 to 3.0 km/s,

with a fixed shape of the source time function. This

study also proposes a relation between rise time (via

peak slip rate) and rupture velocity.

A far-field approximation was obtained by

Yamashita and Sato (1974) to study the effect of

focal parameters. In particular, the dip angle, fault

length and focal depth are important factors with

regard to tsunami amplitudes because of the initial

wave generation, but kinematic parameters were also

analyzed, where shorter rise times contribute more to

the amplitudes. There are also preferred directions

where rupture velocity intensifies the spectral

amplitudes. However, the authors fixed the rupture

velocity at 3 km/s because the last four largest

earthquakes near Japan were of this order.

Todorovska and Trifunac (2001) used the linear

tsunami potential theory to construct a 2?1D ana-

lytical model. The forcing term was modeled as a

uniform hump with a constant rupture speed front
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propagating unilaterally. However, they did not

include a rise time in their model (instantaneous rise

time) and observed amplification in the waves asso-

ciated with constructive interference due to coupling

of the rupture and the tsunami wave propagation. The

same year, Ward (2001) provided an analytical study

of tsunami excitation from simple slides, obtaining

the same solution as Todorovska and Trifunac (2001)

but in a different context. Also, Ward (2001) assumed

linearity to reproduce complex slides via Green’s

function summations.

Saito (2013) also used the linear tsunami potential

theory to analyze the velocity field when the initial

condition is generated with a finite rise time. The

study claims to obtain an analytical solution for an

arbitrary source time function, but the solution is only

semi-analytical, since it depends on the numerical

inverse Fourier transform, and the source time func-

tion does not consider rupture propagation.

Nevertheless, the solution allows one to quantify the

weights of static and dynamic pressures, which is

fundamental for fast source inversion methods that

use ocean-bottom stations.

Le Gal et al. (2017) used the model of Todor-

ovska and Trifunac (2001) in a 1?1D version

modified to include a half-sine rise time function.

Results from their study confirmed the findings about

resonance when rupture velocity equals the tsunami

propagation velocity, but the effect is attenuated for

long rise times. The obtained linear solution explains

as much as the fully nonlinear shallow water theory.

Thus, this work was extended to 2?1D to model the

1947 Gisborne and 2011 Tohoku-Oki tsunamis (Le

Gal et al. 2018).

The inclusion of a sloping beach geometry to

study the 1?1D linear run-up for a kinematic seismic

source was examined by Fuentes et al. (2018). The

authors observed similar features in wave amplifica-

tion. The run-up also showed amplifications up to five

times relative to the static case when there was a

coupling between the tsunami wave propagation and

the source rupture velocity.

The case of tsunami generation due to a strip in a

finite-depth ocean was investigated by Carrier and

Yeh (2005), and an analytical solution was obtained

for an initial value problem. The main characteristics

of a large source with a finite aspect ratio were

discussed. The solution confirms a degradation rate

O
�

1ffiffi
r

p
�

. Further simplifications of the formulation

were addressed by Kânoǧlu et al. (2013), overcoming

the problems that arise when complete elliptical

integral functions are used. The authors succeeded in

obtaining analytical solutions that allowed them to

describe important features such as wave focusing.

The initial value problem was treated using linear

non-dispersive and linear dispersive theories (ana-

lytically) and nonlinear non-dispersive and weakly

nonlinear weakly dispersive theories (numerically).

The 2?1D problem was numerically investigated

by Ren et al. (2019). They tested sources with kine-

matic variables for the 2004 Sumatra-Andaman and

2011 Tohoku earthquakes, and a worst-case scenario

(Mw 9.3 earthquake) in the Manila trench. This study

showed that significant improvements in matching

the tsunami arrival times and amplification of the

waves are achieved when slow ruptures are consid-

ered. The slowest velocity rupture tested was 1.0 km/

s, where major differences were noted in comparison

with the static case.

With regard to slow earthquakes, tsunami earth-

quakes are a special case (Polet and Kanamori 2009),

generally with rupture velocities slower (� 1 km/s)

than with regular earthquakes (� 2:0 � 2:7 km/s).

Nonetheless, rare extreme cases have been observed.

Bell et al. (2014) reevaluated the 1947 Offshore

Poverty Bay tsunami earthquake, obtaining unusual

rupture velocities (0:15 � 0:30) km/s. These types of

earthquakes are especially important because they

can excite dangerous tsunami waves with almost no

shaking, and are thus unnoticed by the local

population.

