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a b s t r a c t

We introduce the package SIDES (Schrödinger Integro-Differential Equation Solver) that solves the
integro-differential Schrödinger equation for elastic scattering of a nonlocal optical potential in
coordinate space. The code is capable of treating the Coulomb interaction without restrictions. The
method is based on previous developments by Jacques Raynal in the DWBA07 code. Elastic scattering
observables such as differential and integral cross sections, as well as analyzing power and spin
rotation functions for both neutron and proton projectiles are evaluated, with no restriction on the type
of nonlocality of the potential nor on the beam energy. The corresponding distorted wavefunctions
are calculated as well. The SIDES package includes a Perey–Buck potential generator with two
parametrizations. It includes as well local potential parametrizations and allows for mixing local and
nonlocal contributions. Benchmarks are performed and discussed.
Program summary
Program Title: SIDES
Program Files doi: http://dx.doi.org/10.17632/cmpjgyrngr.1
Licensing provisions: GNU General Public License, Version 2
Programming language: FORTRAN-90
Nature of problem: The description of nucleon elastic scattering off a target nucleus involves solving the
Schrödinger’s wave equation for positive incident energy. The determination of scattering observables
calls for accurate treatments of the continuum. The effective coupling between the projectile and
the target is accounted for by an optical potential, an operator which is by nature complex, energy-
dependent and nonlocal. The coupling becomes long-range in the case of charged projectiles. In a
general scenario under nonlocal potentials, Schrödinger’s equation becomes an integro-differential
equation.
Solution method: SIDES solves the Schrödinger integro-differential equation numerically by matrix
inversion using Gibbs, Numerov or a modified Numerov method with a uniform radial mesh in a
box. The solution is refined by an iterative procedure until a specified precision is achieved. To obtain
elastic scattering observables, the associated phase-shifts are calculated via matching of the numerical
solution with its analytic asymptotic behavior.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Optical potentials are widely used to model nucleon elastic
scattering off nuclei. These potentials are nonlocal, energy de-
pendent and complex by nature, satisfying a dispersion relation
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Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).
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related to causality. For convenience sake, local representations of
optical potentials are often used but they lead to severe inconsis-
tencies in the interpretation of experimental data regarding, for
example, occupation numbers and matter densities as reported
in Ref. [1]. Recently in the nuclear physics community, there has
been a renewal of interest for nonlocal phenomenological [1–4]
potentials based on energy density functionals [5–7], G-matrix-
based [8,9] as well as ab-initio [10–12] optical potentials. The
accurate treatment of nonlocality becomes crucial in order to
reach a consistent description of nuclear structure and reac-
tions. In the case of a nonlocal coupling between projectile and
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target, Schrödinger equation for scattering turns into an integro-
differential equation in coordinate space. Here we present a ded-
icated code named SIDES that solves nucleon–nucleus scattering
for any finite-range nonlocal complex potential, without resorting
to any ad-hoc seed as required in iterative methods [4,13].

The acronym SIDES stands for Schrödinger Integro-Differential
Equation Solver. This code stems from selected parts of the
DWBA07 code developed by Jacques Raynal, where the author
provides an accurate method to solve the Schrödinger equation
under nonlocal potentials [14]. Among various tasks, the DWBA07
code was designed to calculate optical model potentials start-
ing from local effective nucleon–nucleon interactions based on
Hamburg and Melbourne g-matrices [15], resulting into nonlocal
optical potentials. This specific scope, together with its sophis-
ticated structure, impede its direct use to solve scattering from
any external optical potential. To workaround this drawback, in
this work we introduce a dedicated tool to solve the scattering
problem under any kind of nonlocal potential. The wavefunction
is obtained numerically by matrix inversion starting from one
of the three proposed methods: Gibbs, Numerov or modified
Numerov. Then scattering amplitudes are obtained by matching
the numerical solution for the wavefunction with its asymp-
totic expression known analytically. Elastic scattering observables
such as differential and integral cross sections, analyzing powers,
and spin-rotation functions are computed, together with the
corresponding distorted scattering waves.

Diverse methods of solution to Schrödinger’s integro–
differential equation can be found in the literature. Many of
them follow iterative procedures [4,13,16], where a differential
equation is integrated with a non-homogeneous term consisting
of the projection of the nonlocal potential onto an intermediate
solution. These procedures start with a given seed to generate
the starting non-homogeneous term and implied intermediate
solution. The new solution is subsequently fed back to construct
a new non-homogeneous term, procedure which is interrupted
once self-consistency is achieved. The efficacity of iterative meth-
ods may rely on prior knowledge of the solution, although there
is no guarantee to converge to the actual solution. In the case
of Ref. [17], a mean-value technique is applied to approximate
projection of the non-local potential onto the scattering wave, re-
ducing the problem to a second-order homogeneous differential
equation.

More recently another approach has been proposed to deal
with nonlocal potentials [18], where a Taylor approximation for
the radial wave function is applied. This strategy is based on
the assumption that nonlocality is dominant around the diagonal
in coordinate space, feature observed in Perey–Buck nonlocal
potentials but with limited validity. Indeed, in Ref. [19] it has been
shown that microscopic potentials based on off-shell g matrices
may exhibit sharp and oscillatory structure in coordinate space,
features which call for robust techniques to solve the scattering
problem.

An alternative method to obtain scattering waves in the pres-
ence of nonlocal potentials superposed to the long–range
Coulomb interaction has been presented in Refs. [20,21], where
Lanczos technique is applied to solve integral equations derived
from the nonlocal Schrödinger equation. In Refs. [10,22,23] a
numerical treatment to this problem has been introduced with
the use of Berggren basis expansion, where an off-diagonal ap-
proximation is carried out to control the Coulomb singularity
along the diagonal in momentum space. This method is well
suited for medium excitation energies, of tens of MeV, and targets
can be heavy nuclei. The Lagrange mesh method to calculate
scattering states, reviewed in Ref. [24], is also widely used. A
coordinate-space method to solve integro-differential equations
in the context of the non-local Schrödinger equation has been

presented in Ref. [25], where an iterative framework is con-
sidered for the calculation of complex-energy states. Note that
these different methods are complementary: coordinate-space
methods are the most precise, but can be unstable, especially if
they are iterative. Methods based on Berggren basis expansion
and Lagrange mesh, on the contrary, are very robust and can
solve multi-channel problems, but precision, even if sufficient for
practical purposes, is usually not as high as with coordinate-space
methods.

