
Physica Scripta

PAPER

Classical and Quantum Dispersion Relations
To cite this article: Sergio A Hojman and Felipe A Asenjo 2020 Phys. Scr. 95 085001

 

View the article online for updates and enhancements.

This content was downloaded from IP address 132.174.250.76 on 18/07/2020 at 23:24

https://doi.org/10.1088/1402-4896/ab986b


Classical and Quantum Dispersion Relations

Sergio A Hojman1,2,3,4 and Felipe A Asenjo5,6

1Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago 7491169,
Chile
2 Centro de Investigación en Matemáticas, A.C., Unidad Mérida, Yuc. 97302, México
3Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
4 Centro de Recursos Educativos Avanzados, CREA, Santiago 7500018, Chile
5 Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago 7491169, Chile

E-mail: sergio.hojman@uai.cl and felipe.asenjo@uai.cl

Received 31 March 2020, revised 20 May 2020
Accepted for publication 1 June 2020
Published 11 June 2020

Abstract
It is showed that, in general, classical and quantum dispersion relations are different due to the
presence of the Bohm potential. There are exact particular solutions of the quantum (wave)
theory which obey the classical dispersion relation, but they differ in the general case. The
dispersion relations may also coincide when additional assumptions are made, such as WKB or
eikonal approximations, for instance. This general result also holds for non–quantum wave
equations derived from classical counterparts, such as in ray and wave optics, for instance.
Explicit examples are given for covariant scalar, vectorial and tensorial fields in flat and curved
spacetimes.
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1. Introduction

Dispersion relations have a long and illustrious history
throughout different physics subjects ranging from fluid
dynamics to particle physics, including Maxwell’s electro-
magnetism and Einstein’s gravity, among many others. In the
early days, at the beginning of the twentieth century, pioneers
such as Wood and Raleigh discovered anomalous dispersion
relations [1–4] enriching the subject. Later on, the discovery
of the connection between dispersion relations and causality,
which opened a whole new area of research, was turned into
one of the most striking results in the area (a rigorous teat-
ment is found in [5]). There are many articles and books
written on the subject of dispersion relations (see for example
[6–11]).

Furthermore, for over fifty years there have been both
theoretical [12–29] and (more recently) experimental [30–34]
results which seem to indicate that light propagation may also
occur with either super–or sub–luminal speeds in vacuum flat
spacetime or on curved spacetimes as well as on dielectric
media. The wavevectors of these solutions do not proceed
along null geodesics. These non–geodesic solutions appear in

addition to the usual ones where light propagation occurs
along null geodesics in any media and in any kind of
spacetimes. Needless to say, if these results were firmly
confirmed, experimental and/or observational works based
on (Special or General) Relativity would have to be recon-
sidered and many results related to Astrophysics and Cos-
mology should be also in need of reexamination.

This work exhibits the relation that exists between non-
vanishing Bohm potentials and superluminal (as well as
subluminal) dispersion relations. The super–and sub–luminal
character of the propagation may be stated in terms of (non–
relativistically invariant) phase or group velocities but it may
also be cast in the language of (relativistically invariant)
dispersion relations. Customarily, the usual propagation of
waves with the speed of light (written in terms of the wave
four–vector kμ, the gradient of the wave’s phase) is tanta-
mount to

=m
mk k 0, 1( )

while either super–or sub–luminal wave propagation can be
indicated as

¹m
mk k 0. 2( )

The ‘right hand side’ of equation (2) is negative (positive) for

Physica Scripta

Phys. Scr. 95 (2020) 085001 (7pp) https://doi.org/10.1088/1402-4896/ab986b

6 Author to whom any correspondence should be addressed.

0031-8949/20/085001+07$33.00 © 2020 IOP Publishing Ltd Printed in the UK1

https://orcid.org/0000-0002-7085-658X
https://orcid.org/0000-0002-7085-658X
mailto:sergio.hojman@uai.cl
mailto:felipe.asenjo@uai.cl
https://doi.org/10.1088/1402-4896/ab986b
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ab986b&domain=pdf&date_stamp=2020-06-11
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ab986b&domain=pdf&date_stamp=2020-06-11


sub-(super-) luminal propagation with the metric signature
convention adopted here. Here, the spatial part of the wave
four–vector kμ allows us to measure the phase velocity of
the wave.