This work explores the effects of kinematic

parameters of the seismic source on tsunami wave

propagation through analytical solutions in the

wavenumber domain. We extend the previous studies

to consider arbitrary bilateral ruptures, and an explicit

solution in time is derived for the non-dispersive case

and the amplification factor is obtained in exact form.

In Sect. 2, the mathematical model and assump-

tions are explained. Section 3 describes the

derivation of the analytical solutions. Numerical

experiments and results are given in Sect. 4. Finally,

a discussion and conclusion are presented in Sect. 5.

M. Fuentes et al. Pure Appl. Geophys.



Details on the mathematical derivations are given in

Appendices A and B.

2. Mathematical Model

One of the simplest models regarding analytical

tsunami solutions is a flat infinite ocean with a fixed

depth of h. To account for timescales attributed to

underwater perturbations, an active generation should

be formulated (Fig 1).

The potential tsunami theory has been widely

studied in this setup (Hammack 1973; Kervella et al.

2007; Dutykh and Dias 2007; Nosov and Kolesov

2011, among others), and is adopted in this study.

2.1. Linear Potential Tsunami

For an irrotational flow, the velocity field

uðx; y; z; tÞ comes from the gradient of a scalar

function uðx; y; z; tÞ. The nonlinear shallow water

system (NSWS), in an inviscid and constant density

medium, can then be expressed as

Du ¼ 0

uz ¼ ft þru � rð�h þ fÞ; at z ¼ �h þ f

uz ¼ gt þru � rg; at z ¼ g

ut ¼ � 1

2
ruj j2�gg; at z ¼ g;

where g is the gravity acceleration. When nonlinear

effects are neglected, the NSWS is reduced to its

linearized form

Du ¼ 0

uz ¼ ft; at z ¼ �h

uz ¼ gt; at z ¼ 0

ut ¼ �gg; at z ¼ 0:

ð1Þ

The system (1) is solved by employing the Fourier

transform in space and the Laplace transform in time:

FffgðkÞ ¼ f̂ ðkÞ ¼
Z

RN

f ðrÞeik�rdr

LfggðsÞ ¼ f ðsÞ ¼
Z 1

0�
gðtÞe�stdt

which gives

buðkx;ky;z;sÞ¼ � g

coshðkhÞðs2 þx2Þ

� sbfðkx;ky;sÞ�bfðkx;ky;0
�Þ

� �n

coshðkzÞ� s2

gk
sinhðkzÞ

� �
þ coshðkðzþhÞÞ bg0ðkx;kyÞ

�
;

and, in particular, the surface elevation can be

retrieved in terms of the underwater disturbance

bgðkx; ky; sÞ ¼ s

s2 þ x2

sbfðkx; ky; sÞ � bfðkx; ky; 0�Þ
coshðkhÞ þ bg0ðkx; kyÞ

( ) ð2Þ

where x2 ¼ ðckÞ2 tanhðkhÞ
kh

, k2 ¼ k2
x þ k2

y , c ¼
ffiffiffiffiffi
gh

p
and

g0ðx; yÞ is the initial condition. In this work, g0ðx; yÞ
is set to zero.

2.2. The Underwater Disturbance

The term fðx; y; tÞ is modeled following the main

features of dip-slip earthquakes and is linked to a

fault with dip angle d buried just under the distur-

bance and breaks from the ocean bottom to its width

W (see Fig. 2). The idea is to choose a function that

allows one to explicitly invert the Laplace transform.

Here, we propose an uncoupled function in (x, y), i.e.,

fðx; y; tÞ ¼ fx
0ðxÞf

y
0ðyÞTðy; tÞ, where T models a sim-

ple time source function that is called when the

rupture front reaches (x, y) and makes f linearly pass

from zero to its final value in a time interval of tR (the

rise time). Because spatial complexity along the

strike direction is neglected, fy
0ðyÞ is constant and canFigure 1

Geometry setup and definition of variables
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be set simply as fy
0ðyÞ ¼ H ½L2 � y�½y þ L1�ð Þ, where

Hð�Þ denotes the Heaviside step function and L ¼:

L1 þ L2 is the total fault length. This assumption is

mainly taken to facilitate the derivation of analytical

solutions, but also allows us to isolate possible

interactions between the rupture front that moves at

constant speed VR and slip complexity on the source.