Studies of the scattering problem of charged particles from
nonlocal potentials have also been carried out in momentum
space [26–32]. See Ref. [33] for a comprehensive review on the
subject. While a clear advantage of momentum–space approaches
is that nonlocalities are naturally accounted for, one of its short-
comings is that there is no method to obtain the scattering waves.
When Coulomb interaction is suppressed the calculation of scat-
tering amplitudes in momentum space is straightforward, re-
ducing the problem to a Lippmann–Schwinger integral equation
for the scattering matrix. However, in the presence of Coulomb
potential the approach cannot be applied right away due to the
∼ 1/q2 singularity of the interaction. An exact solution addressing
this singularity has been proposed by Vincent and Phatak by
means of a cut-off technique to the Coulomb long-range tail [34].
This technique has been applied to proton–nucleus scattering at
intermediate energies [27], including accurate multipole treat-
ment of the charge form factor convoluted with a sharp cut-off
potential [35].

Very recently a new technique has been introduced to solve
the scattering problem under nonlocal potentials [36]. In the
approach the Coulomb interaction is included and treated exactly.
The method enables exact solutions for the scattering waves
under nonlocal potentials in the presence of long-range Coulomb
forces. The scattering process is described in the context of the
Lippmann–Schwinger integral equation for the wavefunction,
with the scattering waves obtained by direct matrix inversion.
The robustness of this approach serves us as benchmark for
solutions obtained from SIDES.

This article is organized as follows. In Section 2, after a brief
introduction of the scattering formalism off a nonlocal potential,
we layout the method to obtain the scattering amplitudes and
their relationship with different observables of interest. Then
in Section 3, we present in some detail the numerical method
used in SIDES. In Section 4, we review the several local and
nonlocal potential implemented in SIDES. The implementation of
this package is then validated through a series of benchmarks dis-
cussed in Section 5, including applications for proton scattering
from lead at beam energies up to 1 GeV. In Section 6, we give
practical information on installation and operation of the code.

2. Nucleon–nucleus scattering with a nonlocal potential

For the sake of completeness, we layout some key elements of
scattering theory needed to obtain elastic scattering observables
in the context of nonlocal optical potentials. In this study we re-
strict ourselves to the scattering of spin– 1

2 projectile from spin-0
target nuclei.

2.1. Integro-differential Schrödinger equation

Let us consider a projectile of mass Mp, spin 1
2 and charge Zp

scattered off a spherical target of mass Mt , spin 0 and charge Zt .
The time-independent Schrödinger equation reads

−
h̄2

2µ
∇

2ψk(r)+VC (r)ψk(r)+
∫

U(r, r′; E)ψk(r′)dr′ = Eψk(r), (1)

with E the projectile–target kinetic energy in the center of mass
(c.m.), k the corresponding relative momentum and µ the
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nucleon–nucleus reduced mass. The effective interaction between
the nucleon and the nucleus consists of a non-local optical po-
tential U . In the case of a charged projectile, the local potential
VC accounts for the Coulomb interaction due to the distributed
charge in the target. Considering a closed-shell target the fol-
lowing partial-wave expansion for the scattering wavefunction
becomes suitable [37],

ψk(r) =

√
2
π

∑
jlm

ilYm
jl1/2(r̂)

flj(k, r)
kr

Z jm∗

l1/2ν(k̂). (2)

In this expansion, Y and Z are defined as

Ym
lj1/2(r̂) = [Yl(r̂) ⊗ χ1/2]jm, (3)

Z jm
l1/2ν(k̂) =

+l∑
ml=−l

⟨lml, 1/2ν|jm⟩ Yml
l (k̂), (4)

with Yml
l the spherical harmonic for orbital angular momentum l

and projection ml coupled to the spin function χσs . Furthermore,
j represents total angular momentum. We can now replace ψk(r)
from Eq. (2) in Eq. (1) in order to obtain the integro-differential
Schrödinger equation for the radial wavefunction flj, namely

−
h̄2

2µ

[
d2

dr2
−

l(l + 1)
r2

]
flj(k, r) + VC (r)flj(k, r)

+ r
∫

∞

0
νlj(r, r ′

; E)flj(k, r ′)r ′dr ′
= Eflj(k, r), (5)

where the multipoles νlj of the interaction are obtained from

νlj(r, r ′
; E) =

∫∫
dr̂dr̂ ′Ym†

lj1/2(r̂
′)U(r, r′; E)Ym

lj1/2(r̂). (6)

We can recast the above equation for flj as

d2

dr2
flj(r) +

∫
∞

0
Mlj(r, r ′

; E)flj(k, r ′)dr ′
= 0, (7)

with

Mlj(r, r ′
; E) =

(
k2 −

l(l + 1)
r2

−
2µ
h̄2 VC (r)

)
δ(r − r ′)

−
2µ
h̄2 rr ′νlj(r, r ′

; E). (8)

In the particular case of local potentials, where U can be ex-
pressed as

U(r, r′; E) = V (r; E)δ(r − r′), (9)

Eq. (5) becomes the usual second-order differential equation for
the wavefunction.