In general, a super–luminal propagation of fields is not a
behavior forbidden by relativity. In fact, super–luminal pro-
pagation is a well-known effect occuring through anomalous
dispersion in media (see [11], and references therein). The
reason for no violation with special theory of relativity is due
that in those cases, the super–luminal group or phases velo-
cities are not carrying information, which is described by the
signal velocity. This was already noted by Sommerfeld and
Brillouin [11], by indicating that different velocities can be
associated to wave motion, as group velocity, phase velocity,
signal velocity, energy transfer velocity, etc and they are all
different in absorbing media.

The problem, then, arises when waves are studied in
vacuum, as one should not expect to have the aforementioned
issues which take place in media. Below, we show that it is
possible to have wave solutions with dispersion relations
presenting a non–null geodesic behavior, even in vaccum.
This occurs due to the variations of wave amplitude, that
affect the propagation of the wave, implying a non–local
effect in the waves’ trayectories. It is proved that this effect is
contained in the so–called Bohm potential, which is always
associated to any wave-like structure, even propagating in
vaccum. The Bohm potential VB modifies the dispersion
relations always in the non–traditional form =m

mk k VB,
changing the phase velocity of the wave. This is what pro-
duces the sub-(super-)luminal propagation of massless scalar,
vectorial and tensorial fields. In other words, the non–tradi-
tional form of dispersion relations for the phase velocities of
massless fields, emerge as a general consequence of its wave-
like nature (not being a point–particle description), and not
only because it is travelling in a medium. In general, it is only
when the wave dynamics is approximated to the eikonal limit,
i.e. point particle-like nature, that V 0B , and the massless
field moves in null geodesics.

There are multiple examples of systems whose classical
(particle–like) and quantum (wave–like) dispersion relations
are different, as it can be seen in [12–29], for instance. These
differences can also be tracked to Hamilton–Jacobi formal-
isms for classical and quantum theories. This allows us to
connect these non–traditional dispersion relations with the
foundations of quantum mechanics [35–39]. These ideas have
been pushed forward to study, for example, systems with
identical classical and quantum dynamics [40], with exact
two–dimensional quantum solutions [41], or with the Bohm
potential as an internal energy [42].

It is the aim of this work to show that the Bohm potential
plays the important role of differentiating classical and
quantum dispersion relations, bringing out the wave–like
structures of the fields. It is this extended property of the field,
with non–local interactions due to a non–vanishing Bohm
potential, that allows the field to have super–or sub–luminal
behavior. In order to explicitly show that, we present exam-
ples of this behavior for massless Klein–Gordon scalar fields,

vectorial Maxwell fields and tensorial gravitational wave
fields.

2. Classical and quantum Hamilton–Jacobi
equations

Consider classical mechanics, where a relation between
energy E and momentum p


, for point particles, may be

established (usually through energy conservation). The
quantization process translates this relation into the Schrö-
dinger wave equation whose dispersion relation between
energy E (frequency ω) and momentun p


(wave vector k


) is

different, in general, from the original one. From the
Lagrangian = -L mr V1 2 2( )  of a classical point particle
under a potential =V V r( ) , the Hamilton–Jacobi (HJ)
equation can be derived

  + +
¶

¶
=

m
S S V r

S r t

t

1

2

,
0, 3· ( ) ( ) ( )

   

where S represents the classical action. The HJ equation can
be considered as the dispersion relation of the classical
system.

Let us now consider the quantum theory for such particle.
This is described by complex wavefunctions ψ and y*
satisfying the Schrödinger equations

y-  + -
¶
¶

=
 
m

V r i
t

r t
2

, 0, 4
2

2
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) 

y-  + +
¶
¶

=
 
m

V r i
t

r t
2

, 0 , 5
2

2 *
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) 

for one particle moving in the presence of a (real, time
independent) potential V r( ) . Now let us rewrite the complex
wavefunction ψ in polar form

y =


A
iS

exp , 6⎜ ⎟⎛
⎝

⎞
⎠ ( )

where =A A r t,( )
and =S S r t,( )

are real functions. Notice
that the information of the quantum system is encoded in A
and S in the same way that is in ψ and y*.