The rupture front is modeled as a plane front that

propagates along the strike direction at constant

speed. The reason for making the advance dependent

only on the strike direction is, first, to simplify the

derivation of the analytical solution, and second,

because of the fault dimension scales. Hereafter, we

will work with the apparent rupture velocity

Vr ¼: VR cosðdÞ.
Along the dip direction, the disturbance is mod-

eled as a classical N-wave (Tadepalli and Synolakis

1994):

fx
0ðxÞ ¼ � 3

ffiffiffi
3

p

2
Hsech2ðcxÞ tanhðcxÞ

where c ¼ 1
W cosðdÞ arcsechð

ffiffiffiffiffiffiffiffiffiffiffi
1 � r

p
Þ and r is the sur-

face percentage of the N-wave that lies over the

projection of the fault in z ¼ 0. This value is set as

r ¼ 0:999. c is constrained this way to ensure that the

fault does not produce a deformation far from the

source area.

This N-wave has an explicit Fourier transform:

bfx
0ðkxÞ ¼

3
ffiffiffi
3

p
p

4
Hc3cschðakxÞk2

x i

with a ¼ p
2c.

To set the fault parameters, the scaling laws from

Blaser et al. (2010) are chosen

logðWÞ ¼ �1:86 þ 0:46Mw

logðLÞ ¼ �2:37 þ 0:57Mw

Usually, the bottom disturbance is obtained from a

slip distribution, but in this case, we impose the shape

of the bottom deformation for analytical convenience.

This means that H has to be constrained to produce

the target moment magnitude. To perform this task,

first, it should be noted that H is linear in gx
0ðxÞ.

Second, we call D(s) the slip distribution profile

along the dip, then

fx
0ðxÞ ¼

Z W

0

Kðx; sÞD0ðsÞds;

where K(x, s) is the kernel derived by Freund and

Barnett (1976) and later corrected by Madariaga

(2003). With this, D(s) is inverted by discretizing the

integral and employing the L-curve method for a non-

negative least square problem (NNLS) with a

Tikhonov regularization of smoothness (Hansen

1994). This is solved for H ¼ 1, and then scaled to

the desired seismic moment M0 ¼ lL
RW

0
DðsÞds, for

a given shear modulus l.

Finally, the source time function used is

Tðy; tÞ ¼ S
t � tV

tR

� 	
;

where SðxÞ ¼ xHðxÞ � ðx � 1ÞHðx � 1Þ. In other

words, the source time rate function at each point is a

boxcar that starts at the rupture time tV and the last

rise time tR.

3. Analytical Solution

3.1. 2?1D Dispersive Solution

A detailed derivation is presented in the appendix.

Using the source time function shown in Fig. 2, with

tV ¼ jyj
Vr

from Eq. (3), the analytical solution found, in

the wavenumber domain, is

Figure 2
Sketch of the underwater forcing term. The color scale in the lower

panel illustrates the heterogeneity of the fault slip

M. Fuentes et al. Pure Appl. Geophys.



bgðkx; ky; tÞ ¼
bfx
0ðkxÞ

coshðkhÞ
V2

r

tR
/ðtÞ � /ðt � tRÞ½ � ð3Þ

where

/ðtÞ ¼ 2

Vr

pðt; 0Þ � 1

Vr

cosðL2kyÞpðt; t2Þ þ ky sinðL2kyÞqðt � t2Þ

� 1

Vr

cosðL1kyÞpðt; t1Þ þ ky sinðL1kyÞqðt � t1Þ

þ i � 1

Vr

sinðL2kyÞpðt; t2Þ � ky cosðL2kyÞqðt � t2Þ



þ 1

Vr

sinðL1kyÞpðt; t1Þ þ ky cosðL1kyÞqðt � t1Þ
�

and ti ¼ Li

Vr
. Functions p and q are defined in

Appendix A. Equation (3) is numerically inverted

with a fast Fourier transform.

A similar solution was derived by Ward (2001) to

model a submarine landslide.

3.2. 1?1D Non-Dispersive Solution

To obtain a closed analytical solution, the non-

dispersive case is used. In this case, to retrieve a

1?1D solution it is sufficient to replace gx
0ðxÞ ¼ H in

Eq. (2), and for long waves, x � ck is assumed (non-

dispersive).