Applications at high incident energies require the account for
relativistic effects. Corrections of kinematical origin are included
as follows. Denoting with Elab the kinetic energy of the projectile
in the laboratory reference frame, then the projectile–target rel-
ative momentum k in the center-of-momentum reference frame
is obtained from

k2 =
1
4s

[
s − (Mp + Mt )2

] [
s − (Mp − Mt )2

]
, (10)

where the s-invariant is given by s = 2MtElab + (Mp +Mt )2. These
formulas are expressed in natural units h̄= c = 1, for simplicity.
Additionally, the reduced mass µ takes the form of the reduced
energy

µ →
EpEt

Ep + Et
, (11)

with Ep =

√
k2 + M2

p , and Et =

√
k2 + M2

t . The kinetic energy
in the center-of-momentum reference frame is given by E =

Ep + Et − Mp − Mt .

2.2. Matching condition

For a finite-range nonlocal potential, the boundary between
the inner radial region and the asymptotic one is set by imposing

νlj(r, r ′
; E) = 0 , for min(r, r ′) ⩾ R. (12)

In order to get the scattering wavefunction flj in the inner region,
where the projectile remains sensitive to the finite range part of
the optical potential (nuclear and finite range Coulomb contri-
butions, including nonlocal Coulomb exchange), we solve Eq. (5)
following the numerical method to be discussed in Section 3. In
the asymptotic region the only coupling between the projectile
and the charged nucleus is the point-Coulomb term given by

VC (r) =
r≳R

1
4πϵ0

ZpZte2

r
. (13)

Under this regime the outgoing scattering waves take the analytic
form

flj(k, r) =
r≳R

i
2

[
H (−)

l (kr) − S jlH
(+)
l (kr)

]
, (14)

where the S-matrix reads S jl = exp(2i∆lj). The i/2 factor is
introduced in Eq. (14) to recover unperturbed (plane) waves in
Eq. (2) when the interaction is set off, where S jl = 1. In the above
expression H (±)

l are defined as

H (±)
l (kr) = exp(∓iσl) [Gl(kr) ± iFl(kr)] , (15)

with Fl (Gl) the regular (irregular) spherical Coulomb function,
under the phase convention that F0(x)=sin(x), and G0(x)=cos(x),
when Coulomb contribution is off. The total phase-shift,

∆lj = σl + δlj, (16)

consists of the Coulomb phase-shift σl and the short-range contri-
bution δlj. Coulomb phase-shifts due to point sources are obtained
analytically from the recursion relation

σl+1 = σl + Arctg
( η

l

)
(17)

with σ0 = Γ (1 + iη), where η = µZpZte2/h̄2k, is the Sommerfeld
parameter [37,38]. The inner part of the wavefunction f Nlj (k, r)
is obtained numerically following Section 3, where the resulting
solution needs to be scaled in the form

flj(k, r) = γljf Nlj (k, r), (18)

to match the asymptotic condition of Eq. (14). The coefficients S jl
and γlj are obtained considering the solution of Eq. (14) at two
radial points r± ≡ R ± h. Denoting

f ±

lj = f Nlj (k, r±), F±

l = Fl(kr±) and G±

l = Gl(kr±), (19)

then using Eqs. (14), (15) and (18), we get

γljf ±

lj =
i
2
exp(iσl)

[
(1 − S jl exp(−i2σl))G±

l

−i(1 + S jl exp(−i2σl))F±

l

]
. (20)

Finally we obtain for the S−matrix and the normalization coeffi-
cient γlj,

S jl = exp(2iσl)
Alj − iBlj

Alj + iBlj
and γlj = exp(iσl)

(
Alj + iBlj

)−1
, (21)

where

Alj =
f +

lj G
−

l − f −

lj G
+

l

F+

l G−

l − F−

l G+

l
and Blj =

f +

lj F
−

l − f −

lj F
+

l

F+

l G−

l − F−

l G+

l
. (22)
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2.3. Elastic scattering observables

For spin 1
2 - spin 0 particle scattering in the case of an unpo-

larized incident beam, the differential cross section reads
dσ
dΩ

(θ ) = |g(θ )|2+|h(θ )|2, (23)

where g(θ ) (h(θ )) is the scattering amplitude associated to parti-
cles with spin projection left unchanged (inverted) after scatter-
ing [38]. These amplitudes read

g(θ ) = fc(θ ) +
i
2k

∞∑
l=0

e2iσl
{
(l + 1)(1 − S l+1/2

l ) + l(1 − S l−1/2
l )

}
Pl(cos θ ),

h(θ ) =
1
2k

∞∑
l=0

e2iσl
{
(1 − S l−1/2

l ) − (1 − S l+1/2
l )

}
P1
l (cos θ ). (24)

Here Pl(z) denotes the Legendre polynomial, and

Pn
l (z) = (−1)n(1 − x2)n/2

dnPl(z)
dzn

, (25)

the associated Legendre function. The Coulomb amplitude is
given by

fc(θ ) =
−η

2k sin2 (
θ
2

) exp
[
−iη ln

(
sin2

(
θ

2

))
+ 2iσ0

]
. (26)

With these definitions the corresponding integral cross sec-
tions read

σR =
π

k2

∞∑
l=0

{
(l + 1)

(
1 −

⏐⏐⏐S l+1/2
l

⏐⏐⏐2) + l
(
1 −

⏐⏐⏐S l−1/2
l

⏐⏐⏐2)}
, (27)

σSE =
π

k2

∞∑
l=0

{
(l + 1)

⏐⏐⏐1 − S l+1/2
l

⏐⏐⏐2 + l
⏐⏐⏐1 − S l−1/2

l

⏐⏐⏐2} , (28)

σT =
π

k2

∞∑
l=0

{
(l + 1)

[
1 − Re(S l+1/2

l )
]

+l
[
1 − Re(S l−1/2

l )
]}
. (29)

Here σR, σSE and σT denote reaction, shape elastic and total cross
sections, respectively.