Then the Schrödinger equations may be written as a pair
of nonlinear coupled real equations [35, 36]

  -


+ +
¶
¶

=


m
S S

m

A

A
V

S

t

1

2 2
0, 7

2 2
· ( )

 

  +
¶
¶

=
m

A S
A

t

1
0. 82

2
· ( ) ( )

 

Equation (7) define the Quantum Hamilton–Jacobi (QHJ)
equation [36]. It differs from the classical HJ equation (3), for
a particle moving on a potential V r( ) , by the addition of the
Bohm potential for a non–relativistic particle VB which is
defined by

= -


V
m

A

A2
, 9B

2 2
( )

where y y=A * is the amplitude of the wavefunction ψ.
Furthermore, it is added to the system the probability
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conservation (continuity) equation (8) to the theory. Both
equations (7) and (8) are known as the Madelung–Bohm
(MB) equations [37, 38]. These constitute the hydro-
dynamical version of quantum mechanics. Note that ÿ appears
in the Bohm potential only.

It is clear that in the quantum theory, the MB system and
the QHJ equation is a (non–trivial) modification of the HJ
equation due to the presence of the Bohm potential. So, in
general, the classical and quantum dispersion relations are not
equivalent except in the cases for which the Bohm potential
vanishes. For the case of plane waves (and other particular
solutions) the Bohm potential vanishes identically. In the two
dimensional case, if A(x, y) is a harmonic function of the
coordinates, the Bohm potential also vanishes [41]. On the
other hand, in the WKB approximation and eikonal approx-
imations, the Bohm potential is neglected assuming slowly
varying wave amplitudes.

As an opposite case, Berry and Balasz [24] described a
wave packet solution to the free one–dimensional particle
Schrödinger equation (written in terms of an Airy function)
that propagates without distortion and non–vanishing time
dependent acceleration in spite of the absence of a force. The
Berry–Balasz is a solution that produces a non–vanishing
Bohm potential, which may be consider as the origin of such
phenomenon.

Considering the previous discussion, we study the
massless cases in order to find the effect of Bohm potential on
dispersion relations for the field propagation. We present
different cases for massless scalar, vectorial and tensorial
fields in which their MB associated equations are different
from a HJ theory. We show how subluminal and superluminal
solutions emerges as solutions for non–vanishing Bohm
potential of the respective equations, where the luminal
(lightlike) behavior occurs when the Bohm potential vanishes
(and the equation coincides with a HJ theory).

3. The complex wave equation in flat-spacetime

Consider the covariant wave equation [26]

=u 0, 10( )

for for a massless (complex) scalar field function, where
º ¶ ¶m m is the flat-spacetime d’Alembert operator in any

coordinates [with signature - + + +, , ,( )]. Let us write
=u U eiS for real functions U and S. Then, equation (10)

separates in

= =m
m 

k k V
U

U
11B ( )

¶ =m
mk U 0. 122( ) ( )

In equation (11), = ¶m mk S is the wavevector for the propa-
gation of the field. The above equations contains the Bohm
potential VB of a scalar field, which is, in general, nonzero.
Equation (11) is the dispersion relation, which is equal to the
Bohm potential. This is the equivalent to the QHJ equation for
a free massless particle. Besides, equation (23) is the con-
tinuity equation for the scalar field.

As long as VB=0, the field has null geodesic (luminal)
propagation. This also occurs in the eikonal limit. In such
cases, the dispersion relation is =m

mk k 0. This corresponds to
the simplest solution which may be constructed with a con-
stant amplitude, such as a plane wave with form

= -u t x ik x ct, exp( ) [ ( )], with constant k. The massless
scalar equation coincides with a theory described by a HJ
equation only when VB=0.

However, if ¹V 0B , other kind of behaviors are possible.
A very explicit propagating solution with nonzero Bohm
potential was found by Slepian in 1949 [12], in cartesian
coordinates (t, x, y). These solutions have the form

= -> < > <u t x y U y ik x vt, , exp, ,( ) ( ) [ ( )], where

= -> >U y A ky
v

c
cos 1 , 13

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

= -< <U y A ky
v

c
cosh 1 , 14

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

for constant k, c, >A and <A . Here, v is the constant phase
velocity of the wave. Solution (13) is valid for super–luminal
phase velocities v>c. However, its dispersion relation is

= = - <m
m

> >k k V k
v

c
1 0, 15B

2
2

2

⎛
⎝⎜

⎞
⎠⎟∣ ( )

and such propagation is timelike (sub–luminal). On the con-
trary, solution (14) is only valid for sub–luminal phase
velocities, v<c, but the dispersion relation for this solution

= = - >m
m

< <k k V k
v

c
1 0, 16B

2
2

2

⎛
⎝⎜

⎞
⎠⎟∣ ( )

is space–like, and then the wave propagates at super–luminal
speed. This kind of behavior (that phase velocities and dis-
persion relations hint in opposite ways) is a common
phenomenon for waves in a medium. But, we stress that the
above solutions are in vacuum.