To simplify the analysis, only a unilateral prop-

agation is considered with a null rise time (tR ¼ 0).

Therefore, the analytical solution is

gðy; tÞ ¼ m2H

pð1 � m2Þ

w y � Vrt; 0ð Þ þ wðct � y; 0Þ þ 1

m
� 1

� 	
wðct; yÞ

�

þHðt0Þ w L þ Vrt
0 � y; 0ð Þ � 1

2

1

m
� 1

� 	
w y � L þ ct0; 0ð Þ




þ 1

2

1

m
þ 1

� 	
w y � L � ct0; 0ð Þ

��

ð4Þ

where m is the ratio between velocities, Vr

c
, t0 ¼ t � L

Vr
,

and wðx; yÞ ¼ arctan
sinh px

2hð Þ
cosh

py
2hð Þ

� 	
.

3.3. The Radial Case

In the particular case when the underwater

deformation is radially symmetric, the set (1) can

be solved in cylindrical coordinates with the routine

Hankel–Laplace transform. The solution expressed as

iterated integrals is

gðr; tÞ ¼
Z 1

0

J0ðkrÞk
xðkÞ coshðkhÞ

Z 1

0

J0ðknÞn
Z t

0

fttðn; sÞ sin½xðkÞðt � sÞ�dsdndk:

ð5Þ

Equation (5) is similar to that obtained by Tuck and

Hwang (1972) in a sloping beach setup except for the

filter 1= coshðkhÞ and the frequency dispersion xðkÞ.
Following a similar derivation as Fuentes et al.

(2018), except that now we use the standard form of

the zero-order Hankel transform, and taking tV ¼ r
Vr

in the source time function, the solution reduces to

gðr; tÞ ¼ Mðr; tÞ �Mðr; t � tRÞ
tR

ð6Þ

with

Mðr; tÞ ¼
Z 1

0

J0ðkrÞk
xðkÞ coshðkhÞ

Z maxðVrt;0Þ

0

J0ðknÞnf0ðnÞ sin½xðkÞðt � n=VrÞ�dndk:

ð7Þ

M can be efficiently computed with minor modifi-

cations of the method of Baddour and Chouinard

(2017).

4. Results

Numerical experiments show that amplification is

stronger when Vr ¼ c. This is in agreement with

previous studies (Novikova and Ostrovsky 1979;

Todorovska and Trifunac 2001; Le Gal et al. 2017;

Fuentes et al. 2018). Figure 3 illustrates different

wave fields associated with different rupture veloci-

ties taken from Ren et al. (2019) for comparison

purposes. The example shows a unilateral rupture,

where very low rupture velocities do not excite tsu-

nami waves, whereas low velocities (around c)

optimize the enhancement of the tsunami waves. The

extreme case of high rupture velocity matches the

classical static approach, in which the seabed defor-

mation is copied as the initial condition in the water

surface. Besides amplification phenomena, arrival

times are also evidently affected. The radiation

Analytical Model for Tsunami Propagation Including Source Kinematics



pattern is now dependent on the rupture directivity.

According to our coordinate system, for north–south

ruptures (Fig. 2), stations with negative azimuths will

be more delayed in their arrival times relative to the

static case, which is the fastest. The opposite result is

observed if the rupture propagates south–north. In a

bilateral rupture, all the records will be delayed on

the proportion of the rupture segmentation. This is

illustrated in Figs. 6a, 7a and 8a, where a larger sta-

tion symbol indicates shorter arrival time.

The wave dispersion also plays a key role in the

amplification process which separates faster waves

depending on their wavelengths. This is illustrated in

Fig. 4 in the 1?1D case. Dispersion can diminish the

amplitudes due to wave spreading, because the global

energy remains the same. The closer to the critical

case (Vr ¼ c), the greater the amplification, with

maximum reached when there are no dispersion

effects. Also, if this travel lasts longer for long waves

(L=h[ [ 1), then the amplification should be higher

(Fig. 5). Note that the analytical solution is explicit

and retrieves exact values for the non-dispersive case.

Three different experiments are considered:

(A) an asymmetric bilateral rupture (Fig. 6), (B) a

symmetric bilateral rupture (Fig. 7) and (C) a uni-

lateral rupture (Fig. 8). The experiments confirm that

amplification is largest at the end of the longest

segment of the fault and always at the critical kine-

matic values: m ¼ 1 and tR ¼ 0 (Table 1). The

stations with higher amplification are located ahead

of the rupture front, where coupling due to directivity

effects are stronger. The panels (c–h) in Figs. 6, 7, 8

display the amplification at selected stations, similar

to the way it was presented in Fuentes et al. (2018).