The presence of spin–orbit coupling affects the spin orienta-
tion of the projectile through the collision process. A measure of
this effect is given by the analyzing power, which reads

Ay(θ ) =
2 Re [g∗(θ )h(θ )]
|g(θ )|2 + |h(θ )|2

. (30)

Being an interference effect, Ay vanishes if one of the amplitudes,
g or h, is equal to zero. The analyzing power also vanishes if
one amplitude is real and the other one is pure imaginary [38].
Another spin observable is the spin rotation, commonly denoted
by Q , given by the ratio

Q (θ ) =
2 Im [g∗(θ )h(θ )]
|g(θ )|2 + |h(θ )|2

. (31)

Results for differential elastic observables are given in terms of θ
and corresponding momentum transfer given by q=2k sin(θ/2).

3. Numerical method of solution

We present the numerical method we adopt to solve Eq. (5)
and obtain the radial wavefunctions f Nlj in a radial box of size R
defined in Eq. (12). As already mentioned in Eq. (18), the numeri-
cal wavefunction is then scaled through the matching procedure.

Thus, one wants to solve

d2

dr2
flj(r) +

∫ R

0
Mlj(r, r ′

; E)flj(r ′)dr ′
= 0, (32)

with conditions at the border. From now on, subscripts referring
to angular momentum and energy are omitted for simplicity, as
Eq. (32) is solved independently for each (l, j) pair. Eq. (32) is
discretized over a uniform radial mesh of size R and step h, with

dr ′
−→ h

r −→ ih
r ′

−→ jh
f (r) −→ fi

M(r, r ′
; E)dr ′

−→ Mi,j

with indices i and j ranging from 0 to N . The use of trapezoidal
rule in Eq. (32) yields

f ′′

i +

N∑
j=0

Mi,jfj = 0. (33)

We present and examine three methods to solve Eq. (33), namely
Gibbs, Numerov, and the modified Numerov methods.

3.1. Gibbs’ method

The above equation can be solved using numerical differen-
tiation method for the second derivative and matrix inversion
as described by Gibbs [39]. We refer to this method as Gibbs’
method for convenience. The second derivative is obtained using
a three-point differentiation formula

f ′′

i =
fi+1 − 2fi + fi−1

h2 + O(h2). (34)

Replacing this expression in Eq. (33) yields[
B + h2M

]
f = 0, (35)

where B is a tri-diagonal matrix whose elements are given by

Bi,j = (δi,j−1 − 2δi,j + δi,j+1), (36)

with 1 ≤ i ≤ N . The problem is reduced to a system of N
equations corresponding to r = h, 2h, . . . ,Nh. Since we have
N+2 unknowns (f0, f1, . . . , fN+1), the system is algebraically un-
derdetermined. However, from a physics standpoint we impose
f0 = 0, in order to ensure regularity of the solution at the origin.
Additionally we can impose

fN+1 ≡ 1, (37)

which is equivalent to choose an arbitrary normalization of the
wave function. Considering that the short-range potential is neg-
ligible above the matching radius, we have Mi,N+1 = 0 for i =

1, . . . ,N . The only element in Eq. (36) containing fN+1 comes from
the term δN,N+1, which once placed as an inhomogeneous term in
the same system leads to
N∑
j=1

Ki,jfj = bi, (38)

with bi = 0, for i < N , and bN = −fN+1. Matrix K in Eq. (38) is
defined as

Ki,j =
[
(δi,j+1 − 2δi,j + δi,j−1) + h2Mi,j

]
− δi,Nδj,N+1. (39)

The solution of Eq. (38) is obtained after inverting the complex
matrix K,

fi = −
(
K−1)

i,N for i ∈ [1,N], f0 = 0 and fN+1 = 1. (40)

The matching procedure described in the previous Section is then
used to get the phase-shift and the normalization of the wave
function.
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3.2. Numerov method

An alternative approach to solve Eq. (32) comes from the
use of Numerov’s technique to solve a second-order differential
equations. This method [14,40,41] allows better control in the
precision of second derivatives, where

(fi+1 − 2fi + fi−1) =
h2

12
(f ′′

i+1 + 10f ′′

i + f ′′

i−1) + O(h6). (41)

Then, Eq. (41) can be recast as

ξi+1 − 2ξi + ξi−1 = ui, (42)

where each element ξi of vector ξ is defined as

ξi = fi −
1
12

ui, (43)

and

ui = h2f ′′

i . (44)

Eq. (42) can then be written in a matrix form,

Bξ = u (45)

with B defined in Eq. (36). After combining Eqs. (33), (43), (44)
and (45), we get[
B + h2M

(
1
12

B + 1
)]

ξ = 0. (46)

Finally, we obtain
N∑
j=1

[
(δi,j+1 − 2δi,j + δi,j−1) +

h2

12
(Mi,j+1 + 10Mi,j + Mi,j−1)

]
ξj = 0, (47)

for i = 1, . . . ,N . We then proceed in the same way as in the
Gibbs’ method. We have now
N∑
j=1

Ki,jξj = bi, (48)

with bi = 0, for i < N , and bN = −ξN+1. We impose ξN+1 ≡ 1
and define

Ki,j =

[
(δi,j+1 − 2δi,j + δi,j−1) +

h2

12
(Mi,j+1 + 10Mi,j + Mi,j−1)

]
− δi,Nδj,N+1. (49)

The solution of Eq. (48) is obtained after inverting the complex
matrix K,

ξi = −
(
K−1)

i,N for i ∈ [1,N], ξ0 = 0 and ξN+1 = 1. (50)

The wave function f can be obtained from ξ using relations

fi = ξi +
1
12

ui (51)

=
1
12

[ξi−1 + 10ξi + ξi+1] (52)

3.3. Modified Numerov method

We now consider a Modified Numerov Method (MNM) that
results to be more accurate than the two previous approaches.
Jacques Raynal is referred to as inventor of the method in Ref.
[42]. MNM has also been used in the context of coupled-channel
calculations with local optical potentials, where the computation

of the solution involves the resolution of a linear system of
equation [43]. We start again from Eq. (42) with

u =
h2M

1 −
h2
12M

ξ. (53)

The modified Numerov method consists in expanding the fraction
in the expression of u up to fourth order in h,

u ≈

{
h2M +

h4

12
M2

}
ξ . (54)

Then, Eq. (53) can be written as Eq. (48). Considering the bound-
ary conditions for ξ, we get the solution by matrix inversion in
the same way as described previously. The error induced by the
truncated development in Eq. (54) is of the same order than the
one yielded by Numerov method except for its sign. This results
in a compensatory effect between the two sources of error as
described in more detail in Ref. [43].