In both above case, Bohm potentials >VB and <VB do not
vanish (except for the case v=c). Thus, these constant
negative and positive Bohm potentials correspond to super–
luminal and sub–luminal propagation. Of course, plane wave
(and other particular) solutions have vanishing Bohm poten-
tials (and therefore, the ‘right hand sides’ of the dispersion
equations are zero).

In general, different luminality character of the solutions
may be traced back to a non–vanishing Bohm potential or
modified forms of it. This is due to their dynamics is
described by QHJ equation. The same can occur in vectorial
equations, such as Maxwell for instance, as we show below.

4. Maxwell equations and its Bohm potential

Maxwell equations can be written in terms of the electro-
magnetic vector potential r aA x( ) on a flat or curved spacetime
background described (in general) by the metric mn

bg x( ). For a
vectorial equation, Bohm potential is a more complicated
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function, that does not depend only on the field amplitude but
also on its vectorial features, such as polarization.

Below, we analyze how the Bohm potential affects
electromagnetic propagation in flat and curved spacetime.

4.1. In vacuum and flat spacetime

The covariant form of Maxwell equations in flat spacetime are
¶ =m

mnF 0. Writing the electromagnetic tensor
= ¶ - ¶mn m n n mF A A in terms of the electromagnetic potential,

Maxwell equations becomes simply

¶ ¶ - ¶ =m
m n n mA A 0. 17( ) ( )

Under the Lorenz gauge ¶ =m
mA 0, the above equation reads

=nA 0. 18( )

Then, Maxwell equations are reduced to complex wave
equation (10) for each polarization. This implies that the
complete analysis of previous section applies for each
polarization of the electromagnetic field, having a general
non–zero Bohm potential. Considering the form [28]

x=m mA e 19iS ( )

for the potential, where ξμ (amplitude of the electromagnetic
field) and S (its phase) are real functions of the spacetime
coordinates, then Maxwell equation (18) separates as

x x=n
m

m nk k , 20( ) ( )

x x¶ + ¶ =m
m n m

m
nk k 0. 21( ) ( )

where = ¶m mk S is the wavevector. Equation (20) gives rise to
the dispersion relation

x x
x

= =m
m n

n
k k V , 22B 2

( )

where x x xº m
m . Notice that now the Bohm potential takes

into account the spacetime variations of the amplitude and
polarization of the wave. Anew, equation (22) has the role of
the QHJ equation for the electromagnetic wave.

On the other hand, equation (21) produces the continuity
equation for photon propagation

x¶ =m
mk 0. 232( ) ( )

Finally, Lorenz gauge reduces to

x x¶ = =m
m m

mk0, 0. 24( )

The simplest solution for electromagnetic waves are
plane waves with constant amplitude, such that VB=0 and
null geodesic behavior =m

mk k 0. However, because of
electromagnetic fields satisfies equation (18), then Slepian
[12] solutions (13) and (14) are also solutions for electro-
magnetic waves propagating at super–or sub–luminal velo-
cities in vacuum with non–vanishing Bohm potential.
Consider a particular solution, polarized in a z–direction for
instance, following the Slepian ansatz. In that case, we have

x= -A t x y y ikx ikvt, , expz z( ) ( ) ( ), where v>c is the

superluminal phase velocity of the electromagnetic wave, and

x x= -y ky
v

c
cos 1 , 25z 0

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

= - = = =k kv k k k k, 0 . 26x y z0 ( )

This solutions solves equations (20) and (21), with a constant
Bohm potential (15), and a timelike (subluminal) dipersion
relation

= - <m
mk k k

v

c
1 0. 272

2

2

⎛
⎝⎜

⎞
⎠⎟ ( )

Also, it fulfills Lorenz gauge (24). This solution determines
that the electromagnetic field can travel sub–luminally in
vacuum. This behavior, that is typical for electromagnetic
plane waves propagating in a medium, now it is obtained in
vacuum. Of course, superluminal solution are straightforward
to be obtained to be

x x= -y ky
v

c
cosh 1 . 28z 0

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

The above solutions for sub–luminal and super–luminal
electromagnetic waves correspond to the superposition of two
plane waves (each of them propagating in null geodesics).
However, their sum can travel at ¹v c, phenomenon called
the scissor effect. Therefore, the above solutions represent real
electromagnetic waves.