The radial case shows the importance of the

rupture directivity, i.e., when the rupture front has no

preferred direction but is still accounted for. Figure 9

illustrates the tsunami amplification due to slow

ruptures with radial symmetry. As expected, aug-

mentation is present, but it is much weaker than a

directive case.

Figure 3
Snapshots of tsunami propagation for a Mw 8.8 earthquake with unilateral rupture propagation at different velocities. The source parameters

are L ¼ 443 km, W ¼ 154 km, d ¼18�, l ¼ 30 GPa and average slip D ¼ 2.2 m. Due to the large disparity in the amplification values for

different cases, the color palette is scaled with the function f ðxÞ ¼ signðxÞ
ffiffiffiffiffi
jxj

p

M. Fuentes et al. Pure Appl. Geophys.



Figure 4
Snapshots at different times for different rupture velocities. The thick black line represents the fault length L ¼ 300 km. All cases were

computed with h ¼ 4 km. Each panel shows the dispersive (Eq. 3), non-dispersive (Eq. 3 with x ¼ ck) and analytical solutions (Eq. 4). The

dispersive and non-dispersive cases correspond to a transect along x ¼ 0 of the 2D domain

Figure 5
Color map of the maximum amplification as a function of m and L

h
. a Dispersive solution. b Non-dispersive solution. The black curve indicates

the level curve 0 (no amplification)
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Figure 6
Asymmetric rupture propagation. a Network of synthetic stations. The black star represents the hypocenter. The stations are drawn with

different sizes according to their arrival times. The shorter the arrival time is in the station, the larger the symbol is drawn. b Static initial

condition. Inner panels depict the time series of given stations for different values of rupture velocity and rise time. c–h Maximum

amplification of a given station as a function of rupture velocity and rise time

M. Fuentes et al. Pure Appl. Geophys.



Figure 7
Symmetric rupture propagation. a Network of synthetic stations. The black star represents the hypocenter. The stations are drawn with

different sizes according to their arrival times. The shorter the arrival time is in the station, the larger the symbol is drawn. b Static initial

condition. Inner panels depict the time series of given stations for different values of rupture velocity and rise time. c–h Maximum

amplification of a given station as a function of rupture velocity and rise time

Analytical Model for Tsunami Propagation Including Source Kinematics



Figure 8
Unilateral rupture propagation. a Network of synthetic stations. The black star represents the hypocenter. The stations are drawn with different

sizes according to their arrival times. The shorter the arrival time is in the station, the larger the symbol is drawn. b Static initial condition.

Inner panels depict the time series of given stations for different values of rupture velocity and rise time. c–h Maximum amplification of a

given station as a function of rupture velocity and rise time

M. Fuentes et al. Pure Appl. Geophys.



5. Discussion and Conclusions

In this work, the role of source kinematic

parameters in wave tsunami development was ana-

lyzed. Those parameters are let free and independent

in order to obtain the most general solution possible,

regardless of whether such earthquakes can really

exist. Certainly, complex situations can arise from the

intrinsic nonlinearity of the earthquake dynamics and

rheology (Schmedes et al. 2010; Ma 2012).

Similar solutions to Eq. (3) were used in the

framework of tsunami-landslides. However, the

validity of that type of application might be ques-

tionable, since the source time function used does not

represent a horizontal moving slide but a vertical

uplift. An example of sliding slumps was addressed

by Okal and Synolakis (2003). The source time

function for an underwater slide as presented in Ward

(2001) should be of the form

fðx; y; tÞ ¼ Hv½0;L�ðx � VrtÞv �W
2
;W

2½ �ðyÞv½0;Ts�ðtÞ;

which has the following analytical solution in the

ðkx; kyÞ space:

ĝðkx; ky; tÞ ¼ Fðkx; kyÞ uðkx; ky; tÞ � eikxVrTs uðkx; ky; t � TsÞ
� �

where

� v½a;b�ðxÞ ¼ Hðx � aÞ � Hðx � bÞ

� Fðkx; kyÞ ¼ V0

sinc XðkxÞð Þsinc YðkyÞ

 �

coshðkhÞ eikx
L
2HðTsÞ

� V0 ¼ LWH is the total volume of the sliding body

� XðkxÞ ¼
kxL

2
and YðkyÞ ¼

kyW

2

� uðkx; ky; tÞ ¼ cosðxtÞHðtÞ þ ikxVr

x2 � ðkxVrÞ2

�
x sinðxtÞ � ikxVr cosðxtÞ þ ikxVre

ikxVrt
�
HðtÞ

� and Ts is the slide duration. Ts ¼ þ1 if Vr ¼ 0.