3.4. Refinement procedure

We have presented three methods to obtain the solution of
Eq. (33), each of them with a different truncation error. Moreover,
they are based on a numerical inversion of matrix K, procedure
that induces numerical errors. We now show a method aimed to
refine the numerical accuracy of the result, an issue which has
been discussed in detail in Ref. [44].

Let us recast Eq. (33) such as

Af = b , (55)

where A has a truncation error lower than K and b takes care
of the boundary conditions. Denote with N the inverse of K
obtained numerically. We now define the R matrix with

R = 1 − NA . (56)

Thus R measures the accuracy by which N is the true inverse of
A . Combining Eqs. (55) and (56) we obtain

f = Nb + Rf . (57)

Assuming that the coefficients of R are strictly smaller than 1,
then the above Eq. (57) yields for the exact solution f = (1+R +

R2
+· · ·)Nb. With this result in mind it becomes useful to define

f (n) = (1 + R + · · · + Rn) N b . (58)

Thus, defining f (0) = Nb, then for n > 0 we have

f (n) = f (n−1)
+ Rn Nb . (59)

With this construction, the exact solution f is given by f (∞). In
practice, we proceed recursively until the difference between two
consecutive orders is small enough under a given criteria. In our
case we define

S(n) =

N∑
i=1

|δf (n)i |
2 , (60)

where

δf (n) ≡ Rn Nb = R δf (n−1) . (61)

With the above, the condition for convergence is defined as

S(n) ≤ ϵ . (62)

To achieve this condition it is essential to calculate δf (n) with
higher precision than the original solution of Eq. (40). To this
purpose we pay special attention to the precision of the numerical
differentiation used for second derivatives when determining A.
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Table 1
Nonlocal optical model parameters for neutrons for the Perey–Buck potential
from Ref. [13]. The depth parameters are in MeV units, while geometry
parameters are in fm units.

Uv rRv aRv Ws r Is aIs Uso rso aso β

Neutron 71.00 1.22 0.65 15.00 1.22 0.47 7.18 1.22 0.65 0.85

Table 2
Same as Table 1 for Tian, Pang and Ma potential from Ref. [3].

Uv rRv aRv Wv r Iv aIv Ws

Neutron 70.00 1.25 0.61 1.39 1.17 0.55 21.11
Proton 70.95 1.29 0.58 9.03 1.24 0.50 15.74

r Is aIs Uso rso aso β rC
Neutron 1.15 0.46 9.00 1.10 0.59 0.90
Proton 1.20 0.45 8.13 1.02 0.59 0.88 1.34

Once the condition in Eq. (62) is fulfilled the system is considered
as solved (default value ϵ = 10−6 fm−1).

For the cases of Numerov and modified Numerov methods
the refinement procedure differs slightly. There we start from an
equation of the form,

Kξ = b . (63)

As previously A stands for the system bringing the desired solu-
tion f with a better precision than the first solution ξ(0) = Nb. ξ(n)
is defined as in Eq. (58) with ξ instead of f . Whenever coefficients
of R are strictly smaller than 1, one gets ξ(∞)

= f .

4. Potentials

SIDES can be used with any microscopic or phenomenological
local and nonlocal potential in coordinate space through input
file. Some parametrizations are provided as well.

4.1. Perey-Buck nonlocal potentials

This class of potential is build from Woods–Saxon form factors
and Gaussian nonlocality. In addition, it includes local terms for
the spin–orbit and Coulomb contributions. SIDES is shipped with
the original Perey–Buck parametrization [13] fitted for neutron
elastic scattering, together with a more recent parametrization
developed for both neutron and proton projectiles by Tian, Pang
and Ma (TPM) [3]. These two sets are energy independent, al-
though both have been developed for maximum nucleon en-
ergy of about 30 MeV. Tables 1 and 2 summarize these two
parametrizations. The routine PEREY can be used, for instance,
as a starting point to generate nonlocal dispersive optical po-
tentials from Refs. [1,45]. Moreover it can be easily modified
to produce PB potential dependent on the incident energy as
proposed in [46–48] or with different nonlocalities for each term.
The routine performs partial-wave expansion as

4.2. Local potentials

The Koning–Delaroche (KD) global parametrization of the local
optical potential is provided [49]. The global dispersive local opti-
cal potential from Morillon–Romain (MR) is provided as well [50].
Both potentials work for neutron and proton projectiles with
energy from 1 keV to 200 MeV off (near-)spherical nuclides in
the mass range 24 < A < 209. The MR potential requires the
knowledge of the target neutron and proton Fermi energies. We
use the KD prescription for the Fermi energy. The user can easily
modify the beginning of pot_mr.f90 file in order to use a better
prescription.

5. Benchmarks

In this Section, we evaluate the convergence ability of SIDES
using the three methods outlined in Section 3, namely Gibbs,
Numerov and modified Numerov method. We also assess the
effectiveness of the refinement method described in Section 3.4.
We first consider the case of a separable nonlocal potential solv-
able analytically. Then we perform some benchmarks comparing
our results with the ones obtained with ESW from Ref. [36],
using TPM potential as given by Table 2, and microscopic model
potentials at high energies.