4.2. In vacuum and curved spacetime

Maxwell equations in curved spacetime are  =a
abF 0,

where ∇μ is the covariant derivative on a curved spacetime
background. Written in terms of the electromagnetic vector
potential r aA x( ), we get

¶ - ¶ - ¶ =a
am bn

m n n mg g g A A 0, 29[ ( )] ( )

with the metric mn
bg x( ) [and where where abg is the inverse of

the metric mng and g is its determinant].
In general [28], for the form (19), Maxwell equation

separates into the two following equations

x x x=
-

¶ - ¶ - ¶m
m

b
a

am bn
m n n mk k

g
g g g

1
, 30( ) [ ( )] ( )

x x

x x

= ¶ - -

+ - ¶ - ¶

a
am bn

m n n m

m bn
m n n m

g g g k k

g k g

0

, 31

[ ( )]

( ) ( )

where now º  = ¶m m mk S S. Equation (30) gives rise to the
dispersion relation

x

x
x x= º

-
¶ - ¶ - ¶m

m
b

a
am bn

m n n mk k V
g

g g g . 32B 2
[ ( )] ( )

This generalized antisymmetric Bohm potential VB for vector
fields contains now information of the polarization of the
fields and the curvature of the spacetime. Equation (32)
becomes the curved spacetime analogue version of the QHJ
equation for electromagnetic propagation. Other authors [25]
have found equivalent results where the non–null geodesic
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behaviour of light waves is associated to a non–vanishing
Bohm potential.

On the other hand, equation (31) produces the photon
conservation in curved spacetimes [28]

x =m
mk 0. 332( ) ( )

The above Maxwell equations are more complicated in
curved spacetime. Again, plane waves solutions (with con-
stant amplitude) are solution of equations (30) and (31), with
VB=0, and defining a null geodesic behavior for light in
curved spacetime =m

mk k 0. Nevertheless, simple Slepian
solutions can be found for some non–trivial metrics. This
solutions have non–vanishing Bohm potential, and thus
shows non–null geodesic behavior. For example, in a flat
cosmological model, with the metric = -mng a a a1, , ,2 2 2( )
in cartesian coordinates, and with a=a(t), it can be shown
that we can find a subluminal solution for electromagnetic
potential in a z–direction. This solution reads

òx= - -A t x y ky
v

c
ikx ikv

dt

a
, , cos 1 exp ,

34

z 0

2

2
⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎛

⎝
⎞
⎠( )

( )

and it solves equations (30) and (31), for super–luminal phase
velocity v>c. In this case, this solution has non–zero and
time–dependent Bohm potential

= = - <m
mk k V

k

a

v

c
1 0, 35B

2

2

2

2

⎛
⎝⎜

⎞
⎠⎟ ( )

and therefore it represents sub–luminal (timelike) light pro-
pagating in a cosmological universe. It also solves the Lorenz
gauge =m

mA 0 in curved spacetime, which translate into the
equations x =m

mk 0 and x =m
m 0. A super–luminal solution

for light in a cosmological background is

òx= - -A t x y ky
v

c
ikx ikv

dt

a
, , cosh 1 exp ,

36

z 0

2

2
⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎛

⎝
⎞
⎠( )

( )

only valid for v<c. These electromagnetic waves can only
propagates at speed of light when v=c, and thus they have
constant amplitude and vanishing Bohm potential, i.e., they
are plane waves.

5. Gravitational waves and their Bohm potential

It is clear that the Bohm potential introduces non–local effects
due to the extended properties of the fields, producing its
non–geodesic behavior. Therefore, it is expected to find a
Bohm potential for the propagation of gravitational waves. In
a vaccum curved background spacetime, gravitational waves
are described by the equation [43]

  + =a
a

mn manb
abh R h2 0, 37B¯ ¯ ( )( )

where = -mn mn mnh h h g1 2 B¯ ( ) ( ), where mng B( ) is the background
metric (that produces the vaccum curved spacetime) and mnh
is the perturbed metric, such that the total metric is given by

= +mn mn mng g hB( ) . Thus, = mn
mnh g hB( ) , and

=manb mg
g
anbR g RB B B( ) ( ) ( ) is the Riemann tensor associated to the

curved background metric. Therefore, the covariant derivative
m is taken in the background metric. Wave equation (37)
must be complemented by the Lorentz gauge condition

 =a
amh 0, 38¯ ( )

in order to ensure the two dynamic degree of freedom of the
gravitational field.