This solution has nonphysical cosðxtÞ terms associ-

ated with the jump discontinuities of the source time

function due to its abrupt start and braking. A better

modeling requires one to account for the acceleration

of the slide, as was noted by Okal and Synolakis

(2003). The study of tsunami landslide sources is

outside the scope of this work, and they will be

reviewed in a dedicated survey.

The kinematics of the tsunamigenic source pro-

cess can strongly influence the waveforms, especially

in the near field, close to the source area. The main

reason is due to the coupling between the rupture

front and the velocity of tsunami waves. When this

coupling becomes stronger, at every time t, waves are

generated in phase, creating constructive interference.

This process is depicted in Fig. 10. When a tsunami

wave is created by an underwater uplift, it starts to

travel radially. The red dashed curve represents the

waveform after a given time interval dt. However, at

that time a new wave is generated, shown in the

dashed black line. Both curves contribute to the final

waveform, and this process repeats continuously

during the rupture duration (see the supplemental

material). This effect counteracts with the dispersion,

which diminishes the wave amplitudes. When there is

no dispersion, from Eq. (4) it can be inferred that the

maximum amplification occurs in the critical case

ðm; tRÞ ¼ ð1; 0Þ at the endpoint of the largest segment:

Figure 9
Propagation for different rupture velocities at different times for a

radially symmetric source f0ðrÞ ¼ HHðR0 � rÞ

Table 1

Maximum amplification recorded in each experiment

Experiment
gmax

H
Station Location (km, km) m tR

A 3.14 16 (40, 200) 1 0

B 2.70 21 (40, 150) 1 0

C 4.16 6 (40, 450) 1 0
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lim
Vr!c

g


L0;

L0

c

�
H

¼ L0

4h
þ 1

8
;

with L0 ¼ maxfL1; L2g. This can be seen as an upper

bound, but should be expected in cases where dis-

persion is not present, for instance, in solitary waves.

This result shows that the peak amplitude is optimal

for unilateral ruptures, since there is a longer distance

where the constructive interference process takes

place and grows in proportion to the fault length.

Even for accepted values of rupture velocity

(1.5–2.0 km/s), Williamson et al. (2019) found non-

negligible delays in arrival times, which is in agree-

ment with our results. The authors did not observe

significant amplifications, but the reason is because

they worked with ratio of velocities m of 7.5 to 10.

Nevertheless, amplification becomes important for

lower values of m: 2.0 and 2.7 for the dispersive and

non-dispersive cases, respectively (Fig. 5). For

m\0:1, there is no amplification, because in this

region tsunami waves are not excited.
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Appendix 1: Detailed Mathematical Derivation

2?1D Case

In the following, detailed derivations are shown

step by step. The classical solution for the irrotational

long-wave tsunami approach in a constant ocean

depth is

bgðkx; ky; sÞ ¼ s2

s2 þ x2

bfðkx; ky; sÞ
coshðkhÞ

ð8Þ

where x2 ¼ gk tanhðkhÞ, k2 ¼ k2
x þ k2

y , g is the

gravity acceleration and h is the ocean depth. The

seafloor displacement is modeled as

fðx; y; tÞ ¼ fx
0ðxÞf

y
0ðyÞTðy; tÞ ð9Þ

with

Tðy; tÞ ¼ S
t � tVðyÞ

tR

� 	
; ð10Þ

with the function SðxÞ ¼ xHðxð1 � xÞÞ þ Hðx � 1Þ.
Firstly, we compute the Fourier–Laplace trans-

form of T. Note that

LfSgðsÞ ¼ 1

s2
1 � e�sð Þ: ð11Þ

Then, by the Laplace transform properties of time

shift and scaling, we obtain

LfTgðsÞ ¼ tR S tRsð Þe�tV ðyÞs

¼ 1

tRs2
1 � e�stRð Þe�tV ðyÞs

: ð12Þ

Now we need to compute the following Fourier

transform:

F fy
0ðyÞe�tV ðyÞs

n o
ðkyÞ; ð13Þ

which depends on the rupture model. In this case, a

general bidirectional propagation is chosen.