5.1. Comparison with an analytically solvable model

We compare scattering results from SIDES with exact solutions
given by a separable potential. This assessment is made suppress-
ing the Coulomb interaction. In this case we focus on the total
cross section. Following Bagchi and Mulligan [51], we consider
separable construction

νlj(r, r ′) =
1
rr ′

q(r)q(r ′). (64)

Then using

q(r) = Ae−αr rn, (65)

one obtains an analytical solution for the phase-shift. For the
sake of simplicity, we consider a single partial wave l = 0 and
j = 1/2. In the following, we refer to cross sections obtained
analytically as ‘Analytic Result’ (AR). For q(r) in Eq. (65) we adopt
the following set of parameters with A = 25h̄2/µ, µ the reduced
mass in the case of neutron scattering off 40Ca, α = 6.5 and
n = 1. In Fig. 1, we present results in a radial box of 10 fm,
considering only the s-wave. We show results for several values
of the number of radial steps N = 50, 100 and 200. In both
Figures, frames (a), (b) and (c) correspond to Gibbs’ approach;
frames (d), (e) and (f) to Numerov’s approach; and frames (g),
(h) and (i) to MNM. Frames in the first column correspond to
the total cross section σ0 as a function of the energy, while the
second column represents the corresponding error relative to AR.
In these three cases the refinement procedure has been applied.
Frames in the third column show results without the refinement
of the solution. Only converged results are depicted. One notices
that for a given value of N , Numerov and MNM converge far
better than Gibbs’ method. Moreover in the second column, errors
beyond 10% are not depicted for sake of clarity. As a result, we
can safely state that the Modified Numerov Method can be safely
used checking the convergence with the radial step and with Lmax.

5.2. Convergence with the mesh size

We now illustrate the convergence of the solution as a func-
tion of the density of mesh points in the radial box, specified by
N . In this case we focus on the total cross section σT for n+

40Ca
elastic scattering, and the reaction cross section σR for p+

40Ca.
The projectile kinetic energy is 30.3 MeV, with the use of TPM
potential (see Section 4) to represent the interaction between
the projectile and the nucleus. The size of the radial box is R =

15 fm, considering l ≤ 20. Let N be the dimension of the radial
array, and denote with σ (N) its resulting cross section. As a mea-
sure of convergence, let us define DN =|1−σ

(N)
T /σ

(NF )
T |, with NF

a sufficiently large number for which convergence is acceptable.
With this definition, small values of DN indicate proximity of the
solution to the acceptable one.

In frames (a) and (b) of Fig. 2 we plot log(DN ) for neutron
scattering as a function of N , for 20 ≤ N ≤ 180, with NF =

200. These frames correspond to results using Numerov method
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Fig. 1. Convergence tests for the s-wave elastic cross section as function of the incident energy. Results are obtained with the three proposed methods: Gibbs (panels
a, b and c), Numerov (panels d, e and f), and modified Numerov (panels g, h and i). The refinement procedure is (not) used in the calculation when ‘(w/) correction’
is mentioned. Black solid curves refer to AR solutions based on separable potential with parameter set 1. See text for explanation of each frame.

Fig. 2. Rate of convergence of calculated reaction (total) cross section for p (n)+40Ca elastic scattering function of the dimension N of radial array for several incident
energies indicated in MeV. The reference cross section, σ (NF ) is taken with N = 200. Radial box of R=15 fm. Calculation done with TPM potential.
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and MNM, respectively. Labels on the curves correspond to the
energy in MeV units. As observed, the result converges to the
reference calculation with increasing N , as expected. Also, for
a given proximity DN , say 10−4 for instance, the needed N for
such accuracy increases with the energy. In the case of 300 MeV,
the needed N is ∼ 130, whereas for 100 MeV the needed N is
∼70. When comparing Numerov method with MNM, we observe
that the latter converges more monotonically to the solution than
Numerov alone.

Frames (c) and (d) show logarithmic plots for DN based on
reaction cross sections for proton scattering. In this case we also
note a monotonic convergence to the solutions when MNM is
applied, with proximity to the converged value below 10−6 when
N ≥ 60. Qualitative features in the convergence of the solutions
are similar to the ones exhibited for the reaction cross sections.

5.3. Full calculation

We now analyze proton scattering off 40Ca, comparing results
from SIDES and the ones from the method reported in Ref. [36],
to be labeled ESW (Exact Scattering Waves). The referred method
leads to exact solutions for the scattering waves for nonlocal
potentials in the presence of long-range Coulomb forces. The
scattering process is described in the context of the Lippmann–
Schwinger integral equation for the wavefunction, allowing to
obtain the scattering waves by simple matrix inversion. In Fig. 3
we compare SIDES and ESW results for 40Ca(p, p) scattering at
30 MeV, where we use TPM optical potential from Ref. [3]. Upper
(a), middle (b) and lower (c) frames show the differential cross
section dσ/dΩ , analyzing power Ay and spin rotation Q , respec-
tively. As observed, the differential cross section exhibits near
complete agreement between the two approaches, with a slight
difference at the minimum at scattering angles around 140◦. In
the case of the analyzing power, a difference in 0.2 appears in
the last minimum. A similar difference takes place for the last
two maxima in Q . Apart from these two differences, both spin
observables are consistently calculated by these two approaches
for scattering angles below 120◦.

We include a calculation for proton elastic scattering off 208Pb
target at 500 MeV, 800 MeV and 1 GeV. For this application
we construct optical potentials of ‘tρ’ type [27], where off-shell
t matrices are obtained from Argonne v18 bare potential. The
use of free t matrix at these high energies is justified by the
fact that medium effects are weak. Additionally, the inclusion of
inelasticities of nucleon–nucleon interactions is dealt with fol-
lowing Ref. [52]. The obtained effective interaction is then folded
with matter density [53] obtained from Hartree–Fock–Bogoliubov
with D1S Gogny interaction [54,55]. Results are shown in Fig. 4,
where results from SIDES are compared with the results obtained
with ESW [36]. SIDES results are obtained using the Numerov
method, as results obtained with MNM are identical. All calcu-
lations are performed in a 15 fm box. We assess the convergence
of the calculation varying the number of radial integration step
taking N = 150 and N = 300. Differential cross sections are
practically identical with both models and converged for both
discretization. Analyzing powers and Q observables are globally in
agreement between the two models even if they converge slower
with N especially increasing momentum transfer q. These results
demonstrate the ability of SIDES to handle accurately high energy
processes as well. Moreover it is worth mentioning that SIDES is
able to handle as input microscopic potentials with very exotic
structures such as the ones presented in Ref. [19].