Let us consider a gravitational wave with the form

z=mn mnh e , 39iS¯ ( )

as before, but now for a tensor field. It is straightforward to
show that equation (37) produces two equations. The first one
is

z z z=   +a
a

mn
a

a mn manb
abk k R2 , 40B( ) ( )( )

where now = m mk S is the four-wavevector of the gravita-
tional wave. Also, we get the equation

z z +  =a
a

mn a
a

mnk k 0. 41( ) ( )

On the other hand, the gauge condition (38) gives

z z = =a
am

a
amk0, 0. 42( )

Anew, in general, a gravitational wave cannot travel in
null geodesics, due to the existence of Bohm potential VB for
gravitational waves. From equation (40) we obtain that

z
z z z z

=

=   +

a
a

mn a
a mn manb

mn ab

k k V

R
1

2 , 43

B

B
2

( ) ( )( )

where z z z= ab
ab . Furthermore, from equation (41), we

obtain the graviton conservation

z =a
ak 0. 442( ) ( )

The above Bohm potential VB for gravitational waves is
different from Bohm potential for vector and scalar fields of
previous sections. However, it retains the same kind of fea-
tures of dependence on variations of the wave amplitude.
Also, Bohm potential (43) shows the coupling between the
amplitude wave with spacetime curvature, but it also exists in
a flat–spacetime z z z mn

mnVB
2, indicating that the null

geodesic behavior of gravitational waves is achievable for
constant amplitude, or in eikonal–limit of the waves.

This implies that even in an empty flat–spacetime, and in
analogue form to the studied previous cases for Klein–Gordon
and Maxwell fields, gravitational waves can have phase
velocities different from speed of light, allowing them to have
a time–like behavior. An example of this is the solution

x= -h t x y y ikx ikvt, , expzz zz( ) ( ) ( ), with phase velocity

>v c, and x = -y ky v ccos 1zz
2 2( ) ( ), that satisfies the

wave equation and Lorentz gauge condition. For this solution

= = - <a
ak k V k

v

c
1 0, 45B

2
2

2

⎛
⎝⎜

⎞
⎠⎟ ( )

and the gravitational wave follow time–like trayectories, that
are not geodesics.
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6. Summary, Conclusions and Outlook

We have showed that quantum (or wave) differential
equations give rise to dispersion relations that, in general,
differ from those exhibited by classical (or particle) counter-
parts. We have been able to trace, quite in general, that those
non–traditional dispersion relations are linked to a non–van-
ishing Bohm potential, which in turn means that they are
associated to important variations of the wave amplitude. This
is a consequence of the extension of the wave (as opposed to
the point–like character of particles), and it is linked to the
difference between the HJ and the QHJ equations.

We have showed that Bohm potential modifies the dis-
persion relations of massless Klein–Gordon field. However,
these results are more striking for light. The non–traditional
dispersion relations give rise to super–and sub–luminal pro-
pagation of light waves [12–29], which seem to have been
detected experimentally [30–34]. The effect of that kind of
light propagation, if confirmed, would tremendously impact
both theoretical, experimental and observational work in
Relativity, Optics, Astrophysics and Cosmology. Further-
more, analogue resuts are obtained for gravitational waves,
displaying how Bohm potential change their dispersion rela-
tion, modifying its geodesic behavior. This is relevant, for
example, to determine the arrival time of a gravitational wave
that has experienced gravitational lensing [44, 45].

Of course, these non–traditional dispersion relations are
present in any kind of dynamics that have both a classical
(pointlike) and quantum (wavelike) propagation versions,
regardless of the fact that particles (or fields) involved are
massless or massive. We would like to point out that in the
references listed there are two kinds of non–traditional dis-
persion relations. One that we would like to call geometrical
or kinematical is associated with the findings of Slepian [12]
and Bohm potential, for instance, where one has just a wave
packet that does the trick, and a physical or dynamical kind
where the super–or sub–luminal behavior of light may be
traced back to the interaction of light polarization and metric
rotation (or anisotropy) [26, 28]. We would finally like to
point out that, other authors [46, 47], in order to get non–
traditional ( ¹m

mk k 0) dispersion relations have postulated
different kinds of models with modifications (or violation) of
Lorentz invariance in order to accommodate experimental
results.

It is perhaps interesting to remark that good old–fash-
ioned perfectly generally covariant (or Lorentz covariant in
the flat spacetime case) theories as the ones discussed here,
give rise to non–traditional dispersion relations without the
need of introducing exotic models, which may mean that at
least some experimental data may be obtained without mod-
ifying Lorentz covariance.
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