The origin of the coordinate system is set at the

starting rupture point. The rectangular fault is then

divided into two parts, one segment to the north of

length L2 and one segment to the south of length L1,

accounting for the total length L ¼ L1 þ L2. Thus,

Figure 10
Sketch of the amplification process

M. Fuentes et al. Pure Appl. Geophys.



fy
0ðyÞ ¼ H ðL2 � yÞðy þ L1Þð Þ and tVðyÞ ¼ jyj

Vr
. Com-

putation of expression (13) results in

F fy
0ðyÞe�tV ðyÞs

n o
ðkyÞ ¼

Z L2

�L1

e�
s

Vr
jyjþikyydy

¼
Z 0

�L1

e
s

Vr
yþikyydy þ

Z L2

0

e�
s

Vr
yþikyydy

¼ F
s

Vr

; ky; 0

� 	
� F

s

Vr

; ky;�L1

� 	

þ F � s

Vr

; ky; L2

� 	
� F � s

Vr

; ky; 0

� 	

where Fða; b; xÞ ¼ eax

a2þb2

�

a cosðbxÞ þ b sinðbxÞ

�
þ

i


a sinðbxÞ � b cosðbxÞ

��
.

Inserting in Eq. 8,

bgðkx; ky; sÞ ¼
bfx
0ðkxÞ

coshðkhÞ
V2

r

tR

1 � e�tRsð Þ 1

s2 þ x2

� 1

s2 þ ðkyVrÞ2

2

Vr

s þ e�
L2
Vr

s � s

Vr

cosðL2kyÞ þ ky sinðL2kyÞ

 ��

� e�
L1
Vr

s s

Vr

cosðL1kyÞ � ky sinðL1kyÞ

 �

þ ie�
L2
Vr

s � s

Vr

sinðL2kyÞ � ky cosðL2kyÞ

 �

þie�
L1
Vr

s s

Vr

sinðL1kyÞ þ ky cosðL1kyÞ

 ��

ð14Þ

Since L sinðatÞHðtÞf gðsÞ ¼ a
s2þa2, we can define

qða; b; tÞ ¼: HðtÞ
a2�b2

sinðbtÞ
b

� sinðatÞ
a

� �
, and then we have

that qða; b; sÞ ¼ 1
s2þa2 � 1

s2þb2, with a ¼ x and

b ¼ kyVr.

Defining pða; b; t; t0Þ ¼: L�1fse�st0 qða; b; sÞgðtÞ
¼ otqða; b; t � t0Þ and using the properties of the

Laplace transform, Eq. 15 can be rewritten in terms

of q and p (function arguments are omitted for the

sake of simplicity)

bgðkx; ky; tÞ ¼
bfx
0ðkxÞ

coshðkhÞ
V2

r

tR
/ðtÞ � /ðt � tRÞ½ � ð15Þ

where

/ðtÞ ¼ 2

Vr

pðt; 0Þ � 1

Vr

cosðL2kyÞpðt; t2Þ þ ky sinðL2kyÞqðt � t2Þ

� 1

Vr

cosðL1kyÞpðt; t1Þ þ ky sinðL1kyÞqðt � t1Þ

þ i � 1

Vr

sinðL2kyÞpðt; t2Þ � ky cosðL2kyÞqðt � t2Þ



þ 1

Vr

sinðL1kyÞpðt; t1Þ þ ky cosðL1kyÞqðt � t1Þ
�

ð16Þ

and ti ¼ Li

Vr
; i 2 f1; 2g: Note that there are removable

singularities in functions p and q when x ¼ Vrky.