Fig. 3. Calculated differential cross section (a), analyzing power (b) and spin
rotation (c) as functions of the center-of-mass scattering angle. TPM potential
for 40Ca(p, p) elastic scattering at 30.3 MeV is used [3]. Black (red) curves denote
results from SIDES (ESW) [36]. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

6. Program SIDES

6.1. Compiling and running

The code package contains 22 subroutines and 2 functions
written in Fortran 90. After downloading the source code SIDES.
tar.gz, one should unzip the tar file:

gunzip SIDES.tar.gz
tar -xvf SIDES.tar
This will create the directory SIDES/. The package SIDES is

composed of the following directories and files:

• README: contains detailed instructions to build the solver,
the tools and their dependencies, and to run the code with
the examples provided.

• Makefile: a standard GNU makefile to build the solver and
the tools. The user can modify the compiler there.

• src/: Fortran source files for SIDES.
• UNSAVE: type ./UNSAVE in order to move file-SAVE to
file. Useful when the user wishes to use potentials previ-
ously stocked.

The full SIDES package is independent of any library.
The code is compiled typing in src/:
make
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Fig. 4. Calculated differential cross section (a), analyzing power (b) and spin rotation (c) as functions of the center-of-mass scattering angle. 208Pb(p, p) elastic
scattering at 500 MeV and 1 GeV with potential from g matrix starting from bare interaction av18 [52]. Same for 40Ca(p, p) at 1 GeV. Black (Red) curves denote
results from SIDES (ESW) [36]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Constants used in SIDES.
Conversion constant h̄c = 197.3269788 MeV fm
Fine-structure constant α =

e2
4πϵ0 h̄c

= 1/137.035999
Unified atomic mass unit Mu = 931.49432 MeV/c2
Neutron mass Mn = 1.008665 u
Proton mass Mp = 1.007276 u

The code can be run typing: run and then answering to the
questions in the terminal. Using a given input the code is simply
run typing

./SIDE < input

6.2. Constants & units

By default, the usual constants are set following Ref. [56].
Constants are stocked in the module DEF_CONST in files def_
const.f90. Whenever the value of a constant is modified, the
user has to go through (see Table 3).

make clean
make

6.3. Input files

In this Section, we present the input files required to run
SIDES. Depending on the options, the following files are needed
as input.

6.3.1. Input
After compilation, run the code doing ./sides < INPUT. We

now describe the inputs.

• ZPROJ (integer) projectile:

(0) neutron
(1) proton

• TAR ATARGET ZTARGET (character*2, integer, integer) target
symbol, mass, charge.

• IETEST (integer) incident energy and maximum ℓ value:

(1) read from input ENERGY LMAX (real*8, integer)
(2) read from file ENERGIES located in the main directory

• REL (integer) kinematics:

(0) non relativistic
(1) relativistic

• TYP (integer) type of potential:

(1) local potential: NCHOIX (integer):

(1) read from file LOCPOTENTIAL in main directory
(2) Köning-Delaroche global local potential
(3) Morillon-Romain global dispersive local potential
(4) custom potential with parameters set by the user

in potloc.f90:
ICOU (integer) Add a local uniformly charged
sphere Coulomb potential: (0) no, (1) yes

(2) nonlocal potential NCHOIX (integer):

(1) read from file NLPOTENTIAL in main directory
(2) Tian, Pang and Ma nonlocal potential potential
(3) Perey-Buck nonlocal potential (valid only for in-

cident neutron)
(4) custom Perey-Buck-like potential with parame-

ters set by the user in perey.f90
ICOU (integer) Add a local uniformly charged
sphere Coulomb potential: (0) no, (1) yes

(3) local+nonlocal potential:

∗ NCHOIXLOC (integer)

(1) read from file LOCPOTENTIAL in main direc-
tory

(2) Köning-Delaroche global local potential
(3) Morillon-Romain global dispersive local po-

tential
(4) custom potential with parameters set by the

user in potloc.f90
ICOU (integer) Add a local uniformly charged
sphere Coulomb potential: (0) no, (1) yes

∗ NCHOIXNL (integer)

(1) read from file NLPOTENTIAL in main direc-
tory

(2) Tian, Pang and Ma nonlocal potential poten-
tial

(3) Perey-Buck nonlocal potential (valid only for
incident neutron)

(4) custom Perey-Buck-like potential with pa-
rameters set by the user in perey.f90
(ICOU imposed to 0)

• SAVEPOT (integer)
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(0) Potential not saved
(1) Potential saved on LOCPOTENTIAL and/or NLPOTEN-

TIAL followed by an illuminating suffix i.e.
LOCPOTENTIAL-pCa40_10.000-SAVE.

• METHOD (integer)

(1) Numerov
(2) Modified Numerov
(3) Gibbs

• IR (integer) Maximum radius

(1) defined by user RMAX (real)
(2) pre-defined value RMAX=15 fm

• NMAX (integer) Number of steps

(1) defined by user NMAX (integer)
(2) pre-defined value N=150

• IA (integer) Angular step number

(1) defined by user TTMAX (integer)
(2) pre-defined value TTMAX=179

6.3.2. Energies
This files is used when IETEST=2. Energies and corresponding

maximum l values (see Eqs. (29)) should be provided as follows
ENERGY1 LMAX1
ENERGY2 LMAX2
...
SIDES is executed for each line of the file. LMAX required for

convergence of the cross section increases with incident energy.
The user is invited to check the convergence of the calculation
using different values of LMAX.