The static deformation can be retrieved by letting

Vr ! 1 and tR ! 0, which gives

bgðkx; ky; tÞ ¼
bfx
0ðkxÞ

ky coshðkhÞ
sinðkyL2Þ þ sinðkyL1Þ þ ifcosðkyL1Þ � cosðkyL2Þg
� �

cosðxtÞ:
ð17Þ

Observe that the symmetric bilateral case has no

frequency shifts and leads to a pure real spectrum

bgðkx; ky; tÞ ¼ L
bfx
0ðkxÞ

coshðkhÞ sinc
kyL

2

� 	
cosðxtÞ: ð18Þ

Finally, the water surface is inverted with a fast

Fourier transform (FFT) algorithm:

gðx; y; tÞ ¼ F�1 bgðkx; ky; tÞ
� �

ðx; yÞ:

1?1D Case

If 2D effects are neglected, fx
0ðxÞ ¼ H and

bfx
0ðkxÞ ¼ 2pdðkxÞ. Equation (16) then becomes

bgðky; tÞ ¼ H

coshðkyhÞ
V2

r

tR

/ðtÞ � /ðt � tRÞ½ �: ð19Þ

Again, the final solution gðy; tÞ can be retrieved from

Eq. (20) with the 1D FFT.

In order to better understand analytically the

behavior of the amplification as a function of rupture

velocity, only a unidirectional rupture is treated with

a instant rise time, that is to say, L1 ¼ 0; L2 ¼ L and

tR ¼ 0. Equation (20) becomes

bgðky; tÞ ¼ H

coshðkyhÞV2
r /

0ðky; tÞ ð20Þ
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with

/0ðky; tÞ ¼ 1

Vr

p0ðt; 0Þ � 1

Vr

cosðLkyÞp0ðt; t	Þ

þ ky sinðLkyÞq0ðt � t	Þ

þ i � 1

Vr

sinðLkyÞp0ðt; t	Þ � ky cosðLkyÞq0ðt � t	Þ þ kyq0ðtÞ

 �

ð21Þ

and t	 ¼ L=Vr . To make possible the derivation of an

analytical solution, it is necessary to neglect the

dispersive effects: xðkyÞ � cky.

Performing the inverse Fourier transform term by

term, by symmetry, each is of the form

wðx; yÞ ¼
Z 1

0

sinðkyxÞ cosðkyyÞ
ky coshðkyhÞ dky ¼ arctan

sinh px
2h


 �

cosh py
2h


 �
 !

:

ð22Þ

Thus, the solution is

gðy; tÞ ¼ m2H

pð1 � m2Þ�
w y � Vrt; 0ð Þ þ wðct � y; 0Þ þ 1

m
� 1

� 	
wðct; yÞ:

þHðt0Þ w L þ Vrt
0 � y; 0ð Þf

� 1

2

1

m
� 1

� 	
w y � L þ ct0; 0ð Þ

þ 1

2

1

m
þ 1

� 	
w y � L � ct0; 0ð Þ

��

ð23Þ

where t0 ¼ t � t	.

In particular, when m tends to 1 ðVr ¼ cÞ, the

maximum amplification at the end of the fault is

g L; L
c


 �
H

¼ L

4h
þ 1

2p
wðL; LÞ � L

4h
þ 1

8
: ð24Þ

Appendix 2: Derivation of Function wðx; yÞ

First, for any h[ 0, let us define the function uðxÞ
as follows:

uðxÞ ¼
Z 1

0

sinðkxÞ
k coshðkhÞ dk: ð25Þ

Then,

wðx; yÞ ¼ 1

2
uðx þ yÞ � uðy � xÞ½ �: ð26Þ

By the Leibniz rule,

oxuðxÞ ¼
Z 1

0

cosðkxÞ
coshðkhÞ dk ð27Þ

The integral 28 can be easily evaluated by standard

complex contour integration. For this type of integral,

the contour is the rectangle defined by the corners

(R, 0); R; pi
h


 �
; �R; pi

h


 �
; ð�R; 0Þ enclosing a simple

pole at pi
2h

, satisfying the convergence conditions.

Therefore, by the residue theorem,

oxuðxÞ ¼
p
2h

sech
px

2h

� �
: ð28Þ

Since uð0Þ ¼ 0 andR
sechðaxÞdx ¼ 1

a
arctanðsinhðaxÞÞ þ C, integration

of (28) allows us to retrieve u:

uðxÞ ¼ arctan sinh
px

2h

� �� �
: ð29Þ

By using the property

arctanðaÞ 
 arctanðbÞ ¼ arctan a
b
1�ab

� �
, it is equiva-

lent to write

uðxÞ ¼ 2 arctan e
px
2h


 �
� p

2
: ð30Þ

. Finally, replacing in( 27) and manipulating the

arguments, the result holds.
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