6.3.3. Read local potential
For NCHOIX=1 and TYP=1 or 3, the local contribution to the

potential is read in the main folder from the file LOCPOTENTIAL
(ex: LOCPOTENTIAL-pCa40_20.000) in the following format:

ZPROJ ATARGET ZTARGET ENERGY STEP NMAX LMAX ICOU
L J
REAL PART IMAGINARY PART
...
The first line of the file contains information suitable to iden-

tify the potential: projectile, target mass and charge, incident
energy in the laboratory frame, radial step, number of radial steps,
maximum l value. The consistency between the input parameters
and the first line parameter is checked during the run. Multipoles
are ordered as: (l = 0, j = 1/2), (l = 1, j = 1/2), (l = 1, j = 3/2)
and so on until l = LMAX. For each (l, j)-value, the potential is
read and symmetrized in the routine vr_reader.f90 using

DO K1=1,NMAX
READ(1,*) VX,VY
CV(K1,K1) = DCMPLX(VX,VY)
ENDDO
ICOU variable has to be set to 0 if Coulomb is already con-

tained in the potential for proton scattering or in the case of neu-
tron scattering. For ICOU=1 a uniformly charged sphere Coulomb
potential is added to the potential. The value of Rc adopted is
indicated during the run and is taken as Rc = 1.34 A1/3. Different
prescriptions for Coulomb can be easily implemented modifying
file vr_reader.f90.

6.3.4. Read nonlocal potential
For NCHOIX=1 and TYP=2 or 3, the nonlocal contribution to

the potential is read in the main from the file NLPOTENTIAL (ex:
NLPOTENTIAL-pCa40_20.000). The file contains the multipole

expansion of the nonlocal potential νlj(r, r ′
; E) as described in

Eq. (6). This file is organized in the same way than for local
potentials. The potential is read and symmetrized in the routine
vrrp_reader.f90 following,

DO K1=1,NMAX
DO K2=1,K1 !<-- WARNING
READ(1,*) VX,VY
CV(K2,K1) = DCMPLX(VX,VY)
CV(K1,K2) = CV(K2,K1)

ENDDO
ENDDO
Please read the previous section in order to carefully address

the choice if ICOU. Different prescriptions for Coulomb can be
easily implemented modifying file vrrp_reader.f90.

6.4. Output files

We now present the different outputs of SIDES. Besides the in-
formation provided in the terminal during the run, SIDES provides
several output files.

6.4.1. SIDES-...
The main output is of the type SIDES-pCa40-30.000-PB-

NM-R for proton elastic scattering off 40Ca at 30 MeV with Perey–
Buck potential, Numerov method and relativistic kinematics. It
contains a detailed record of input parameters. The different dif-
ferential observables are proposed with center-of-mass scattering
angle, momentum transfer (expressed at end of Section 2), differ-
ential cross section (Eq. (23)), differential cross section divided by
Rutherford for proton scattering, analyzing power
(Eq. (30)) and Q observable (Eq. (31)) as follows

## Angle q Cross section C.S./Rutherford Ay
Q

## [deg.] [1/fm] [mb/sr]
...
Then integral cross sections are printed: reaction, elastic and

total cross section for neutron and only reaction cross section for
proton.

It contains as well phase-shifts δlj (Eq. (16)).
# PHASE-SHIFTS (LMAX= ...)
# L Delta(j = l-1/2) Delta(j = l+1/2)
# [rad] [rad]
...
This output file allows for straightforward plots of results

using gnuplot.

6.4.2. INTEGRAL-CROSS-SECTION-...
Integral cross sections are provided separately as function of

the incident energy. This is convenient when several energies are
read from file.

6.4.3. DW-...
This file contains wavefunctions flj from Eq. (18). It is orga-

nized as follows
## Wavefunctions for n+40Ca elastic scattering @

40 MeV and LMAX=30
## l j=l-1/2 l j=l+1/2
r Re[flj(r)] Im[flj(r)] Re[flj(r)] Im[flj(r)]
...

6.4.4. LOCPOTENTIAL...-SAVE and/or NLPOTENTIAL...-SAVE
When POTSAVE=1 the total potential is saved in file, meaning

the sum of nuclear and Coulomb contributions. The stocked po-
tentials can then be used as input potentials provided the -SAVE
suffix is suppressed. Typing ./UNSAVE allows for this change a



G. Blanchon, M. Dupuis, H.F. Arellano et al. / Computer Physics Communications 254 (2020) 107340 11

file name. The first line of the file indicates the main parameters
of the calculation.

ZPROJ ATARGET ZTARGET ENERGY H NMAX LMAX ICOU
L J

...
ICOU is set by default to 0. This prevents from double counting

of Coulomb when the potential will be used as input.

7. Summary and conclusions

We have presented the SIDES package capable of solving
nucleon–nucleus elastic scattering under any kind of short-range
nonlocal potential. The code has been designed to solve the
integro-differential nonrelativistic Schrödinger equation for
spin−0 target, including the long-range Coulomb interaction.
Applications have been tested at beam energies of up to 1 GeV,
leading to confident results for differential as well as integral
cross sections, including analyzing power Ay and spin rotation
function Q . Furthermore, SIDES provides results for the scattering
distorted waves in (j, l) basis. For testing purposes, the pack-
age features a built-in Perey–Buck potential generator with two
parametrizations. Some local parametrizations are provided as
well in order to be used within the same package. It is as well
possible to mix local and nonlocal contributions. In this paper,
we have summarized the main theoretical considerations and
numerical strategies in line with the actual implementation of
the code. In particular, we discuss and include three alternative
methods to handle finite-differences, with subsequent reduction
of the integro-differential equation into matrix form. Further-
more, the refinement procedure aimed to correct truncation
errors is presented and implemented in SIDES. This contribution
represents the first self-contained computational code capable of
solving Schrödinger’s integro-differential equation, in its exact
form, without feedback iterative methods nor resorting to the
construction of alternative bases.
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